WorldWideScience

Sample records for electron damping ring

  1. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  2. Kicker for the SLC electron damping ring

    International Nuclear Information System (INIS)

    Bartelson, L.; Crawford, C.; Dinkel, J.; Kerns, Q.; Howell, J.; Snowdon, S.; Walton, J.

    1987-01-01

    The SLC electron damping ring requires two kickers each providing a 5 mr kick at 1.2 GEV to pairs of electron bunches spaced 61.63 nsec apart. The exact shape of the kick is unimportant, but the specification applies to the field the bunches see

  3. The electron damping ring for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Davies-White, W.; Hutton, A.; Harvey, A.

    1987-10-01

    A second damping ring to store and damp two electron bunches for the SLC project was constructed in 1985 and brought into operation early in 1986. Although generally similar to the damping ring (now used for positrons) constructed earlier, there are a number of design improvements and changes. The dipole magnetic field was raised to 2.1 T to improve damping. Sextupole fields were provided by separate permanent magnets, rather than being incorporated in the dipoles. The vacuum chambers, including the beam position monitors, were re-designed for lower longitudinal impedance. A new kicker was developed by Fermilab to handle the two electron bunches. Improvements were made to the dc septum magnet design. Several of the features are described in detail elsewhere. Where possible, the improvements were incorporated in an upgrade of the earlier damping ring

  4. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  5. Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Ghalam, Ali; Harkay, Katherine; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; Zimmermann, Frank

    2005-01-01

    Collective instabilities caused by the formation of an electron cloud (EC) are a potential limitation to the performances of the damping rings for a future linear collider. In this paper, we present recent simulation results for the electron cloud build-up in damping rings of different circumferences and discuss the single-bunch instabilities driven by the electron cloud

  6. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  7. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  8. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Crittenden, J. A.; Conway, J.; Dugan, G. F.; Palmer, M. A.; Rubin, D. L.; Shanks, J.; Sonnad, K. G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M. A.; Guiducci, S.; Pivi, M. T. F.; Wang, L.

    2014-03-01

    We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

  9. Simulations of the Electron Cloud Build Up and Instabilities for Various ILC Damping Ring Configurations

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej

    2007-01-01

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or (delta), with a peak value (delta) max ) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs

  10. Ion effects in the SLC electron damping ring under exceptionally poor vacuum conditions

    International Nuclear Information System (INIS)

    Zimmermann, F.; Krejcik, P.; Minty, M.; Pritzkau, D.; Raubenheimer, T.; Ross, M.; Woodley, M.

    1997-10-01

    In 1996, due to a catastrophic kicker chamber failure in the SLC electron damping ring, the ring vacuum system was contamianted for several months. During this time, the vertical emittance of the beam extracted from the ring was increased by a large factor (4--20). The emittance slowly decreased as the vacuum pressure gradually improved. At the same time, an intermittent vertical instability was observed. Both the emittance blow-up and the instability behavior depended strongly on beam current, ring pressure, number of bunches in the ring (1 or 2), duty cycle, store time and betatron tunes. In this report, the authors describe the observations, and compare them with predictions from classical ion-trapping and ion-instability theories

  11. Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.

    2007-01-01

    The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed

  12. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    International Nuclear Information System (INIS)

    Rubin, David L.; Palmer, Mark A.

    2011-01-01

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  13. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L.; Palmer, Mark A.

    2011-08-02

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  14. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  15. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    International Nuclear Information System (INIS)

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-01-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler

  16. Status of the SLC damping rings

    International Nuclear Information System (INIS)

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs

  17. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  18. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  19. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  20. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  1. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  2. Overview of collective effects in the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, A.; Santis, S. de

    2002-01-01

    The present design for the NLC Main Damping Rings (MDRs) meets the specifications for acceptance and extracted emittance, in the limit of zero current. However, the relatively large bunch charge and moderate energy mean that a variety of collective effects can impact the beam dynamics, leading to loss of stability or increase of equilibrium emittance. These effects include intrabeam scattering, impedance from numerous sources, fast ion instability, and (in the positron ring) electron cloud. In this note, we survey the expected impact on damping ring performance from each of a number of collective effects, and discuss the priorities for future studies in this area

  3. Recommendation for the Feasibility of more Compact LC Damping Rings

    CERN Document Server

    Pivi, M.T.F.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.

    2010-01-01

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design

  4. Recommendation for the Feasibility of more Compact LC Damping Rings

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.

    2010-01-01

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 (1) and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.

  5. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  6. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  7. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  8. Coherent Synchrotron Radiation effect in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T

    2004-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability in the damping rings of several linear collider projects. The threshold is determined by the instability with the longest possible wavelength

  9. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  10. Coherent Instabilities of ILC Damping Ring

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Stupakov, G.; Bane, K.; /SLAC

    2006-09-27

    The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.

  11. Impedance effects in the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Mounet, N; Rumolo, G; Salvant, B

    2011-01-01

    Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

  12. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  13. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  14. Characterization of the International Linear Collider damping ring optics

    Science.gov (United States)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  15. R and D status of the ATF damping ring

    International Nuclear Information System (INIS)

    Urakawa, Junji

    1994-01-01

    The KEK accelerator test facility (ATF) is under construction. This paper gives the status of the design studies, the various R and D works and the construction for the damping ring of the ATF. (author)

  16. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  17. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  18. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  19. Energy dependence of the emittance of damping ring beams

    International Nuclear Information System (INIS)

    Stiening, R.

    1985-01-01

    The energy at which the SLC damping rings are operated was chosen to be 1.21 GeV. At the time that that specification was made, the repetition rate of the SLC was expected to be 180 Hz. It is now anticipated that the repetition rate during the initial year of operation of the SLC will be 120 Hz. The following curves which show the output emittance of the damping rings as a function of input emittance and energy suggest that there is a range of energies over which the rings can be operated without changing the SLC luminosity. It should be noted that in the era of polarized beams, the damping ring energy will be fixed at the design value on account of the spin precession required in the LTR and RTL transport lines. The SLC design output emittance of the damping rings is 3 x 10 -5 radian-meters. Because of space charge disruption and quantum emission downstream of the damping rings, much lower values than the design value may not have a large beneficial effect on the luminosity. 3 figures

  20. Longitudinal beam instability due to the ring impedance at KEK's accelerator test facility damping ring

    International Nuclear Information System (INIS)

    Kim, Eun-San

    2003-01-01

    This paper shows the results of a numerical study of the impedance in the Accelerator Test Facility damping ring. The longitudinal impedance in the damping ring is shown to be inductive. It is shown that the total impedance |Z || /n| is 0.23 Ω and the inductance is L = 14 nH. In the extremely low emittance beam of the damping ring, bunch lengthening is caused by both the effects of potential-well distortion and intra-beam scattering. In this paper, the bunch-lengthening due to the ring impedance is numerically investigated, and the result shows qualitative agreement with the result of an analysis performed using the bunch-length measurement. With the calculated longitudinal impedance, the instability threshold in the damping ring is estimated to be a bunch population of 3.3 x 10 10 by using both a Vlasov equation approach and a multi-particle tracking method.

  1. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  2. Charged-particle incoherent-motion damping in storage rings by means of dissipative elements

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Khejfets, S.A.

    1979-01-01

    In consecutive order a possibility of damping of beam incoherent oscillations in a storage ring was studied by means of an external dissipative system in a sufficient common case. It is shown, that a useful effect, as for the case of electron cooling, is one-particle effect of particle oscillations damping due to nonconservatism of its interaction with an external system. Each other mutual influence through the external system becomes significant with increasing beam density and results in the limitation to achievable damping decrements

  3. Bunch lengthening calculations for the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Ruth, R.D.

    1989-03-01

    The problem of bunch lengthening in electron storage rings has been treated by many people, and there have been many experiments. In the typical experiment, the theory is used to determine the impedance of the ring. What has been lacking thus far, however, is a calculation of bunch lengthening that uses a carefully calculated ring impedance (or wakefield). In this paper we begin by finding the potential well distortion due to some very simple impedance models, in order to illustrate different types of bunch lengthening behavior. We then give a prescription for extending potential well calculations into the turbulent regime once the threshold is known. Then finally, using the wakefield calculated for the SLC damping rings, combined with the measured value of the threshold, we calculate bunch lengthening for the damping rings, and compare the results with the measurements. 9 refs., 6 figs

  4. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  5. Injection and Extraction Lines for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Reichel, Ina

    2007-01-01

    The current design for the injection and extraction lines into and out of the ILC Damping Rings is presented as well as the design for the abort line. Due to changes of the geometric boundary conditions by other subsystems of the ILC, a modular approach has been used to be able to respond to recurring layout changes while reusing previously designed parts

  6. Measurement of Resonance driving terms in the ATF Damping Ring

    CERN Document Server

    Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F

    2008-01-01

    The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.

  7. Bunch lengthening in the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1990-02-01

    A high level of current dependent bunch lengthening has been observed on the North damping ring of the Stanford Linear Collider (SLC). At currents of 3 x 10 10 this behavior does not appear to degrade the machine's performance significantly. However, at the higher currents that are envisioned for the future one fears that its performance could be greatly degraded due to the phenomenon of bunch lengthening. This was the motivation for the work described in this paper. In this paper we calculate the longitudinal impedance of the damping ring vacuum chamber. More specifically, in this paper we find the response function of the ring to a short Gaussian bunch, which we call the Green function wake. In addition, we try to estimate the relative importance of the different vacuum chamber objects, in order to see how we might reduce the ring impedance. This paper also describes bunch length measurements performed on the North damping ring. We use the Green function wake, discussed above, to compute the bunch lengthening. Then we compare these results with those obtained from the measurements. In addition, we calculate the current dependence of the tune distribution

  8. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  9. Bunch length measurements in the SLC damping ring

    International Nuclear Information System (INIS)

    Decker, F.J.; Limberg, T.; Minty, M.; Ross, M.

    1993-05-01

    The synchrotron light of the SLC damping ring was used to measure the bunch length with a streak camera at different times in the damping cycle. There are bunch length oscillations after injection, different equilibrium length during the cycle due to rf manipulations to avoid microwave instability oscillations, and just before extraction there is a longitudinal phase space rotation (bunch muncher) to shorten the bunch length. Measurements under these different conditions are presented and compared with BPM pulse height signals. Calibration and adjustment issues and the connection of the streak camera to the SLC control system are also discussed

  10. Design for a practical, low-emittance damping ring

    International Nuclear Information System (INIS)

    Krejcik, P.

    1988-01-01

    The luminosity requirements for future high-energy linear colliders calls for very low emittances in the two beams. These low emittances can be achieved with damping rings, but, in order to reach the design goal of a factor 10 improvement over present day machines, great care must be taken in their design. This paper emphasizes the need to address simultaneously all of the factors which limit the operational emittance in the ring. Particularly since in standard designs there is a conflict between different design parameters which makes it difficult to extrapolate such designs to very low emittances. The approach chosen here is to resolve such conflicts by separating their design solutions. Wigglers are used predominantly in zero-dispersion regions to achieve the desired damping rate, whereas in the arcs high dispersion insertions are made in regions of zero curvature to allow for easier chromaticity control

  11. Intrabeam Scattering in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2006-01-01

    We use Bane's approximation to the Bjorken-Mtingwa theory of intrabeam scattering to calculate the emittance growth as a function of bunch charge in the KEK ATF. We find that our results are consistent with the experimental data. We then calculate the emittance growth in the NLC Main Damping Rings using the same formulae; we allow for some uncertainty in the ATF data by using two different values for the Coulomb log factor in the formulae for the emittance growth rates. We find that despite the IBS emittance growth, it should still be possible to achieve the specified transverse and longitudinal emittances in the NLC Main Damping Rings at the specified bunch charge

  12. Tolerances for the vertical emittance in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Future damping rings for linear colliders will need to have very small vertical emittances. In the limit of low beam current, the vertical emittance is primarily determined by the vertical dispersion and the betatron coupling. In this paper, the contributions to these effects from random misalignments are calculated and tolerances are derived to limit the vertical emittance with a 95% confidence level. 10 refs., 5 figs

  13. Progress on low emittance tuning for the CLIC Damping Rings

    CERN Document Server

    Alabau-Gonzalvo, J; Papaphilippou, Y

    2014-01-01

    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.

  14. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  15. Impedance calculations for the improved SLC damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Ng, C.K.

    1993-04-01

    A longitudinal, single bunch instability is observed in the damping rings of the Stanford Linear Collider (SLC). Beyond a threshold bunch population of 3 x 10 10 particles the bunch energy spread increases and a ''saw-tooth'' variation in bunch length and synchronous phase as functions of time is observed. Although the relative amplitude of the saw-tooth variation is small-only on the order of 10% -- the resulting unpredictability of the beam properties in the rest of the SLC accelerator makes it difficult, if not impossible, to operate the machine above the threshold current. An additional problem at higher currents is that the bunch length is greatly increased. When the bunch is very long in the ring it becomes difficult or impossible to properly compress it after extraction. We want to solve both of these problems so that the SLC can run at higher currents to increase the luminosity. In order to solve these problems the vacuum chambers of both damping rings are being rebuilt with the aim of reducing their impedance. According to previous calculations the impedance the SLC damping rings is dominated by the many small discontinuities that are located in the so-called QD and QF vacuum chamber segments -- elements such as transitions, masks, bellows-that are inductive to the beam, Since these earlier calculations were performed the bellows of the QD segments have been sleeved, yielding a factor of 2 increase in the instability threshold. In this paper we begin by discussing the gains that might be achieved if we can reduce the impedance of the rings even further. Then we estimate the effect on the total impedance of the actual design changes that are being proposed. Three important elements -- the bend-to-quad transitions, the distributed ion pump slots, and the beam position monitor (BPM) electrodes are fully 3-dimensional and will be studied using T3 of the MAFIA computer programs

  16. Intrabeam Scattering Studies for the ILC Damping Rings Using a NewMATLAB Code

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, I.; Wolski, A.

    2006-06-21

    A new code to calculate the effects of intrabeam scattering (IBS) has been developed in MATLAB based on the approximation suggested by K. Bane. It interfaces with the Accelerator Toolbox but can also read in lattice functions from other codes. The code has been benchmarked against results from other codes for the ATF that use this approximation or do the calculation in a different way. The new code has been used to calculate the emittance growth due to intrabeam scattering for the lattices currently proposed for the ILC Damping Rings, as IBS is a concern, especially for the electron ring. A description of the code and its user interface, as well as results for the Damping Rings, will be presented.

  17. Intrabeam Scattering Studies for the ILC Damping Rings Using a New MATLAB Code

    International Nuclear Information System (INIS)

    Reichel, I.; Wolski, A.

    2006-01-01

    A new code to calculate the effects of intrabeam scattering (IBS) has been developed in MATLAB based on the approximation suggested by K. Bane. It interfaces with the Accelerator Toolbox but can also read in lattice functions from other codes. The code has been benchmarked against results from other codes for the ATF that use this approximation or do the calculation in a different way. The new code has been used to calculate the emittance growth due to intrabeam scattering for the lattices currently proposed for the ILC Damping Rings, as IBS is a concern, especially for the electron ring. A description of the code and its user interface, as well as results for the Damping Rings, will be presented

  18. Configuration Studies and Recommendations for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-01-01

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration

  19. Resistive Wall Instability in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We study transverse coupled-bunch instabilities driven by the resistive-wall impedance in the NLC Main Damping Rings. We compare the growth rates of the different modes predicted by a simple theory using a simplified lattice model with the results of a detailed simulation that includes variation of the beta functions and the actual fill structure of the machine. We find that the results of the analytical calculations are in reasonable agreement with the simulations. We include a simple model of a bunch-by-bunch feedback system in the simulation to show that the instabilities can be damped by a feedback system having parameters that are realistic, and possibly conservative. The noise level on the feedback system pick-up must be low, to avoid driving random bunch-to-bunch jitter above the specified limit of 10 percent of the vertical beam size

  20. Pulse shape adjustment for the SLC damping ring kickers

    International Nuclear Information System (INIS)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs

  1. High resolution upgrade of the ATF damping ring BPM system

    International Nuclear Information System (INIS)

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.

    2008-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented

  2. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  3. Proceedings of the SLAC/KEK linear collider workshop on damping ring

    International Nuclear Information System (INIS)

    Urakawa, J.; Yoshioka, M.

    1992-07-01

    Since the SLAC/KEK joint meeting was first held at SLAC in March 1987, we have had such a meeting annually with the present one the 6th. This meeting is planned to discuss the damping ring issue in particular. We have ever stressed the importance of study of damping rings and considered construction of a test damping ring as key issue for the ATF project, since we started construction of the ATF in 1987. In 1991 we had large-scale reconstruction of a building to make a shielded area where a 1.54 GeV injector linac for the ring is to be installed. (J.P.N.)

  4. Lattice design for an ILC damping ring with 3 km circumference

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations

  5. Achievement of ultra-low emittance beam in the ATF damping ring

    CERN Document Server

    Honda, Y; Araki, S; Bane, Karl Leopold Freitag; Brachmann, A; Frisch, J; Fukuda, M; Hasegawa, K; Hayano, H; Hendrickson, L; Higashi, Y; Higo, T; Hirano, K; Hirose, T; Iida, K; Imai, T; Inoue, Y; Karataev, P; Kubo, K; Kurihara, Y; Kuriki, M; Kuroda, R; Kuroda, S; Luo, X; Matsuda, M; McCormick, D; Muto, T; Nakajima, K; Nelson, J; Nomura, M; Ohashi, A; Okugi, T; Omori, T; Ross, M; Sakai, H; Sakai, I; Sasao, N; Smith, S; Suzuki, T; Takano, M; Takashi, N; Taniguchi, T; Terunuma, N; Toge, N; Turner, J; Urakawa, J; Vogel, V; Wolski, A; Woodley, M; Yamazaki, I; Yamazaki, Y; Yocky, J; Young, A; Zimmermann, Frank

    2003-01-01

    We report on the smallest vertical emittance achieved in single-bunch-mode operation of the ATF. The emittances were measured with a laser-wire beam-profile monitor installed in the damping ring. The bunch length and the momentum spread of the beam were also recorded under the same conditions. The smallest vertical rms emittance measured is 4 pm in the limit of zero current. It increases by a factor of 1.5 for a bunch intensity of 10^10 electrons. There are no discrepancies between the measured data and the calculations of intra-beam scattering.

  6. The calculated longitudinal impedance of the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1988-05-01

    A high level of current dependent bunch lengthening has been observed in the north damping ring of the Stanford Linear Collider (SLC), indicating that the ring's impedance is very inductive. This level of bunch lengthening will limit the performance of the SLC. In order to study the problem of bunch lengthening in the damping ring and the possibility of reducing their inductance we compute, in this report, the longitudinal impedance of the damping ring vacuum chamber. More specifically we find the response function of the ring to a short gaussian bunch. This function will later be used as a driving term in the longitudinal equation of motion. We also identify the important inductive elements of the vacuum chamber and estimate their contribution to the total ring inductance. This information will be useful in assessing the effect of vacuum chamber modifications. 7 refs. , 8 figs., 1 tab

  7. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  8. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  9. Proceedings of the Workshop on the SLAC Damping Rings in the 21st Century (DR2000)

    CERN Document Server

    Nixon, R

    1998-01-01

    The purpose of the Workshop is to assess the status and needs of the Damping Rings for the era of PEP-II. The goal is to have the Rings perform to produce the specified beam parameters with an insignificant amount of downtime. We want to achieve this status by improving the Rings where necessary, not by increasing the maintenance effort. The things that we can act upon in the immediate future are largely engineering issues to improve the integrated availability of the damping rings.

  10. Proceedings of the Workshop on the SLAC Damping Rings in the 21st Century (DR2000)

    International Nuclear Information System (INIS)

    Nixon, Robbin

    1998-01-01

    The purpose of the Workshop is to assess the status and needs of the Damping Rings for the era of PEP-II. The goal is to have the Rings perform to produce the specified beam parameters with an insignificant amount of downtime. We want to achieve this status by improving the Rings where necessary, not by increasing the maintenance effort. The things that we can act upon in the immediate future are largely engineering issues to improve the integrated availability of the damping rings

  11. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  12. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S

    2006-01-01

    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  13. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    OpenAIRE

    Antoniou, F; Martini, M; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler charac...

  14. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    CERN Document Server

    Antoniou, F; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler characteristics.

  15. Damping and Frequency Shift of Large Amplitude Electron Plasma Waves

    DEFF Research Database (Denmark)

    Thomsen, Kenneth; Juul Rasmussen, Jens

    1983-01-01

    The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...

  16. Electronic Contributions to the Phonon Damping in Metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rune

    1968-07-15

    An imaginary part of the dielectric matrix is derived based on a first order perturbation expansion of the valence electron states in a local potential model of the crystal. The results are used to estimate the electronic contributions to the phonon damping in aluminum and lead. The corrections which have been obtained are of the same order of magnitude at small phonon momenta as the damping earlier calculated for the free electrons. However, the discrepancies between the theoretical and experimental results still remain. The major contribution to damping seems to originate in anharmonic effects, even at 80 deg K.

  17. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  18. An active feedback system to control synchrotron oscillations in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Corredoura, P.L.; Pellegrin, J.L.; Schwarz, H.D.; Sheppard, J.C.

    1989-03-01

    Initially the SLC Damping Rings accomplished Robinson instability damping by operating the RF accelerating cavities slightly detuned. In order to be able to run the cavities tuned and achieve damping for Robinson instability and synchrotron oscillations at injection an active feedback system has been developed. This paper describes the theoretical basis for the feedback system and the development of the hardware. Extensive measurements of the loop response including stored beam were performed. Overall performance of the system is also reported. 3 refs., 6 figs

  19. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  20. Manufacture of fast-pulsed magnets for the SLC damping rings

    International Nuclear Information System (INIS)

    Cassel, R.; Gross, G.; Harvey, A.; Mattison, T.

    1992-01-01

    A second-generation fast kicker magnet (and its power supply) was designed by Fermilab for the SLC electron damping ring. The requirements were to inject and extract two bunches of electrons, with the following magnetic field specifications: Integral peak magnetic field = 0.021 T-m, Rise/fall time (0-100%) = 56.03 ns maximum, Flat-top duration = 61.62 ns. The flat-top does not imply a plateau, but two time-stable spots of equal magnitude, since the electron bunches are short (20 ps). Many of the early problems with these magnets have been studied intensely during the last two years, and substantial progress has been made. In particular, vacuum potting with room-temperature curing silicone rubber (RTV) has been refined to give reliable high-voltage service up to 18 kV/mm, and life-times of about a year despite stored beam intensities of 3 x 10 10 electrons/bunch at 120 pps

  1. Calculations of emittance and damping time effects in the SLC damping rings

    International Nuclear Information System (INIS)

    Limberg, T.; Moshammer, H.; Raubenheimer, T.; Spencer, J.; Siemann, R.

    1992-03-01

    In a recent NDR machine experiment the transverse emittance was studied as a function of store time and tune. To explain the observed transverse emittance damping time constants, the magnetic measurement data of the longitudinal field of the bending magnets had to be taken into account. The variation of the transverse emittances with tune due to misalignments and the associated anomalous dispersion is studied as well as the effect of synchrobetatron coupling due to dispersion in the RF cavities

  2. Longitudinal Stability Study for the FACET-II e+ Damping Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-11-29

    This is an initial study of the longitudinal, single-bunch stability in the proposed FACET-II e+ damping ring. It is preliminary because, at present, only a few specific features of the vacuum chamber are known.

  3. Simulations of Bunch Precompression at High Currents in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Minty, M.G.; Chao, A.W.

    2011-01-01

    In the Stanford Linear Collider (SLC) each beam, after leaving a damping ring, is compressed in the Ring-to-Linac (RTL) transfer line before entering the linear accelerator. At a bunch population of 4.0 x 10 10 particles, due to the limited energy acceptance of the RTL, approximately 15% of the beam has normally been lost. During the 1996 run, however, to eliminate this loss the bunch was partially precompressed in the damping ring, just before extraction; the beam loss in the RTL was reduced to almost zero. The operation and performance of precompression are presented by Minty et al. (1999). Also given is an analysis which, however, does not include the effects of the longitudinal wakefield on the beam dynamics. In this report we extend that analysis to include these effects.

  4. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  5. Electron-cloud mitigation in the spallation neutron source ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  6. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Roth, Andre

    2012-12-01

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  7. ILC Damping Rings: Benefit of the Antechamber or: Antechamber vs. SEY

    International Nuclear Information System (INIS)

    Furman, M.A.

    2011-01-01

    We present simulation results of the build-up of the electron-cloud density n e for the two proposed ILC damping ring lattices, DC04 and DSB3, with particular attention to the potential benefit of an antechamber. We examine a field-free region and a dipole bending magnet, with or without an antechamber. We assume a secondary electronemission model for the chamber surface based on approximate fits to measured data for TiN, except that we let the peak value of the secondary emission yield (SEY), (delta) max , be a variable. We conclude that there is a critical value of (delta) max below which the antechamber provides a substantial benefit, roughly a factor ∼40 reduction in n e relative to the case in which max exceeds the critical value. We estimate the steady-state value of n e as a function of (delta) max , and thereby obtain the critical value of (delta) max for all cases considered. Thus, from the perspective of the electron-cloud effect, the inclusion of an antechamber in the design is justified only if (delta) max is below the critical value. The results presented here constitute a slight extension of those previously presented in March and September, 2010.

  8. A lattice with larger momentum compaction for the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Raubenheimer, Tor O.; Woodley, Mark; Wu, Juhao

    2004-01-01

    Previous lattice designs for the Next Linear Collider Main Damping Rings [1] have met the specifications for equilibrium emittance, damping rate and dynamic aperture. Concerns about the effects of the damping wiggler on the beam dynamics [2] led to the aim of reducing the total length of the wiggler to a minimum consistent with the required damping rate, so high-field dipoles were used to provide a significant energy loss in the arcs. However, recent work has shown that the wiggler effects may not be as bad as previously feared. Furthermore, other studies have suggested the need for an increased momentum compaction (by roughly a factor of four) to raise the thresholds of various collective effects. We have therefore developed a new lattice design in which we increase the momentum compaction by reducing the field strength in the arc dipoles, compensating the loss in damping rate by increasing the length of the wiggler. The new lattice again meets the specifications for emittance, damping rate and dynamic aperture, while having the benefit of significantly higher thresholds for a number of instabilities

  9. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  10. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  11. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  12. Damping the e-p instability in the SNS accumulator ring

    Science.gov (United States)

    Evans, N. J.; Deibele, C.; Aleksandrov, A.; Xie, Z.

    2018-03-01

    A broadband, digital damper system for both transverse planes developed for the SNS accumulator ring has recently damped the first indications of the broadband 50-150 MHz e-p instability in a 1.2 MW neutron production beam. This paper presents details of the design and operation of the SNS damper system as well as results of active damping of the e-p instability in the SNS ring showing a reduction in power of betatron oscillation over the 10-300 MHz band of up to 70%. The spectral content of the beam during operation, with and without the damper system is presented and performance of the damper system is evaluated.

  13. Beam-based alignment at the KEK-ATF damping ring

    International Nuclear Information System (INIS)

    Woodley, Mark D.; Nelson, Janice; Ross, Marc; Turner, James; Wolski, A.; Kubo, Kiyoshi

    2004-01-01

    The damping rings of a future linear collider will have demanding alignment and stability requirements in order to achieve the low vertical emittance necessary for high luminosity. The Accelerator Test Facility (ATF) at KEK has successfully demonstrated the vertical emittance below 5 pm that is specified for the GLC/NLC Main Damping Rings. One contribution to this accomplishment has been the use of Beam Based Alignment (BBA) techniques. The mode of operation of the ATF presents particular challenges for BBA, and we describe here how we have deduced the offsets of the BPMs with respect to the quadrupoles. We also discuss a technique that allows for direct measurements of the beam-to-quad offsets

  14. Torsion of surface plate of the active support table for the ATF damping ring

    International Nuclear Information System (INIS)

    Takeuchi, Yasunori; Takeda, Shigeru; Kudo, Kikuo; Funahashi, Yoshisato; Kanazawa, Yasunori.

    1996-01-01

    Distortion of the surface plate of active support table was measured using precise tiltmeters. It is found that the surface plate is twisted when the temperature changes. The effect of this phenomenon is much smaller than the alignment tolerance of the ATF damping ring if the room temperature is controlled within 0.4degC. However, it is not negligible in the linear collider case. (author)

  15. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  16. Bursts of Coherent Synchrotron Radiation in Electron Storage Rings: a Dynamical Model

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2002-09-17

    Evidence of coherent synchrotron radiation (CSR) has been reported recently at the electron storage rings of several light source facilities. The main features of the observations are (i) a radiation wavelength short compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the damping time. We present a model of beam longitudinal dynamics that reproduces these features.

  17. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  18. Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm

    CERN Document Server

    Emery, Louis

    2005-01-01

    Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...

  19. DAMPE

    CERN Multimedia

    Chen, D

    The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.

  20. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    International Nuclear Information System (INIS)

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.

    2011-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution (∼100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  1. TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet

    International Nuclear Information System (INIS)

    Early, R.A.; Cobb, J.K.

    1985-01-01

    The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to computer field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations

  2. Wigglers and single-particle dynamics in the NLC damping rings

    International Nuclear Information System (INIS)

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-01-01

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits

  3. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-01-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 x 10 10 to greater than 4 x 10 10 particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized

  4. RF cavity R and D at LBNL for the NLC Damping Rings, FY2000/2001

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Atkinson, D.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.; Weidenbach, W.

    2001-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal years 2000/2001. This work is a continuation of the NLC RF system R and D of the previous year [1]. These activities include the further optimization and fine tuning of the RF cavity design for both efficiency and damping of higher-order modes (HOMs). The cavity wall surface heating and stresses were reduced at the same time as the HOM damping was improved over previous designs. Final frequency tuning was performed using the high frequency electromagnetic analysis capability in ANSYS. The mechanical design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. The cavity ancillary components including the RF window, coupling box, HOM loads, and tuners have been studied in more detail. Other cavity options are discussed which might be desirable to either further lower the HOM impedance or increase the stored energy for reduced transient response. Superconducting designs and the use of external ''energy storage'' cavities are discussed. A section is included in which the calculation method is summarized and its accuracy assessed by comparisons with the laboratory measurements of the PEP-II cavity, including errors, and with the beam-sampled spectrum

  5. Latest on polarization in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references

  6. RF cavity R and D at LBNL for the NLC damping rings, FY1999

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.

    1999-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal year19999. These activities include the optimization of the RF design for both efficiency and damping of higher-order (HOMs), by systematic study of the cavity profile, the effect of the beam pipe diameter, nosecone angle and gap, the cross section and position of the HOM damping waveguides and the coupler. The effect of the shape of the HOM waveguides and their intersection with the cavity wall on the local surface heating is also an important factor, since it determines the highest stresses in the cavity body. This was taken into account during the optimization so that the stresses could be reduced at the same time as the HOP damping was improved over previous designs. A new method of calculating the RF heating was employed, using a recently released high frequency electromagnetic element in ANSYS. This greatly facilitates the thermal and stress analysis of the design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. Preliminary designs are described for the cavity ancillary components including the RF window, HOM loads, and tuners. A preliminary manufacturing plan is included, with an initial estimate of the resource requirements. Other cavity options are discussed which might be desirable to either lower the R/Q, for reduced transient response, or lower the residual HOM impedance to reduce coupled-bunch growth rates further still

  7. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  8. DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION

    International Nuclear Information System (INIS)

    Smith, K. W.; Terry, P. W.

    2011-01-01

    The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  9. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  10. Damping spurious harmonic resonances in the APS storage ring beam chamber

    International Nuclear Information System (INIS)

    Kang, Y.

    1999-01-01

    The APS storage ring beam chamber has been storing the beam up to 100 mA successfully. However, in some beam chambers, spurious signals corrupted the BPM outputs. The cause of the unwanted signals was investigated, and it was found that transverse electric (TE) longitudinal harmonic resonances of the beam chamber were responsible. The beam chambers have small height in the area between the ovid beam chamber and the antechamber. The structure behaves like a ridge waveguide so that the cut-off frequency of the waveguide mode becomes lower. The pass-band then includes the frequency around 350 MHz that is important to the beam position monitors (BPMs). The spurious harmonic resonances are damped with two types of dampers to restore the useful signals of the BPMs; coaxial loop dampers and lossy ceramic slab loading are used

  11. Longitudinal Single-Bunch Instability in the ILC Damping Rings: Estimate of Current Threshold

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco

    2008-01-01

    Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping rings (DRs) has been indicated as a high-priority activity toward completion of an engineering design. In this paper we report on a first estimate of the current thresholds for the instability using numerical and analytical models of the wake potentials associated with the various machine components. The numerical models were derived (upon appropriate scaling) from designs of the corresponding components installed in existing machines. The current thresholds for instabilities were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For the DR baseline lattice as of Feb. 2007 we find the critical current for instability to be safely above the design specifications leaving room for further optimization of the choice of the momentum compaction

  12. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  13. Electron Storage Ring Development for ICS Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Roderick [Lyncean Technologies, Inc., Palo Alto, CA (United States)

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  14. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  15. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-02-01

    One of the mechanisms which contribute to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  16. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-01-01

    One of the mechanisms which contributes to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included, and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  17. The PEP electron-positron ring

    International Nuclear Information System (INIS)

    Rees, J.R.

    1988-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup minus/ ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus at the intersection regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup minus 2/s/sup minus 1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described

  18. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  19. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  20. A compact electron storage ring design

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1992-01-01

    Electron storage rings are sources of synchrotron radiation in the soft and hard parts of the x-ray spectrum. X-ray lithography is an ideal candidate technology for the production of microelectronic devices with sizes between 0.3-0.5 microns. Industrial x-ray lithography requires the x-ray source, which is the electron storage ring, to be as compact and reliable as possible. In this thesis the author reviews and develops the basic physical principles governing the design of compact electron synchrotrons for x-ray lithography. He explores the various aspects of lattice design for this application. He argues that the optimal storage ring design consists of a four fold symmetric cell lattice with two quadrupole families and 90 degrees zero gradient dipole magnets. It is demonstrated that radiation requirements for lithography and the use of zero gradient magnetic dipole fields constrains the lattice to four or more dipole magnets. The author develops a lattice design for x-ray lithography following this logic. He then develops a dipole magnet design for a machine using this lattice. Particle tracking data is integrated into the magnet design and used to optimize the end coil configurations of the magnets. The author then reviews the magnet's physical construction and measurement. He develops a cryogenic Hall probe mapping apparatus for this magnet and measure its excitation curves

  1. Calculation of Oil Film Thickness from Damping Coefficients for a Piston Ring in an Internal Combustion Engine

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    engine. The basic idea is to use the fluid film damping coefficients to estimate the film thickness variation for a piston ring under cyclic varying load. Reynolds Equation is solved for a piston ring and the oil film thickness is determined. In this analysis hydrodynamic lubrication is assumed......In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold's equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies Jorgen...

  2. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons

    Science.gov (United States)

    El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.

    2018-06-01

    Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.

  3. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  4. Simulation Study of Electronic Damping of Microphonic Vibrations in Superconducting Cavities

    International Nuclear Information System (INIS)

    Alicia Hofler; Jean Delayen

    2005-01-01

    Electronic damping of microphonic vibrations in superconducting rf cavities involves an active modulation of the cavity field amplitude in order to induce ponderomotive forces that counteract the effect of ambient vibrations on the cavity frequency. In lightly beam loaded cavities, a reduction of the microphonics-induced frequency excursions leads directly to a reduction of the rf power required for phase and amplitude stabilization. Jefferson Lab is investigating such an electronic damping scheme that could be applied to the JLab 12 GeV upgrade, the RIA driver, and possibly to energy-recovering superconducting linacs. This paper discusses a model and presents simulation results for electronic damping of microphonic vibrations

  5. Preliminary Design Study of a Pre-booster Damping Ring for the FCC e+e− Injector

    CERN Document Server

    Etisken, O; Papaphilippou, Y

    2017-01-01

    The aim of the FCC e+e− lepton collider is to collide particles in the energy range 40–175 GeV. The FCC e+e− injector complex needs to produce and transport high-intensity e+e− beams at a fast repetition rate of about 0.1 Hz to top up the collider at its collision energy. A basic parameter set exists for all collider energies, assuming a 10 GeV linac operating with a large number of bunches accumulating in the existing SPS, which serves as pre-accelerator and damping ring before the bunches are transferred to the high-energy booster. The purpose of this study is to provide the conceptual design of an alternative damping and accelerator ring, replacing the SPS in the current scheme. This ring will have an injection energy of around 6 GeV and an extraction energy of around 20 GeV. Apart from establishing the basic ring parameters, the final study will include the optics design and layout, and single particle linear and non-linear dynamics optimization, including magnetic and alignment error tolerances. ...

  6. Electron Landau damping of lower hybrid waves from a finite length antenna

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-01-01

    Launching and propagation of Lower Hybrid Waves to heat large plasmas by Electron Landau Damping is discussed. Conditions on the appropriate frequency and on the antenna location in the plasma density profile are derived

  7. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  8. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  9. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    International Nuclear Information System (INIS)

    Hwa-Min, Kim; Young-Dae, Jung

    2007-01-01

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle θ L = π/4. (authors)

  10. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hwa-Min, Kim [Daegu Univ. Catholic, Dept. of Electronics Engineering (Korea, Republic of); Young-Dae, Jung [Hanyang Univ., Dept. of Applied Physics, Seoul (Korea, Republic of)

    2007-07-15

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle {theta}{sub L} = {pi}/4. (authors)

  11. Introductory statistical mechanics for electron storage rings

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-07-01

    These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation

  12. An electron undulating ring for VLSI lithography

    International Nuclear Information System (INIS)

    Tomimasu, T.; Mikado, T.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.

    1985-01-01

    The development of the ETL storage ring ''TERAS'' as an undulating ring has been continued to achieve a wide area exposure of synchrotron radiation (SR) in VLSI lithography. Stable vertical and horizontal undulating motions of stored beams are demonstrated around a horizontal design orbit of TERAS, using two small steering magnets of which one is used for vertical undulating and another for horizontal one. Each steering magnet is inserted into one of the periodic configulation of guide field elements. As one of useful applications of undulaing electron beams, a vertically wide exposure of SR has been demonstrated in the SR lithography. The maximum vertical deviation from the design orbit nCcurs near the steering magnet. The maximum vertical tilt angle of the undulating beam near the nodes is about + or - 2mrad for a steering magnetic field of 50 gauss. Another proposal is for hith-intensity, uniform and wide exposure of SR from a wiggler installed in TERAS, using vertical and horizontal undulating motions of stored beams. A 1.4 m long permanent magnet wiggler has been installed for this purpose in this April

  13. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  14. Spin Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Bates, Daniel

    2004-01-01

    We report results from studies of spin dynamics in the NLC Main Damping. Our studies have been based on spin tracking particles through the lattice under a range of conditions. We find that there are a number of spin resonances close to the nominal operating energy of 1.98 GeV; however, the effects of the resonances are weak, and the widths are narrow. We do not expect that any significant depolarization of the beam will occur during the store time

  15. Damping of resistive instability in UNK-1 with digital electronics in feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Ivanov, I.N.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The basis of resistive instability damper system for the UNK-1 is obtained. The system for each of two directions of beam transverse oscillations includes two pairs of pick-up electrodes and damping kickers connected by delayed negative feedback with digital electronics. The requirements for digital electronics in feedback are discussed. The influence of a notch filter is under consideration. In turns out that a 0.8 MHz feedback system damps the resistive instability in the UNK-1 with increment of 0.7 revolution frequency (for low frequencies). 7 refs.; 8 figs

  16. Polarization Studies for the eRHIC Electron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Tepikian, S. [Brookhaven

    2018-04-01

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.

  17. Electronic de-multipliers II (ring-shape systems)

    International Nuclear Information System (INIS)

    Raievski, V.

    1948-09-01

    This report describes a new type of ring-shape fast electronic counter (de-multiplier) with a resolution capacity equivalent to the one made by Regener (Rev. of Scientific Instruments USA 1946, 17, 180-89) but requiring two-times less electronic valves. This report follows the general description of electronic de-multipliers made by J. Ailloud (CEA--001). The ring comprises 5 flip-flop circuits with two valves each. The different elements of the ring are calculated with enough details to allow the transfer of this calculation to different valve types. (J.S.)

  18. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  19. Uniform electron gases. I. Electrons on a ring.

    Science.gov (United States)

    Loos, Pierre-François; Gill, Peter M W

    2013-04-28

    We introduce a new paradigm for one-dimensional uniform electron gases (UEGs). In this model, n electrons are confined to a ring and interact via a bare Coulomb operator. We use Rayleigh-Schrödinger perturbation theory to show that, in the high-density regime, the ground-state reduced (i.e., per electron) energy can be expanded as ε(r(s),n)=ε0(n)r(s)(-2)+ε1(n)r(s)(-1)+ε2(n)+ε3(n)r(s+)⋯ , where r(s) is the Seitz radius. We use strong-coupling perturbation theory and show that, in the low-density regime, the reduced energy can be expanded as ε(r(s),n)=η0(n)r(s)(-1)+η1(n)r(s)(-3/2)+η2(n)r(s)(-2)+⋯ . We report explicit expressions for ε0(n), ε1(n), ε2(n), ε3(n), η0(n), and η1(n) and derive the thermodynamic (large-n) limits of each of these. Finally, we perform numerical studies of UEGs with n = 2, 3, [ellipsis (horizontal)], 10, using Hylleraas-type and quantum Monte Carlo methods, and combine these with the perturbative results to obtain a picture of the behavior of the new model over the full range of n and r(s) values.

  20. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  1. Exact wave functions of two-electron quantum rings.

    Science.gov (United States)

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  2. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  3. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA; Breitbandige Feedback-Systeme zur Daempfung kohaerenter Strahlinstabilitaeten am Stretcherring ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Andre

    2012-12-15

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  4. Electron localization and optical absorption of polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  5. Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters

    Directory of Open Access Journals (Sweden)

    Keun Ryu

    2018-04-01

    Full Text Available The current work introduces a new semi-floating ring bearing (SFRB system developed for improving the rotordynamic and vibration performance of automotive turbochargers (TCs at extreme operation conditions, such as high temperature, severe external force excitation, and large rotor imbalance. The new bearing design replaces outer oil films, i.e., squeeze film dampers (SFDs, in TC SFRBs with wire mesh dampers (WMDs. This SFRB configuration integrating WMDs aims to implement reliable mechanical components, as an inexpensive and simple alternative to SFDs, with consistent and superior damping capability, as well as predictable forced performance. Since WMDs are in series with the inner oil films of SFRBs, experimentally determined force coefficients of WMDs are of great importance in the design process of TC rotor-bearing systems (RBSs. Presently, the measurements of applied static load and ensuing deflection determine the structural stiffnesses of the WMDs. The WMD damping parameters, including dissipated energy, loss factor, and dry friction coefficient, are estimated from the area of the distinctive local hysteresis loop of the load versus WMD displacement data recorded during consecutive loading-unloading cycles as a function of applied preload with a constant amplitude of motion. The changes in WMD loss factor and dry friction coefficient due to increases in preload are more significant for the WMDs with lower density. The present work shows, to date, the most comprehensive measurements of static load characteristics on the WMDs for application into small automotive TCs. More importantly, the extensive test measurements of WMD deflection versus increasing static loads will aid to anchor predictions of future computation model.

  6. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  7. Electronics for damping transverse instabilities for the Fermilab booster synchrotron

    International Nuclear Information System (INIS)

    Higgins, E.F. Jr.

    1977-01-01

    Transverse instabilities are controlled by an active beam damper which corrects the orbit of individual proton bunches in the Fermilab booster synchrotron. The corrective signals, which are in reality processed versions of the beam pick-up data, are applied to the beam via power amplifier/deflector electrodes approximately one turn after sensing the bunch position. The electronic systems of the damper are configured as a closed-loop feedback arrangement. A brief outline is given of the overall damper system configuration, and the beam position detector, coaxial cable delay system, and data receiver are described

  8. Gated-controlled electron pumping in connected quantum rings

    International Nuclear Information System (INIS)

    Lima, R.P.A.; Domínguez-Adame, F.

    2014-01-01

    We study the electronic transport across connected quantum rings attached to leads and subjected to time-harmonic side-gate voltages. Using the Floquet formalism, we calculate the net pumped current generated and controlled by the side-gate voltage. The control of the current is achieved by varying the phase shift between the two side-gate voltages as well as the Fermi energy. In particular, the maximum current is reached when the side-gate voltages are in quadrature. This new design based on connected quantum rings controlled without magnetic fields can be easily integrated in standard electronic devices. - Highlights: • We introduce and study a minimal setup to pump electrons through connected quantum rings. • Quantum pumping is achieved by time-harmonic side-gate voltages instead of the more conventional time-dependent magnetic fluxes. • Our new design could be easily integrated in standard electronic devices

  9. Design studies for the electron storage ring EUTERPE

    International Nuclear Information System (INIS)

    Xi Boling.

    1995-01-01

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI)

  10. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Boling, Xi

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  11. Low emittance lattices for electron storage rings revisited

    International Nuclear Information System (INIS)

    Trbojevic, D.; Courant, E.

    1994-01-01

    Conditions for the lowest possible emittance of the lattice for electron storage rings are obtained by a simplified analytical approach. Examples of electron storage lattices with minimum emittances are presented. A simple graphical presentation in the normalized dispersion space (Floquet's transformation) is used to illustrate the conditions and results

  12. Two Electron States in a Quantum Ring on a Sphere

    International Nuclear Information System (INIS)

    Kazaryan, Eduard M.; Shahnazaryan, Vanik A.; Sarkisyan, Hayk A.

    2014-01-01

    Two electron states in a quantum ring on a spherical surface are discussed. The problem is discussed within the frameworks of Russell–Saunders coupling scheme, that is, the spin–orbit coupling is neglected. Treating Coulomb interaction as a perturbation, the energy correction for different states is calculated. The dependence of the Coulomb interaction energy on external polar boundary angle of quantum ring is obtained. In analogue with the helium atom the concept of states exchange time is introduced, and its dependence on geometrical parameters of the ring is shown. (author)

  13. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  14. Injection into the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu

    1991-01-01

    To inject the 1.15 GeV electron storage ring - UVX - a beam from a linear accelerator - MAIRA - is used. The electrons are injected and accumulated at low energy (100MeV) until the nominal current of 100 mA is reached and than are ramped to the nominal energy. A study on a conventional injection scheme has been carried out. Two injection modes are investigated: injection with the phase ellipse parameters matched and mismatched to the ring's acceptance. The mismatched mode is optimized to fit the maximum of the injected beam into the acceptance

  15. Device for monitoring electron-ion ring parameters

    International Nuclear Information System (INIS)

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  16. Calculations of the electron-damping force on moving-edge dislocations

    International Nuclear Information System (INIS)

    Mohri, T.

    1982-11-01

    Dynamic effect of a moving dislocation has been recognized as one of essential features of deformation behavior at very low temperatures. Damping mechanisms are the central problems in this field. Based on the free-electron-gas model, the electron-damping force (friction force) on a moving-edge dislocation in a normal state is estimated. By applying classical MacKenzie-Sondheimer's procedures, the electrical resistivity caused by a moving dislocation is first estimated, and the damping force is calculated as a Joule-heat-energy dissipation. The calculated values are 3.63x10 - 6 , 7.62x10 - 7 and 1.00x10 - 6 [dyn sec/cm - 2 ] for Al, Cu and Pb, respectively. These values show fairly good agreements as compared with experimental results. Also, numerical calculations are carried out to estimate magnetic effects caused by a moving dislocation. The results are negative and any magnetic effects are not expected. In order to treat deformation behavior at very low temperatures, a unification of three important deformation problems is attempted and a fundamental equation is derived

  17. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyong; Wang, Chi; Dong, Jianing; Wei, Yifeng [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Wen, Sicheng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Zhang, Yunlong, E-mail: ylzhang@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Chen, Dengyi; Hu, Yiming [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Huang, Guangshun; Wang, Xiaolian [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); and others

    2016-11-11

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  18. Critical density for Landau damping in a two-electron-component plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, Constantin F.; López, Rodrigo A.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2015-10-15

    The asymptotic evolution of an initial perturbation in a collisionless two-electron-component plasma with different temperatures is studied numerically. The transition between linear and nonlinear damping regimes is determined by slowly varying the density of the secondary electron-component using high-resolution Vlasov-Poisson simulations. It is shown that, for fixed amplitude perturbations, this transition behaves as a critical phenomenon with time scales and field amplitudes exhibiting power-law dependencies on the threshold density, similar to the critical amplitude behavior in a single-component plasma.

  19. A model explaining neutrino masses and the DAMPE cosmic ray electron excess

    Science.gov (United States)

    Fan, Yi-Zhong; Huang, Wei-Chih; Spinrath, Martin; Tsai, Yue-Lin Sming; Yuan, Qiang

    2018-06-01

    We propose a flavored U(1)eμ neutrino mass and dark matter (DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under the new U(1)eμ gauge symmetry. A vector-like fermion ψ, which is our DM candidate, annihilates into e± and μ± via the new gauge boson Z‧ exchange and accounts for the DAMPE excess. We have found that the data favors a ψ mass around 1.5 TeV and a Z‧ mass around 2.6 TeV, which can potentially be probed by the next generation lepton colliders and DM direct detection experiments.

  20. A model explaining neutrino masses and the DAMPE cosmic ray electron excess

    DEFF Research Database (Denmark)

    Fan, Yi Zhong; Huang, Wei Chih; Spinrath, Martin

    2018-01-01

    We propose a flavored U(1)eμ neutrino mass and dark matter (DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under...... the new U(1)eμ gauge symmetry. A vector-like fermion ψ, which is our DM candidate, annihilates into e± and μ± via the new gauge boson Z′ exchange and accounts for the DAMPE excess. We have found that the data favors a ψ mass around 1.5 TeV and a Z′ mass around 2.6 TeV, which can potentially be probed...

  1. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  2. Measurements of the electron cloud in the APS storage ring

    International Nuclear Information System (INIS)

    Harkey, K. C.

    1999-01-01

    Synchrotron radiation interacting with the vacuum chamber walls in a storage ring produce photoelectrons that can be accelerated by the beam, acquiring sufficient energy to produce secondary electrons in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, as is the case with the aluminum chambers in the Advanced Photon Source (APS) storage ring, a runaway condition can develop. As the electron cloud builds up along a train of stored positron or electron bunches, the possibility exists that a transverse perturbation of the head bunch will be communicated to trailing bunches due to interaction with the cloud. In order to characterize the electron cloud, a special vacuum chamber was built and inserted into the ring. The chamber contains 10 rudimentary electron-energy analyzers, as well as three targets coated with different materials. Measurements show that the intensity and electron energy distribution are highly dependent on the temporal spacing between adjacent bunches and the amount of current contained in each bunch. Furthermore, measurements using the different targets are consistent with what would be expected based on the SEY of the coatings. Data for both positron and electron beams are presented

  3. Electron ring design for HERA, including spin-matching

    International Nuclear Information System (INIS)

    Skuja, A.; Hand, L.; Steffen, K.; Barber, D.

    1984-01-01

    A. Skuja has been working in collaboration with Professor Lou Hand in obtaining an optics for the electron ring at HERA that satisfies the usual constraints of an electron storage ring, but in addition allows longitudinal polarization in the interaction region without depolarizing the electron beam completely. This collaboration effort grew out of their work on a possible electron ring at Fermilab. When this project was degraded in priority at Fermilab, they turned their attention to the HERA project at DESY. The HERA project will have an electron ring of about 30 GeV e - (or e + ) incident on 800 GeV protons. Recently it has been decided that the collisions should be head on (0 0 crossing), although all previous designs had a crossing angle of the 2 beams of 20 mrad. Professors Hand and Skuja implemented a complete program in the last year and a half that could fit the usual Turis parameters as well as the so called 12 spin-matching conditions of Chao and Yukoya for all possible machine elements including solenoids. The program has the possibility of fully coupling vertical and horizontal motion using the usual eigenvalue method

  4. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ochoo, Lawrence, E-mail: lawijapuonj@yahoo.com; Migwi, Charles; Okumu, John [Kenyatta University, Physics Department (Kenya)

    2012-12-15

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  5. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  6. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  7. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  8. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  9. SOR-RING: an electron storage ring dedicated to spectroscopy, 2

    International Nuclear Information System (INIS)

    Kitamura, H.; Miyahara, T.; Sato, S.; Watanabe, M.; Mitani, S.

    1976-01-01

    A 300 MeV electron storage ring to be used exclusively as a synchrotron radiation source for spectroscopy has been constructed in Institute for Nuclear Study (INS), University of Tokyo, Tanashi. Its useful spectral range lies between 40 and 2200 A. The 1.3 GeV electron synchrotron of INS currently being operated for high energy particle experiments serves as an injector. Electron beams are extracted from the synchrotron at 300 MeV, transported about twenty meters, and injected to the ring one pulse per second. In the test operation a current of 10 mA was stored with a lifetime of one hour, while the design goal determined by the Touschek effect is 100 mA with one hour, for operation in 300 MeV. Increase of operating energy up to 375 MeV is feasible with a minor modification of the present design. (auth.)

  10. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  11. Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2011-05-31

    Electron storage rings are widely used for high luminosity colliders, damping rings in high-energy linear colliders, and synchrotron light sources. They have become essential facilities to study high-energy physics and material and medical sciences. To further increase the luminosity of colliders or the brightness of synchrotron light sources, the beam emittance is being continually pushed downward, recently to the nanometer region. In the next decade, another order of reduction is expected. This requirement of ultra-low emittance presents many design challenges in beam dynamics, including better analysis of maps and improvement of dynamic apertures. To meet these challenges, we have refined transfer maps of common elements in storage rings and developed a new method to compute the resonance driving terms as they are built up along a beamline. The method is successfully applied to a design of PEP-X as a future light source with 100-pm emittance. As a result, we discovered many unexpected cancelations of the fourth-order resonance terms driven by sextupoles within an achromat.

  12. Electron density enhancement in a quasi isochronous storage ring

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.

    1991-01-01

    The six dimensional phase-space density of an electron beam in a storage ring is determined by the emission of synchrotron radiation, and by the transverse and longitudinal focusing forces determining the particle trajectories. In the simplest case of uncoupled horizontal, vertical and longitudinal motion, the phase space volume occupied by the beam can be characterized by the product of its three projections on the single degree of freedom planes, the horizontal, vertical, and longitudinal emittances. To minimize the beam phase space volume the authors can minimize the transverse and longitudinal emittances. In the case of transverse emittances this problem is very important for synchrotron radiation sources, and has been studied by several authors. A method to minimize the longitudinal emittance, and produce electron bunches with a short pulse length, small energy spread and large peak current has been proposed and discussed recently by C. Pellegrini and D. Robin. This method uses a ring in which the revolution period is weakly dependent on the particle energy, Quasi Isochronous Ring (QIR), in other words a ring with a momentum compaction nearly zero. In this paper they will extend the previous analysis of the conditions for stable single particle motion in such a ring, and give simple criteria for the estimate of the energy spread and phase acceptance of a QIR

  13. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  14. Interferometry of Klein tunnelling electrons in graphene quantum rings

    Science.gov (United States)

    de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.

    2017-01-01

    We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.

  15. Electron--positron storage ring PETRA: plans and status

    International Nuclear Information System (INIS)

    Voss, G.A.

    1977-01-01

    Construction of the Electron-Positron Storage Ring PETRA was authorized October 20, 1975. At present most of the civil engineering work is completed and ring installation work is under way. All major components are on order and series production of bending magnets, quadrupoles, vacuum chambers and rf-resonators has started. Start-up of the machine is planned with a fourfold symmetry configuration with four active beam-beam interaction points. Five experimental facilities have been recommended for the first round of experiments scheduled to begin mid 79

  16. Measuring the electron-ion ring parameters by bremsstrahlung

    International Nuclear Information System (INIS)

    Inkin, V.D.; Mozelev, A.A.; Sarantsev, V.P.

    1982-01-01

    A system is described for measuring the number of electrons and ions in the electron-ion rings of a collective heavy ion accelerator. The system operation is based on detecting gamma quanta of bremsstrahlung following the ring electron interaction with the nuclei of neutral atoms and ions at different stages of filling the ring with ions. The radiation detector is a scintillation block - a photomultiplier operating for counting with NaI(Tl) crystal sized 30x30 mm and ensuring the detection efficiency close to unity. The system apparatus is made in the CAMAC standard and rems on-line with the TRA/i miniature computer. The block-diagrams of the system and algorithm of data processing are presented. A conclusion is drawn that the results of measuring the ring parameters with the use of the diagnostics system described are in good agreement within the range of measuring errors with those obtained by means of the diagnostics system employing synchrotron radiation and induction sensors

  17. Damping Ring Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, Fatin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomlin, Bill T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Weaver, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-04

    The principle of the design of these magnets was discussed in CN-72. Fig. 1 shows what the total system looks like. Such a system was completed last January and since then we have been evaluating its performance.

  18. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  19. Natural occupation numbers in two-electron quantum rings.

    Science.gov (United States)

    Tognetti, Vincent; Loos, Pierre-François

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  20. Natural occupation numbers in two-electron quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr [Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex (France); Loos, Pierre-François [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  1. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    Science.gov (United States)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  2. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  3. Bunch lengthening with bifurcation in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)

  4. An electrostatic storage ring for low kinetic energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Reddish, T J; Tessier, D R; Sullivan, M R; Thorn, P A [Department of Physics, University of Windsor, Windsor, N9B 3P4 (Canada); Hammond, P; Alderman, A J [School of Physics, CAMSP, University of Western Australia, Perth WA 6009 (Australia); Read, F H [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2009-11-01

    The criteria are presented for stable multiple orbits of charged particles in a race-track shaped storage ring and applied to an electrostatic system consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses. The results of charged particle simulations and the formal matrix theory, including aberrations in the energy-dispersive electrostatic 'prisms', are in good agreement with the observed experimental operating conditions for this Electron Recycling Spectrometer (ERS).

  5. Study on FPGA SEU Mitigation for the Readout Electronics of DAMPE BGO Calorimeter in Space

    Science.gov (United States)

    Shen, Zhongtao; Feng, Changqing; Gao, Shanshan; Zhang, Deliang; Jiang, Di; Liu, Shubin; An, Qi

    2015-06-01

    The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of the Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH-based field-programmable gate array (FPGA), of which the design-level flip-flops and embedded block random access memories (RAM) are single event upset (SEU) sensitive in the harsh space environment. To comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.

  6. Remarks about a ''parasitic'' 200 MeV electron ring

    International Nuclear Information System (INIS)

    Carlos, P.

    1982-10-01

    The principle of such facility is extremely simple, and consists merely of a set of very thin movable tungsten wires (40 μm < phi < 100 μm) which can be adjusted to intercept a small part of the main linac beam at the center of the BE deflection magnet. Incident electrons are thus scattered in all directions and in particular in the direction of the BE beam transport system, which can be attuned to the average energy of the scattered electrons to send a ''parasitic '' electron beam in the BE experimental area. This parasitic electron beam facility is currently used to operate the low energy tagged photon facility. In order to obtain an intense monochromatic tagged photon beam with a 100% duty cycle a simple procedure is used. It consists of feeding a small stretcher ring equipped with an internal gas jet target with a single electron pulse of width δt delivered every T seconds

  7. Emittance growth induced by electron cloud in proton storage rings

    CERN Document Server

    Benedetto, Elena; Coppa, G

    2006-01-01

    In proton and positron storage rings with many closely spaced bunches, a large number of electrons can accumulate in the beam pipe due to various mechanisms (photoemission, residual gas ionization, beam-induced multipacting). The so-formed electron cloud interacts with the positively charged bunches, giving rise to instabilities, emittance growth and losses. This phenomenon has been observed in several existing machines such as the CERN Super Proton Synchrotron (SPS), whose operation has been constrained by the electron-cloud problem, and it is a concern for the Large Hadron Collider (LHC), under construction at CERN. The interaction between the beam and the electron cloud has features which cannot be fully taken into account by the conventional and known theories from accelerators and plasma physics. Computer simulations are indispensable for a proper prediction and understanding of the instability dynamics. The main feature which renders the beam-cloud interactions so peculiar is that the the electron cloud...

  8. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  9. The Cornell electron-positron storage ring - CESR

    International Nuclear Information System (INIS)

    DeWire, J.W.

    1977-01-01

    At the Laboratory of Nuclear Studies of Cornell University we are working on a project to convert the present 12 GeV electron synchrotron complex into the Cornell Electron-Positron Storage Ring - CESR. The design studies for this new device were begun in early 1975. During the past eighteen months the National Science Foundation has supported a program of research and development on CESR and funds to begin construction are included in the NSF budget now before the U.S. Congress. Our goal is to have CESR in operation in the fall of 1979. (orig.) [de

  10. Measurement of the longitudinal parameters of an electron beam in a storage ring

    International Nuclear Information System (INIS)

    Krinsky, S.

    1989-01-01

    We discuss the determination of the longitudinal parameters of a bunched beam of electrons or positrons circulating in a storage ring. From the analysis of the beam current observed at a fixed azimuthal location, one can learn much about the longitudinal behavior. We present an elementary analysis of the time-dependence of the current. In particular, we discuss the determination of the average current, bunch length, synchrotron oscillation frequency, and the coherent synchrotron oscillation modes associated with longitudinal instabilities. A brief discussion is also given of the incoherent synchrotron oscillations, or Schottky noise. We review the electromagnetic field traveling with a charge in uniform motion, and introduce some of the most common devices used to detect this field: capacitive pick-up, stripline monitor, and DC beam current transformer. Our paper is organized as follows: We discuss the analysis of the time-dependence of the beam current. Then, the measurement of the current is considered. Finally, we describe some measurements of energy spread and bunch lengthening made recently at SLAC on the SLC damping ring. 12 refs., 6 figs

  11. Injector for the University of Maryland Electron Ring (UMER)

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. E-mail: dkehne@gmu.edu; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O' Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I

    2001-05-21

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  12. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  13. A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    CERN Document Server

    Li, Zhiying; Wei, Yifeng; Wang, Chi; Zhang, Yunlong; Wen, Sicheng; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.

  14. Compact electron storage ring JESCOS with normalconducting or superconducting magnets for X-ray lithography

    International Nuclear Information System (INIS)

    Anton, F.; Klein, U.; Krischel, D.; Anderberg, B.

    1992-01-01

    The layouts of a normal conducting electron storage ring and a storage ring with superconducting bending magnets are presented. The storage rings have a critical wavelength of 1 nm and are designed as compact sources for X-ray lithography. Each ring fits into a shielded room with a diameter of 14 m. (author) 3 refs.; 5 figs.; 1 tab

  15. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  16. Simulations of the effects of a superconducting damping wiggler on a short bunched electron beam at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, Julian; Bernhard, Axel; Blomley, Edmund; Hillenbrand, Steffen; Mueller, Anke-Susanne; Smale, Nigel [Karlsruher Institut fuer Technologie (KIT) (Germany); Zolotarev, Konstantin [Budker Institute of Nuclear Physics (Russian Federation)

    2016-07-01

    (As a part of the CLIC collaboration) A CLIC damping wiggler prototype has been installed at the ANKA synchrotron light source in order to validate the technical design of the 3 T superconducting conduction cooled wiggler and its cryostat and to cary out studies on beam dynamical aspects including collective effects. The latter one will be the main focus in this talk. Collective effects that will occur in damping rings are an issue in ANKA's short bunch operation as well. To simulate these effects the accelerator's model including its insertion device has to be very accurate. Such a model of the ANKA storage ring in short bunch operation mode has been developed in elegant. Simulations with the damping wiggler switched on and off have been performed in order to investigate effects of the wiggler on different machine parameters. These new results will be discussed with regard to the question if on the one hand the wiggler could be used for diagnostic purposes and if on the other hand the wiggler's impact on the beam dynamics is changed by the collective effects.

  17. Analysis of spin depolarizing effects in electron storage rings

    International Nuclear Information System (INIS)

    Boege, M.

    1994-05-01

    In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)

  18. Optical distortions in electron/positron storage rings

    International Nuclear Information System (INIS)

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine

  19. Electronic States and Persistent Currents in Nanowire Quantum Ring

    Science.gov (United States)

    Kokurin, I. A.

    2018-04-01

    The new model of a quantum ring (QR) defined inside a nanowire (NW) is proposed. The one-particle Hamiltonian for electron in [111]-oriented NW QR is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling (SOC). The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of SOC and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gate can lead to pure spin persistent current with the charge current being zero.

  20. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  1. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    Science.gov (United States)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  2. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  3. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  4. HIF research on the University of Maryland Electron Ring (UMER)

    International Nuclear Information System (INIS)

    Kishek, R.A.; Bernal, S.; Cui, Y.; Godlove, T.F.; Haber, I.; Harris, J.; Huo, Y.; Li, H.; O'Shea, P.G.; Quinn, B.; Reiser, M.; Walter, M.; Wilson, M.; Zou, Y.

    2005-01-01

    The understanding of collective interactions of particles in an intense beam by means of long-range forces is crucial for the successful development of heavy ion inertial fusion. Designs for heavy ion fusion drivers call for beam brightness and intensity surpassing traditional limits. Collective effects such as halo formation and emittance growth impose stringent limits on the driver and can raise the costs of the machine. The University of Maryland Electron Ring (UMER), currently near completion, is designed to be a scaled model (3.6-m diameter) for exploring the dynamics of such intense beams. The ring configuration permits the investigation of dispersion and other effects that would occur in bends and a recirculator machine, in addition to those occurring in a straight lattice. Using a 10 keV electron beam, other parameters are scaled to mimic those of much larger ion accelerators, except at much lower cost. An adjustable current in the 0.1-100 mA range provides a range of intensities unprecedented for a circular machine. By design, UMER provides a low-cost, well-diagnosed research platform for driver physics, and for beam physics in general. UMER is augmented with a separate setup, the Long Solenoid Experiment (LSE), for investigating the longitudinal beam dynamics and the evolution of energy spread due to Coulomb collisions in a straight geometry

  5. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  6. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  7. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  8. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  9. Successful betatron acceleration of kiloampere electron rings in RECE-Christa

    International Nuclear Information System (INIS)

    Taggart, D.P.; Parker, M.R.; Hopman, H.J.; Jayakumar, R.; Fleischmann, H.H.

    1984-01-01

    This paper reports on betatron acceleration experiments using the space-charge-neutralized electron rings in the RECE-Christa device. Magnetic probe and x-ray-absorption measurements indicate that electron ring currents of up to 2 kA were accelerated to 3.3 +- 0.3 MeV without indication of instabilities. A similar neutralization and acceleration method also appears applicable to electron rings generated in B/sub theta/-free configurations

  10. Damping in accelerators due to classical radiation

    International Nuclear Information System (INIS)

    Mills, F.E.

    1962-01-01

    The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)

  11. Origins of sharp cosmic-ray electron structures and the DAMPE excess

    Science.gov (United States)

    Huang, Xian-Jun; Wu, Yue-Liang; Zhang, Wei-Hong; Zhou, Yu-Feng

    2018-05-01

    Nearby sources may contribute to cosmic-ray electron (CRE) structures at high energies. Recently, the first DAMPE results on the CRE flux hinted at a narrow excess at energy ˜1.4 TeV . We show that in general a spectral structure with a narrow width appears in two scenarios. The first is spectrum broadening for the continuous sources with a δ -function-like injection spectrum. In this scenario, a finite width can develop after propagation through the Galaxy, which can reveal the distance of the source. Well-motivated sources include minispikes and subhalos formed by dark matter (DM) particles χs which annihilate directly into e+e- pairs. The second is phase-space shrinking for burstlike sources with a power-law-like injection spectrum. The spectrum after propagation can shrink at a cooling-related cutoff energy and form a sharp spectral peak. The peak can be more prominent due to the energy-dependent diffusion. In this scenario, the width of the excess constrains both the power index and the distance of the source. Possible such sources are pulsar wind nebulae (PWNe) and supernova remnants (SNRs). We analysis the DAMPE excess and find that the continuous DM sources should be fairly close within ˜0.3 kpc , and the annihilation cross sections are close to the thermal value. For the burstlike source, the narrow width of the excess suggests that the injection spectrum must be hard with power index significantly less than two, the distance is within ˜(3 - 4 ) kpc , and the age of the source is ˜0.16 Myr . In both scenarios, large anisotropies in the CRE flux are predicted. We identify possible candidates of minispike and PWN sources in the current Fermi-LAT 3FGL and ATNF catalog, respectively. The diffuse γ -rays from these sources can be well below the Galactic diffuse γ -ray backgrounds and less constrained by the Fermi-LAT data, if they are located at the low Galactic latitude regions.

  12. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  13. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  14. Controllable Continuous evolution of electronic states in a single quantum ring

    OpenAIRE

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2017-01-01

    Intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings, where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates irregular AB oscillations that are usually expected in anisotropic rings. Further, we have shown for the first time that intense laser fields can restore the {\\it isotropic} physical properties in anisotropic ...

  15. Lower hybrid heating data on the Wega experiment revisited using ion stochastic heating and electron Landau damping theories

    International Nuclear Information System (INIS)

    Gormezano, C.; Hess, W.; Ichtchenko, G.

    1980-07-01

    The already obtained data on the Wega Tokamak by lower hybrid heating (f=500 MHz - Psub(HF)=130 KW) are revisited in the light of recent theories on ion stochastic heating and quasi-linear electron Landau damping. It is possible to correctly estimate with these theories the fast ion mean energy, the H.F. power density coupled to the ions and that coupled to the electrons. The values of the parallel index of refraction, Nsub(//), which are necessary to obtain a good quantitative agreement between experiment and theoretical estimates, are the same for the ions and for the electrons, even though at higher values than expected

  16. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  17. Searching for the electron EDM in a storage ring

    International Nuclear Information System (INIS)

    Kawall, D

    2011-01-01

    Searches for permanent electric dipole moments (EDM) of fundamental particles have been underway for more than 50 years with null results. Still, such searches are of great interest because EDMs arise from radiative corrections involving processes that violate parity and time-reversal symmetries, and through the CPT theorem, are sensitive to CP-violation. New models of physics beyond the standard model predict new sources of CP-violation leading to dramatically enhanced EDMs possibly within the reach of a new generation of experiments. We describe a new approach to electron EDM searches using molecular ions stored in a tabletop electrostatic storage ring. Molecular ions with long-lived paramagnetic states such as tungsten nitride WN + can be injected and stored in larger numbers and with longer coherence times than competing experiments, leading to high sensitivity to an electron EDM. Systematic effects mimicking an EDM such as those due to motional magnetic fields and geometric phases are found not to limit the approach in the short term, and sensitivities of δ|d e | ∼ 10 -30 e·cm/day appear possible under conservative conditions.

  18. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  19. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  20. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  1. The PEP [positron-electron-proton] electron-positron ring: PEP Stage I

    International Nuclear Information System (INIS)

    Rees, J.R.

    1974-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e/sup /plus//e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup/minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 refs., 8 figs., 3 tabs

  2. The PEP [positron-electron-proton] electron-positron ring: An update

    International Nuclear Information System (INIS)

    1975-03-01

    The first stage of the positron-electron-protron (PEP) colliding-beam system, which has been under joint study by a Lawrence Berkeley Laboratory--Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions was set provisionally at 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup /minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 figs., 3 tabs

  3. Electron ring diagnostics with magnetic probes during roll-out and acceleration

    International Nuclear Information System (INIS)

    Schumacher, U.; Ulrich, M.

    1976-03-01

    Different methods using magnetic field probes to determine the properties of electron rings during their compression, roll-out and acceleration are presented. The results of the measurements of the electron number and the axial velocity and acceleration of the rings, as obtained with the various diagnostic devices, are discussed and compared. (orig.) [de

  4. Conceptual design of a linac-stretcher ring to obtain a 2-gev continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, >100 /mu/A 2-Gev electron beam, a linac-stretcher ring system was designed. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-Gev SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an rf system whose purpose is to control the beam orbit and rate of extraction from the ring. With an rf system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring. 4 refs

  5. Controllable continuous evolution of electronic states in a single quantum ring

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  6. Selected programs at the new SURF III electron storage ring

    International Nuclear Information System (INIS)

    Furst, Mitchell L.; Arp, Uwe; Cauchon, Gilles P.; Graves, Rossie M.; Hamilton, Andrew D.; Hughey, Lanny R.; Lucatorto, Thomas B.; Tarrio, Charles

    2000-01-01

    The conversion of the electron storage ring at NIST (the National Institute of Standards and Technology) to SURF III (the Synchrotron Ultraviolet Radiation Facility) has resulted in a significant improvement to the azimuthal uniformity of the magnetic field as well as the capability for operating at higher beam energies. Measurements of magnetic field strength revealed azimuthal uniformity of better than ±0.05% at field strengths equivalent to operating energies of 52 MeV to 417 MeV. Initial operation is restricted to energies up to 331 MeV due to temporary limitations in the rf transmission system. Even at 331 MeV there is already a significant extension of the usable short wavelength range of the synchrotron radiation as compared to the range available at the 284 MeV operating energy of SURF II. These and other improvements have a major impact on SURF programs including: the Nanodetector, a conversion microscope which is a prototype real-time imaging system for EUV (extreme ultraviolet) lithography; the Spectrometer Calibration Beamline, used for high-accuracy absolute calibration of spectrometers; and the National EUV Reflectometry Facility, used to measure optical constants of thin-film multilayer optics

  7. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  8. FEL indulators with the hollow-ring electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V.; Bordovitsyn, V. [Tomsk State Univ. (Russian Federation); Kozhevnikov, A. [Tomsk Pedagogical Institute (Russian Federation)] [and others

    1995-12-31

    A conceptual design of undulators with a modulated longitudinal magnetic field is proposed. The magnetic field is created by use of a solenoid with axis coincident with the electron beam axis. In order to modulate the magnetic field we propose an insertion of a row of alternating ferromagnetic and superconducting diaphragms in line with electron beam. The simulation of two-dimensional distribution of the magnetic field in the plane containing undulator axis was made using the computer code {open_quotes}Mermaid{close_quotes}. The magnetic field was analysed as a function of the system geometry. The dependence on the spacing l between superconducting diaphragms, inner a and outer b radii of the last ones is investigated. Two versions of the device are considered: with ferromagnetic rings made of magnetically soft material placed between the superconducting diaphragms and without them. It is shown that the field modulation depth increases with ratio of b/l and can exceed 50% in case of the ferromagnetic insertions. An approximate analytical calculation of the magnetic field distribution is performed as follows. The axial-symmetrical magnetic field can be defined by the vector potential with only one nonzero component A(r,{phi}) where r and {phi} are the cylindrical coordinates. The solution of the Laplace`s equation is found under the assumption that the magnetic field is infinitely extended and periodic along the z-axis. The boundary conditions are defined by the undulator design. The result is used for the calculation of the particle dynamics and for the investigations of the trajectory stability. The spectral and angular distribution of the radiation emitted from the described systems is found. The estimations show that the proposed design allows to create relatively high magnitude of the magnetic field (up to 1 T) with a short period about 1 cm or less.

  9. Evaluation of radiative spin polarization in an electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W [Stanford Linear Accelerator Center, CA (USA)

    1981-02-15

    We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.

  10. Electronic de-multipliers II (ring-shape systems); Demultiplieurs electroniques II (systeme en anneau)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V

    1948-09-01

    This report describes a new type of ring-shape fast electronic counter (de-multiplier) with a resolution capacity equivalent to the one made by Regener (Rev. of Scientific Instruments USA 1946, 17, 180-89) but requiring two-times less electronic valves. This report follows the general description of electronic de-multipliers made by J. Ailloud (CEA--001). The ring comprises 5 flip-flop circuits with two valves each. The different elements of the ring are calculated with enough details to allow the transfer of this calculation to different valve types. (J.S.)

  11. Heating of energetic electrons and ELMO ring formation in symmetric mirror facility

    International Nuclear Information System (INIS)

    Quon, B.H.; Dandl, R.A.; Lazar, N.H.; Wuerker, R.F.

    1982-01-01

    The spatial structure of the high beta, hot-electron ECH plasma, (ELMO Ring), has been studied by using a Hall probe array diagnostic system which measures the diamagnetic field of the hot electron plasma in a large number of spatial locations. The steady state pressure profile obtained using a two-gaussian geometric model that best fits the measurements is found to peak at the mirror midplane near the vacuum field second harmonic resonant point. The radial width of the ring is typically 4 to 7 cm, and the axial length extends significantly beyond the second harmonic resonance zone of the total magnetic field. The radial thickness and the Ring beta are increased by multiple frequency ECH. The electron ring is observed to evolve from a sloshing-like turning point distribution which was observed in the early times following a microwave turnon, demonstrating stochastic processes involved in ELMO Ring formation

  12. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  13. Separation of electron ion ring components (computational simulation and experimental results)

    International Nuclear Information System (INIS)

    Aleksandrov, V.S.; Dolbilov, G.V.; Kazarinov, N.Yu.; Mironov, V.I.; Novikov, V.G.; Perel'shtejn, Eh.A.; Sarantsev, V.P.; Shevtsov, V.F.

    1978-01-01

    The problems of the available polarization value of electron-ion rings in the regime of acceleration and separation of its components at the final stage of acceleration are studied. The results of computational simulation by use of the macroparticle method and experiments on the ring acceleration and separation are given. The comparison of calculation results with experiment is presented

  14. Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu

    2017-11-15

    The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.

  15. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  16. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  17. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  18. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  19. Characteristics of hot electron ring in a simple magnetic mirror field

    International Nuclear Information System (INIS)

    Hosokawa, M.; Ikegami, H.

    1980-12-01

    Characteristics of hot electron ring are studied in a simple magnetic mirror machine (mirror ratio 2 : 1) with a diameter of 30 cm at the midplane and with the distance of 80 cm between the mirrors. Maximum microwave input power is 5 kW at 6.4 GHz with the corresponding power density of approximately 0.3 W/cm 3 . With a background cold plasma of 4 x 10 11 cm -3 , hot electron rings are most effectively generated in two cases when the magnetic field on the axis of the midplane is set near the fundamental or the second harmonic electron cyclotron resonance to the applied microwave frequency. Density profile of the hot electrons is observed to take a so-called ring shape with a radius controllable by the magnetic field intensity and with an axial length of approximately 10 cm. The radial cut view of the ring, however, indicates an M shape density profile, and the density of the hot electrons on the axis is about one half of the density at the ring. Approximately 30 msec is needed before generating the hot electron ring at the density of 10 10 cm -3 with an average kinetic energy of 100 keV. The ultimate energy distribution function is observed to have a stepwise cut in the high energy tail and no energetic components above 1 MeV are detected. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. One of the instabilities is observed to associate with a loss of lower energetic electrons and microwave bursts. At the instability, the ring shape is observed to transform into a filled cylinder in a few microseconds and disappear. (author)

  20. Renewal of beam position monitor electronics of the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Sasaki, Shigeki; Fujita, Takahiro

    2007-01-01

    Signal processing electronics for the beam position monitors (BPM) of the SPring-8 Storage Ring were renewed during the summer shutdown period of 2006. The configurations of the electronics of before and after the alteration are described. The evaluation of the performance of the electronics is shown with the data taken by using the actual beams. (author)

  1. Bonded stacked-ring insulator for the Antares electron gun

    International Nuclear Information System (INIS)

    Stine, R.D.; Allen, G.R.; Eaton, E.; Weinstein, B.

    1982-01-01

    A large diameter insulator utilizing epoxy bonding which has sufficient mechanical strength to support the 3000 kg cathode/grid assembly was developed. Bonding the insulator simplifies the handling and reduces the number of 0-ring seals to a minimum. We have described the material selection, bonding techniques and electrical design approach

  2. CESAR, 2 MeV electron storage ring; construction period; general view.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    A general view of the 2-MeV electron storage-ring model during the last stages of assembly. The injection line for the electrons enters at the bottom of the picture (under the ladder) and meets the ring at the back, to the right. Near there, Joseph Karouanton (S.G.T.E, Paris) (inside the ring), and Marcel Bernasconi (AR Division) are seen testing for leaks in the vacuum system. In white coats are Mervin Barnes (left) and Boony Bruggerman (AR Division), considering the reading shown by one of the vacuum gauges.

  3. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  4. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  5. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Hoener, Markus

    2015-07-01

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  6. On the ''circular vacuum noise'' in electron storage rings

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-02-01

    We clarify in some essential points the proposal of Bell and Leinaas to measure the circular Unruh effect in storage rings. In particular the term 'circular Unruh effect' is inappropriate and should be replaced by the better 'circular vacuum noise'. This concept has been used by Takagi in his PTP Supplement of 1986 and corresponds best to the BL discussion. The BL resonance behavior does not fit to the SPEAR first order betatron resonance at 3.605 GeV, but of course, the real experimental situation is much more complicated, corresponding, as a matter of fact, to the rather general term 'synchrotron noise'. The detailed aspects of the synchrotron noise are, as yet, not very well understood. Besides, the much more practical accelerator jargon is to be preferred. We also include a section with comments on radiometry at storage rings. (author). 27 refs

  7. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Furman, M.A.

    2002-01-01

    We have applied our simulation code ''POSINST'' to evaluate the contribution to the growth rate of the electron-cloud instability in proton storage rings. Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A key ingredient in our model is a detailed description of the secondary emitted-electron energy spectrum. A refined model for the secondary emission process including the so-called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  8. Ring recognition and electron identification in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S; Hoehne, C; Ososkov, G

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In this contribution we will present algorithms and software which have been developed for electron identification in CBM. Efficient and fast ring recognition in the RICH detector is based on the Hough Transform method which has been accelerated considerably compared to a standard implementation. Ring quality selection is done using an Artificial Neural Network which also has been used for electron identification. Due to optical distortions ellipse fitting and radius corre ction routines are used for improved ring radius resolution. These methods allow for a high purity and efficiency of reconstructed electron rings. For momenta above 2 GeV/c the ring reconstruction efficiency for electrons embedded in central Au+Au collisions at 25 AGeV beam energy is 95% resulting in an electron identification efficiency of 90% at a pion suppression factor of 500. Including information from the TRD a pion suppression of 10 4 is reached at 80% efficiency. The developed algorithm is very robust to a high ring density environment. Current work focusses on detector layout studies in order to optimize the detector setup while keeping a high performance. All developed algorithms were tested on large statistics of simulated events and are included into the CBM software framework for common use.

  9. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  10. Magnetic forces and localized resonances in electron transfer through quantum rings.

    Science.gov (United States)

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  11. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  12. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  13. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Plum, M.

    1995-01-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil

  14. A new formula for the lifetime of a round beam caused by the Touschek effect in an electron storage ring

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1985-01-01

    The beam lifetime caused by the Touschek effect in an electron storage ring is calculated for a round beam, extending the existing theory for a ribbon beam. The result agrees with the observed lifetime in the SOR-RING. (author)

  15. A machine learning method to separate cosmic ray electrons from protons from 10 to 100 GeV using DAMPE data

    Science.gov (United States)

    Zhao, Hao; Peng, Wen-Xi; Wang, Huan-Yu; Qiao, Rui; Guo, Dong-Ya; Xiao, Hong; Wang, Zhao-Min

    2018-06-01

    DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV to 10 TeV and hundreds of TeV for nuclei. This paper provides a method using machine learning to identify electrons and separate them from gammas, protons, helium and heavy nuclei with the DAMPE data acquired from 2016 January 1 to 2017 June 30, in the energy range from 10 to 100 GeV.

  16. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  17. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  18. On the Optimum Dispersion of a Storage Ring for Electron Cooling with High Space Charge

    CERN Document Server

    Bosser, Jacques; Chanel, M; Marié, L; Möhl, D; Tranquille, G

    2000-01-01

    With the intense electron beams used for cooling, matching of the ion and electron velocity over the largest possible fraction of the beam profile becomes important. In this situation, a finite dispersion from the ring in the cooling section can lead to an appreciable gain in the transverse cooling speed. Based on a simple model of the cooling force, an expression for the "optimum" dispersion as a function of the electron beam intensity, the momentum spread and other properties of the ion beam will be derived. This simple theory will be compared to measurements made on the Low Energy Ion Ring (LEIR) at CERN during 1997.

  19. Threshold Studies of the Microwave Instability in Electron Storage Rings

    International Nuclear Information System (INIS)

    Bane, Karl

    2010-01-01

    We use a Vlasov-Fokker-Planck program and a linearized Vlasov solver to study the microwave instability threshold of impedance models: (1) a Q = 1 resonator and (2) shielded coherent synchrotron radiation (CSR), and find the results of the two programs agree well. For shielded CSR we show that only two dimensionless parameters, the shielding parameter Π and the strength parameter S csr , are needed to describe the system. We further show that there is a strong instability associated with CSR, and that the threshold, to good approximation, is given by (S csr )th = 0.5 + 0.12Π. In particular, this means that shielding has little effect in stabilizing the beam for Π ∼ -3/2 . We, in addition, find another instability in the vicinity of Π = 0.7 with a lower threshold, (S csr ) th ∼ 0.2. We find that the threshold to this instability depends strongly on damping time, (S csr ) th ∼ τ p -1/2 , and that the tune spread at threshold is small - both hallmarks of a weak instability.

  20. Truncated exponential-rigid-rotor model for strong electron and ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.

    1979-01-01

    A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)

  1. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    Science.gov (United States)

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  2. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  3. Electronic structures of GaAs/AlxGa1-xAs quantum double rings

    Directory of Open Access Journals (Sweden)

    Li Shu-Shen

    2006-01-01

    Full Text Available AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

  4. FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, R. R.

    2017-06-25

    We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.

  5. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system

    International Nuclear Information System (INIS)

    Chwiej, T; Szafran, B

    2013-01-01

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)

  6. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  7. Stationary solution of the Fokker-Planck equation for linearly coupled motion in an electron storage ring

    International Nuclear Information System (INIS)

    Chao, A.W.; Lee, M.J.

    1975-09-01

    Effects upon longitudinal bunch shape in a storage ring due to linear and nonlinear potential can be calculated by finding the stationary solution to the Fokker-Planck equation for the particle distribution. Effects upon transverse bunch shape of a stored electron beam due to photon emissions and damping can be calculated by this method. It has been found that this method can also be used for a case in which the transverse modes of oscillation are coupled to the energy deviation δ. Examples of lattice elements which produce linear coupling between these oscillations are skew quadrupole magnets and solenoid magnets. For the linearly coupled case the stationary solution has been found to be given by exp (ΣΣA/sub ij/ x/sub i/x/sub j/) with x/sub i/ the canonical variables (x,p/sub x/, y, p/sub y/, δ, p/sub δ/) and A /sub ij/ some constants. The solution for the values of A /sub ij/'s will be described in this report. It will be shown that this solution can be expressed in a compact form. For simple cases, this form of solution leads directly to analytic expressions for the values of A /sub ij/'s and the bunch shape can be calculated by integrating the distribution function over some of the coordinates; for the more complex cases, it can be conveniently adapted as an algorithm for numerical evaluation. 16 refs

  8. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  9. Calculation of the Touschek lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Walker, R.P.

    1987-01-01

    Various formulae for calculating the Touschek lifetime of a ribbon beam of electrons are examined. It is shown that two commonly used approximations can give inaccurate results in certain circumstances. A method is suggested for calculating the lifetime accurately and efficiently using a combination of formulae

  10. Nuclear physics with internal targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1986-01-01

    Two key experiments in nuclear physics will be discussed in order to illustrate the advantages of the internal target method and demonstrate the power of polarization techniques in electron scattering studies. The progress of internal target experiments will be discussed and the technology of internal polarized target development will be reviewed. 43 refs., 11 figs

  11. High spin polarisation at the HERA electron storage ring

    International Nuclear Information System (INIS)

    Barber, D.P.; Boege, M.; Bremer, H.D.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, R.; Klanner, R.; Lewin, H.C.; Meyners, N.; Ripken, G.; Zapfe, K.; Boettcher, H.; Dueren, M.; Steffens, E.; Lomperski, M.; Rith, K.; Westphal, D.; Zetsche, F.

    1993-04-01

    This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described. (orig.)

  12. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    International Nuclear Information System (INIS)

    De Santis, S.; Byrd, J.M.; Billing, M.; Palmer, M.; Sikora, J.; Carlson, B.

    2010-01-01

    A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated (S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).). We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  13. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    Directory of Open Access Journals (Sweden)

    Richard M. Talman

    2015-07-01

    Full Text Available There has been much recent interest in directly measuring the electric dipole moments (EDM of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of “frozen spin” particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV “electron analog” ring at Brookhaven National Laboratory in 1954; it can also be referred to as the “AGS analog” ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through “transition” with the newly invented alternating gradient proton ring design. By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to “resurrect” the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of “archeological physics” to reconstitute the detailed electron analog lattice design from a

  14. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    International Nuclear Information System (INIS)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E.F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) [Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141] are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field

  15. Status of the experimental studies of the electron cloud at the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Macek, R.J.; Browman, A.A.; Borden, M.J.; Fitzgerald, D.H.; McCrady, R.C.; Spickermann, T.J.; Zaugg, T.J.

    2003-01-01

    The electron cloud (EC) at the Los Alamos Proton Storage Ring (PSR) has been studied extensively for the past several years with an overall aim to identify and measure its important characteristics, the factors that influence these characteristics, and to relate these to the two-stream (e-p) transverse instability long observed at PSR. Some new results since PAC2001 are presented.

  16. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  17. Electronic and excitonic properties of self-assembled semiconductor quantum rings

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Blokland, J.H.; Christianen, P.C.M.; Maan, J.C.; Taboada, A.G.; Granados, D.; Garcia, J.M.; Kleemans, N.A.J.M.; Genuchten, van H.C.M.; Bozkurt, M.; Koenraad, P.M.; Wixforth, A.; Lorke, A.

    2009-01-01

    Theoretical analysis of the electron energy spectrum and the magnetization in a strained InxGa1-xAs/GaAs selfassembled quantum ring (SAQR) is performed using realistic parameters, determined from the cross-sectional scanning-tunneling microscopy characterization. The Aharonov-Bohm oscillations in

  18. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  19. Progress in measurement and understanding of beam polarization in electron positron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.

    1983-07-01

    A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)

  20. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  1. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  2. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  3. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  4. Emittance and damping of electrons in the neighborhood of resonance fixed points

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1993-01-01

    The stable fixed points generated by nonlinear field harmonics in a cyclic lattice define a multiturn stable orbit. The position of the orbit for each turn in each magnet of the lattice determines the betatron tunes and lattice dispersion functions describing the linear motion of charged particles with respect to the stable orbit. Since the position of the fixed points is dependent in part on the central orbit tune, it turns out that the multiturn orbit dispersion function depends to a large extent on the central orbit chromaticity. In particular, the horizontal partition number can be made to vary from values less than zero (horizontal antidamping for electrons) to values greater than three (longitudinal antidamping). The central orbit chromaticity therefore plays a major role in determining the characteristic emittance of an electron beam with respect to the multiturn orbit

  5. Observation of magnetic resonances in electron clouds in a positron storage ring

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, C.M.; Raubenheimer, T.O.; Wang, L.F.

    2010-01-01

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines' performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  6. The Unruh effect and quantum fluctuations of electrons in storage rings

    International Nuclear Information System (INIS)

    Bell, J.S.; Leinaas, J.M.

    1987-01-01

    The quantum fluctuation of electron orbits in ideal storage rings is a sort of Fulling-Unruh effect (heating by acceleration in vacuum). To spell this out, the effect is analyzed in an appropriate comoving, and so accelerating and rotating, co-ordinate system. The depolarization of the electrons is a related effect, but is greatly complicated by spin-orbit coupling. This analysis confirms the standard result for the polarization, except in the neighbourhood of a narrow resonance. (orig.)

  7. The Unruh effect and quantum fluctuations of electrons in storage rings

    International Nuclear Information System (INIS)

    Bell, J.S.; Leinaas, J.M.

    1995-01-01

    The quantum fluctuation of electron orbits in ideal storage rings is a sort of Fulling-Unruh effect (heating by acceleration in vacuum). To spell this out, the effect is analyzed in an appropriate comoving, and so accelerating and rotating, co-ordinate system. The depolarization of the electrons is a related effect, but is greatly complicated by spin-orbit coupling. This analysis confirms the standard result for the polarization, except in the neighbourhood of a narrow resonance. (author)

  8. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  9. Simulation studies of electron acceleration by ion ring distributions in solar flares

    International Nuclear Information System (INIS)

    McClements, K.G.; Bingham, R.; Su, J.J.; Dawson, J.M.; Spicer, D.S.

    1990-07-01

    Using a 21/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvenic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can therefore resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to bump-in-tail instability of the electron distribution. (author)

  10. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  11. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  12. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 μA 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring

  13. Status of experimental studies of electron cloud effects at the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Macek, R.J.; Browman, A.A.; Borden, M.J.; Fitzgerald, D.H.; McCrady, R.C.; Spickermann, T.J.; Zaugg, T.J.

    2004-01-01

    Various electron cloud effects (ECE) including the two-stream (e-p) instability at the Los Alamos Proton Storage Ring (PSR) have been studied extensively for the past five years with the goal of understanding the phenomena, mitigating the instability and ultimately increasing beam intensity. The specialized diagnostics used in the studies are two types of electron detectors, the retarding field analyzer and the electron sweepmg detector - which have been employed to measure characteristics of the electron cloud as functions of time, location in the ring and various influential beam parameters - plus a short stripline beam position monitor used to measure high frequency motion of the beam centroid. Highlights of this research program are summarized along with more detail on recent results obtained since the ECLOUD'02 workshop. Recent work mcludes a number of parametric studies of the various factors that affect the electron cloud signals, studies of the sources of initial or 'seed' electrons, additional observations of electron cloud dissipation after the beam pulse is extracted, studies of the 'first pulse instability' issue, more data on electron suppression as a cure for the instability, and observations of the effect of a one-turn weak kick on intense beams in the presence of a significant electron cloud.

  14. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; TechSource, Santa Fe; Los Alamos; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 (micro)s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole

  15. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    Directory of Open Access Journals (Sweden)

    Robert J. Macek

    2008-01-01

    Full Text Available Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100  μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  16. New edge magnetoplasmon for a two-dimensional electron gas in a ring geometry

    International Nuclear Information System (INIS)

    Proetto, C.R.

    1992-09-01

    The dynamical response of a classical two-dimensional electron gas confined in a ring geometry under a perpendicular magnetic field is analysed. Within the hydrodynamical approach and in the strong magnetic field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to density oscillations circulating along the inner boundary of the ring and whose frequency increases with magnetic field. The associated self-induced distribution of densities and currents are presented, together with an analysis of the size dependence of these perimeter waves. (author). 15 refs, 4 figs

  17. Electronic states of on- and off-center donors in quantum rings of finite width

    International Nuclear Information System (INIS)

    Lima, R.P.A.; Amado, M.

    2008-01-01

    The electronic states of a hydrogenic donor in two-dimensional quantum rings are calculated by taking into account the finite width of the potential well in the ring. In addition, a strong magnetic field is applied perpendicular to the quantum ring. Using the effective-mass approximation at the Γ valley, the radial Hamiltonian for the envelope-function is exactly diagonalized in the case of on-center donors. The corresponding energy levels for different angular momenta are studied as a function of the applied magnetic field. In the case of off-center donors, a perturbation approach is considered and its limitations are discussed. Finally, we calculate the absorption spectra and oscillator strength for different intraband transitions, specifically for on-center donors

  18. Electron transport in a double quantum ring: Evidence of an AND gate

    International Nuclear Information System (INIS)

    Maiti, Santanu K.

    2009-01-01

    We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux φ. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, V a and V b , are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux φ=φ 0 /2 (φ 0 =ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.

  19. Analysis of possibilities for a spin flip in high energy electron ring HERA

    International Nuclear Information System (INIS)

    Stres, S.; Pestotnik, R.

    2007-01-01

    In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model

  20. Spin decoherence in electron storage rings. More from a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Heinemann, K. [The Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mathematics and Statistics

    2015-06-15

    This is an addendum to the paper ''Some models of spin coherence and decoherence in storage rings'' by one of the authors (K. Heinemann, DESY Report 97-166 (1997)), in which spin diffusion in simple electron storage rings is studied. In particular, we illustrate in a compact way, namely that the exact formalism of this article delivers a rate of depolarisation which can differ from that obtained by the conventional treatments of spin diffusion which rely on the use of the derivative ∂n/∂η. As a vehicle we consider a ring with a Siberian Snake and electron polarisation in the plane of the ring. For this simple setup with its one-dimensional spin motion, we avoid having to deal directly with the Bloch equation for the polarisation density. Our treatment, which is deliberately pedagogical, shows that the use of ∂n/∂η provides a very good approximation to the rate of spin depolarisation in the model considered. But it then shows that the exact rate of depolarisation can be obtained by replacing ∂n/∂η by another derivative, while giving a heuristic justification for the new derivative.

  1. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  2. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  3. Application of the Green's function method to some nonlinear problems of an electron storage ring

    International Nuclear Information System (INIS)

    Kheifets, S.

    1984-01-01

    One of the most important characteristics of an electron storage ring is the size of the beam. However analytical calculations of beam size are beset with problems and the computational methods and programs which are used to overcome these are inadequate for all problems in which stochastic noise is an essential part. Two examples are, for an electron storage ring, beam-size evaluation including beam-beam interactions, and finding the beam size for a nonlinear machine. The method described should overcome some of the problems. It uses the Green's function method applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step is to consider the particle motion in two degrees of freedom rather than in one dimension. The technique is described fully and is then applied to a strong-focusing machine. (U.K.)

  4. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  5. A low vertical β mode for the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu; Tavares, P.

    1991-01-01

    An operation mode with low vertical betatron function in one of the long dispersion free straight sections of the LNLS UVX Electron Storage Ring is studied for applications with small gap insertions. The flexibility of this lattice is analyzed regarding two aspects: the range of variation of the vertical betatron tune and the ability to set the betatron functions to high/low values in the insertion straights

  6. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  7. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  8. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  9. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    Science.gov (United States)

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  10. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  11. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)

    2017-05-15

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.

  12. Effective tuning of electron charge and spin distribution in a dot-ring nanostructure at the ZnO interface

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2018-05-01

    Electronic states and the Aharonov-Bohm effect in ZnO quantum dot-ring nanostructures containing few interacting electrons reveal several unique features. We have shown here that in contrast to the dot-rings made of conventional semiconductors, such as InAs or GaAs, the dot-rings in ZnO heterojunctions demonstrate several unique characteristics due to the unusual properties of quantum dots and rings in ZnO. In particular the energy spectra of the ZnO dot-ring and the Aharnov-Bohm oscillations are strongly dependant on the electron number in the dot or in the ring. Therefore even small changes of the confinement potential, sizes of the dot-ring or the magnetic field can drastically change the energy spectra and the behavior of Aharonov-Bohm oscillations in the system. Due to this interesting phenomena it is possible to effectively control with high accuracy the electron charge and spin distribution inside the dot-ring structure. This controlling can be achieved either by changing the magnetic field or the confinement potentials.

  13. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  14. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    International Nuclear Information System (INIS)

    Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)

  15. Feedback for suppression of single-bunch transverse instability in electron-positron storage rings

    International Nuclear Information System (INIS)

    Smaluk, V; Sukhanov, D; Oreshonok, V; Cherepanov, V; Kiselev, V

    2012-01-01

    Transverse head-tail instability is a severe limitation of a single-bunch beam current in circular accelerators. Applicability and efficiency of feedbacks for suppression of the instability is analyzed. Both chromatic and nonlinear effects have been taken into account to understand the processes of excitation and damping of the instability. Analytical estimations are compared with the results of experiments and numerical simulations. A feedback system has been developed, installed and commissioned at the VEPP-4M electron-positron collider. An original scheme of the kicker powering has been developed to provide the necessary performance with minimal expenses. Real-time digital data processing performed by a code running in an FPGA module provides high efficiency and flexibility of the system. During the system commissioning, a more than threefold increase of intensity of the VEPP-4M single-bunch beam has been achieved.

  16. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Directory of Open Access Journals (Sweden)

    S. De Santis

    2010-07-01

    Full Text Available A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008.PRLTAO0031-900710.1103/PhysRevLett.100.094801]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  17. Effects of decaying image currents on electron rings during compression between side walls and motion along conducting cylinders

    International Nuclear Information System (INIS)

    Herrmann, W.

    1974-11-01

    Decaying image currents consume energy which has to be supplied by the field producing electron ring. For very high currents (I > 10 3 A, particle number Ne > approximately 10 14 ) the losses become important and have to be included in the calculation of the ring dynamics. Special attention has been given to the focussing effects of the decaying image currents during compression and to the retarding force which develops when the ring is moved along a resistive cylinder. It is emphasized that in the latter case the ring experiences a 'run-away-situation', when the ratio of its velocity to the surface resistivity exceeds a certain limit. (orig.) [de

  18. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    International Nuclear Information System (INIS)

    Holtzapple, R.L.; Campbell, R.C.; McArdle, K.E.; Miller, M.I.; Totten, M.M.; Tucker, S.L.; Billing, M.G.; Dugan, G.F.; Ramirez, G.A.; Sonnad, K.G.; Williams, H.A.; Flanagan, J.; Palmer, M.A.

    2016-01-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions

  19. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit; Saha, Arijit

    2014-01-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  20. Operation with the low momentum compaction factor on an electron storage ring

    International Nuclear Information System (INIS)

    Hama, H.; Yamazaki, J.; Nakamura, E.; Isoyama, G.

    1994-01-01

    We have studied quasi-isochronous operation with the low momentum compaction factor to reduce the bunch length of the electron beam on the UVSOR storage ring. The momentum compaction factor α was reduced by changing the dispersion function in the bending magnets. Though effect of the second order α becomes dominant in the very low α region, we could compensate it by reducing strength of the focusing sextupole magnets. The momentum compaction factor was reduced to less than one hundredth with respect to the ordinary value. Using a streak camera, we measured the very short bunch, and confirmed the storage ring was operated nearly isochronously. The beam current dependence of the bunch length was also measured. The bunch lengthening was interpreted by potential-well distortion theory with a constant value of the effective longitudinal coupling impedance over the wide range of α. (author)

  1. Injector Design for a Model Electron Ring at the University of Maryland

    Science.gov (United States)

    Godlove, T.; Bernal, S.; Deng, J. J.; Li, Y.; Reiser, M.; Wang, J. G.; Zou, Y.

    1997-05-01

    A model electron recirculator is being developed at the University of Maryland. It employs a 10-keV, space-charge-dominated beam injected into a 1.8-m radius ring equipped with a strong-focusing lattice based on printed-circuit quadrupoles and dipoles. The motivation and general features are described in separate papers. Here we describe the design for injecting a single-turn bunch into the ring. The system includes a low-emittance e-gun, matching section, pulsed dipole and Panofsky quadrupole. The dipole at the injection point must deflect the beam -10^circ during entry and +10^circ after entry, with about 25 ns transition time. The Panofsky quadrupole must be off during entry and on for subsequent laps, with a similar rise time.

  2. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit

    2014-08-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  3. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  4. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    Science.gov (United States)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  5. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  6. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Cornett, Claus; Justesen, Ulla

    1998-01-01

    Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16g/mol, and were identified as 2......-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which...... may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin...

  7. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.

    2000-01-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises [it

  8. Rf stability, control and bunch lengthening in electron synchrotron storage rings

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1989-09-01

    A self-consistent theory for nonlinear longitudinal particle motion and rf cavity excitation in a high energy electron storage ring is developed. Coupled first order equations for the motion of an arbitrary number of particles and for the field in several rf cavities are given in the form used in control system theory. Stochastic quantum excitation of synchrotron motion is included, as are the effects of rf control system corrections. Results of computations for double cavity bunch lengthening are given. 11 refs., 4 figs., 1 tab

  9. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  10. Foucault pendulum with eddy-current damping of the elliptical motion

    Science.gov (United States)

    Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.

    1984-10-01

    A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.

  11. Dislocation damping during irradiation

    International Nuclear Information System (INIS)

    Burdett, C.F.; Rahmatalla, H.

    1977-01-01

    The results of Simpson et al (Simpson, H.M., Sosin, A., Johnston, D.F., Phys.Rev. B, 5:1393 (1972)) on the damping produced during electron irradiation of copper are re-examined and it is shown that they can be explained in terms of the model of Granato and Lucke (Granato, A., Lucke, K., J.Appl.Phys., 27:583,789 (1958)). (author)

  12. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.

    Science.gov (United States)

    Xavier, L J P; da Costa, D R; Chaves, A; Pereira, J M; Farias, G A

    2016-12-21

    We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

  13. Enhanced Schottky signals from electron-cooled, coasting beams in a heavy-ion storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, C., E-mail: claude.krantz@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Blaum, K.; Grieser, M. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Litvinov, Yu.A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany); Repnow, R.; Wolf, A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2011-02-11

    Measurements at the Test Storage Ring of the Max-Planck-Institut fuer Kernphysik in Heidelberg (Germany) have shown that the signal amplitude induced in a Schottky-noise pickup electrode by a coasting electron-cooled ion beam can be greatly enhanced by exposure of the latter to a perturbing radiofrequency signal which is detuned from the true beam revolution frequency. The centre frequencies obtained from harmonic analysis of the observed pickup signal closely follow those imposed on the ions by the electron cooling force. The phenomenon can be exploited to measure the true revolution frequency of ion beams of very low intensity, whose pure Schottky noise is too weak to be measurable under normal circumstances.

  14. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  15. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  16. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  17. Present status of the NIJI-IV storage-ring free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Yamada, K.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  18. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  19. Electron cooling of a bunched ion beam in a storage ring

    Science.gov (United States)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  20. CESAR, 2 MeV electron storage ring; general view from above.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  1. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  2. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  3. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  4. Demonstration of electron clearing effect by means of a clearing electrode in high-intensity positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Fukuma, H.; Wang, L.; Pivi, M.; Morishige, A.; Suzuki, Y.; Tsukamoto, M.; Tsuchiya, M.

    2009-01-01

    In the beam pipe of high-intensity positron/proton storage rings, undesired electron clouds may be first produced by photoelectrons and the ionization of residual gases; then the clouds increase by the secondary electron emission. In this study, a strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. The narrow alumina gap between the electrode and the beam pipe decreases the beam impedance and also enhances the heat transfer from the electrode to the beam pipe. A test model has been installed in the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude was observed on the application of ±500 V to the electrode at a beam current of 1.6 A with 1585 bunches. The reduction in the electron density was more drastic in a vertical magnetic field of 0.77 T, that is, the electron density decreased by several orders by applying +500 V to the electrode at the same beam current. This experiment is the first experiment demonstrating the principle of the clearing electrode that is used to mitigate the electron-cloud effect in a positron ring.

  5. Forming mechanism and avoiding measures of blue-ring on electronic beam welding sample after water corrosion

    International Nuclear Information System (INIS)

    Ren Defang; Luo Xiandian; Tong Shenxiu; Guo Xulin; Peng Haiqing

    2001-01-01

    After water corrosion in compliance with ASTM G2, the blue ring appears on the nuclear fuel rod samples of AFA 2G welded by using a Big Chamber Electron Beam Welder made in Russia. The characteristics, appearance, chemical composition, microstructure of b lue ring a nd some condition test are described. The mechanism of forming blue ring may be depicted as following: welding metal vapor and the splash produced by secondary and scatter electrons on metal clamp and gun body deposit in the area between HAZ and substrate because of the water cooling down effects on the clamp; these deposits, after water corrosion, appears as blue ring on the fuel rod surface. Avoiding measure is that the side of the clamp closing to weld seal is chamfered, while making the welding chamber cleaner

  6. A general harmonic spin matching formalism for the suppression of depolarisation caused by closed orbit distortion in electron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Mais, H.; Ripken, G.; Rossmanith, R.

    1985-03-01

    We present a general formalism for correcting perturbations to the equilibrium sspin axis in electron storage rings due to the orbit errors so that depolarizing effects due to machine misalignments can be controlled. The method proposed is suitable for rings containing e.g. solenoids, skew quadrupoles and vertical bends and since it is based on a SLIM-like representation of the orbital and spin motion it can be conveniently realized as a straight forward extension to that program. (orig.)

  7. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  8. Direct extraction of electron parameters from magnetoconductance analysis in mesoscopic ring array structures

    Science.gov (United States)

    Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.

    2018-05-01

    We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.

  9. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; De Santis, Stefano; Sonnad, Kiran; Caspers, Fritz; Kroyer, Tom; Krasnykh, Anatoly; Pivi, Mauro

    2008-06-01

    Clouds of low energy electronsin the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energyelectron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  10. Modeling and Experiments on Injection into University of Maryland Electron Ring

    International Nuclear Information System (INIS)

    Bai, G.; Kishek, R. A.; Beaudoin, B.; Bernal, S.; Feldman, D.; Godlove, T.; Haber, I.; Quinn, B.; Reiser, M.; Sutter, D.; Walter, M.; O'Shea, P. G.

    2006-01-01

    The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has been closed and multi-turn commissioning has begun. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection/recirculation section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. Also, the Earth's magnetic field and the image charge effects have to be investigated because they are strong enough to impact the beam centroid motion. This paper presents both simulation and experimental study of the beam centroid motion in the injection region to address above issues

  11. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y position entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  12. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-01-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  13. Electron-muon coincidences in proton-proton collisions at the CERN Intersecting Storage Rings

    CERN Document Server

    Clark, A G; Darriulat, Pierre; Eggert, K; Hungerbühler, V; Jenni, Peter; Lapuyade, C; Modis, T; Pérez, P; Renshall, H; Richter, Burton; Smadja, G; Strauss, J; Strolin, P; Tarnopolsky, G J; Teiger, J; Tur, C; Vialle, J P; Zaccone, Henri; Zallo, A; Zylberstejn, A

    1978-01-01

    In an experiment carried out at the CERN Intersecting Storage Rings with a highly selective electron spectrometer system and a magnetized iron filter to detect muons, the authors have observed 32+or-16 dilepton events of the type p+p to mu /sup +or-/+e/sup -or+/+... The integrated luminosity of the experiment was (2.0+or-0.1)*10/sup 37/ cm /sup -2/, and the over-all detection efficiency 0.14+or-0.07. Interpreting this signal as due to charmed meson-pair production, the authors estimate a model-dependent acceptance of 6.5*10/sup -5/ per event, and a cross-section sigma (p+p to D+D+...)=(18+or-9) mu b, with a scale uncertainty of 50% due to the detection efficiency. (9 refs).

  14. Observation of the UPSILON''' at the Cornell electron-storage ring

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Giannini, G.; Lee-Franzini, J.; Schamberger, R.D. Jr.; Sivertz, M.; Spencer, L.J.; Tuts, P.M.; Boehringer, T.; Costantini, F.; Dobbins, J.; Franzini, P.; Han, K.; Herb, S.W.; Kaplan, D.M.; Lederman, L.M.; Mageras, G.; Peterson, D.; Rice, E.; Yoh, J.K.; Levman, G.

    1980-01-01

    During an energy scan at the Cornell Electron Storage Ring, with use of the Columbia University-Stony Brook NaI detector, an enhancement in sigma(e + e - →hadrons) is observed at center-of-mass energy approx.10.55 GeV. The mass and leptonic width of this state (UPSILON''') suggest that it is the 4 3 S 1 bound state of the b quark and its anitquark. After applying to the data a cut in a (pseudo) thrust variable, the natural width is measured to be GAMMA=12.6 +- 6.0 MeV, indicating that the UPSILON''' is above the threshold for BB-bar production

  15. Electron states in quantum rings with structural distortions under axial or in-plane magnetic fields

    International Nuclear Information System (INIS)

    Planelles, J; Rajadell, F; Climente, J I

    2007-01-01

    A comprehensive study of anisotropic quantum rings, QRs, subject to axial and in-plane magnetic field, both aligned and transverse to the anisotropy direction, is carried out. Elliptical QRs for a wide range of eccentricity values and also perfectly circular QRs including one or more barriers disturbing the QR current are considered. These models mimic anisotropic geometry deformations and mass diffusion occurring in the QR fabrication process. Symmetry considerations and simplified analytical models supply physical insight into the obtained numerical results. Our study demonstrates that, except for unusual extremely large eccentricities, QR geometry deformations only appreciably influence a few low-lying states, while the effect of barriers disturbing the QR current is stronger and affects all studied states to a similar extent. We also show that the response of the electron states to in-plane magnetic fields provides accurate information on the structural anisotropy

  16. Applications of UV-storage ring free electron lasers: the case of super-ACO

    CERN Document Server

    Nahon, L; Couprie, Marie Emmanuelle; Merola, F; Dumas, P; Marsi, M; Taleb-Ibrahimi, A; Nutarelli, D; Roux, R; Billardon, M

    1999-01-01

    The potential of UV-storage ring free electron lasers (SRFELs) for the performance of original application experiments is shown with a special emphasis concerning their combination with the naturally synchronized synchrotron radiation (SR). The first two-color FEL+SR experiment, performed in surface science at Super-ACO is reported. The experimental parameters found to be the most important as gathered from the acquired experience, are underlined and discussed. Finally, future prospects for the scientific program of the Super-ACO FEL are presented with two-color experiments combining the FEL with SR undulator-based XUV and VUV beamlines as well as with a SR white light bending magnet beamline emiting in the IR-UV (20 mu m-0.25 mu m).

  17. Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy.

    Science.gov (United States)

    Yeung, Heidi O; Förster, Andreas; Bebeacua, Cecilia; Niwa, Hajime; Ewens, Caroline; McKeown, Ciarán; Zhang, Xiaodong; Freemont, Paul S

    2014-03-05

    The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes.

  18. On-line Observation Of Electron Beam Bunches In The Large Storage Ring Of Kurchatov Srs

    CERN Document Server

    Ioudin, L I; Krylov, Y V; Rezvov, V A; Stirin, A I; Valentinov, A G; Yupinov, Y L

    2004-01-01

    A complex of instrumentation for visual quantitative estimation of electron beam bunches in the big storage ring of Kurchatov Synchrotron Radiation Centre (KSRC) is tested. The bunches pass through a cylindrical electrostatic sensor whose signal is recorded by a wide-band oscillograph. The TV camera reads the optical image of the signal from the oscillograph screen. The TV signal numbering board inputs the video image to the computer memory. The monitor displays the beam bunch structure. A special program provides on-line visualisation of bunch behaviour on the beam orbit. The images of beam structure and a series of images showing the beam behaviour in the regimes of accumulation, acceleration and in the stationary regime a full power are numbered and stored.

  19. Mitigation of the electron-cloud effect in the PSR and SNS protonstorage rings by tailoring the bunch profile

    CERN Document Server

    Pivi, M T

    2003-01-01

    For the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and for the Proton Storage Ring (PSR) at Los Alamos, both with intense and very long bunches, the electron cloud develops primarily by the mechanism of trailing-edge multipacting. We show, by means of simulations for the PSR, how the resonant nature of this mechanism may be effectively broken by tailoring the longitudinal bunch profile at fixed bunch charge, resulting in a significant decrease in the electron-cloud effect. We briefly discuss the experimental difficulties expected in the implementation of this cure.

  20. MITIGATION OF THE ELECTRON-CLOUD EFFECT IN THE PSR AND SNS PROTONSTORAGE RINGS BY TAILORING THE BUNCH PROFILE

    International Nuclear Information System (INIS)

    Pivi, Mauro T F

    2003-01-01

    For the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and for the Proton Storage Ring (PSR) at Los Alamos, both with intense and very long bunches, the electron cloud develops primarily by the mechanism of trailing-edge multipacting. We show, by means of simulations for the PSR, how the resonant nature of this mechanism may be effectively broken by tailoring the longitudinal bunch profile at fixed bunch charge, resulting in a significant decrease in the electron-cloud effect. We briefly discuss the experimental difficulties expected in the implementation of this cure

  1. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  2. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  3. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  4. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    International Nuclear Information System (INIS)

    Yu-Min, Liu; Zhong-Yuan, Yu; Xiao-Min, Ren

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrödinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail. (general)

  5. A model of ATL ground motion for storage rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01

    Low emittance electron storage rings, such as those used in third generation light sources or linear collider damping rings, rely for their performance on highly stable alignment of the lattice components. Even if all vibration and environmental noise sources could be suppressed, diffusive ground motion will lead to orbit drift and emittance growth. Understanding such motion is important for predicting the performance of a planned accelerator and designing a correction system. A description (known as the ATL model) of ground motion over relatively long time scales has been developed and has become the standard for studies of the long straight beamlines in linear colliders. Here, we show how the model may be developed to include beamlines of any geometry. We apply the model to the NLC and TESLA damping rings, to compare their relative stability under different conditions

  6. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  7. Electron impact single detachment on the F- ions using the heavy ion storage ring CRYRING: cross-section determination

    International Nuclear Information System (INIS)

    Andersson, K.; Hanstorp, D.; Oesterdahl, F.; Danared, H.; Kaellberg, A.

    2001-01-01

    Electron Impact Single Detachment (EISD) of F - has been studied using the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm, Sweden. F - ions stored in the ring were merged with an electron beam in one of the ring sections. Neutral F atoms produced in the EISD process were detected in the zero-degree direction using a surface barrier detector. The threshold for the detachment process was found to be around 7.6 eV, thus more than twice the binding energy of F - . The cross-sections increased smoothly up to 55 eV where it reached a maximum of 1.9 x 10 -16 cm 2 . At higher energies a slow decrease of the cross-section was observed, which follows the energy dependence predicted by the Bethe-Born approximation. The experiment showed that CRYRING can be used favourably for studies of anions, and several experiments are forthcoming. (orig.)

  8. Electron dynamics with radiation and nonlinear wigglers

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches

  9. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  10. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  11. Influence of the Rashba and Dresselhaus spin-orbit interactions on the electron states in circular quantum rings

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2015-01-01

    Within the framework of perturbation theory the energy levels and wave functions are found for an electron in two-dimensional semiconductor circular quantum rings in the presence of the Rashba and Dresselhaus spin-orbit interactions with a realistic axially symmetric confining square well potential of finite depth. (authors)

  12. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  13. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  14. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. The findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.

  15. Mitigation of the electron-cloud effect in the PSR and SNS proton storage rings by tailoring the bunch profile

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2003-01-01

    For the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and for the Proton Storage Ring (PSR) at Los Alamos, both with intense and very long bunches, the electroncloud develops primarily by the mechanism of trailing-edge multipacting. We show, by means of simulations for the PSR, how the resonant nature of this mechanism may be effectively broken by tailoring the longitudinal bunch profile at fixed bunch charge, resulting in a significant decrease in the electron-cloud effect. We briefly discuss the experimental difficulties expected in the implementation of this cure

  16. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  17. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica

    2000-07-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises. [Italian] Si sviluppa un modello dinamico per la descrizione dell'evoluzione di un laser ad elettroni liberi in anello di accumulazione con l'inclusione di effetti di propagazione d'impulso e di instabilita' a microonda. Si analizzano le condizioni per le quali l'instaurarsi dell'operazione laser puo' spegnere l'instabilita' e si focalizza l'attenzione sulla connessione fra desincronismo della cavita', comportamento pulsato del laser e comportamento instabile del fascio di elettroni: si analizza in particolare l'operazione laser quando il guadagno e' prossimo alle perdite della cavita' e si osservano effetti particolarmente interessanti.

  18. Antimycobacterial and Photosynthetic Electron Transport Inhibiting Activity of Ring-Substituted 4-Arylamino-7-Chloroquinolinium Chlorides

    Directory of Open Access Journals (Sweden)

    Alois Cizek

    2013-09-01

    Full Text Available In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenylamino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenylamino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD50 > 20 μmol/L against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC50 value of the most active compound 7-chloro-4-[(3-trifluoromethylphenylamino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.

  19. Geometric Scaling in New Combined Hadron-Electron Ring Accelerator Data

    International Nuclear Information System (INIS)

    Zhou Xiao-Jiao; Qi Lian; Kang Lin; Xiang Wen-Chang; Zhou Dai-Cui

    2014-01-01

    We study the geometric scaling in the new combined data of the hadron-electron ring accelerator by using the Golec-Biernat—Wüsthoff model. It is found that the description of the data is improved once the high accurate data are used to determine the model parameters. The value of x 0 extracted from the fit is larger than the one from the previous study, which indicates a larger saturation scale in the new combined data. This makes more data located in the saturation region, and our approach is more reliable. This study lets the saturation model confront such high precision new combined data, and tests geometric scaling with those data. We demonstrate that the data lie on the same curve, which shows the geometric scaling in the new combined data. This outcome seems to support that the gluon saturation would be a relevant mechanism to dominate the parton evolution process in deep inelastic scattering, due to the fact that the geometric scaling results from the gluon saturation mechanism

  20. Design and development of a ring cathode electron gun as an evaporation source

    Energy Technology Data Exchange (ETDEWEB)

    Poyner, G T [Craswell Scientific Ltd., Cheltenham (UK)

    1976-11-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns.

  1. The design and development of a ring cathode electron gun as an evaporation source

    International Nuclear Information System (INIS)

    Poyner, G.T.

    1976-01-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns. (author)

  2. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  3. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  4. Combined convective and diffusive modeling of the ring current and radiation belt electron dynamics using the VERB-4D code

    Science.gov (United States)

    Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.

    2017-12-01

    Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.

  5. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk; Vinothkumar, K.R.; Henderson, R.

    2015-11-15

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å{sup 2} for every incident 300 keV e{sup −}/Å{sup 2}. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e{sup −}/Å{sup 2} per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. - Highlights: • Thon rings can be seen from amorphous ice. • Radiation damage to amorphous ice randomly displaces water molecules. • Each incident 300 keV e{sup −}/Å{sup 2} displaces water molecules on average by ∼1 Å. • Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.

  6. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  7. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  8. Damping of type III solar radio bursts

    International Nuclear Information System (INIS)

    Levin, B.N.

    1982-01-01

    The meter- and decameter-wavelength damping of type III bursts may be attributable to stabilization of the Langmuir-wave instability of the fast-electron streams through excitation of cyclotron-branch plasma waves

  9. Dependence of the electron Langmuir wave damping on the angle of propagation in weakly ionized neon plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1995-01-01

    The dependence of the attenuation of the longitudinal electron Langmuir waves (ω ∼ ω pe ), in collisional weakly ionized, non-magnetized, uniform and steady-state plasmas placed in external d.c. electric field, on the angle θ between the wave vector and the electron drift rvec u is studied on the ground of the kinetic theory and the linear perturbation technique. The collisionless and collisional contributions to the overall attenuation were evaluated separately, as it was shown previously that in certain instances the elastic e - n encounters (with collision frequency ν en , ν en much-lt ω pe ) may attenuate the Langmuir waves more efficiently than the Landau mechanism. More precisely, it was found that, for any fixed value of E 0 /n n , there exists a critical value of the ratio n n /X above which the collisional attenuation prevails

  10. Performance of the 100 MeV injector linac for the electron storage ring at Kyoto University

    International Nuclear Information System (INIS)

    Shirai, T.; Sugimura, T.; Iwashita, Y.; Kakigi, S.; Fujita, H.; Tonguu, H.; Noda, A.; Inoue, M.

    1996-01-01

    An electron linear accelerator has been constructed as an injector of a 300 MeV electron storage ring (Kaken Storage Ring, KSR) at Institute for Chemical Research, Kyoto University. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the 1 μsec long pulse mode. The transverse and longitudinal emittance are measured to evaluate the beam quality for the beam injection into the KSR. They are observed by the profile monitors combined with quadrupole magnets or an RF accelerator. The results are that the normalized transverse emittance is 120 π.mm.mrad. The longitudinal emittance is 15 π.deg.MeV and the energy spread is ±2.2 %. (author)

  11. Computation of integral electron storage ring beam characteristics in the application package DeCA. Version 3.3. A physical model

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Strelkov, M.A.; Zelinskij, A.Yu.

    1993-01-01

    In calculations and optimization of electron storage ring lattices, aside from solving the problem of particle motion stability in the ring and calculating ring structure functions and betatron tune, it is of great importance to determine the integral characteristics such as momentum compaction factor, chromaticity of the lattice, emittance, energy spread, bunch size, beam lifetime, etc. Knowing them, one is able to determine all most important properties which the beam would have in the storage ring, as well as to work out requirements for physical equipment of the ring. In this respect it is of importance to have a possibility of calculating rapidly all the parameters required. This paper describes convenient algorithms for calculating integral beam characteristics in electron storage rings, which are employed in the application package DeCA

  12. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  13. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  14. Electron transmission through coupled quantum dots in an Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Joe, Y. S.; Kim, Y. D.

    2006-01-01

    Stimulated by recent intriguing experiments with a quantum dot in an Aharonov-Bohm (AB) ring, we investigate novel resonant phenomena by studying the total transmission probability of nanoscale AB ring with embedded double quantum dots in one arm and a magnetic flux passing through the rings' center. In this system, we show an overlapping and merging of Fano resonances as the interaction parameter between the dots changes. In the strong overlapping region of Fano resonances, the transmission zeros leave the real-energy axis and move away in opposite directions in the complex-energy plane. The behavior of the Fano zero-pole resonances in the complex-energy plane as a function of the external magnetic flux is also investigated for various coupling integrals between the quantum dots in the ring.

  15. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  16. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  17. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  18. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    Science.gov (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  20. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    Science.gov (United States)

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  1. External Coulomb-Friction Damping For Hydrostatic Bearings

    Science.gov (United States)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  2. Thallium trinitrate-mediated ring contraction of 1,2-dihydronaphthalenes: the effect of electron-donating and electron-withdrawing groups

    International Nuclear Information System (INIS)

    Silva Junior, Luiz F.; Sousa, Raquel M.F.; Ferraz, Helena M.C.; Aguilar, Andrea M.

    2005-01-01

    The oxidation of a series of 1,2-dihydronaphthalenes substituted in the aromatic ring was investigated with thallium trinitrate (TTN) in methanol or in trimethylorthoformate (TMOF) as solvent. In all cases, indans are produced, although the yield varied from excellent to poor, depending on the structure of the substrate. The presence of an electron-donating group in the substrate favors the rearrangement, whereas significant amounts of glycolic derivatives, as well as naphthalenes, were obtained in the oxidation of 1,2-dihydronaphthalenes bearing electron-withdrawing groups, such as Br and NO 2 . Mechanisms for the formation of each of these products are proposed. (author)

  3. Ringing in the new physics: The politics and technology of electron colliders in the United States, 1956--1972

    Science.gov (United States)

    Paris, Elizabeth

    The ``November Revolution'' of 1974 and the experiments that followed consolidated the place of the Standard Model in modern particle physics. Much of the evidence on which these conclusions depended was generated by a new type of tool: colliding beam storage rings, which had been considered physically unfeasible twenty years earlier. In 1956 a young experimentalist named Gerry O'Neill dedicated himself to demonstrating that such an apparatus could do useful physics. The storage ring movement encountered numerous obstacles before generating one of the standard machines for high energy research. In fact, it wasn't until 1970 that the U.S. finally broke ground on its first electron-positron collider. Drawing extensively on archival sources and supplementing them with the personal accounts of many of the individuals who took part, Ringing in the New Physics examines this instance of post-World War II techno-science and the new social, political and scientific tensions that characterize it. The motivations are twofold: first, that the chronicle of storage rings may take its place beside mathematical group theory, computer simulations, magnetic spark chambers, and the like as an important contributor to a view of matter and energy which has been the dominant model for the last twenty-five years. In addition, the account provides a case study for the integration of the personal, professional, institutional, and material worlds when examining an episode in the history or sociology of twentieth century science. The story behind the technological development of storage rings holds fascinating insights into the relationship between theory and experiment, collaboration and competition in the physics community, the way scientists obtain funding and their responsibilities to it, and the very nature of what constitutes ``successful'' science in the post- World War II era.

  4. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  5. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  6. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hannon, Fay E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second uses a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.

  7. Structural variations in aromatic 2π-electron three-membered rings ...

    Indian Academy of Sciences (India)

    Abstract. Structural variations of different 2π-aromatic three-membered ring systems of main group ele- ments, especially group 14 and 13 elements as compared to the classical description of cyclopropenyl cation has been reviewed in this article. The structures of heavier analogues as well as group 13 analogues of cyclo-.

  8. Structural variations in aromatic 2π-electron three-membered rings ...

    Indian Academy of Sciences (India)

    Isoelectronic replacement of a carbon of the ring by other group elements is expected to retain this description. Yet, experimental observations indicate dramatic variations that exist out- side the norms of carbon chemistry. The basic unit of tetrahedral tetracoordination of carbon is not followed among many heavier elements ...

  9. Revisiting the Fully Automated Double-Ring Infiltrometer Using Open-Source Electronics

    Science.gov (United States)

    The double-ring infiltrometer (DRI) is commonly used for measuring soil hydraulic conductivity. However, constant-head DRI tests typically involve the use of Mariotte tubes, which can be problematic to set-up, and time-consuming to maintain and monitor during infiltration tests....

  10. On the single bunch longitudinal collective effects in electron storage rings

    CERN Document Server

    Gao, J

    2002-01-01

    After giving an analytical expression for the single bunch short range wake potential of a storage ring, we have discussed separately the roles of linear and nonlinear terms of the Taylor expansion of the wake potential on the bunch longitudinal motion. The equations describing bunch lengthening and increase in energy spread are established. Applications to different operating machines are made.

  11. Design and construction of the front-end electronics data acquisition for the SLD CRID [Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Hoeflich, J.; McShurley, D.; Marshall, D.; Oxoby, G.; Shapiro, S.; Stiles, P.; Spencer, E.

    1990-10-01

    We describe the front-end electronics for the Cherenkov Ring Imaging Detector (CRID) of the SLD at the Stanford Linear Accelerator Center. The design philosophy and implementation are discussed with emphasis on the low-noise hybrid amplifiers, signal processing and data acquisition electronics. The system receives signals from a highly efficient single-photo electron detector. These signals are shaped and amplified before being stored in an analog memory and processed by a digitizing system. The data from several ADCs are multiplexed and transmitted via fiber optics to the SLD FASTBUS system. We highlight the technologies used, as well as the space, power dissipation, and environmental constraints imposed on the system. 16 refs., 10 figs

  12. Damping in Timber Structures

    OpenAIRE

    Labonnote, Nathalie

    2012-01-01

    Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...

  13. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  14. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  15. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  16. Digital power and performance analysis of inkjet printed ring oscillators based on electrolyte-gated oxide electronics

    Science.gov (United States)

    Cadilha Marques, Gabriel; Garlapati, Suresh Kumar; Dehm, Simone; Dasgupta, Subho; Hahn, Horst; Tahoori, Mehdi; Aghassi-Hagmann, Jasmin

    2017-09-01

    Printed electronic components offer certain technological advantages over their silicon based counterparts, like mechanical flexibility, low process temperatures, maskless and additive manufacturing possibilities. However, to be compatible to the fields of smart sensors, Internet of Things, and wearables, it is essential that devices operate at small supply voltages. In printed electronics, mostly silicon dioxide or organic dielectrics with low dielectric constants have been used as gate isolators, which in turn have resulted in high power transistors operable only at tens of volts. Here, we present inkjet printed circuits which are able to operate at supply voltages as low as ≤2 V. Our transistor technology is based on lithographically patterned drive electrodes, the dimensions of which are carefully kept well within the printing resolutions; the oxide semiconductor, the electrolytic insulator and the top-gate electrodes have been inkjet printed. Our inverters show a gain of ˜4 and 2.3 ms propagation delay time at 1 V supply voltage. Subsequently built 3-stage ring oscillators start to oscillate at a supply voltage of only 0.6 V with a frequency of ˜255 Hz and can reach frequencies up to ˜350 Hz at 2 V supply voltage. Furthermore, we have introduced a systematic methodology for characterizing ring oscillators in the printed electronics domain, which has been largely missing. Benefiting from this procedure, we are now able to predict the switching capacitance and driver capability at each stage, as well as the power consumption of our inkjet printed ring oscillators. These achievements will be essential for analyzing the performance and power characteristics of future inkjet printed digital circuits.

  17. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  18. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  19. The damped wave equation with unbounded damping

    Science.gov (United States)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  20. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  1. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  2. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  3. The CTF3 team who performed the first electron beam recombination in an isochronous ring at CERN.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210004_1: Part of CTF3 collaboration. From left to right: T. Ekelof (Uppsala), A. Gallo (LNF), P. Royer (Lausanne), F. Tecker (CERN), L. Rinolfi (CERN), A. Ferrari (Uppsala), R. Corsini (CERN), S. Quaglia, (LNF). Photo 0210004_2: A. Ferrari (left), T. Ekelof (middle) and A. Rydberg (right), from Uppsala University, Sweden, standing where the phase monitor HR.PHM60 is installed. Photo 0210004_4: A. Gallo (LNF) standing in front of the RF deflector designed by INFN-Frascati. Photo 0210004_7: The team who designed the CTF3 complex starting from the existing LEP Pre-Injector. From left to right L. Rinolfi, A. Ferrari, F. Tecker (standing up) and R. Corsini, P. Royer (kneeling down) in front of the electron transfer line between the linac and the combiner ring. Photo 0210004_9: The CTF3 team who performed the first electron beam recombination in an isochronous ring at CERN. From left to right, L. Rinolfi, P. Royer, F. Tecker, R. Corsini standing up in front of the two RF deflectors built at CERN and working...

  4. A stochastic model of depolarization enhancement due to large energy spread in electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1988-10-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of isolated spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA and LEP, at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  5. Analytic calculation of depolarization due to large energy spread in high-energy electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1989-08-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA, TRISTAN, and LEP at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  6. Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled Inx Ga1-x As quantum rings in GaAs

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Kleemans, N.A.J.M.; Koenraad, P.M.

    2007-01-01

    We analyze theoretically the electron energy spectrum and the magnetization of an electron in a strained Inx Ga1-x As GaAs self-assembled quantum ring (SAQR) with realistic parameters, determined from the cross-sectional scanning-tunneling microscopy characterization of that nanostructure. The SAQRs

  7. Exact solutions of the Schrodinger equation for an electron in the circular quantum ring taking into account spin-orbit interactions

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The exact solutions of the Schrodinger equation are obtained for an electron in two-dimensional circular semiconductor quantum ring in the presence of the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the strength of spin-orbit interaction, the relative ring width, and the depth of a potential well is presented. (authors)

  8. Field-reversing electron and ion rings for the confinement and heating of plasmas. Annual progress report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1986-10-01

    During the present, second period of our contract, the effort of our RECE-group was focussed mainly in four areas: (1) the design and construction of our new main experimental device, the megavolt ion coil experiment (MICE, aimed at generating 1-MeV ion rings) was continued. The device construction was completed and injection experiments recently have started using a half-cusp arrangement. (2) Using our smaller MERGE device (500 keV electrons, cusp injection), we investigated as expected the precessional stabilization of strong electron rings by a resistive wall. As expected, the experiments are completed. The results show excellent agreement with the basic theoretical expectations of our earlier analytic calculations and also with a more detailed computer code recently compiled. (3) Also, our MERGE device was completed as expected; experiments showed successful generation of electron and plasma rings; first experiments on the merging of these rings show a rapid attraction between the rings, which is to be properly slowed down by the introduction of a resistive wall. (4) Our pilot model calculations on mixed-CT configurations were nearly completed; including a survey of relevant plasma ring equilibria with a strong large-orbit particle components. Rough stability limits were obtained by studying the magnetic interaction between the two components

  9. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  10. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  11. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  12. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    International Nuclear Information System (INIS)

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results

  13. Introduction to the magnet and vacuum systems of an electron storage ring

    International Nuclear Information System (INIS)

    Weng, W.T.

    1982-01-01

    An accelerator or storage ring complex is a concerted interplay of various functional systems. For the convenience of discussion we can divide it into the following systems: injector, magnet, RF, vacuum, instrumentation and control. In addition, the conventional construction of the building and radiation safety consideration are also needed and finally the beam lines, detector, data acquisition and analysis set-ups for research programs. Dr. L. Teng has given a comprehensive review of the whole complex and the operation of such a facility. I concentrate on the description of magnet and vacuum systems. Only the general function of each system and the basic design concepts will be introduced, no detailed engineering practice will be given which will be best done after a machine design is produced. For further understanding and references a table of bibliography is provided at the end of the paper

  14. On the quantitative prediction of bunch lengthening in high energy electron storage rings

    International Nuclear Information System (INIS)

    Weiland, T.

    1981-12-01

    The longitudinal current dependent electromagnetic interaction between a bunch of charged particles and accelerator components can be described by a Green's Function in time domain or by an impedance in frequency domain. The aim of this paper is to describe a procedure which yields an approximate Green's Function for cylindrically symmetric objects. Once this Green's Function is quantitatively known the equation of motion for the particles can be solved easily by a turn-by-turn tracking code on a computer. Thus it is possible to predict the bunch length and width as a function of charge per bunch for future accelerators and storage rings based on pure geometrical data of the accelerator components. Results are presented for PETRA and LEP. A comparison between measurements at PETRA and computations shows an excellent agreement. (orig.)

  15. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.

    Science.gov (United States)

    Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng

    2011-03-28

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:

  16. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  17. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  18. Observation of the substructure in the electron bunch on the ACO storage ring

    International Nuclear Information System (INIS)

    Bergher, M.; Velghe, M.; Mialocq, J.P.

    1984-09-01

    In the future, one interesting point of the SRFEL at Orsay will be the microtemporal analysis of the laser beam correlated with that of the electron bunch. In a first time, we have only analysed the temporal structure of the electron bunch with an Electrophotonic streak camera. The first results seem to indicate that the bunch is not an homogeneous bunch but presents a substructure. We discuss with details this data

  19. Experimental study of the stability of a neutralized electron beam

    International Nuclear Information System (INIS)

    Kudelainen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1983-01-01

    Results are reported from measurements of the spectral properties of a long neutralized electron beam in the NAP-M proton storage ring. It is shown that when the number of secondary electrons is small, both the longitudinal and the transverse oscillations are strongly damped, so that beam instability is suppressed. The current density of the neutralized electron beam produced in the experiments was approx.10 2 times greater than the theoretical value determined from the instability threshold for nonaxisymmetric oscillations

  20. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    Science.gov (United States)

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator.

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The van de Graaff generator in its tank. For voltage-holding, the tank was filled with pressurized extra-dry nitrogen. 2 beams emanated from 2 separate electron-guns. The left beam, for injection into the CESAR ring, was pulsed at 50 Hz, with currents of up to 1 A for 400 ns. The right beam was sent to a spectrometer line. Its pulselength was also 400 ns, but the pulse current was 12 microA, at a rate variable from 50 kHz to 1 MHz. This allowed stabilization of the top-terminal voltage to an unprecedented stability of +- 100 V, i.e. 6E-5. Although built for a nominal voltage of 2 MV, the operational voltage was limited to 1.75 MV in order to minimize voltage break-down events.

  2. Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls

    Science.gov (United States)

    Polyakov, Igor V.; Khrenova, Maria G.; Moskovsky, Alexander A.; Shabanov, Boris M.; Nemukhin, Alexander V.

    2018-04-01

    Modeling electronic excitation of bacteriochlorophyll (BChl) molecules in light-harvesting (LH) antennae from photosynthetic centers presents a challenge for the quantum theory. We report on a quantum chemical study of the ring of 32 BChl molecules from the bacterial core complex LH1-RC. Diagonal and off-diagonal elements of the excitonic Hamiltonian matrices are estimated in quantum chemical calculations of relevant fragments using the TD-DFT and CIS approaches. The deviation of the computed excitation energy of this BChl system from the experimental data related to the Qy band maximum of this LH1-RC complex is about 0.2 eV. We demonstrate that corrections due to improvement in modeling of an individual BChl molecule and due to contributions from the protein environment are in the range of the obtained discrepancy between theory and experiment. Differences between results of the excitonic model and direct quantum chemical calculations of BChl aggregates fall in the same range.

  3. Superconducting snake with the field of 75 kGs for the VEPP-2M electron-positron storage ring

    International Nuclear Information System (INIS)

    Anashin, V.V.; Vasserman, I.B.; Vlasov, A.M.

    1985-01-01

    Superconducting ''snake'' with the field of 75 kG is established in the VEPP-2M electron-positron storage ring for increase of colliding beam luminosity up to 2x10 31 cmsup(-2)sdup(-1) in the energy range from 2x200 to 2x700 MeV. The ''snake'' comprises three central magnets with the field of 75 kG and two side ones with the field of 45 kG and it is placed in one of rectilinear experimental gaps. Description of design peculiarities of the ''snake'' and its parameters are given. Parameters of beams with switched on and switched off ''snake'' as well as parameters of coils and superconducting wire are presented

  4. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  5. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  6. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    Science.gov (United States)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  7. A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters

    International Nuclear Information System (INIS)

    Maenner, R.

    1989-01-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)

  8. Electronic voting systems for defending free will and resisting bribery and coercion based on ring anonymous signcryption scheme

    Directory of Open Access Journals (Sweden)

    Tsung-Chih Hsiao

    2017-01-01

    Full Text Available Vote by ballot is the feature in a democratic society and the process of decision-making, tending to achieve the philosophy of democratic politics by having the public who are eligible to vote for competent candidates or leaders. With the rapid development of technologies and network applications, electronization has been actively promoted globally during the social transformation period that the concept of electronic voting is further derived. The major advantages of electronic voting, comparing with traditional voting, lie in the mobility strength of electronic voting, reducing a large amount of election costs and enhancing the convenience for the public. Electronic voting allows voters completing voting on the Internet that not only are climate and location restrictions overcome, but the voter turnout is also increased and the voting time is reduced for the public. With the development in the past three decades, electronic voting presents outstanding performance theoretically and practically. Nevertheless, it is regrettable that electronic voting schemes still cannot be completely open because of lures by money and threats. People to lure by money and threats would confirm the voters following their instructions through various methods that more factors would appear on election results, affecting the quality and fairness of the election. In this study, this project aims to design an electronic voting scheme which could actually defend voters’ free will so that lure of money and threats would fail. Furthermore, an electronic voting system based on Elliptic Curve Cryptography is proposed to ensure the efficiency and security, and Ring Signature and Signcryption are applied to reducing the computing costs. Moreover, this project also focuses on applying voting system to mobile devices. As the system efficiency and security are emphasized, voters do not need to participate in the election, but simply complete voting with smart phones, i

  9. A Fokker-Planck treatment of stochastic particle motion within the framework of a fully coupled 6-dimensional formalism for electron-positron storage rings including classical spin motion in linear approximation

    International Nuclear Information System (INIS)

    Barber, D.P.; Heinemann, K.; Mais, H.; Ripken, G.

    1991-12-01

    In the following report we investigate stochastic particle motion in electron-positron storage ring in the framework of a Fokker-Planck treatment. The motion is described by using the canonical variables χ, p χ , z, p z , σ = s - cxt, p σ = ΔE/E 0 of the fully six-dimensional formalism. Thus synchrotron- and betatron-oscillations are treated simultaneously taking into account all kinds of coupling (synchro-betatron coupling and the coupling of the betatron oscillations by skew quadrupoles and solenoids). In order to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion are introduced. The averaged dimensions of the bunch, resulting from radiation damping of the synchro-betatron oscillations and from an excitation of these oscillations by quantum fluctuations, are calculated by solving the Fokker-Planck equation. The surfaces of constant density in the six-dimensional phase space, given by six-dimensional ellipsoids, are determined. It is shown that the motion of such an ellipsoid under the influence of external fields can be described by six generating orbit vectors which may be combined into a six-dimenional matrix B(s). This 'bunch-shape matrix', B(s), contains complete information about the configuration of the bunch. Classical spin diffusion in linear approximation has also been included so that the dependence of the polarization vector on the orbital phase space coordinates can be studied and another derivation of the linearized depolarization time obtained. (orig.)

  10. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  11. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  12. Acceleration of polarized electrons in the Bonn synchrotron and the planned stretcher ring ELSA

    International Nuclear Information System (INIS)

    Brefeld, W.

    1981-10-01

    In the last year at the synchrotron polarized electrons were successfully accelerated. For this the polarization vector in the transfer channel between source and LINAC was rotated in such a way that the electrons can be injected into the accelerator with the necessary vertical polarization. It was shown that the degree of polarization of the electrons after passing of the imperfection resonances at 0.441 GeV, 0.881 GeV, 1.322 GeV, and 1.763 GeV and the intrinsic resonance at 1.498 GeV remained conserved at a high degree also without additional procedures. Although it is desirable to reduce the present depolarization. First attempts for overcoming the second resonance were performed. The results indicate that for this a system of two pulse dipoles doesn't suffice. For the answer of this question however a much more intensive polarized source is needed. At ELSA the working with polarized electrons seems to be possible in the whole energy range if it succeeds to circumvent the position of the intrinsic resonance dependent from the working point. Though the imperfection resonances at 2.203 GeV, 2.644 GeV, and 3.085 GeV can depolarize the electrons much more strongly because of the relatively slow passing through the resonances an overcoming with pulse dipoles should by possible. Because of the large resonance time-distances the dipoles have much more time than in the synchrotron to reach the required value steadily. (orig.) [de

  13. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and

  14. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  15. Comparison of SW and TW non-synchronous accelerating cavities as used in electron beam storage rings

    International Nuclear Information System (INIS)

    Zolfaghari, A.; Demos, P.T.; Flanz, J.B.; Jacobs, K.

    1991-01-01

    The authors relate the parameters of detuned standing wave (SW) and non-synchronous beam travelling wave (TW) accelerating cavities of equivalent equilibrium performance when used to compensate for radiation and parasitic energy losses by electrons circulating in a high energy electron storage ring. The relationship is expressed in terms of the coupling parameter β and cavity tuning angle ψ of the TW accelerator's equivalent SW system. A given TW cavity corresponds to a standing wave system possessing specific settings of β and ψ. This is shown for the constant impedance TW waveguide, for which β and ψ can be expressed as explicit functions of TW cavity length 1, attenuation factor I, RF electric field phase velocity V p , and shunt impedance r. Coupling parameter β depends additionally on SW cavity shunt impedance R. The basis they have used for formulating the equivalence of the two systems follows Travelling Wave Cavity Non-Synchronous Beam Loading theory developed by G.A. Loew and Standing Wave Circuit Analysis theory as described by P.B. Wilson

  16. Tellurium rings as electron pair donors in cluster compounds and coordination polymers; Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anja

    2011-11-08

    In this dissertation novel and already known molecular tellurium rings are presented in cluster compounds and quasi-one-dimensional coordination polymers. The cyclic, homonuclear units are always stabilized by coordination to electron-rich transition metal atoms, with the coordinating tellurium atoms acting as two-electron donors. As a synthesis route, the solid-state reaction in quartz glass vials was used uniformly. In addition to structural determination, the focus was on the characterization of the resulting compounds. For this purpose, resistance measurements were carried out on selected compounds, the magnetic behavior and the thermal degradation reactions were investigated and accompanying quantum chemical calculations were carried out. [German] In dieser Dissertation werden neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren vorgestellt. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Uebergangsmetallatome, wobei die koordinierenden Telluratome gegenueber diesen als Zwei-Elektronendonoren fungieren. Als Syntheseroute wurde dabei einheitlich auf die Festkoerperreaktion in Quarzglasampullen zurueckgegriffen. Neben der Strukturaufklaerung stand die Charakterisierung der erhaltenden Verbindungen im Fokus der Arbeit. Dazu wurden an ausgewaehlten Verbindungen Widerstandsmessungen durchgefuehrt, das magnetische Verhalten sowie die thermischen Abbaureaktionen untersucht und begleitende quantenchemische Rechnungen durchgefuehrt.

  17. Physics in the GeV region with polarized targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1988-01-01

    There is evidence from the D(γ,p)n reaction that the meson-exchange model is failing in the GeV region. Surprisingly, it appears that the new (Dγ,p)n data favor the energy dependence of the nuclear chromodynamics model rather that of the meson-exchange model. Application of the polarization method to electron scattering studies is in its infancy, and it is potentially a very powerful technique. The internal target method coupled with laser-driven polarized targets should represent an important tool for nuclear physics

  18. The physics interests of a 10 TeV proton synchrotron, 400 x 400 GeV2 proton storage rings, and electron-proton storage rings

    International Nuclear Information System (INIS)

    Camilleri, L.

    1976-01-01

    This report consists of a collection of documents produced by two Study Groups, one on a multi-TeV Proton Synchrotron and the other on 400 x 400 GeV 2 Proton Storage Rings. In both studies the reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting. in each case, the design of an experimental set-up. Event rates are estimated using currently p revailing theoretical models and by extrapolation of results at present accelerators. In addition to the work of the two Study Groups, a section on the physics interests and technical problems of ep Storage Rings is included. (author)

  19. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  20. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  1. Study of massive electron pair production at the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Kourkoumelis, C.; Resvanis, L.K.; Filippas, T.A.; Fokitis, E.; Cnops, A.M.; Cobb, J.H.; Hogue, R.; Iwata, S.; Palmer, R.B.; Rahm, D.C.

    1980-01-01

    Data from a study of electron pairs produced in pp collisions (√s = 53 and 63 GeV) are used to extend measurements of the scaling function down to m/√s approx. 0.07 (4.5 3 d 2 delta/dmdy/sub(y = 0) = (2.60 +- 0.13) x 10 -32 exp [(-2.0 +- 0.7)m/√s](1 - m/√s) 9 . 7+-0 . 4 cm 2 GeV 2 . The average transverse momentum of dielectrons was found to be 1.43 +- 0.07 GeV, independent of mass (in the range 4.5 2 theta, where α = 1.15 +- 0.34. The angular decay of UPSILON at the same energies was found to have α = 0.31 +- 0.35. (orig.)

  2. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    Science.gov (United States)

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  3. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  4. Before the Ring: synthesis of linear organic molecules in astrophysical ices by low energy electron impact

    Science.gov (United States)

    Huels, Michael A.; Bass Andrew, D.; Mirsaleh-Kohan, Nasrin; Sanche, Leon

    The question of the origin for the building blocks of life, either synthesized here on earth, or in space [1], has been the subject of much debate, experimental investigation, or astronomical observation, much of it stimulated by the early experiments of Miller [2], and subsequent space radiation related variations thereof [3-5]. And while the precise details of the formation of even the simplest biomolecules that make up life on earth still remain shrouded inmystery, one of the notions that persist throughout the debate is that the building blocks of life, such as amino-acids, or even the cyclic components of RNA and DNA, or other cyclic hydrocarbons (e.g. PHAs), where synthesized via radiolysis [6] either in the earths proto-atmosphere, its early oceans, or in the near interstellar space surrounding the early earth. Here we provide experimental evidence for the hypothesis that interactions of low energy secondary electrons and ions, formed during the radiolysis of matter, with atoms and molecules in the medium, may have played, and may still play an important role in the chemical transformation of astrophysical or planetary surface ices [7], where they lead to the synthesis of more complex chemical species from less complex, naturally occurring components. We report the synthesis and desorption of new chemical species from simple molecular surface ices, containing CH4 / CD4 , C2 D2 , O2 , CO, CO2 , or N2 in various combination mixtures, irradiated by low energy (CO+ (n = 1-3), among others. The formation of all these linear, pre-biotic molecular species, produced here by electron initiated cation-reactions in simple molecular films, suggests that similar mechanisms likely precede the synthesis of life's most basic cyclic molecular components in planetary, or astrophysical surface ices that are continuously subjected to the types of space radiations (UV, X-or -ray, or heavy ions) that can generate such low energy secondary electrons. [Funded by NSERC and Canadian

  5. Recent studies on photoelectron and secondary electron yields of TiN and NEG coatings using the KEKB positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Kanazawa, K.; Shibata, K.; Hisamatsu, H.

    2007-01-01

    In order to obtain a method to suppress electron-cloud instability (ECI), the photoelectron and the secondary electron yields (PEY and SEY) of a TiN coating and an NEG (Ti-Zr-V) coating on copper have been studied so far by using the KEK B-factory (KEKB) positron ring. Recently, test chambers with these coatings were installed at a straight section of the ring where the irradiated photon density was considerably smaller than that at the arc section of a previous experiment. The number of electrons around beams was measured by an electron current monitor; this measurement was performed up to a stored beam current of approximately 1700 mA (1389 bunches). For the entire range of the beam current, the electron currents of the NEG-coated and the TiN-coated chambers were clearly smaller as compared to those of the uncoated copper chamber by the factors of 2-3 and 3-4, respectively. The small photon density, that is, the weak effect of photoelectrons, elucidated the differences in the SEYs of these coatings when compared to the measurements at the arc section. By assuming almost the same PEY (η e ) values obtained in the previous study, the maximum SEY (δ max ) for the TiN and NEG coatings and the copper chamber was again estimated based on a previously developed simulation. The evaluated δ max values for these three surfaces were in the ranges of 0.8-1.0, 1.0-1.15, and 1.1-1.25, respectively. These values were consistent with the values obtained so far. As an application of the simulation, the effective η e , η e-eff (which included the geometrical effect of the antechamber) and δ max values were also estimated for copper chambers with one or two antechambers. These chambers were installed in an arc section and a wiggler section, respectively. The evaluated η e-eff and δ max values were approximately 0.008 and 1.2, and 0.04 and 1.2, respectively, where η e =0.28 was assumed on the side wall. As expected, the η e-eff values were considerably smaller than those

  6. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  7. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator; tank removed.

    CERN Multimedia

    CERN PhotoLab

    1968-01-01

    The van de Graaff generator in its tank. For voltage-holding, the tank was filled with pressurized extra-dry nitrogen. 2 beams emanated from 2 separate electron-guns. The left beam, for injection into the CESAR ring, was pulsed at 50 Hz, with currents of up to 1 A for 400 ns. The right beam was sent to a spectrometer line. Its pulselength was also 400 ns, but the pulse current was 12 microA, at a rate variable from 50 kHz to 1 MHz. This allowed stabilization of the top-terminal voltage to an unprecedented stability of +- 100 V, i.e. 6E-5. Although built for a nominal voltage of 2 MV, the operational voltage was limited to 1.75 MV in order to minimize voltage break-down events. CESAR was terminated at the end of 1967 and dismantled in 1968. R.Nettleton (left) and H.Burridge (right) are preparing the van de Graaff for shipment to the University of Swansea.

  8. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  9. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  10. Application of Coherent Tune Shift Measurements to the Characterization of Electron Cloud Growth

    International Nuclear Information System (INIS)

    Kreinick, D.L.; Crittenden, J.A.; Dugan, G.; Holtzapple, R.L.; Randazzo, M.; Furman, M.A.; Venturini, M.; Palmer, M.A.; Ramirez, G.

    2011-01-01

    Measurements of coherent tune shifts at the Cornell Electron Storage Ring Test Accelerator (CesrTA) have been made for electron and positron beams under a wide variety of beam energies, bunch charge, and bunch train configurations. Comparing the observed tunes with the predictions of several electron cloud simulation programs allows the evaluation of important parameters in these models. These simulations will be used to predict the behavior of the electron cloud in damping rings for future linear colliders. We outline recent improvements to the analysis techniques that should improve the fidelity of the modeling.

  11. Damping of Coherent oscillations

    CERN Document Server

    Vos, L

    1996-01-01

    Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.

  12. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  13. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  14. The paramagnetic electron ring

    International Nuclear Information System (INIS)

    Herrmann, W.

    1990-07-01

    This paper briefly summarizes the effects of the B φ -field on the particle motion in linear approximation, following the paper by P. Merkel. It then outlines the main components of a computer programme for calculation of the particle orbits and finally describes and discusses the somewhat surprising result. (orig.)

  15. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  16. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  17. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    Science.gov (United States)

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  18. VEPP-4 electron-positron storage ring RF-system on the base of gyrocon-power SHF-generator with a debunched relativistic beam

    International Nuclear Information System (INIS)

    Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.

    1982-01-01

    A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented

  19. Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study.

    Science.gov (United States)

    Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit

    2016-06-01

    We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.

  20. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  1. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  2. A parametric investigation on the cyclotron maser instability driven by ring-beam electrons with intrinsic Alfvén waves

    Science.gov (United States)

    Tong, Zi-Jin; Wang, Chuan-Bing; Zhang, Pei-Jin; Liu, Jin

    2017-05-01

    The electron-cyclotron maser is a process that generates the intense and coherent radio emission in the plasma. In this paper, we present a comprehensive parametric investigation on the electron-cyclotron-maser instability driven by non-thermal ring-beam electrons with intrinsic Alfvén waves, which pervade the solar atmosphere and interplanetary space. It is found that both forward propagating and backward propagating waves can be excited in the fast ordinary (O) and extraordinary (X) electromagnetic modes. The growth rates of X1 mode are almost always weakened by Alfvén waves. The average pitch-angle ϕ 0 of electrons is a key parameter for the effect of Alfvén waves on the growth rate of modes O1, O2, and X2. For a beam-dominated electron distribution ( ϕ 0 ≲ 30 ° ), the growth rates of the maser instability for O1, O2, and X2 modes are enhanced with the increase of the Alfvén wave energy density. In other conditions, the growth rates of O1, O2, and X2 modes weakened with the increasing Alfvén wave intensity, except that the growth of the O1 mode may also be enhanced by Alfvén waves for a ring distribution. The results may be important for us in analyzing the mechanism of radio bursts with various fine structures observed in space and astrophysical plasmas.

  3. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others

    2016-09-21

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  4. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  5. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  6. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  7. Design of the APS transverse and longitudinal damping system

    International Nuclear Information System (INIS)

    Sellyey, W.; Barr, D.; Kahana, E.; Votaw, A.

    1994-01-01

    The main sources of instabilities in the Advanced Photon Source (APS) storage ring are expected to be higher-order modes (HOMs) of the accelerating cavities and the resistive wall impedance of the small insertion devices beam tubes. Extensive efforts are being made to reduce the Qs of HOMs. The maximum operating current of the ring will be 300 mA. At this current, analysis of measurements on cavity prototypes shows that the transverse growth rates will be less than 500/sec above radiation damping. The longitudinal growth rate due to HOMs is predicted to never exceed the radiation damping of 213/sec. The largest transverse resistive wall growth rate is calculated to be 2720/sec when 54 evenly spaced rigid bunches are used to produce 300 mA. There will be 26 additional unstable modes. The sum of these growth rates is 17,163/sec. Thus, it is clear that an effective transverse damping system will be needed and that the strength of this damper will be dominated by the resistive wall modes. A longitudinal damper system will also be built. This will provide damping about 2/3 times that due to synchrotron radiation. The most serious disturbances which can initiate instabilities will take place at injection. Typically, each bunch in the ring will be accumulated by injecting 115 of the final charge five times. A standard mode of operation is used in this paper in which there will be 54 evenly spaced bunches around the ring. During the ring filling process, the highest growth rates will occur when the last fifth of a bunch is injected into the last bunch. The largest expected vertical excursion of 1/5 of a bunch is about 5 mm. Anything larger will cause the bunch to scrape in the insertion device sections

  8. Modeling Incoherent Electron Cloud Effects

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-01-01

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed

  9. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    International Nuclear Information System (INIS)

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.

    2006-01-01

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas

  10. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator.

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    Van de Graaff generator being assembled. Central column and top-terminal. The acceleration tube visible in front of the column is for the spectrometer beam. The acceleration tube for the beam to be injected into the CESAR ring is hidden behind the column. H.Burridge (left) and R.Nettleton (right).

  11. An Electron-Diffraction Examination of Cast-Iron Piston Rings from Single-Cylinder Aircraft-Engine Tests

    Science.gov (United States)

    1945-02-01

    found t; a great extent on thn ueed cylinder barrel ( SAE 4140 steel) and to a lesser extent on the top ohrmne- plated ring of the aesembl.yafter it had...on the used cylinder barrel (W 4140 steel) used in the tests and, to a lesser extent, on the used top chrome-platedring of the piston assembly. The

  12. Work of the Liquid Deuterium Target of the Joint Institute for Nuclear Research at the Yerevan Electron Acceleration Ring

    CERN Document Server

    Golovanov, L B; Panebratsev, Yu A; Tsvinev, A P; Chumakov, V F; Shimansky, S S; Babayan, K Z; Mirzoyan, A E; Movsesyan, G D; Sirunyan, A M

    2003-01-01

    A cryogenic installation with a target filled with liquid hydrogen (deuterium), developed in the LHE JINR is described. The installation was used in an experimental run at the Yerevan ring accelerator with a beam of polarized photons. A description of the installation, features of its work in the YerPhI and its operational parameters is given.

  13. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1.3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  14. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1/3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  15. An electron storage ring as primary standard for the realization of radiation optical units from the infrared to the soft X-ray region

    International Nuclear Information System (INIS)

    Riehle, F.; Wende, B.

    1987-01-01

    The electron storage ring BESSY optimized for radiometry is shown to be a primary standard of spectral photon flux with a relative uncertainty increasing from 0.3% in the infrared (photon energy ≅ 1 eV) to 2% in the soft X-ray region (photon energy ≅ 5 keV). The small uncertainties at high photon energies were achieved by measuring the spatial and angular distributions of the electrons around the mean electron orbit and by calculating the corresponding distributions of the emitted synchrotron radiation. Results of various intercomparisons with other standards in the near infrared, visible, and soft X-ray region support the low uncertainties of this new primary standard. (orig.)

  16. First Results from the DAMPE Mission

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    DAMPE (DArk Matter Particle Explorer) is a satellite mission of the Chinese Academy of Sciences (CAS) dedicated to high energy cosmic ray detections. Since its successful launch on December 17th, 2015 a large amount of cosmic ray data has been collected. With relatively large acceptance, DAMPE is designed to detect electrons (and positrons) up to 10 TeV with unprecedented energy resolution to search for new features in the cosmic ray electron plus positron (CRE) spectrum. It will also study cosmic ray nuclei up to 100 TeV with good precision, which will bring new input to the study of their still unknown origin and their propagation through the Galaxy. In this talk, the DAMPE mission will be introduced, together with some details of the construction and on-ground calibration of the detector subsystems. The in-orbit detector commissioning, calibration and operation will be described. First data analysis results, including the recently published CRE spectrum from 25 GeV to 4.6 TeV based on the data collected i...

  17. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  18. Positron Options for the Linac-Ring LHeC

    CERN Document Server

    Zimmermann, F; Papaphilippou, Y; Schulte, D; Sievers, P; Rinolfi, L; Variola, A; Zomer, F; Braun, H H; Yakimenko, V; Bulyak, E V; Klein, M

    2012-01-01

    The full physics program of a future Large Hadron electron Collider (LHeC) [1] requires both pe+ and pe− collisions. For a pulsed 140-GeV or an ERL-based 60-GeV Linac-Ring LHeC this implies a challenging rate of, respectively, about 1.8 × 1015 or 4.4 × 1016 e+/s at the collision point, which is about 300 or 7000 times the rate previously obtained, at the SLAC Linear Collider (SLC). We consider providing this e+ rate through a combination of measures: (1) Reducing the required production rate from the e+ target through colliding e+ (and the LHC protons) several times before deceleration, by reusing the e+ over several acceleration/deceleration cycles, and by cooling them, e.g., with a compact tri-ring scheme or a conventional damping ring in the SPS tunnel. (2) Using an advanced target, e.g., W-granules, rotating wheel, slicedrod converter, or liquid metal jet, for converting gamma rays to e+. (3) Selecting the most powerful of several proposed gamma sources, namely Compton ERL, Compton storage ring, coher...

  19. Hot electron emission can lead to damping of optomechanical modes in core-shell Ag@TiO2 nanocubes

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Peckus, Domantas; Rong, Hongpan

    2017-01-01

    Interactions between light and metal nanostructures are mediated by collective excitations of free electrons called surface plasmons, which depend primarily on geometry and dielectric environment. Excitation with ultrafast pulses can excite optomechanical modes that modulate the volume and shape...... resonance is being lost to the TiO2 as hot carriers instead of coupling to the optomechanical mode. Analysis of both ultrafast decay and characterization of optomechanical modes provides a dual accounting method to track energy dissipation in hybrid metal-semiconductor nanosystems for plasmon-enhanced solar...

  20. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures