WorldWideScience

Sample records for electron cooling project

  1. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  2. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  3. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  4. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    International Nuclear Information System (INIS)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Fermilab

    2005-01-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section

  5. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  6. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  7. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  8. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  9. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  10. Electron cooling system in the booster synchrotron of the HIAF project

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang, J.C.; Xia, J.W.; Yang, X.D.; Yuan, Y.J.; Li, J.; Ma, X.M.; Yan, T.L.; Yin, D.Y.; Chai, W.P.; Sheng, L.N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shen, G.D.; Zhao, H.; Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-21

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  11. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  12. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  13. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  14. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  15. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  16. Magnetization effects in electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskii, A.N.

    A study is made of cooling in an electron beam which is accompanied by a strong magnetic field and a longitudinal temperature low compared to the transverse temperature. It is shown that the combination of two factors--magnetization and low longitudinal temperature of electrons--can sharply increase the cooling rate of a heavy-particle beam when the velocity spread is smaller than the transverse spread of electron velocities and reduce its temperature to the longitudinal temperature of the electrons, which is lower than that of the cathode by several orders of magnitude

  17. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  18. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  19. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  20. Facility for electron cooling experiments

    International Nuclear Information System (INIS)

    Budker, G.I.; Dikanskij, N.S.; Kudelajnen, V.I.

    1982-01-01

    The NAP-M proton storage ring intended for electron cooling experiments is described. The NAP-M magnetic system comprises four bending magnets and eight correction elements. located at the ends of rectilinear gaps. An electron beam facility is located in one of the rectilinear gaps. An 1.5 MeV electrostatic accelerator is used as a proton injector. The NAP-M accelerating system includes a driving generator, a power amplifier and a resonator. The proton beam lifetime (at the RF-system switched-off) up to 7 s has been obtained at the NAP-N at the injection energy, and up to 600 s at 65 MeV and the proton current of 120 μA

  1. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  2. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    OpenAIRE

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling

  3. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling

  4. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  5. Fermilab turns up the heat on electron cooling

    CERN Document Server

    Riesselmann, K

    2002-01-01

    A technique that was first proposed by Gersh Budker in 1966 is being injected with new life by a team of physicists at Fermilab in the US. Working on an ambitious electron-cooling project, the team set a new world record for DC beam power, they maintained a continuous 3.5 MeV electron beam with a current of more than 500 mA for up to 8 h with only short interruptions. They use an electron beam to cool antiprotons inside Fermilab's 3 km Recycler antiproton storage ring and boost the luminosity of the laboratory's Tevatron collider. When the electron-cooling system is complete, electrons and antiprotons will travel side by side in the Recycler.

  6. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  7. Methods and apparatus for cooling electronics

    Science.gov (United States)

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  8. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  9. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  10. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  11. Thermoelectric cooler application in electronic cooling

    International Nuclear Information System (INIS)

    Chein Reiyu; Huang Guanming

    2004-01-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T c ) and temperature difference between TEC cold and hot sides (ΔT=T h -T c , T h =temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T c increased and ΔT was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes (ΔT c values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions

  12. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  13. Heat pipe with PCM for electronic cooling

    International Nuclear Information System (INIS)

    Weng, Ying-Che; Cho, Hung-Pin; Chang, Chih-Chung; Chen, Sih-Li

    2011-01-01

    This article experimentally investigates the thermal performances of a heat pipe with phase change material for electronic cooling. The adiabatic section of heat pipe is covered by a storage container with phase change material (PCM), which can store and release thermal energy depending upon the heating powers of evaporator and fan speeds of condenser. Experimental investigations are conducted to obtain the system temperature distributions from the charge, discharge and simultaneous charge/discharge performance tests. The parameters in this study include three kinds of PCMs, different filling PCM volumes, fan speeds, and heating powers in the PCM cooling module. The cooling module with tricosane as PCM can save 46% of the fan power consumption compared with the traditional heat pipe.

  14. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  15. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  17. Electron cooling experiments at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beller, P.; Beckert, K.; Franzke, B.; Nolden, F.

    2004-01-01

    The properties of electron cooled beams of highly charged ions have been studied at the ESR. New experiments using a beam scraper to determine the transverse beam size provide the beam parameters in the intrabeam scattering dominated intensity regime, but also at very low intensity when the ion beam enters into an ultra-cold state. Extremely low values of longitudinal and transverse beam temperature on the order of meV were achieved for less than 1000 stored ions. An experiment with bunched ultra-cold beam showed a limit of the line density which agrees with the one observed for coasting beams. Cooling of decelerated ions at a minimum energy of 3 MeV/u has been demonstrated recently

  18. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  19. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  20. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  1. High perveance electron gun for the electron cooling system

    International Nuclear Information System (INIS)

    Korotaev, Yu.; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V 3/2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)

  2. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  3. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  4. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  5. Medium energy electron cooling R and D at Fermilab -- Context and status

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling at the proposed Recycler 8 GeV storage ring has been identified as a key element in exploiting the capacity of the Fermilab Main Injector for an additional factor of ten in Tevatron luminosity above the goal for the next collider run, ultimately to > 10 33 cm -2 s -1 . The most basic requirement for increased luminosity is a large stack of antiprotons cooled to emittance comparable to that of the proton beam. Although electron cooling is inferior to the stochastic technique for cooling large emittance beams, its rate is practically independent of the antiproton intensity. For cooling intense beams of low or moderate emittance, electron cooling excels. The realization of electron cooling for 8 GeV antiprotons requires major extension of existing practice in electron energy and length of the cooling interaction region. It will require 4.3 MeV dc electron beam maintaining high quality and precise collinearity with the antiprotons over a 66 m straight section. The initial goal of the R and D project is 200 mA electron current in about three years; the plan is to reach 2 A over the following three years

  6. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  7. Getting started with electronic projects

    CERN Document Server

    Pretty, Bill

    2015-01-01

    This book is aimed at hobbyists with basic knowledge of electronics circuits. Whether you are a novice electronics project builder, a ham radio enthusiast, or a BeagleBone tinkerer, you will love this book.

  8. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    Science.gov (United States)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  9. New experimental results on electron cooling at COSY-Juelich

    International Nuclear Information System (INIS)

    Dietrich, J.; Maier, R.; Prasuhn, D.; Stein, H.J.; Kobets, A.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2007-01-01

    Recent results of electron cooling of proton beams at COSY-Juelich are reported. Cooling at an electron energy of 70 keV has been studied for the first time. At the injection energy level of COSY, corresponding to 24.5 keV electron energy, the features of the cooled proton beam at extremely low intensities have been investigated in order to find out whether an ordering of the proton beam can be achieved. Such investigations are motivated by the results of a numerical simulation of the ordering process by the BETACOOL code. (author)

  10. Electron Cooling of Protons in a Nested Penning Trap

    International Nuclear Information System (INIS)

    Hall, D.S.; Gabrielse, G.

    1996-01-01

    Trapped protons cool via collisions with trapped electrons at 4 K.This first demonstration of sympathetic cooling by trapped species of opposite sign of charge utilizes a nested Penning trap. The demonstrated interaction of electrons and protons at very low relative velocities, where recombination is predicted to be most rapid, indicates that this may be a route towards the study of low temperature recombination. The production of cold antihydrogen is of particular interest, and electron cooling of highly stripped ions may also be possible. copyright 1996 The American Physical Society

  11. Immersion Cooling of Electronics in DoD Installations

    Science.gov (United States)

    2016-05-01

    2012). Bitcoin Mining Electronics Cooling Development In January 2013, inventor/consultant Mark Miyoshi began development of a two-phase cooling...system using Novec 649 to be used for cooling bitcoin mining hardware. After a short trial period, hardware power supply and logic-board failures...are reports of bitcoin mining companies vertically stacking two-phase immersion baths to improve the floor space density, but this approach is likely

  12. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  13. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  14. Suncatcher and cool pool. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.

    1981-03-01

    The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

  15. An electron cooling device in the one MeV energy region

    International Nuclear Information System (INIS)

    Busso, L.; Tecchio, L.; Tosello, F.

    1987-01-01

    The project of an electron cooling device at 700 KeV electron energy is reported. The single parts of the device is described in detail. Electron beam diagnostics and technical problems is discussed. The electron gun, the accelerating/decelerating column and the collector have been studied by menas of the Herrmannsfeldt's program and at present are under construction. The high voltage system and the electron cooling magnet are also under construction. Vacuum tests with both hot and cold cathodes have demonstrated that the vacuum requirements can be attained by the use of non-evaporable getter (NEG) pumps between gun, collector and the cooling region. Both kinds of diagnostic for longitudinal and transversal electron temperature measurements are in progress. A first prototype of the synchronous picj-up was successfully tested at CERN SPS. At present the diagnostic with laser beam is in preparation. During the next year the device will be assembled and the laboratory test will be started

  16. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  17. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    Science.gov (United States)

    2017-02-28

    Colorado State University ETC Electron Transpiration Cooling LHTS Local Heat Transfer Simulation LTE Local Thermodynamic Equilibrium RCC Reinforced...ceramic electric material testing in plasma environment (not performed), 4. measurements and analysis of the Electron Transpiration Cooling (Sec. 4.2). 2...VKI 1D boundary layer code for computation of enthalpy and boundary layer parameters: a) iterate on ’virtually measured ’ heat flux, b) once enthalpy

  18. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  19. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  20. Longitudinal electron cooling experiments at HIRFL-CSRe

    International Nuclear Information System (INIS)

    Mao, L.J.; Zhao, H.; Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J.; Parkhomchuk, V.V.; Reva, V.B.; Ma, X.M.; Yan, T.L.; Tang, M.T.; Xia, J.W.

    2016-01-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  1. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  2. Longitudinal electron cooling experiments at HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Parkhomchuk, V.V.; Reva, V.B. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ma, X.M.; Yan, T.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  3. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  4. More iPhone Cool Projects

    CERN Document Server

    Smith, B; Palm, Leon; Smith, David; Smith, Charles; Hoefele, Claus; Pflug, Florian; Colgan, Tony; Mora, Saul; de Vries, Arne

    2010-01-01

    Everyone is developing iPhone applications, and it's clear why. The iPhone is the coolest mobile device available, and the App Store makes it simple to get an application out into the unstoppable iPhone app market. With hundreds of thousands of app developers entering the game, it's crucial to learn from those who have actually succeeded. This book shows you how some of the most innovative and creative iPhone application developers have developed cool, best-selling apps. Not only does every successful application have a story, but behind every great app is excellent code. In this book, you'll

  5. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  6. Preliminary study on the adjonction of a cooling system and internal target ring to the GEPL project

    International Nuclear Information System (INIS)

    Potaux, D.

    1983-01-01

    Various heavy particle storage rings (LEAR, Indiana, Uppsala) are planned for operation with combined electron cooling system and internal ultra-thin targets. The advantage of adding a similar device to the IPN cyclotron project is discussed [fr

  7. Electron cyclotron heating and associated parallel cooling

    International Nuclear Information System (INIS)

    Rapozo, C. da C.; Assis, A.S. de; Busnardo Neto, J.

    1990-01-01

    It has been experimentally observed that during the electron-cyclotron heating the electron longitudinal temperature drops as the perpendicular temperature increases. The experiment was carried in a linear mirror machine with a low density (10 10 cm -3 ) weakly ionized (< 1.0 %) plasma. (Author)

  8. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  9. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  10. Direct electronic measurement of Peltier cooling and heating in graphene.

    Science.gov (United States)

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  11. Electron cooling and recombination experiments with an adiabatically expanded electron beam

    International Nuclear Information System (INIS)

    Pastuszka, S.; Heidelberg Univ.; Schramm, U.; Heidelberg Univ.; Grieser, M.; Heidelberg Univ.; Broude, C.; Heidelberg Univ.; Grimm, R.; Heidelberg Univ.; Habs, D.; Heidelberg Univ.; Kenntner, J.; Heidelberg Univ.; Miesner, H.J.; Heidelberg Univ.; Schuessler, T.; Heidelberg Univ.; Schwalm, D.; Heidelberg Univ.; Wolf, A.; Heidelberg Univ.

    1996-01-01

    Magnetically guided electron beams with transverse temperatures reduced with respect to the cathode temperature by a factor of more than 7 were realized in the electron cooling device of the heavy-ion storage ring TSR and the effect of the reduced transverse temperature in recombination and electron cooling experiments was studied. Measured dielectronic recombination resonances at low relative energy and spectra of laser-stimulated recombination indicate that transverse electron temperatures of about 17 meV have been obtained at cathode temperatures of about 110 meV. The temperature dependence of the spontaneous electron-ion recombination rate during electron cooling was investigated and found to follow the inverse square-root law expected from the theory of radiative recombination, although the measured absolute rates are higher than predicted. A new method based on analyzing the intensity of the fluorescence light emitted during simultaneous laser and electron cooling is used to measure the longitudinal electron cooling force in a range of relative velocities extending over two orders of magnitude (10 5 -10 7 cm/s). The results confirm the occurrence of 'magnetized electron cooling' also at the reduced transverse temperature and show that, compared to earlier measurements at the high transverse temperature, the cooling force increases by about a factor of 2; a considerably larger increase by a factor of ∼5 would be expected if 'magnetized electron cooling' would not exist. (orig.)

  12. Status of electron cooling at the NAP-M

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Dikanskij, N.S.; Kudelajnen, V.I.; Lebedev, V.A.; Meshkov, I.N.; Parkhomchuk, V.V.; Pestrikov, D.V.; Skrinskij, A.N.; Sukhina, B.N.

    1983-01-01

    Experimental results on the study of thermalization processes in a magnetized electron beam are presented. The experiments are carried out on the NAP-M storage ring in which electron beam, formed by three-electrode gun, is transported in a longitudinal magnetic field with the intensity 1.4 kGf and, having passed a three meter drift space, entered the analyzer. Conclusion is made on the possibility of preservation of low level of electron beam longitudinal spread at high enough intensity and considerable cooling length. Magnetic field, accompanying electron beam, prevent energy transfer from transverse degrees of freedom to longitudinal one, having a very low energy as a result of electrostatic acceleration. Gradient of longitudinal velocity over electron beam cross section, conditioned by its electric field, is eliminated by ion compensation of electron space charge. Under conditions, characteristic for electron cooling, the compensated beam preserves stability at high intensities. At considerable homogeneity of magnetic field and precise matching of average particle velocities the low level of electron longitudinal temperature can be used for rapid cooling of heavy particle beams to rather low temperatures

  13. Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons

    International Nuclear Information System (INIS)

    Su, Guozhen; Zhang, Yanchao; Cai, Ling; Su, Shanhe; Chen, Jincan

    2015-01-01

    Most electronic cooling devices are powered by an external bias applied between the cold and the hot reservoirs. Here we propose a new concept of electronic cooling, in which cooling is achieved by using a reservoir of hot electrons as the power source. The cooling device incorporates two energy filters with the Lorentzian transmission function to respectively select low- and high-energy electrons for transport. Based on the proposed model, we analyze the performances of the device varying with the resonant levels and half widths of two energy filters and establish the optimal configuration of the cooling device. It is believed that such a novel device may be practically used in some nano-energy fields. - Highlights: • A new electronic cooling device powered by hot electrons is proposed. • Two energy filters are employed to select the electrons for transport. • The effects of the resonant levels and half widths of two filters are discussed. • The maximum cooling power and coefficient of performance are calculated. • The optimal configuration of the cooling device is determined.

  14. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  15. Electron gun design study for the IUCF beam cooling system

    International Nuclear Information System (INIS)

    Friesel, D.L.; Ellison, T.; Jones, W.P.

    1985-01-01

    The design of a low temperature electron beam cooling system for the Indiana University electron-cooled storage ring is in progress. The storage ring, which will accept the light ion beams from the existing k=200, multi-stage cyclotron facility, requires an electron beam variable in energy from about 7 to 275 keV. The electron beam system consists of a high perveance electron gun with Pierce geometry and a flat cathode. The gun and a 28 element accelerating column are immersed in a uniform longitudinal magnetic guide field. A computer modeling study of the system was conducted to determine electron beam density and transverse temperature variations as a function of anode region and accelerator column design parameters. Transverse electron beam temperatures (E /SUB t/ = mc 2 β 2 γ(/theta/ /SUB H/ +/theta/ /SUB v/ )) of less than a few tenths of an electron volt at a maximum current density of 0.4 A/cm 2 are desired over the full energy range. This was achieved in the calculations without the use of resonant focusing for a 2 Amp, 275 keV electron beam. Some systematics of the electron beam temperature variations with system design parameters are presented. A short discussion of the mechanical design of the proposed electron beam system is also given

  16. Immersion Cooling of Electronics in DoD Installations

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Herrlin, Magnus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysis of the failures should be completed, and the design changes proven.

  17. Instability during bunch shortening of an electron-cooled beam

    Directory of Open Access Journals (Sweden)

    M. Takanaka

    2003-10-01

    Full Text Available Bunch shortening causes an electron-cooled beam to be space charge dominated at low energies. Instability during the bunch shortening has been studied using a particle-tracking program where the 3D space-charge field due to the beam is calculated with a simplifying model.

  18. Positron--Electron Project (PEP)

    International Nuclear Information System (INIS)

    Rees, J.R.

    1977-01-01

    PEP, an 18-GeV electron-positron colliding-beam storage ring facility at SLAC, is being built by a team from LBL and SLAC. Construction is under way and completion is scheduled for Fall of 1979. A summary is given of the design of the facility, and the status of the project is reported

  19. Physical installation of Pelletron and electron cooling system

    International Nuclear Information System (INIS)

    Hurh, P.

    1997-01-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here

  20. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  1. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  2. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  3. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  4. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  5. Influence of electron evaporative cooling on ultracold plasma expansion

    International Nuclear Information System (INIS)

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-01-01

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10 8 /cm 3 ). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma

  6. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  7. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  8. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  9. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  10. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo...

  11. Convective Performance of Nanofluids in Commercial Electronics Cooling Systems

    International Nuclear Information System (INIS)

    Roberts, N.A.; Walker, D.G.

    2010-01-01

    Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20-30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.

  12. Diffusion cooling of electrons in an A.C. field

    International Nuclear Information System (INIS)

    Robson, R.E.

    1997-01-01

    Boundaries affect the measured values of transport coefficients in all drift tube experiments, to a greater or lesser extent, and nowhere is this more apparent than in the experiment first devised by Cavalleri (1969) and subsequently adapted by Crompton and coworkers in the 1970s. The phenomenon of 'diffusion cooling' is particularly striking and arises essentially from a penetration of the 'boundary layer' (of thickness of the order of the mean free path for energy exchange) throughout a significant portion of the gas chamber. Although this is something of an obstacle to extracting the classical diffusion coefficient from experimental data, it is of great interest in its own right from a theoretical point of view, and the Crompton et al. experiments motivated several theoretical treatments which successfully explained diffusion cooling, albeit for zero applied field and on the basis of the 'two-term' spherical harmonic representation of the velocity distribution function. The present paper puts these theories in the context of the modern, generalised eigenvalue theory, which may be used as a basis for describing all swarm experiments. In addition, the earlier zero-field studies are generalised to the extent that an a.c. heating field is included, as was the case for the original Cavalleri experimental set-up. This field is found to enhance diffusion cooling effects for a simple model elastic collisional cross sections, by pumping electrons into the energy regime preferred for loss to the walls. 32 refs

  13. Energy efficient hotspot-targeted embedded liquid cooling of electronics

    International Nuclear Information System (INIS)

    Sharma, Chander Shekhar; Tiwari, Manish K.; Zimmermann, Severin; Brunschwiler, Thomas; Schlottig, Gerd; Michel, Bruno; Poulikakos, Dimos

    2015-01-01

    Highlights: • We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips. • Microchannel throttling zones distribute flow optimally without any external control. • Design is optimized for highly non-uniform multicore chip heat flux maps. • Optimized design minimizes chip temperature non-uniformity. • This is achieved with pumping power consumption less than 1% of total chip power. - Abstract: Large data centers today already account for nearly 1.31% of total electricity consumption with cooling responsible for roughly 33% of that energy consumption. This energy intensive cooling problem is exacerbated by the presence of hotspots in multicore microprocessors due to excess coolant flow requirement for thermal management. Here we present a novel liquid-cooling concept, for targeted, energy efficient cooling of hotspots through passively optimized microchannel structures etched into the backside of a chip (embedded liquid cooling or ELC architecture). We adopt an experimentally validated and computationally efficient modeling approach to predict the performance of our hotspot-targeted ELC design. The design is optimized for exemplar non-uniform chip power maps using Response Surface Methodology (RSM). For industrially acceptable limits of approximately 0.4 bar (40 kPa) on pressure drop and one percent of total chip power on pumping power, the optimized designs are computationally evaluated against a base, standard ELC design with uniform channel widths and uniform flow distribution. For an average steady-state heat flux of 150 W/cm 2 in core areas (hotspots) and 20 W/cm 2 over remaining chip area (background), the optimized design reduces the maximum chip temperature non-uniformity by 61% to 3.7 °C. For a higher average, steady-state hotspot heat flux of 300 W/cm 2 , the maximum temperature non-uniformity is reduced by 54% to 8.7 °C. It is shown that the base design requires a prohibitively high level of pumping power (about

  14. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    Science.gov (United States)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  15. Cooled CCDs for recording data from electron microscopes

    CERN Document Server

    Faruqi, A R

    2000-01-01

    A cooled-CCD camera based on a low-noise scientific grade device is described in this paper used for recording images in a 120 kV electron microscope. The primary use of the camera is for recording electron diffraction patterns from two-dimensionally ordered arrays of proteins at liquid-nitrogen temperatures leading to structure determination at atomic or near-atomic resolution. The traditional method for recording data in the microscope is with electron sensitive film but electronic detection methods offer the following advantages over film methods: the data is immediately available in a digital format which can be displayed on a monitor screen for visual inspection whereas a film record needs to be developed and digitised, a lengthy process taking at least several hours, prior to inspection; the dynamic range of CCD detectors is about two orders of magnitude greater with better linearity. The accuracy of measurements is also higher for CCDs, particularly for weak signals due to inherent fog levels in film. ...

  16. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  17. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  18. An 8 MeV H- cyclotron to charge the electron cooling system for HESR

    International Nuclear Information System (INIS)

    Pakhomchuk, V.; Papash, A.

    2006-01-01

    A compact cyclotron to accelerate negative hydrogen ions up to 8 MeV is considered as optimal solution to the problem of charging the high-voltage terminal of the electron cooling system for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H - beam for the HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed

  19. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  20. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  1. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  2. New Project System for Undergraduate Electronic Engineering

    Science.gov (United States)

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  3. On the Optimum Dispersion of a Storage Ring for Electron Cooling with High Space Charge

    CERN Document Server

    Bosser, Jacques; Chanel, M; Marié, L; Möhl, D; Tranquille, G

    2000-01-01

    With the intense electron beams used for cooling, matching of the ion and electron velocity over the largest possible fraction of the beam profile becomes important. In this situation, a finite dispersion from the ring in the cooling section can lead to an appreciable gain in the transverse cooling speed. Based on a simple model of the cooling force, an expression for the "optimum" dispersion as a function of the electron beam intensity, the momentum spread and other properties of the ion beam will be derived. This simple theory will be compared to measurements made on the Low Energy Ion Ring (LEIR) at CERN during 1997.

  4. Cooling of high-density and power electronics by means of heat pipes

    International Nuclear Information System (INIS)

    Hubbeling, L.

    1980-06-01

    This report describes how heat pipes can be used for cooling modern electronic equipment, with numerous advantages over air-cooled systems. A brief review of heat-pipe properties is given, with a detailed description of a functioning prototype. This is a single-width CAMAC unit containing high-density electronic circuits cooled by three heat pipes, and allowing a dissipation of over 120 W instead of the normal maximum of 20 W. (orig.)

  5. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  6. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NARCIS (Netherlands)

    Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-01-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons

  7. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  8. Nano-PCMs for passive electronic cooling applications

    Science.gov (United States)

    Colla, L.; Fedele, L.; Mancin, S.; Buonomo, B.; Ercole, D.; Manca, O.

    2015-11-01

    The present work aims at investigating a new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in a paraffin wax having a melting temperature of 45°C. The thermophysical properties such as latent heat and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCM. Finally, a numerical comparison between the use of the pure paraffin wax and the nano-PCM in a typical electronics passive cooling device was implemented. Numerical simulations were carried out using the Ansys-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures, melting time and junction temperature were reported. Moreover, a comparison with experimental results was also performed.

  9. Status of the R and D Towards Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-01-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R and D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components

  10. Electronic Government : Caribbean Pilot Project | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Electronic Government : Caribbean Pilot Project. Caribbean countries are increasingly adopting information and communication technologies (ICTs) in ... The Government of Jamaica is willing to donate the solution to other ... Related content ...

  11. Influence of carrier density on the electronic cooling channels of bilayer graphene

    Science.gov (United States)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  12. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  13. Construction progress of the cooling & ventilation in the LHC project

    CERN Document Server

    Body, Y; Josa, F; Monsted, A; Pirollet, B; CERN. Geneva. ST Division

    2002-01-01

    After the LEP dismantling Phase the Cooling and Ventilation Group has started the LHC construction work. Year 2001 through to 2004 will certainly be the most important period of activity for the CV group in the erection phase The author will report on the current works that are in progress on the different LHC Points distinguishing between the Ventilation and the Water Cooling installations. The Ventilation work completed in the new surface buildings in Points 1, 4,5,6 and 8. The work for the Cooling plants comprehend to the pumping stations, the cooling towers and the chilled water production stations in Points 1 and 5, For all of these activities, an updated report of the progress the work, the planning and of the expenses are given. Finally, a brief overview of the future activities is presented.

  14. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Hasse, R.W.; Boine-Frankenheim, O.

    2004-01-01

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  15. Decontamination in the Electron Probe Microanalysis with a Peltier-Cooled Cold Finger.

    Science.gov (United States)

    Buse, Ben; Kearns, Stuart; Clapham, Charles; Hawley, Donovan

    2016-10-01

    A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an electron microprobe. The Peltier unit was tested at 15 and 96 W, achieving cold finger temperatures of -10 and -27°C, respectively. The Peltier unit did not adversely affect the analytical stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum and the cold finger was found to be very efficient. Under Peltier cooling, the vacuum improvement associated with water vapor deposition was not achieved; this has the advantage of avoiding severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen (LN2) temperatures. Carbon contamination rates were reduced as cooling commenced; by -27°C contamination rates were found to be comparable with LN2-cooled devices. Peltier cooling, therefore, provides a viable alternative to LN2-cooled cold fingers, with few of their associated disadvantages.

  16. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  17. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Vasenko, Andrey S. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France); Ozaeta, Asier [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Bergeret, Sebastian F. [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Hekking, Frank W.J. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France)

    2015-06-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

  18. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  20. Broadband Cooling Spectra of Hot Electrons and Holes in PbSe Quantum Dots

    NARCIS (Netherlands)

    Spoor, F.C.M.; Tomić, Stanko; Houtepen, A.J.; Siebbeles, L.D.A.

    2017-01-01

    Understanding cooling of hot charge carriers in semiconductor quantum dots (QDs) is of fundamental interest and useful to enhance the performance of QDs in photovoltaics. We study electron and hole cooling dynamics in PbSe QDs up to high energies where carrier multiplication occurs. We

  1. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  2. Design of project management system for 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Zhu Yan; Xu Yuanhui

    1998-01-01

    A framework of project management information system (MIS) for 10 MW high temperature gas-cooled test reactor is introduced. Based on it, the design of nuclear project management information system and project monitoring system (PMS) are given. Additionally, a new method of developing MIS and Decision Support System (DSS) has been tried

  3. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  4. Direct electronic measurement of Peltier cooling and heating in graphene

    NARCIS (Netherlands)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of

  5. Electronic cooling using an automatic energy transport device based on thermomagnetic effect

    International Nuclear Information System (INIS)

    Xuan Yimin; Lian Wenlei

    2011-01-01

    Liquid cooling for thermal management has been widely applied in electronic cooling. The use of mechanical pumps often leads to poor reliability, high energy consumption and other problems. This paper presents a practical design of liquid cooling system by mean of thermomagnetic effect of magnetic fluids. The effects of several structure and operation factors on the system performance are also discussed. Such a device utilizes an earth magnet and the waste heat generated from a chip or other sources to maintain the flow of working fluid which transfers heat to a far end for dissipation. In the present cooling device, no additional energy other than the waste heat dissipated is consumed for driving the cooling system and the device can be considered as completely self-powered. Application of such a cooling system to a hot chip results in an obvious temperature drop of the chip surface. As the heat load increases, a larger heat dissipation rate can be realized due to a stronger thermomagnetic convection, which indicates a self-regulating feature of such devices. - Research highlights: → Automatic electronic cooling has been realized by means of thermomagnetic effect. → Application of the cooling system to a hot chip results in an obvious surface temperature drop. → The system possesses a self-regulating feature of cooling performance.

  6. ELECTRONIC COMPLIANCE AND APPROVAL PROJECT (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Hope Morgan; Richard A. Varela; Deborah LaHood; Susan Cisco; Mary Ann Benavides; Donna Burks

    2002-11-01

    The Texas Railroad Commission (RRC), working in partnership with the United States Department of Energy and the oil and gas industry it regulates, is implementing a strategy for improving efficiency in regulations and significantly reducing administrative operating costs through the Electronic Compliance and Approval Process (ECAP). The project will streamline regulatory compliance and reporting by providing the ability to electronically submit, process, and query oil and gas applications and reports through the Internet-based ECAP system. Implementation of an ECAP drilling permit pilot project began September 1999 after funding resources were secured--a $700,000 grant from the U.S. Department of Energy and an appropriation of $1.4 million from the Texas Legislature. The pilot project involves creating the ability to file, review, and approve a well's drilling permit application through a completely electronic process. The pilot project solution will ultimately provide the infrastructure, technology, and electronic modules to enable the filing of all compliance permits and performance reports through the internet from a desktop computer. The pilot project was conducted in three phases. The first phase, implemented May 2000, provided the infrastructure that allows the electronic filing and approval of simple drilling permit applications, associated fees, and attachments. The official ''roll-out'' of ECAP and the first electronically filed drilling permit application occurred on May 11, 2000 in Dallas in conjunction with an Internet Workshop sponsored by the Petroleum Technology Transfer Council. After the completion of Phase I, the ECAP team conducted an extensive review of progress to date and analyzed requirements and opportunities for future steps. The technical team identified core infrastructure modifications that would facilitate and better support future development and expansion of the ECAP system and work began on database structure

  7. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov

    2015-01-01

    Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the dow......Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration......, according to the topology optimization results and assembly constraints, and compared to the optimized cases....

  8. Kinetic theory analysis of electron attachment cooling in oxygen

    International Nuclear Information System (INIS)

    Skullerud, H.R.

    1983-01-01

    The attachment cooling effect observed by Hegerberg and Crompton (1983) has been analysed theoretically and numerically in a Boltzmann equation eigenvalue approach. The effect is highly sensitive to the shape and magnitude of the rotational excitation cross sections. When due account is taken of the rotational excitations associated with the (O 2 - ) negative ion resonances, good agreement between theory and experiment can be obtained with reasonable input cross-section data

  9. The Thermal Evaluation of Air-Cooled Electronic Equipment

    Science.gov (United States)

    1952-09-01

    Temperatures 22 5. Primary Thermometric Elements. Thermocouples 23 6. Instruments for Thermocouples 30 7. Checking for Operation within Specified...from the outer container wall to the atmosphere of the room. For the con- struction of the inner container, polished aluminum is desirable so as to... aluminum , is to prevent radiant heat transfer from the component to be tested so that cooling can only occur by free convection. Thus, the most

  10. ANP applied to electronics engineering project selection

    International Nuclear Information System (INIS)

    Habib, M.

    2010-01-01

    Project selection in Electronics engineering is a complex decision-making process. This research paper illustrates an application of ANP/AHP process. The AHP (Analytic Hierarchy Process) is employed to break down large unstructured decision problems into manageable and measureable components. The ANP, as the general form of AHP, is powerful to deal with complex decisions where interdependence exists in a decision model. The research paper discusses the use of the ANP, a general form of Saaty's analytic Network process, as a model to evaluate the value of competing Electronics projects. The research paper concludes with a case study describing the implementation of this model at an engineering college, including data based on the actual use of the decision making model. The case study helps to verify that AHP is an effective and efficient decision-making tool. A major contribution of this work is to provide a methodology for assessing the best project. Despite a number of publications applying AHP in project selection, this is probably the first time that an attempt has been made to apply AHP in an electronics project selection in an engineering university environment. (author)

  11. Projected quasiparticle theory for molecular electronic structure

    Science.gov (United States)

    Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.

    2011-09-01

    We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.

  12. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  13. Final Report for 'ParSEC-Parallel Simulation of Electron Cooling''

    International Nuclear Information System (INIS)

    David L Bruhwiler

    2005-01-01

    The Department of Energy has plans, during the next two or three years, to design an electron cooling section for the collider ring at RHIC (Relativistic Heavy Ion Collider) [1]. Located at Brookhaven National Laboratory (BNL), RHIC is the premier nuclear physics facility. The new cooling section would be part of a proposed luminosity upgrade [2] for RHIC. This electron cooling section will be different from previous electron cooling facilities in three fundamental ways. First, the electron energy will be 50 MeV, as opposed to 100's of keV (or 4 MeV for the electron cooling system now operating at Fermilab [3]). Second, both the electron beam and the ion beam will be bunched, rather than being essentially continuous. Third, the cooling will take place in a collider rather than in a storage ring. Analytical work, in combination with the use and further development of the semi-analytical codes BETACOOL [4,5] and SimCool [6,7] are being pursued at BNL [8] and at other laboratories around the world. However, there is a growing consensus in the field that high-fidelity 3-D particle simulations are required to fully understand the critical cooling physics issues in this new regime. Simulations of the friction coefficient, using the VORPAL code [9], for single gold ions passing once through the interaction region, have been compared with theoretical calculations [10,11], and the results have been presented in conference proceedings papers [8,12,13,14] and presentations [15,16,17]. Charged particles are advanced using a fourth-order Hermite predictor corrector algorithm [18]. The fields in the beam frame are obtained from direct calculation of Coulomb's law, which is more efficient than multipole-type algorithms for less than ∼ 10 6 particles. Because the interaction time is so short, it is necessary to suppress the diffusive aspect of the ion dynamics through the careful use of positrons in the simulations, and to run 100's of simulations with the same physical

  14. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  15. A numerical investigation of the effect of ambient conditions on natural convection cooling of electronics

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Hattel, Jesper Henri

    2017-01-01

    Thermal management is a serious concern in electronic industry. It is important to understand the effects of ambient conditions on cooling of electronics. In this work, the effect of ambient conditions on the thermophysical properties of humid air is estimated in five cities (Copenhagen, Mashhad...

  16. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.

    Science.gov (United States)

    Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J

    2004-02-06

    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

  17. Estimation of Nuclei Cooling Time by Electrons in Superdense Nonequilibrium Plasma

    CERN Document Server

    Kostenko, B F

    2004-01-01

    Estimations of nuclei cooling time by electrons in superdense nonequilibrium plasma formed at cavitation bubble collapse in deuterated acetone have been carried out. The necessity of these computations was stipulated by using in the latest theoretical calculations of nuclear reaction rate in these processes one poorly grounded assumption that electron temperatures remain essentially lower than nuclei ones during thermonuclear synthesis time t_s. The estimations have shown that the initial electron temperatures at the moment of superdense plasma formation with \\rho =100 g/cm^3 turn out to be appreciably lower than the nuclear temperatures, while the nuclei cooling time is of the same order as t_s.

  18. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  19. Transverse Feedback for Electron-Cooled DC-Beam at COSY

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Dietrich, J.

    2004-01-01

    At the cooler synchrotron COSY, high beam quality is achieved by means of beam cooling. In the case of intense electron-cooled beams, fast particle losses due to transverse coherent beam oscillations are regularly observed. To damp the instabilities a transverse feedback system was installed and successfully commissioned. Commissioning of the feedback system resulted in a significant increase of the e-cooled beam intensity by single injection and when cooling and stacking of repeated injections is applied. External experiments profit from the small diameter beams and the reduced halo. A transverse damping system utilizing a pick-up, signal processing electronics, power amplifiers, and a stripline deflector is introduced. Beam current and Schottky spectra measurements with the vertical feedback system turned on and off are presented

  20. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  1. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  2. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  3. Electron cooling of a bunched ion beam in a storage ring

    Science.gov (United States)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  4. Strategy for alignment of electron beam trajectory in LEReC cooling section

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-09-23

    We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.

  5. Design principles and applications of a cooled CCD camera for electron microscopy.

    Science.gov (United States)

    Faruqi, A R

    1998-01-01

    Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.

  6. Practical Arduino Cool Projects for Open Source Hardware

    CERN Document Server

    Oxer, Jonathan

    2010-01-01

    Create your own Arduino-based designs, gain in-depth knowledge of the architecture of Arduino, and learn the user-friendly Arduino language all in the context of practical projects that you can build yourself at home. Get hands-on experience using a variety of projects and recipes for everything from home automation to test equipment. Arduino has taken off as an incredibly popular building block among ubicomp (ubiquitous computing) enthusiasts, robotics hobbyists, and DIY home automation developers. Authors Jonathan Oxer and Hugh Blemings provide detailed instructions for building a wide range

  7. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  8. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  9. Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles

    International Nuclear Information System (INIS)

    Bauer, Christophe; Abid, Jean-Pierre; Girault, Hubert H.

    2005-01-01

    The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (∼1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)

  10. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  11. Combination technique for improving natural convection cooling in electronics

    Energy Technology Data Exchange (ETDEWEB)

    Florio, L.A.; Harnoy, A. [Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2007-01-15

    The combination of an appropriately placed cross-flow opening and a strategically positioned transversely vibrating plate is proposed as a means of augmenting pure natural convection in a vertical channel. This method is intended to provide a more efficient, reliable, and consumer conscious alternative to conventional techniques for lower power dissipating devices where standard natural convection cooling proves insufficient. Two-dimensional numerical simulations are employed to investigate this combination method using models consisting of a vertical channel containing two rectangular heat sources which are attached to a vertical mounting board, as well as a transversely oscillating plate and a cross-flow opening in the mounting board area between the two heat sources. Varied parameters and geometric configurations are studied. The results indicate the combined effects of the vibrating plate and the opening flow have the potential to cause significant improvement in the thermal conditions over pure natural convection. As much as a 70% improvement in the local heat transfer coefficient from that for a system with a board opening but without a vibrating plate was attained. (author)

  12. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  13. Demagnifying electron projection with grid masks

    International Nuclear Information System (INIS)

    Politycki, A.; Meyer, A.

    1978-01-01

    Tightly toleranced micro- and submicrostructures with smooth edges were realized by using transmission masks with an improved supporting grid (width of traverses 0.8 μm). Local edge shift due to the proximity effect is kept at a minimum. Supporting grids with stil narrower traverses (0.5 μm) were prepared by generating the grid pattern by electron beam writing. Masks of this kind allow projection at a demagnification ratio of 1:4, resulting in large image fields. (orig.) [de

  14. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  15. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  16. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  17. Active Cooling and Thermal Management of a Downhole Tool Electronics Section

    DEFF Research Database (Denmark)

    Soprani, Stefano; Engelbrecht, Kurt; Just Nørgaard, Anders

    2015-01-01

    combines active and passive cooling techniques, aiming at an efficient thermal management, preserving the tool compactness and avoiding the use of moving parts. Thermoelectric coolers were used to transfer the dissipated heat from the temperature-sensitive electronics to the external environment. Thermal...... contact resistances were minimized and thermally insulating foam protected the refrigerated microenvironment from the hot surroundings....

  18. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  19. New system of cooling download Arrocampo. Project TEVA; Nuevos sistema refrigeracion descarga Arrocampo. Proyecto TEVA

    Energy Technology Data Exchange (ETDEWEB)

    Puerta Munoz, S.

    2012-07-01

    Project TEVA The new system is basically a mechanical forced-cooling tower, a system of pumping water from Arrocampo, pipes and valves supply a collection basin water tower, a channel to drain the existing auxiliary spillway own shot dam and a new power line from the Central.

  20. Solar Heating/Cooling of Buildings: Current Building Community Projects. An Interim Report.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Building Research Advisory Board.

    Projects being carried out by the private sector involving the use of solar energy for heating and cooling buildings are profiled in this report. A substantial portion of the data were collected from a broad cross-section of the building community. Data collection efforts also involved the canvassing of the nearly 200 trade and professional…

  1. Electronics cooling of Phenix multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed

  2. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  3. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  4. Development of Cooling Design Technique for an Electronic Telecommunication System Using HPHE

    International Nuclear Information System (INIS)

    Lee, Jung Hwan; Ryoo, Seong Ryoul; Chun, Ji Hwan; Kim, Jong Man; Kim, Hyun Jun; Kim, Chul Ju; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of Heat Pipe Heat Exchanger(HPHE) for an electronic telecommunication system by adequate convection condition. Heat generation rates of electronic components, the temperature distributions of HPHE and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program is useful to a user who is not familiar with an electronic telecommunication system. The simulation results showed that the HPHE were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 17.4 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared

  5. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  6. Cooling by direct-expansion versus cooled water. A comparison based on the Euroborg project; Koeling met direct-expansie versus gekoeld water. Een vergelijking aan de hand van het project Euroborg

    Energy Technology Data Exchange (ETDEWEB)

    Van de Hoef, Th. [HBW Klimaattechniek, Udenhout (Netherlands)

    2005-04-01

    Integration of a cooling installation in an air conditioner, in specific cases in combination with heat recovery, is applied increasingly. In most cases the cooling method is based on direct expansion, so-called DX-compression cooling. The project Euroborg concerns the new soccer stadium of the Dutch soccer club FC Groningen. [Dutch] Integratie van een koelmachine in een luchtbehandelingskast, al dan niet met warmteterugwinning, wordt steeds vaker toegepast. De koeling wordt in het merendeel van de gevallen uitgevoerd als direct-expansiesysteem (DX-compression cooling). Het project Euroborg omvat het nieuwe voetbalstadion van FC Groningen.

  7. Short-Lived Electronically-Excited Diatomic Molecules Cooled via Supersonic Expansion from a Plasma Microjet

    Science.gov (United States)

    Houlahan, Thomas J., Jr.; Su, Rui; Eden, Gary

    2014-06-01

    Using a pulsed plasma microjet to generate short-lived, electronically-excited diatomic molecules, and subsequently ejecting them into vacuum to cool via supersonic expansion, we are able to monitor the cooling of molecules having radiative lifetimes as low as 16 ns. Specifically, we report on the rotational cooling of He_2 molecules in the d^3Σ_u^+, e^3Π_g, and f^3Σ_u^+ states, which have lifetimes of 25 ns, 67 ns, and 16 ns, respectively. The plasma microjet is driven with a 2.6 kV, 140 ns high-voltage pulse (risetime of 20 ns) which, when combined with a high-speed optical imaging system, allows the nonequilibrium rotational distribution for these molecular states to be monitored as they cool from 1200 K to below 250 K with spatial and temporal resolutions of below 10 μm and 10 ns, respectively. The spatial and temporal resolution afforded by this system also allows the observation of excitation transfer between the f^3Σ_u^+ state and the lower lying d^3Σ_u^+ and e^3Π_g states. The extension of this method to other electronically excited diatomics with excitation energies >5 eV will also be discussed.

  8. Analysis of the Air Cooling for 350 keV/20 mA Electron Beam Machine Rooms

    International Nuclear Information System (INIS)

    Sutadi; Suprapto; Suyamto; Sukaryono

    2003-01-01

    It has been analyzed the cooling capacity for 350 keV/20 mA electron beam machine rooms at P3TM. The analysis of cooling load based on the building construction and the device for supported the electron beam machines operation, were obtained head dissipation and provided the cooling load. From the result it can be determined that for cooling the electron beam machine rooms with 945 m cubic of volume and supporter device in the room, in order to reach the air condition about 20 o C of temperatures and 50 % of relative humidity for the electron beam machine rooms, it was needed the air conditioning system with total cooling capacity about 213.000 BTU/Hours. (author)

  9. Enhanced Schottky signals from electron-cooled, coasting beams in a heavy-ion storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, C., E-mail: claude.krantz@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Blaum, K.; Grieser, M. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Litvinov, Yu.A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany); Repnow, R.; Wolf, A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2011-02-11

    Measurements at the Test Storage Ring of the Max-Planck-Institut fuer Kernphysik in Heidelberg (Germany) have shown that the signal amplitude induced in a Schottky-noise pickup electrode by a coasting electron-cooled ion beam can be greatly enhanced by exposure of the latter to a perturbing radiofrequency signal which is detuned from the true beam revolution frequency. The centre frequencies obtained from harmonic analysis of the observed pickup signal closely follow those imposed on the ions by the electron cooling force. The phenomenon can be exploited to measure the true revolution frequency of ion beams of very low intensity, whose pure Schottky noise is too weak to be measurable under normal circumstances.

  10. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    Science.gov (United States)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered

  11. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  12. Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

    OpenAIRE

    M.C. Zaghdoudi; S. Maalej; J. Mansouri; M.B.H. Sassi

    2011-01-01

    An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer im...

  13. Low Energy Electron Cooling and Accelerator Physics for the Heidelberg CSR

    International Nuclear Information System (INIS)

    Fadil, H.; Grieser, M.; Hahn, R. von; Orlov, D.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2006-01-01

    The Cryogenic Storage Ring (CSR) is currently under construction at MPI-K in Heidelberg. The CSR is an electrostatic ring with a total circumference of about 34 m, straight section length of 2.5 m and will store ions in the 20 ∼ 300 keV energy range (E/Q). The cryogenic system in the CSR is expected to cool the inner vacuum chamber down to 2 K. The CSR will be equipped with an electron cooler which has also to serve as an electron target for high resolution recombination experiments. In this paper we present the results of numerical investigations of the CSR lattice with finite element calculations of the deflection and focusing elements of the ring. We also present a layout of the CSR electron cooler which will have to operate in low energy mode to cool 20 keV protons in the CSR, as well as numerical estimations of the cooling times to be expected with this device

  14. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  15. The construction and space qualification of the control electronics for the tracker detector cooling system of the AMS-02 experiment

    International Nuclear Information System (INIS)

    Menichelli, M.; Accardo, L.; Alberti, G.; Bardet, M.; Battiston, R.; Blasko, S.; He, Z.; Koutsenko, V.; Lebedev, A.; Ni, J.; Papi, A.; Pauw, A.; Van Ess, J.; Wang, Z.; Zhang, D.; Zwartbol, T.

    2010-01-01

    This article describes the control electronics for the silicon tracker cooling system in the AMS-02 apparatus. It also contains a brief description of the cooling system itself necessary for the description of the electronics. The tracker cooling system includes a set of various sensors and actuators which are necessary for bringing the tracker detector to a uniform temperature at which it can operate correctly. In order to test the system performing the various qualification activities we have built also an Electronic Ground support equipment (EGSE). The EGSE should simulate the behaviour of all sensors and actuators previously mentioned.

  16. Highly Integrated Mixed-Mode Electronics for the readout of Time Projection Chambers

    CERN Document Server

    França Santos, Hugo Miguel; Musa, Luciano

    Time Projection Chambers (TPCs) are one of the most prevalent particle trackers for high-energy physics experiments. Future planed TPCs for the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) entail very high spatial resolution in large gas volumes, but impose low material budget for the end caps of the TPC cylinder. This constraint is not accomplished with the state-of-the-art front-end electronics because of its unsuited relatively large mass and of its associated water cooling system. To reach the required material budget, highly compact and power efficient dedicated TPC front-end electronics should be developed. This project aims at re-designing the different electronic elements with significant improvements in terms of performance, power efficiency and versatility, and developing an integrated circuit that merges all components of the front-end electronics. This chip ambitions a large volume production at low unitary cost and its employment in multiple detectors. The design of ...

  17. Study on the compensation of electron beam space charge in facilittes with electron cooling

    International Nuclear Information System (INIS)

    Dikanskij, N.S.; Kudelajnen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1981-01-01

    The results of experimental investigations of a compensated electron beam on the NAP-M facility are presented. The electron beam is compensated by electrostatic plugs preventing ion leakage along the beam. Cut-off electrodes have the shape of cutted cylinders encircling the electron beam. To eliminate electron accumulation around the plugs one of the electrodes has a zero potential, which results in formation of an transverse electric field causing ionization electron drift in the transverse direction to the electric and magnetic fields. The effect of wave damping, in the compensated beam is observed, that demonstrates the possibility of gaining great current densities in long compensated beams necessary for antiproton storage. For the NAP-M at the 10 10 cm/s electron velocity, 300 cm length of ion column, and 1 kOe field intensity the threshold beam current density is 0.96 A/cm 2 [ru

  18. iPhone Cool Projects Ten Great Development Projects for Your iPhone

    CERN Document Server

    Bennett, G

    2009-01-01

    The iPhone and iPod touch have provided all software developers with a level playing field-developers working alone have the same access to consumers as multinational software publishers. Very cool indeed! To make your application stand out from the crowd, though, it has to have that something extra. You must learn the skills to take your apps from being App Store filler to download chart-topping blockbusters. Developers with years of experience helped write this book. Spend some time understanding their code and why they took the approach they did. You will find the writing, illustrations, co

  19. Front-end electronics for the Muon Portal project

    Energy Technology Data Exchange (ETDEWEB)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D.G. [Università di Catania, Dipartimento di Fisica e Astronomia, and INFN, Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Fallica, G.; Valvo, G. [ST-Microelectronics, Stradale V Primosole 50, Catania (Italy)

    2016-10-11

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  20. Impact of urban heat island on cooling and environment: A demonstration project

    International Nuclear Information System (INIS)

    1993-04-01

    Landscaping has been shown in simulation and field studies to reduce building cooling loads by affecting microclimatic factors such as solar radiation, wind speed and air temperature. A demonstration project was undertaken to determine the magnitude of landscape induced changes in microclimate on building cooling loads and water use on four typical residences in Phoenix, Arizona. The energy use and microclimate of three unlandscaped (bare soil, rock mulch) and one landscaped (turf) home were monitored during summer 1990. In the fall, turf was placed around one of the unlandscaped houses, and shade trees planted on the west and south sides of another. Measurements continued during the summer of 1991. Total house air conditioning and selected appliance electrical data were collected, as well as inside and outside air temperatures. Detailed microclimate measurements were obtained for one to two week periods during both summers. Maximum reductions of hourly outside air temperatures of 1 to 1.5 degrees C, and of daily average air temperatures of up to 1 degrees C, resulted from the addition of turf landscaping. Addition of small trees to the south and west sides of another treatment did not have a noticeable effect on air temperature. Cooling load reductions of 10% to 17% were observed between years when well-watered turf landscaping was added to a house previously surrounded by bare soil. Addition of small trees to another bare landscape did not produce a detectable change in cooling load. The results of the study are used as input to a standard building energy use simulation model to predict landscape effects on cooling load and water usage for three typical houses, and to develop guidelines for use of energy efficient residential landscapes in Phoenix, Arizona

  1. Using Computer Conferencing and Electronic Mail to Facilitate Group Projects.

    Science.gov (United States)

    Anderson, Margaret D.

    1996-01-01

    Reports on the use of electronic mail and an electronic conferencing system to conduct group projects in three educational psychology courses at the State University of New York College at Cortland. Course design is explained and group project design is described, including assignments and oral presentations during regular class sessions.…

  2. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  3. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    Science.gov (United States)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  4. Studies on corrosion inhibitors for the cooling water system at the Heavy Water Project, Kota

    International Nuclear Information System (INIS)

    Pillai, B.P.; Mehta, C.T.; Abubacker, K.M.

    1986-01-01

    The Heavy Water Project at Kota uses the water from the Rana Pratap Sagar Lake as coolant in the open recirculation system. In order to find suitable corrosion inhibitors for the above system, a series of laboratory experiments on corrosion inhibitors were carried out using the constructional materials of the cooling water system and a number of proprietary formulations and the results are tabulated. From the data thus generated through various laboratory experiments, the most useful ones have been recommended for application in practice. (author)

  5. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    1987-03-01

    In this report e + e - colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  6. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  7. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  8. Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components

    International Nuclear Information System (INIS)

    Gharbi, Salma; Harmand, Souad; Jabrallah, Sadok Ben

    2015-01-01

    The thermal control of electronic components is aimed at ensuring their use in a temperature range compatible with their performances. This paper presents an experimental study of the behavior of phase change materials (PCMs) as the cooling system for electronic devices. Four configurations are used to control the increase in the system temperature: pure PCM, PCM in a silicone matrix, PCM in a graphite matrix and pure PCM in a system of fins. Thermo-physical properties of different PCMs are determined and found to be desirable for application in this study. Solid liquid interface visualization and temperature evolution are employed to understand the mechanism of heat transfer during the different stages. Results indicated that the inclusion of PCM can lower component increase temperature and extends twice the critical time of the heat sink. The use of Graphite matrix filled by PCM showed more improvement on system thermal performance than silicon matrix. Also, for the same fraction of copper, it was found that incorporating long copper fins with suitable spacing into PCM, can enhance heat distribution into PCM leading to longer remain component temperature below the critical limit. This work therefore shows that the combination of PCM and long, well-spaced fins presents an effective means for thermal control of electronic devices. - Highlights: • Study on thermal performance of different PCM based heat sink in electronic cooling. • Examination of heat transfer mechanism into heat sink for different conditions. • Graphite matrix shows more efficiency than silicon. • Inclusion PCM can reduce temperature increasing. • Heat sink with longer well spaced fins can extend longer the critical time

  9. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  10. Ambilpolar Electric Field and Diffusive Cooling of Electrons in Meteor Trails

    Science.gov (United States)

    Pasko, V. P.; Kelley, M. C.

    2017-12-01

    Kelley and Price [GRL, 44, 2987, 2017] recently indicated that ambipolar electric fields may play a role in dynamics of dense plasmas generated by meteors. In the present work we discuss time dynamics of relaxation of electron temperature in meteor trails under relatively common conditions when meteor trail diffusion is not affected by the geomagnetic field (i.e., at low altitudes where both electrons and ions are not magnetized, or at higher altitudes in the plane defined by the trail and magnetic field when meteor trail is not aligned with the geomagnetic field [Ceplecha et al., Space Sci. Rev., 84, 327, 1998, and references therein]). The rate of ambipolar diffusion is a function of temperature and pressure [e.g., Hocking et al., Ann. Geophys., 34, 1119, 2016; Silber et al., Mon. Not. RAS, 469, 1869, 2017] and there is a significant spectroscopic evidence of initial plasma temperatures in meteor trails on the order 4400 deg K [Jennikens et al., Astrobiology, 4, 81, 2004]. For a representative altitude of 105 km chosen for our studies the results are consistent with previous analysis conducted in [Baggeley and Webb, J. Atm. Terr. Phys., 39, 1399, 1977; Ceplecha et al., 1998] indicating that the electron temperature remains elevated for significant time durations measured in tens of milliseconds. Our results indicate that in terms of their magnitudes the ambipolar electric fields can exceed the critical breakdown field of air, consistent with ideas expressed by Kelley and Price [GRL, 44, 2987, 2017], however, under considered conditions these fields lead to acceleration of electron cooling, with electron temperatures falling below the ambient air temperature (below 224 deg K at 105 km altitude). These effects are referred to as diffusive cooling [e.g., Rozhansky and Tsendin, Transport phenomena in partially ionized plasma, Taylor & Francis, 2001, p. 449] and represent a process in which diffusing electrons move against the force acting on them from ambipolar

  11. Using electronic document management systems to manage highway project files.

    Science.gov (United States)

    2011-12-12

    "WisDOTs Bureau of Technical Services is interested in learning about the practices of other state departments of : transportation in developing and implementing an electronic document management system to manage highway : project files"

  12. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  13. High voltage system design for the IUCF 300 KV electron cooling system

    International Nuclear Information System (INIS)

    Bertuccio, T.; Brown, B.; Donica, G.; Ellison, T.; Friesel, D.L.

    1985-01-01

    A summary of the electron beam high voltage system design for the IUCF Cooler now under construction, is presented. There are extremely stringent regulation requirements (about 10ppm) on the main high voltage power supply (-300 kVDC, 15 mA), and less stringent requirements on the gun anode power supply, in order to achieve the regulation needed to store beams in the IUCF Cooler with very low momentum spreads (Δp/p approx. = 2 x 10 -5 ). An overview of the main high voltage power supply (HVPS) specifications and design, as well as provisions and plans to improve the regulation are discussed. The electron collection system, modeled after the FNAL collector which was able to collect between 99.9% and 99.99% of the electron beam, is discussed along with the requirements of the associated power supplies. The designs of the high voltage acceleration structures and high voltage platform are discussed, as well as practical design considerations based upon experience with the Fermilab 120 keV electron cooling system

  14. Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector

    International Nuclear Information System (INIS)

    Perajarvi, K.; Turunen, J.; Ihantola, S.; Pollanen, R.; Siiskonen, T.; Toivonen, H.; Kamarainen, V.; Pomme, S.

    2014-01-01

    A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17-75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240 Pu/ 239 Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods. (author)

  15. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components

    International Nuclear Information System (INIS)

    Dobre, Tanase; Parvulescu, Oana Cristina; Stoica, Anicuta; Iavorschi, Gustav

    2010-01-01

    The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.

  16. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  17. State of Art Report for the OECD-NEA Loss-of-Forced Cooling (LOFC) Test Project using HTTR Reactor

    International Nuclear Information System (INIS)

    Jun, Ji Su

    2011-05-01

    The OECD/NEA Project is planned to perform the LOFC (Loss Of Forced Cooling) test using the HTTR (High Temperature engineering Test Reactor) in Japan from 31 March 2011 to 31 March 2013 in order to obtain the data for the code validation of the VHTR safety analysis. Based on the Project Agreement Document, this report gives a description of the HTTR-LOFC test, HTTR test facility, project schedule and deliverable items as the technical state art of the project, and appends the full translation of the project agreement articles on the project management

  18. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    Yamada, K.; Aksan, S. N.

    2012-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  19. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project

    International Nuclear Information System (INIS)

    Hyun Sun Park; Truc-Nam Dinh

    2006-04-01

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  20. A capillary-pumped loop (CPL) with microcone-shaped capillary structure for cooling electronic devices

    International Nuclear Information System (INIS)

    Jung, Jung-Yeul; Oh, Hoo-Suk; Kwak, Ho-Young; Lee, Dae Keun; Choi, Kyong Bin; Dong, Sang Keun

    2008-01-01

    A MEMS-based integrated capillary-pumped loop (CPL), which can be used for cooling electronic devices such as the CPU of a personal computer or notebook, was developed. The CPL consists of an evaporator and condenser both with the same size of 30 mm × 30 mm × 5.15 mm, which were fabricated using two layers of glass wafer and one layer of silicon wafer. A key element of the CPL is that the 480 ± 15 µm thickness silicon wafer where an array of 56 × 56 cone-shaped microholes that generates the capillary forces was fabricated and inserted above the compensation cavity for liquid transportation instead of a porous wick in the evaporator. The same cone-shaped microstructure was used in the condenser to create a stable interface between the liquid and vapor phases. The CPL fabricated was tested under various conditions such as different relative heights, fill ratios and heat fluxes. The operation conditions of the CPL were varied according to the relative height and fill ratios. With an allowable temperature of 110 °C on the evaporator surfaces, the CPL can handle a heat flux of about 6.22 W cm −2 for the air-cooled condenser. Steady-state operation conditions were achieved within 10 min. (note)

  1. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  2. Seismic isolation of lead-cooled reactors: The European project SILER

    International Nuclear Information System (INIS)

    Forni, Massimo; Poggianti, Alessandro; Scipinotti, Riccardo; Dusi, Alberto; Manzoni, Elena

    2014-01-01

    SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the 7th Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the 6th Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

  3. Electron cooling and finite potential drop in a magnetized plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, M. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Navarro-Cavallé, J. [Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ahedo, E. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés 28911, Madrid (Spain)

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  4. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  5. Micromachined Joule-Thomson coolers for cooling low-temperature detectors and electronics

    Science.gov (United States)

    ter Brake, Marcel; Lerou, P. P. P. M.; Burger, J. F.; Holland, H. J.; Derking, J. H.; Rogalla, H.

    2017-11-01

    The performance of electronic devices can often be improved by lowering the operating temperature resulting in lower noise and larger speed. Also, new phenomena can be applied at low temperatures, as for instance superconductivity. In order to fully exploit lowtemperature electronic devices, the cryogenic system (cooler plus interface) should be `invisible' to the user. It should be small, low-cost, low-interference, and above all very reliable (long-life). The realization of cryogenic systems fulfilling these requirements is the topic of research of the Cooling and Instrumentation group at the University of Twente. A MEMS-based cold stage was designed and prototypes were realized and tested. The cooler operates on basis of the Joule-Thomson effect. Here, a high-pressure gas expands adiabatically over a flow restriction and thus cools and liquefies. Heat from the environment (e.g., an optical detector) can be absorbed in the evaporation of the liquid. The evaporated working fluid returns to the low-pressure side of the system via a counter-flow heat exchanger. In passing this heat exchanger, it takes up heat from the incoming high-pressure gas that thus is precooled on its way to the restriction. The cold stage consists of a stack of three glass wafers. In the top wafer, a high-pressure channel is etched that ends in a flow restriction with a height of typically 300 nm. An evaporator volume crosses the center wafer into the bottom wafer. This bottom wafer contains the lowpressure channel thus forming a counter-flow heat exchanger. A design aiming at a net cooling power of 10 mW at 96 K and operating with nitrogen as the working fluid was optimized based on the minimization of entropy production. The optimum cold finger measures 28 mm x 2.2 mm x 0.8 mm operating with a nitrogen flow of 1 mg/s at a high pressure of 80 bar and a low pressure of 6 bar. The design and fabrication of the coolers will be discussed along with experimental results.

  6. LEP the large electron-positron project

    International Nuclear Information System (INIS)

    Schopper, H.

    1984-01-01

    LEP is an e + e - ring optimized for about 100 GeV per beam. The ring has a circumference of about 26.7 kilometers, and will be 80 to 125 meters deep underground. The existing accelerators, both the PS and the SPS, will be used as injectors. The cost of LEP is 910 million Swiss francs, at 1981 prices. This document describes the outline of the LEP project, especially, in relation to the present CERN site and experimental facilities. The present status of LEP, that is, machine ordering, installation or modification of the existing machines, is explained in the following areas: injection system, magnets, accelerating system, and experimental areas. As for the civil engineering works two international consortia are responsible for the excavation of the tunnel for the main ring. Some photographs are presented to show the status of the civil engineering works. For the transportation of both components and people, a monorail suspended from the ceiling of the tunnel is adopted. The first injection test into an octant is planned in the autumn of 1987, and the first beam all around the LEP will be at the end of 1988. (Aoki, K.)

  7. Complete electronics self-teaching guide with projects

    CERN Document Server

    Boysen, Earl

    2012-01-01

    An all-in-one resource on everything electronics-related! For almost 30 years, this book has been a classic text for electronics enthusiasts. Now completely updated for today's technology, this latest version combines concepts, self-tests, and hands-on projects to offer you a completely repackaged and revised resource. This unique self-teaching guide features easy-to-understand explanations that are presented in a user-friendly format to help you learn the essentials you need to work with electronic circuits. All you need is a general understanding of electronics concepts such as Oh

  8. Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-08-01

    Full Text Available This paper thermo-physically characterizes salt hydrate, paraffin wax and milk fat as phase change materials (PCMs. The three PCMs are compared in terms of improving heat sink (HS performance for cooling electronic packaging. An experimental study is carried out on commercially available finned HS with and without PCM under natural ventilation (NV and forced ventilation (FV at different heat loads (4 W to 10 W. The results indicate that integration of all of the PCMs into the HS improves its cooling performance; however, milk fat lags behind the other two PCMs in terms of cooling produced. A three-dimensional pressure-based conjugate heat transfer model has been developed and validated with experimental results. The model predicts the parametric influence of PCM melting range, thermal conductivity and density on HS thermal management performance. The HS cooling performance improves with increased density and conductivity while it deteriorates with the wider melting range of the PCMs.

  9. Project ECHO: Electronic Communications from Halo Orbit

    Science.gov (United States)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  10. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  11. Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle

    International Nuclear Information System (INIS)

    Cheng, Y.P.; Lee, T.S.; Low, H.T.

    2008-01-01

    In this paper, the conjugate heat transfer in electronic cooling is numerically simulated with the newly proposed algorithm CLEARER on collocated grid. Because the solid heat source and substrate are isolated from the boundary, special attention is given to deal with the velocity and temperature in the solid region in the full field computation. The influence of openings on the substrate, heat source height and their distribution along the substrate on the maximum temperature and overall Nusselt number is investigated. The numerical results show that the openings on the substrate can enhance the heat transfer as well as increasing the heat source height, meanwhile, by arranging the heat sources coarsely in the front part and densely in the rear part of the substrate, the thermal performance can also be increased. Then the results are analyzed from the viewpoint of field synergy principle, and it is shown that the heat transfer improvement can all be attributed to the better synergy between the velocity field and temperature field, which may offer some guidance in the design of electronic devices

  12. Constructal design of phase change material enclosures used for cooling electronic devices

    International Nuclear Information System (INIS)

    Kalbasi, Rasool; Salimpour, Mohammad Reza

    2015-01-01

    Recent developments in cooling methods for portable electronic devices have heightened the need for using the large latent heat capacity of phase change materials (PCM). The aim of the present study is to evaluate the thermal characteristics of a PCM-based heat sink with high conductive materials. The solution is acquired as a procession of optimization stages which starts with the elemental area and proceeds toward the first assembly. Every optimization stage is the result of maximizing the safe operation time without allowing the electronics to reach the critical temperature. Primarily, the degrees of freedom and constrains were defined and then by changing the geometrical parameters, the target function which is the maximization of operation time, was optimized. Results show that the melting process in rectangular enclosures with vertical fins attached to the heated bottom surface can be affected by the contact surface between the fin and PCM and the convection of the melted PCM. For a rectangular enclosure with a constant area, it is better to use wider enclosure than the square and thin one. Also results indicate that the ratio of the vertical fin thickness to the horizontal one does not have a considerable effect on performance. By increasing the number of enclosures, the contact surface is raised, but the performance is not necessarily improved. - Highlights: • Thermal characteristics of a finned PCM-based heat sink are studied. • Constructal theory was used to optimize the PCM enclosures. • By increasing the number of enclosures, the performance is not necessarily improved

  13. ETDR, The European Union's Experimental Gas-Cooled Fast Reactor Project

    International Nuclear Information System (INIS)

    Poette, Christian; Brun-Magaud, Valerie; Morin, Franck; Dor, Isabelle; Pignatel, Jean-Francois; Bertrand, Frederic; Stainsby, Richard; Pelloni, Sandro; Every, Denis; Da Cruz, Dirceu

    2008-01-01

    In the Gas-Cooled Fast Reactor (GFR) development plan, the Experimental Technology Demonstration Reactor (ETDR) is the first necessary step towards the electricity generating prototype GFR. It is a low power (∼50 MWth) Helium cooled fast reactor. The pre-conceptual design of the ETDR is shared between European partners through the GCFR Specifically Targeted Research Project (STREP) within the European Commission's 6. R and D Framework Program. After recalling the place of ETDR in the GFR development plan, the main reactor objectives, the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: - Sub-assembly technology for the starting core (pin bundle with MOX fuel and stainless steel cladding). - The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the starting core. - Starting Core reactivity management studies model including experimental GFR sub-assemblies. - Neutron and radiation shielding calculations using a specific MCNP model. The model allows evaluation of the neutron doses for the vessel and internals and radiation doses for maintenance operations. - System design and safety considerations, with a reactor architecture largely influenced by the Decay Heat Removal strategy (DHR) for de-pressurized accidents. The design of the reactor raises a number of issues in terms of fuel, neutronics, thermal-hydraulics codes qualification as well as critical components (blowers, IHX, thermal barriers) qualification. An overview of the R and D development on codes and technology qualification program is presented. Finally, the status of international collaborations and their perspectives for the ETDR are mentioned. (authors)

  14. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  15. Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using microchannels is an attractive alternative to bulky aluminum heat sinks. The channels can be integrated directly into a chip, and cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer improvement of a rectangular channel nanofluid heat sink with developing laminar flow, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to predict the thermal resistance and pumping power as a function of four design variables that include the channel width, the wall width, the flow velocity and the particle volume fraction. The parameters are optimized using a Genetic Algorithm (GA) with minimum thermal resistance as the objective function, and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid, and then with base fluid. Comparing the minimized thermal resistances revealed only a small benefit since the nanoparticles increase the pumping power which can alternately be diverted toward an increased velocity in a pure fluid heat sink. The benefit further diminishes with increase in available pumping power. -- Highlights: ► Validated model used to predict heat transfer and pumping power (p.p.) in nanofluids. ► Genetic algorithm used to minimize thermal resistance with p.p. constraint. ► Heat sink design independently optimized with nanofluid and base fluid coolant. ► No significant benefit through particle

  16. A Self-Contained Cold Plate Utilizing Force-fed Evaporation for Cooling of High flux Electronics

    Science.gov (United States)

    2007-01-01

    additional improvement. The second advanced heat sink to be covered was developed and studied by Sung and Mudawar [27]. They created a hybrid jet...cooling by using manifold microchannel heat sinks.” Advanced Electronic Packaging. 2 (1997) 1837-1842. [27] Sung, M. K. & Mudawar , I

  17. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  18. NASA-DoD Lead-Free Electronics Project

    Science.gov (United States)

    Kessel, Kurt

    2010-01-01

    This slide presentation reviews the current state of the lead-free electronics project. It characterizes the test articles, which were built with lead-free solder and lead-free component finishes. The tests performed and reported on are: thermal cycling, combine environments testing, mechanical shock testing, vibration testing and drop testing.

  19. A thermal analysis for the use of cooled rotating drums in electron processing

    International Nuclear Information System (INIS)

    Fletcher, P.M.; Williams, K.E.

    1988-01-01

    The thermal response of rotating drums under an electron beam has been analyzed using a finite difference thermal analysis computer code. Rotating drums are used to convey thin webs or films under the electron beams while controlling their temperature and, in some cases, in dissipating the exotherm involved in curing coatings applied to them. Each portion of the drum surface receives one heat pulse per rotation as it passes under the beam. The drum's thermal behavior shows both an immediate response to each heat pulse and a more gradual response to the average heat acquired over many pulses. After many rotations a steady state is reached where there is only an immediate response to each heat pulse but the gradual heating has tapered off. Nevertheless the steady state temperatures are strongly dependent on the gradual heating that led to them. Slow and fast speeds of rotation are compared showing the effects of both gradual and immediate heating components. The thermal analysis is extended to include the coolant fluid inside the drum shell and the web on the drum surface. The coolant's incoming temperature, volumetric flow rate, flow speed through the coolant channels and film coefficient between the outer shell and fluid are all included in the analysis. The small air gap between the web and drum, the convective cooling of the web to the ambient air, and the exothermic reaction of any chemical reactions on the web are included. The stresses produced in the drum shell (i.e. between the outer surface and the temperature-controlling fluid within the drum) are analyzed in order to define safe e-beam powers and rotating speeds. The analysis provides the basis for many design decisions and can give an end-user a full temperature history for his product for any set of conditions. (author)

  20. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  1. DELSY project: status and development Dubna Electron Synchrotron

    CERN Document Server

    Balalykin, N; Bykovsky, V

    2003-01-01

    The DELSY (Dubna Electron Synchrotron) project is under development at the Joint Institute for Nuclear Research. It is based on an acceleration facility donated to the Joint Institute for Nuclear Research by the Institute for Nuclear and High Energy Physics (NIKHEF, Amsterdam). The NIKHEF accelerator facility consists of the linear electron accelerator MEA, which has an electron energy of 700 MeV, and the electron storage ring AmPS, with a maximum energy of 900 MeV and a beam current of 200 mA. There are three phases to the construction of the DELSY facility. Phase I will be accomplished with the construction of a complex of free-electron lasers covering continuously the spectrum from the far infrared down to the ultraviolet (approx 150 nm). Phase II will be accomplished with the commissioning of the storage ring DELSY. Complete commissioning of the DELSY project will take place after finishing Phase III, the construction of an X-ray free-electron laser. This phase is considered as the ultimate goal of the pr...

  2. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    International Nuclear Information System (INIS)

    Rimpault, G.; Sunderland, R.; Mueller, A.C.

    2006-01-01

    Accelerator driven system (ADS) are complex in their conception. It is the reason why studies proceed step by step. At the moment, one can take advantage of the work performed within the PDS-XADS project (Preliminary Design Studies of an eXperimental ADS) of the 5. European programme. The PDS-XADS project has been the first one to define rather detailed plants for a demonstration of the ADS technology, making a full use of European expertise from different research organizations, industries and universities. This first step was using MOX fuel technology with a design mostly devoted to the technology demonstration. Elaborated designs are sufficiently advanced to confirm the good prospects in the feasibility of such ADS plants. Also weak points have been identified and it is not a surprise that the open issues appear in the most unusual parts of reactor design i.e. in the spallation module. For what concerns the accelerator, the high reliability/availability requirements remain an important issue. The strategy to overcome these difficulties is a standard practice in reliability engineering, a technical discipline for risk estimation and management that is followed for many industrial applications or products in various fields. The gas technology exhibits clear interests in terms of coolant chemical inertness, overall simplicity of the reactor (internals, components) that can be based on proven helium cooled reactor experience but the chosen volume power (56 W/cm 3 ) for this concept is an upper limit due to constraints to the mechanical behaviour of the steel of the cladding. On the other hand, the removal of the decay heat is very much associated to the use of active systems even in protected transients i.e. with proton beam interruption. The statistical safety analysis has demonstrated however that the heat exchangers are the less reliable part of the DHR system. A solution to overcome this difficulty is the use of redundant and diversified systems. The final

  3. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  4. Collaborative Computational Project for Electron cryo-Microscopy

    International Nuclear Information System (INIS)

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed

  5. Collaborative Computational Project for Electron cryo-Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  6. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    Science.gov (United States)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  7. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  8. Electronic-projecting Moire method applying CBR-technology

    Science.gov (United States)

    Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.

    2018-01-01

    Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.

  9. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  10. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  11. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  12. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  13. Characteristic Study of the Al 6061 T-6 used in RTP Primary Cooling System Using Scanning Electron Microscope (SEM)

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Yusof Abdullah; Tom, P.P.

    2011-01-01

    Reactor TRIGA PUSPATI (RTP) is the only nuclear research reactor in Malaysia. Since the first criticality on 28th June 1982, RTP has been going through the safe operation and well maintenance. Along the period of operation almost 30 years, some of the reactor system and component has been refurbished, upgraded and replaced to ensure the functionality and safety to the reactor itself as well as to protect personnel and environment. Primary cooling system is to provide the sufficient cooling to the reactor by removal of the heat generated in the reactor core through the heat transfer process in the heat exchanger. In 2009, RTP has been undergoing the primary cooling system upgrades. Primary cooling system components including aluminium pipes has been dismantled and replaced with the new system. As a part of the ageing management programme and radiation damage study, the disposed aluminum pipes were taken and used in this study. Scanning Electron Microscope (SEM) is used to study the surface topography and elemental composition in conjunction of energy dispersive x-ray spectroscopy analysis. This paper presents the study that has been conducted. (author)

  14. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    NARCIS (Netherlands)

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron

  15. Novel Front-end Electronics for Time Projection Chamber Detectors

    CERN Document Server

    García García, Eduardo José

    This work has been carried out in the European Organization for Nuclear Research (CERN) and it was supported by the European Union as part of the research and development towards the European detector the (EUDET) project, specifically for the International Linear Collider (ILC). In particle physics there are several different categories of particle detectors. The presented design is focused on a particular kind of tracking detector called Time Projection Chamber (TPC). The TPC provides a three dimensional image of electrically charged particles crossing a gaseous volume. The thesis includes a study of the requirements for future TPC detectors summarizing the parameters that the front-end readout electronics must fulfill. In addition, these requirements are compared with respect to the readouts used in existing TPC detectors. It is concluded that none of the existing front-end readout designs fulfill the stringent requirements. The main requirements for future TPC detectors are high integration, an increased n...

  16. THE PROFESSIONAL QUALIFICATION SOLIDARY EXTENSION PROJECT AT ELECTRONICS: TECHNICAL AUXILIAR

    Directory of Open Access Journals (Sweden)

    Glaucio Lopes Ramos

    2009-10-01

    Full Text Available This paper has the objective to present the extension course “professional qualification solidary extension project at electronics: technical auxiliar” in the Electrical Engineering course in the University Center of Belo Horizonte, as a professional qualification activity that make possible to young, adults and elderly people from poor communities the social inclusion and an opportunity to improve their access to the labor market. The course is part of extension program of Uni-BH, UniTrabalho e Renda, that is offered since 2006. The responsible for the course are professors and students of the Electrical Engineering course, and an electricity project is also offered. This paper presents the results of an evaluation that is made for the students at the beginning and at the end of the course and showed that the concepts had been assimilated by the students and the expectation of them related to the insertion at labor market is also improved.

  17. YouTube Video Project: A "Cool" Way to Learn Communication Ethics

    Science.gov (United States)

    Lehman, Carol M.; DuFrene, Debbie D.; Lehman, Mark W.

    2010-01-01

    The millennial generation embraces new technologies as a natural way of accessing and exchanging information, staying connected, and having fun. YouTube, a video-sharing site that allows users to upload, view, and share video clips, is among the latest "cool" technologies for enjoying quick laughs, employing a wide variety of corporate activities,…

  18. Classification of heterogeneous electron microscopic projections into homogeneous subsets

    International Nuclear Information System (INIS)

    Herman, G.T.; Kalinowski, M.

    2008-01-01

    The co-existence of different states of a macromolecular complex in samples used by three-dimensional electron microscopy (3D-EM) constitutes a serious challenge. The single particle method applied directly to such heterogeneous sets is unable to provide useful information about the encountered conformational diversity and produces reconstructions with severely reduced resolution. One approach to solving this problem is to partition heterogeneous projection set into homogeneous components and apply existing reconstruction techniques to each of them. Due to the nature of the projection images and the high noise level present in them, this classification task is difficult. A method is presented to achieve the desired classification by using a novel image similarity measure and solving the corresponding optimization problem. Unlike the majority of competing approaches, the presented method employs unsupervised classification (it does not require any prior knowledge about the objects being classified) and does not involve a 3D reconstruction procedure. We demonstrate a fast implementation of this method, capable of classifying projection sets that originate from 3D-EM. The method's performance is evaluated on synthetically generated data sets produced by projecting 3D objects that resemble biological structures

  19. Integrated three-dimensional module heat exchanger for power electronics cooling

    Science.gov (United States)

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  20. Optimized design for the scattering with angular limitation in projection electron-beam lithography based electron projection system

    International Nuclear Information System (INIS)

    Xiu, K.; Gibson, J. M.

    2000-01-01

    We investigate the design for a scattering with angular limitation in projection electron-beam lithography (SCALPEL) based electron projection system with a demagnification of -4. By a ''field-flip'' process we can construct a doublet in which the magnetic field has a flat feature in most of the optic column but opposite sign at two sides connected by a sharp transition region. Such a theoretical model can give a near zero chromatic aberration of rotation and much smaller field curvature and astigmatism. Compared with the conventional doublet, the total image blur caused by aberrations at 1/√(2) mm off-axis distance and 1.5 mrad semiangle aperture at the mask side is about only 24 nm for a column length of 400 mm. A shorter column, less than the current 400 mm, is also favored for further reducing the total aberration. These guarantee that we can choose a much larger aperture angle (compared with present 0.5 mrad) and beam current density in such a SCALPEL projection system to achieve higher throughput while still maintaining current resolution. A practical issue for possible magnetic lens design is also discussed. (c) 2000 American Vacuum Society

  1. Novel two-phase jet impingement heat sink for active cooling of electronic devices

    International Nuclear Information System (INIS)

    Oliveira, Pablo A. de; Barbosa, Jader R.

    2017-01-01

    Highlights: • Novel jet-based heat sink integrates the evaporator and the expansion device. • The system was tested with a small-scale oil-free R-134a compressor. • The thermodynamic performance of the cooling system was evaluated experimentally. • The single-jet maximum cooling capacity was 160 W, with a COP of 2.3 and a η 2nd of 8%. • Maximum heat transfer coefficient of 15 kW m −2 K −1 and surface temperature of 30 °C. - Abstract: This work presents a compact vapor compression cooling system equipped with a small-scale oil-free R-134a compressor and a jet-impingement-based heat sink that integrates the evaporator and the expansion device into a single unit. At the present stage of the development, a single orifice was used to generate the high-speed two-phase impinging jet on the heated surface. The effects of the compressor piston stroke, applied thermal load and orifice diameter on the system performance were quantified. The thermodynamic performance of the system was evaluated in terms of the temperature of the heated surface, impinging jet heat transfer coefficient, several system thermal resistances, coefficient of performance, second-law efficiency and second-law ratio. The coefficient of performance of the new refrigeration system increased with the cooling capacity, justifying its application in the removal of large thermal loads. The maximum system cooling capacity with a single jet was approximately 160 W, which was achieved with an orifice diameter of 500 μm and operation at a full compressor piston stroke. This condition corresponded to a COP of 2.3, a second-law efficiency of 8.0%, a jet impingement heat transfer coefficient above 15 kW m −2 K −1 and a heater surface temperature of approximately 30 °C.

  2. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  3. Electron-cooled accumulation of $4 × 10^9$ positrons for production and storage of antihydrogen atoms

    CERN Document Server

    Fitzakerley, DW; Hessels, E A; Skinner, T D G; Storry, C H; Weel, M; Gabrielse, G; Hamley, C D; Jones, N; Marable, K; Tardiff, E; Grzonka, D; Oelert, W; Zielinski, M

    2016-01-01

    Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen ($\\bar{{\\rm{H}}}$) production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

  4. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  5. Gas cooled fast reactor research in Europe (GCFR and GoFastR projects)

    International Nuclear Information System (INIS)

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2010-01-01

    The paper summarises the achievements of Euratom's research efforts into the GFR system, starting with the 5th Framework programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). It consists of the following sections: (i) Introduction; (ii) The potential of GFR; (iii) EURATOM GFR projects - (a) ALLEGRo: a GFR Demonstrator; (b) GFR Development; (c) Fuel concepts development; (d) Dissemination of project information; (e) Education and training; (f) Future direction of the project; and (g) International collaboration

  6. A Quick Overview of Compact Air-Cooled Heat Sinks Applicable for Electronic Cooling—Recent Progress

    Directory of Open Access Journals (Sweden)

    Chi-Chuan Wang

    2017-02-01

    Full Text Available This study provides an overview regarding enhancement of an air-cooled heat sink applicable for electronic cooling subject to cross-flow forced convection. Some novel designs and associated problems in air-cooled heat sinks are discussed, including the drawback of adding surfaces, utilization of porous surfaces such as metal foam or carbon foam, problems and suitable applicable range of highly interrupted surfaces (louver or slit and longitudinal vortex generator. Though the metal foam may accommodate significant surface area, it is comparatively ineffective for air-cooling application due to its much lower fin efficiency, and this shortcoming can be improved by integrating with solid fin. For highly dense fin spacing (e.g., <1.0 mm, cannelure or grooved surface may be a better choice, and fin structure with periodic contraction and expansion may not be suitable for it introduces additional pressure drop penalty. The partial bypass concept, which manipulates a larger temperature difference at the trailing part of heat sink, can be implemented to significantly reduce the pressure drop. Through some certain niche operation, t the thermal resistance of the partial bypass heat sink may be superior to the conventional heat sink. The trapezoid fin surface featuring easier manufacturing and a smaller weight is shown to have competitive performance against traditional rectangular fin geometry. The IPFM (Interleaved Parallelogram Fin Module design which combines two different geometrical fins with the odd number fins being rectangular shape, and parallelogram shape in even fin numbers, shows 8%–12% less surface than conventional design but still offers a lower thermal resistance than the conventional rectangular heat sink in lower flowrate operation. The cross-cut design shows appreciable improvements as compared to the conventional plate fin design especially in high velocity regime and the single cross-cut heat sinks are superior to multiple cross

  7. Treating cooling pond water for Wabamun Lake level mitigation project in Alberta

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Dealing with the challenge of recharging Wabamun Lake by treating nearby cooling pond water, fed by the North Saskatchewan River, and returning it to the lake, is discussed. To deal with the problem, TransAlta Utilities constructed a treatment plant in 1997 next to the 2,029 MW Sundance power plant to mitigate the effect the power plant's ongoing and historical effect on the lake's water level. The objective of the treatment plant is to treat cooling pond water and return it to the lake to raise water levels there, which have been significantly reduced over the last 25 years mostly by power plant intake, but also by lack of rainfall, surface runoff, and natural evaporation. At the Treatment Facility the water to be treated is first chlorinated to kill zooplankton, algae and bacteria, followed by adjusting the pH using sulfuric acid. Alum coagulant is used to destabilize colour, particles and colloids. The next step is feeding the water to the Actiflo clarifiers which use microsand to provide increased surface area for floc attachment, and to act as ballast. Clarified water from the Actiflo system is then fed to to the Dusenflo filters to remove the largest particles of suspended solids, and through a finer sand media to remove the remaining turbidity, colour and bacteria. Thiosulfate is used in the ozonation system to inactivate any remaining bacteria and zooplankton in the filtered water, before discharging it to the lake. The cooling towers, which are part of the system, ensure that the treated water returned to the lake is kept at a constant temperature, varying no more than three degrees C from the lake water temperature. 3 figs

  8. Optimization of the steam generator project of a gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Sakai, Massao

    1978-01-01

    The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)

  9. High-temperature gas-cooled reactor steam cycle/cogeneration: lead project strategy plan

    International Nuclear Information System (INIS)

    1982-07-01

    The strategy, contained herein, for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. budget priorities and constraints, cost/risk sharing between the public and private sector, Project organization and management, and Project financing. These problems are further complicated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project

  10. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  11. Problems and Projects Based Approach For Analog Electronic Circuits' Course

    Directory of Open Access Journals (Sweden)

    Vahé Nerguizian

    2009-04-01

    Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.

  12. Singular Strategic Project on bio climatic architecture and solar cooling (PSE-ARFRISOL); Proyecto Singular Estrategico sobre arquitectura bioclimatica y frio solar (PSE-ARFRISOL)

    Energy Technology Data Exchange (ETDEWEB)

    Heras Celemin, M. R.

    2008-07-01

    The R and D activities for the scientific-technological singular strategic Project on Bio climatic Architecture and Solar Cooling PSE-ARFRISOL are being carried out from November 2005 to December 2010. This project aims to demonstrate that bio climatic architecture and low-temperature solar energy are the appropriate basic elements for climatization of future buildings. (Author) 12 refs.

  13. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  14. Linux toys II 9 Cool New Projects for Home, Office, and Entertainment

    CERN Document Server

    Negus, Christopher

    2006-01-01

    Builds on the success of the original Linux Toys (0-7645-2508-5) and adds projects using different Linux distributionsAll-new toys in this edition include a car computer system with built-in entertainment and navigation features, bootable movies, a home surveillance monitor, a LEGO Mindstorms robot, and a weather mapping stationIntroduces small business opportunities with an Internet radio station and Internet caf ̌projectsCompanion Web site features specialized hardware drivers, software interfaces, music and game software, project descriptions, and discussion forumsIncludes a CD-ROM with scr

  15. Occupational dose for the water cooling system of the SEAFP project

    International Nuclear Information System (INIS)

    Sandri, S.; Di Pace, L.

    1996-01-01

    The Occupational Radiation Exposure (ORE) for the water primary cooling system (PCS) of the SEAFP was assessed taking into account the first wall/blanket section only. All the potential radiological sources were considered and the analysis was restricted to the most important source at the PCS, the activated corrosion products (ACP). The relevant dose rate was evaluated using the computer code MCNP. Comparison of the results with the respective values measured at the fission PWR plants made it possible to transfer the parameters relevant to the working activities to the SEAFP PCS. Maintenance and inspection were found to be the only working tasks applicable to the SEAFP circuit and the worker access was considered to be allowed 24 h after the plant shut down only. 12 refs., 11 tabs

  16. Tungsten covered graphite and copper elements and ITER-like actively cooled tungsten divertor plasma facing units for the WEST project

    International Nuclear Information System (INIS)

    Guilhem, D; Bucalossi, J; Burles, S; Corre, Y; Ferlay, F; Firdaouss, M; Languille, P; Lipa, M; Martinez, A; Missirlian, M; Proust, M; Richou, M; Samaille, F; Tsitrone, E

    2016-01-01

    After a brief introduction giving some insight of the WEST project, we present the three types of plasma facing units (PFUs) developed for the WEST project taking into account the envisaged main scenarios: (1) high power short pulse scenario (a few seconds) where the objective is to maximize the power handling of the PFUs, up to 20 MW m −2 , (2) high fluence scenario (a few 100 s) on actively cooled ITER-like tungsten (W) PFUs, up to 10 MW m −2 during 1000 s. For the graphite PFUs, the high heat flux tests have been done at GLADIS (ion beam test facility), and for the CuCrZr PFUs on the JUDITH (electron beam test facility). The tests were successful, as no damage occurred for the different load cases. This confirms that the modelling done during the design phase is appropriate to describe these PFUs. Series productions are expected to be achieved by the end of 2015 for the graphite and CuCrZr PFUs, and few ITER-like W PFUs are expected at the beginning of 2016. The lower divertor will be complemented with ITER-like W PFUs as soon as available from our partners so that different fabrication procedures could be evaluated in a real industrial process and a real tokamak environment. (paper)

  17. Contributions to the second workshop on medium energy electron cooling -MEEC96

    International Nuclear Information System (INIS)

    MacLachlan, J.

    1997-09-01

    MEEC96 was a workshop devoted primarily to discussion within four working groups, not a mini-conference of prepared reports. Therefore, although there are contributions bearing the name of a single author, much of what was learned came in extemporaneous discussion of the issues posed to the participants. The original plan to produce formal proceedings has been dropped because of the limited number of participants willing to write up their own contributions and because of the difficulty of converting free-wheeling discussion to the written word. The premsise for the 1996 gathering was to set a critique of Fermilab''s R ampersand D effort at cooling a ring of 8 GeV bar p''s. Separate abstracts have been submitted to the energy database for contributions to this workshop

  18. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  19. Project planning of Gen-IV sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-01

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO 2 Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety

  20. Project planning of Gen-IV sodium cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-15

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO{sub 2} Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety.

  1. Toward sub-Kelvin resistive cooling and non destructive detection of trapped non-neutral electron plasma

    Science.gov (United States)

    Di Domizio, S.; Krasnický, D.; Lagomarsino, V.; Testera, G.; Vaccarone, R.; Zavatarelli, S.

    2015-01-01

    A resonant circuit tuned to a particular frequency of the motion of charged particles stored in a Penning trap and connected to a low noise amplifier allows, at the same time, cooling and non destructive detection of the particles. Its use is widely diffused when single or few particles are stored near the centre of a hyperbolic Penning trap. We present a consistent model that predicts the shape of the induced signal when the tuned circuit is used to detect and cool the axial motion of a cold non neutral plasma stored in an open-ended cylindrical Penning trap. The model correctly accounts for the not negligible axial plasma size. We show that the power spectrum of the signal measured across the tuned circuit provides information about the particle number and insights about the plasma temperature. We report on the design of a HEMT-based cryogenic amplifier working at 14.4 MHz and 4.2 K and the results of the noise measurements. We have measured a drain current noise in the range from 6 to 17 pA/√Hz, which corresponds to an increase of the tuned circuit equivalent temperature of at maximum 0.35 K. The cryogenic amplifier has a very low power consumption from few tens to few hundreds of μW corresponding to a drain current in the range 100-800 μ A. An additional contribution due to the gate noise has been identified when the drain current is below 300 μA above that value an upper limit of the increase of the equivalent tuned circuit temperature due to this contribution of 0.02 K has been obtained. These features make the tuned circuit connected to this amplifier a promising device for detecting and cooling the axial motion of an electron plasma when the Penning trap is mounted inside a dilution refrigerator.

  2. The design, safety and project development status of the modular high temperature gas-cooled reactor in the United States

    International Nuclear Information System (INIS)

    Mears, L.D.; Dean, R.A.

    1987-01-01

    The cooperative government and industry Modular High Temperature Gas-Cooled Reactor (MHTGR) Program in the United States has advanced a 350 MW(t) plant design through the conceptual development stage. The system incorporates an annular core of prismatic fuel elements within a steel pressure vessel connected, in a side-by-side arrangement, by a concentric duct to a second steel vessel containing a steam generator and helium coolant circulator. The reference plant design consists of four reactor modules installed in separate below-grade silos, providing steam to two conventional turbine generators. The nominal net plant output is 540 MW(e). The small reactor system takes unique advantage of the high temperature capability of the refractory coated fuel and the large thermal inertia of the graphite moderator to provide a design capable of withstanding a complete loss of active core cooling without causing excessive core heatup and significant release of fission products from the fuel. Present program activities are concentrated on interactions with the Nuclear Regulatory Commission aimed at obtaining a Licensability Statement. A project initiative to build a prototype plant which would demonstrate the MHTGR-unique licensing process, plant performance, costs and schedule plus establish an industrial infrastructure to proceed with follow-on commercial MHTGR plants by the turn of the century, is being undertaken by the utility/vendor participants (author)

  3. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  4. Second and third stages of project for the implementation of two asymmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1985-04-01

    The second and third steps of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code are presented. These steps consists in activate the option for 2 loops already present in ALMOD3 original version and to introduce the GEVAP model for one of the two steam generators. In ALMOD3 original version the simulation of two non-symmetric loops was only possible using external functions, which provide the removed heat for each time step for one of the steam generators. With the introduction of GEVAP model, it is possible to obtain more accurate results. Due to its simplicity, the computer time required for execution is short. The results obtained in Angra 1 simulations are presented, analysed and compared with results obtained using one loop for simulating symmetric transients. (Author) [pt

  5. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  6. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Science.gov (United States)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  7. Pumped helium system for cooling positron and electron traps to 1.2 K

    CERN Document Server

    Wrubel, J; Kolthammer, W S; Larochelle, P; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Borbely, J S; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J; Speck, A

    2011-01-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ((H) over bar) atoms. (H) over bar atoms that can be trapped must have an energy in temperature units that is below 0.5 K-the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, (H) over bar atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an (H) ove...

  8. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  9. Transient cooling of electronics using phase change material (PCM)-based heat sinks

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2008-01-01

    Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics model was proposed to simulate the problem and demonstrated good agreement with experimental data. Results indicate the potential for PCM-based heat sinks for use in intermittent-use devices

  10. Project Guardian: Optimizing Electronic Warfare Systems for Ground Combat Vehicles

    National Research Council Canada - National Science Library

    Parks, Jack G; Jackson, William; Revello, James; Soltesz, James

    1995-01-01

    .... The study, Project Guardian, represents a new process for determining the optimum set of sensors and countermeasures for a specific vehicle class under the constraints of threat projection, combat...

  11. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    Science.gov (United States)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  12. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  13. Hybrid electric vehicle thermal management and study of the power electronics cooling; Gestion thermique du vehicule hybride et etude du refroidissement de l'electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Rouaud, C.

    2004-07-01

    For decreasing the engine's consumption and pollutant emissions, automobile makers are developing hybrid electric vehicles incorporating an electric motor and power electronics leading to new under-hood thermal constraints. This is why we first present the tests results of a new common cooling circuit for all the vehicle components. With the aim of developing new energy management strategies between the components, we have chosen the nodal method to simulate the thermal behaviour of the engine, the electric motor, the power electronics and the cooling circuit. The second part of this thesis deals with a thermal-hydraulic analysis of several power electronics cooling methods, which has led us to choose the multiple jet impingement cooling. Several tests have been made for characterising the performances of this technique and enabled us to establish an optimal configuration. The last part shows the thermal simulation results run with the help of an innovative reduction method of thermal models applied to the power electronics. This technique allowed us to have a low cost of time simulation and will permit, in the future, the real-time control of the hybrid electric vehicle components. (author)

  14. A cool present for LEIR

    CERN Multimedia

    2005-01-01

    LEIR (Low Energy Ion Ring), which will supply lead ions to the LHC experiments, has taken delivery of one of its key components, its electron cooling system. From left to right, Gérard Tranquille, Virginia Prieto and Roland Sautier, in charge of the electron cooling system for LEIR at CERN, and Christian Lacroix, in charge of installation for the LEIR machine. On 16 December, the day before CERN's annual closure, the LEIR teams received a rather impressive Christmas present. The "parcel" from Russia, measuring 7 metres in length and 4 metres in height, weighed no less than 20 tonnes! The component will, in fact, be one of the key elements of the future LEIR, namely its electron cooling system. LEIR is one of the links in the injector chain that will supply lead ions to the LHC experiments, in particular ALICE (see Bulletin No. 28/2004 of 5 July 2004), within the framework of the I-LHC Project. The electron cooling system is designed to reduce and standardise transverse ion velocity. This focuses the bea...

  15. Final Technical Report on STTR Project DE-FG02-02ER86145 Pressurized RF Cavities for Muon Ionization Cooling

    International Nuclear Information System (INIS)

    Rolland Johnson

    2006-01-01

    This project was to design and build an RF test cell (TC), which could be operated at 800 MHz, filled with high pressure gases including hydrogen, at temperatures down to that of liquid nitrogen, in strong magnetic fields, in a strong radiation environment, and with interchangeable electrodes, in order to examine the use of high-pressure RF cavities for muon beam cooling

  16. Project outline of high quality electron beam generation at Waseda University

    Energy Technology Data Exchange (ETDEWEB)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T. [Waseda Univ., Advanced Research Institute for Science and Engineering, Shinjuku, Tokyo (Japan); Hirose, T. [Tokyo Metropolitan Univ. (Japan). Dept. of Physics

    2000-03-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  17. Project outline of high quality electron beam generation at Waseda University

    International Nuclear Information System (INIS)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T.; Hirose, T.

    2000-01-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  18. Developing Web Services for Technology Education. The Graphic Communication Electronic Publishing Project.

    Science.gov (United States)

    Sanders, Mark

    1999-01-01

    Graphic Communication Electronic Publishing Project supports a Web site (http://TechEd.vt.edu/gcc/) for graphic communication teachers and students, providing links to Web materials, conversion of print materials to electronic formats, and electronic products and services including job listings, resume posting service, and a listserv. (SK)

  19. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project[KTH = Royal Institute of Technology, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hyun Sun Park; Truc-Nam Dinh [Royal Inst. of Technology (Sweden)

    2006-04-15

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  20. Project-Based Learning in Electronic Technology: A Case Study

    Science.gov (United States)

    Li, Li

    2015-01-01

    A case study of project-based learning (PBL) implemented in Tianjin University of Technology and Education is presented. This multidiscipline project is innovated to meet the novel requirements of industry while keeping its traditional effectiveness in driving students to apply knowledge to practice and problem-solving. The implementation of PBL…

  1. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration. Final technical project report

    Energy Technology Data Exchange (ETDEWEB)

    Federspiel, Clifford; Evers, Myah

    2011-09-30

    Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the

  2. Project objectives and progress at the Research Laboratory of Electronics

    International Nuclear Information System (INIS)

    Allen, J.

    1983-01-01

    Molecule microscopy, semiconductor surface studies, atomic resonance and scattering, reaction dynamics at semiconductor surfaces, X-ray diffuse scattering, phase transitions in chemisorbed systems, optics and quantum electronics, photonics, optical spectroscopy of disordered materials and X-ray scattering from surfaces, infrared nonlinear optics, quantum optics and electronics, microwave and millimeter wave techniques, microwave and quantum magnetics, radio astronomy, electromagnetic wave theory and remote sensing, electronic properties of amorphous silicon dioxide, photon correlation spectroscopy and applications, submicron structures fabrication, plasma dynamics, optical propagation and communication, digital signal processing, speech communication, linguistics, cognitive information processing, custom integrated circuits, communications biophysics, and physiology, are discussed

  3. Water Cooling for the Frontend Electronics and a modular Phase Separator for the COMPASS Silicon Detectors and Alignment for the 2012 Primakoff Run

    CERN Document Server

    Holzgartner, Bernd

    The COMPASS experiment at CERN uses sili- con microstrip detectors for beam definition and vertex reconstruction. Since 2009, the detectors are operated at cryogenic temperatures to min- imize radiation damage. This thesis describes the development of a new, modular phase sep- arator for the liquid nitrogen cooling system of the detector modules as well as the construction and the commissioning of a water cooling sys- tem for the frontend electronics of these detec- tors. In addition, results of the alignment stud- ies for the 2012 Primakoff run are presented.

  4. Cold Electronics for Giant Liquid Argon Time Projection Chambers

    International Nuclear Information System (INIS)

    Radeka, V.; De Geronimo, G.; Chen, H.; Deptuch, G.; Lanni, F.; Li, S.; Nambiar, N.; Rescia, S.; Thorn, C.; Yarema, R.; Yu, B.

    2011-01-01

    The choice between cold and warm electronics (inside or outside the cryostat) in very large LAr TPCs (>5-10 ktons) is not an electronics issue, but it is rather a major cryostat design issue. This is because the location of the signal processing electronics has a direct and far reaching effect on the cryostat design, an indirect effect on the TPC electrode design (sense wire spacing, wire length and drift distance), and a significant effect on the TPC performance. All these factors weigh so overwhelmingly in favor of the cold electronics that it remains an optimal solution for very large TPCs. In this paper signal and noise considerations are summarized, the concept of the readout chain is described, and the guidelines for design of CMOS circuits for operation in liquid argon (at ∼89 K) are discussed.

  5. Outline of FNCA project on application of electron accelerator

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2005-01-01

    FNCA (Forum for Nuclear Cooperation in Asia) activities in the field of electron accelerator applications are reported. The paper mainly reports on the achievement of the 3rd workshop to discuss status of utilization of electron accelerator for thin films/hydrogel in the FNCA participating countries, China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam, held in August, 2003, at Kuala Lumpur. Cross-linking of thin film from sago starch polymer blend using the Cureton (200 keV, 20 mA) and cross-linking of hydrogel for wound dressing and CMC paste-like sheet using the medium energy (3.0 MeV, 30 mA) electron accelerator of MINT (from Malaysia) were successfully demonstrated. Efforts are being made by Vietnam, Thailand and Philippines having no electron accelerator to acquire the machine for R and D and commercial use in the near future. (S. Ohno)

  6. Experimental investigation of dissociation pathways of cooled HeH+ following valence electron excitation at 32 nm by intense free-electron-laser radiation

    International Nuclear Information System (INIS)

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-01-01

    The dissociation pathways of HeH + have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He + (1s)+H(nl) and He(1snl)+H + were separated and the He(1snl)+H + channel was particularly studied by coincidence detection of the He and H + fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be σ He + +H /σ He+H + =0.96±0.11 for vibrationally hot and 1.70±0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH + . The fragment angular distributions showed that dissociation into the He+H + channel mostly (∼70%) proceeds through 1 Π states, while for the He + +H channel 1 Σ and 1 Π states are of about equal importance.

  7. Data acquisition electronics for NESTOR experiment: project and tests

    International Nuclear Information System (INIS)

    Ameli, Fabrizio; Bonori, Maurizio; Bottai, Sergio; Capone, Antonio; Curti, Franco; Desiati, Paolo; De Marchis, Giancarlo; Massa, Fabrizio; Masullo, Rocco; Piccari, Luigi; Vannucci, Italo

    1999-01-01

    The NESTOR detector, at present under construction, is a telescope for high-energy neutrino astronomy. The apparatus, based on Cherenkov light detection, will be deployed in deep sea (about 4000 m) near the S.W. Greek coast. We briefly describe the NESTOR detector, then we describe with more details the electronics for NESTOR data acquisition and transmission. The detector signals are sampled at 200 MHz and all the resulting information are transmitted to the laboratory on 30 km long electro-optical cable. The estimated Mean Time Between Failure of the full electronics system is greater than 20 years. Tests performed on the first prototypes confirm the main characteristics of these electronics: the dynamic range allowed for the signals is bigger than 1000, the pulse shape is reconstructed with an 8 bit ADC accuracy and the resolution in the measurement of the signal 'threshold crossing time' is better than 200 ps

  8. NASA-DoD Lead-Free Electronics Project

    Science.gov (United States)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  9. The Dismantling Project for the Large Electron Positron (LEP) Collider

    CERN Document Server

    Poole, John

    2002-01-01

    The LEP accelerator was installed in a circular tunnel 27 km in length with nine access points distributed around the circumference in the countryside and villages which surround CERN's sites. The dismantling project involved the removal in less than 15 months of around 29000 tonnes of equipment from the accelerator itself and a further 10000 tonnes from the four experiments - all of which were located at an average depth of 100 m below ground level. There was no contamination risk in the project and less than 3% of the materials removed were classified as radioactive. However, the materials which were classified as radioactive have to be temporarily stored and they consume considerable resources. The major difficulties for the project were in the establishment of the theoretical radiological zoning, implementation of the traceability systems and making appropriate radiation measurements to confirm the zoning. The absence of detailed guidelines from the French authorities, having no threshold levels for relea...

  10. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  11. Using high temperature gas-cooled reactors for energy neutral mineral development processes – A proposed IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Haneklaus, N.; Reitsma, F.; Tulsidas, H.; Dyck, G.; Koshy, T.; Tyobeka, B.; Schnug, E.; Allelein, H-J.; Birky, B.

    2014-01-01

    Today, uranium mined from various regions is the predominant reactor fuel of the present generation of nuclear power plants. The anticipated growth in nuclear energy may require introducing uranium/thorium from unconventional resources (e.g. phosphates, coal ash or sea water) as a future nuclear reactor fuel. The demand for mineral commodities is growing exponentially and high-grade, easily-extractable resources are being depleted rapidly. This shifts the global production to low-grade, or in certain cases unconventional mineral resources, the production of which is constrained by the availability of large amounts of energy. Numerous mining processes can benefit from the use of so-called “thermal processing”. This is in particular beneficial for (1) low grade deposits that cannot be treated using the presently dominant chemical processing techniques; (2) the extraction of high purity end products; and (3) the separation of high value or unwanted impurities (e.g. uranium, thorium, rare earths, etc.) that could be used/sold, when extracted, which will result in cleaner final products. The considerably lower waste products also make it attractive compared to chemical processing. In the future, we may need to extract nuclear fuel and minerals from the same unconventional resources to make nuclear fuel- and low grade ore processing feasible and cost-effective. These processes could be sustainable only if low-cost, carbon free, reliable energy is available for comprehensive extraction of all valuable commodities, for the entire life of the project. Nuclear power plants and specifically High Temperature Gas-cooled Reactors (HTGRs) can produce this energy and heat in a sustainable way, especially if enough uranium/thorium can be extracted to fuel these reactors.

  12. Final report for the Department of Energy funded cooperative agreement ''Electronic Research Demonstration Project'' [University electronic research administration demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, John

    1998-07-31

    This is the final report for the Department of Energy (DOE) funded cooperative agreement ''Electronic Research Demonstration Project (DE-FC02-92ER35180)'' for the period August 1994-July 1998. The goal of the project, referred to as NewERA, was to demonstrate the use of open standards for electronic commerce to support research administration, otherwise referred to as Electronic Research Administration (ERA). The NewERA demonstration project provided a means to test interagency standards developed within the Federal Grant Electronic Commerce Committee, a group comprised of federal granting agencies. The NewERA program was initiated by DOE. NewERA was comprised of three separate, but related, ERA activities in preaward administration, postaward administration, and secure Internet commerce. The goal of New ERA was to demonstrate an open standard implementation of ERA using electronic data interchange, e-mail and Internet transaction security between grant applicants and DOE, along with t h e other participating agencies.

  13. Development of an electronic board for a neutrino telescope project

    International Nuclear Information System (INIS)

    Gabrielli, Alessandro; Gandolfi, Enzo; Ricci, Pier Paolo

    2006-01-01

    The NEMO (NEutrino Mediterranean Observatory) collaboration is involved in research and development for the construction of an underwater km 3 scale Cherenkov neutrino detector. The detector will consist of about four thousands of optical modules that interface with coaxial cables to electronics cards. The detector is connected to the shore by an electro-optical cable for data transmission and power supply. The board also provides signal synchronization, filtering, data compression and packing. We describe the details of this electronic control part, which has been developed using commercial components and the very high-speed, Hardware Description Language (VHDL). The design was implemented on a programmable device. A test-bench system was also designed using a PC-based acquisition board running on the National Instrument LabVIEW environment

  14. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  15. Design project of the dosimetry control system in the independent CO2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, Vol. V

    International Nuclear Information System (INIS)

    1964-01-01

    Design project of the dosimetry control system in the independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels includes the following: calculations of CO 2 gas activity, design of the dosimetry control system, review of the changes that should be done in the RA reactor building for installing the independent CO 2 loop, specification of the materials with cost estimation, engineering drawings of the system [sr

  16. Learning English through Automotive Electronics (Project LETAE), Final Evaluation Report, 1992-93. OREA Report.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    Learning Through Automotive Electronics (Project LETAE) was a federally funded program serving 77 limited-English-proficient (LEP) students and 5 English-proficient students in an automotive computer electronics course in 1992-93, its third year of operation. The program provided instruction in English-as-a-Second-Language (ESL), native language…

  17. Electronic Mentoring of LIS Research Utilizing BITNET: An ACRL Pilot Project.

    Science.gov (United States)

    Gregory, Vicki L.

    1992-01-01

    Describes an ACRL (American College and Research Libraries) project that utilized the electronic conferencing facility of BITNET to provide a system of mentoring for academic librarians conducting research. Results of an electronic mail survey of participants that examined experience levels, attitudes, problems, and communication patterns are…

  18. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  19. A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    Science.gov (United States)

    Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José

    2015-01-01

    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…

  20. CDIO Projects In DTU’s B.Eng. In Electronics Study Programme

    DEFF Research Database (Denmark)

    Kjærgaard, Claus; Brauer, Peter; Andersen, Jens Christian

    2011-01-01

    the paper is meant as an inspiration to others working on implementing cross disciplinary projects in their curriculum. In the B.Eng. in Electronics programme each of the first 4 semester contains a cross disciplinary project, two of these are CDIO Design Build courses which are placed in the 1st and 4th...

  1. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  2. A search for supersymmetric electrons with the Mark II detector at PEP [Positron Electron Project

    International Nuclear Information System (INIS)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e + e - interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, γ, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb -1 of data, resulting in a cross section limit of less than 2.4 x 10 -2 pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c 2 for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs

  3. A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)

    Energy Technology Data Exchange (ETDEWEB)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.

  4. National Skills Standards Development Program: Organization and Operation of Technical Committees To Develop National Skill Standards for Competency in the Electronics Industry. The Third Party Summative Evaluation of the Electronic Industries Foundation Project. Phase I & II. Final Report.

    Science.gov (United States)

    Losh, Charles

    The Electronics Industries Foundation was awarded a project to develop national entry-level standards and a certification system. Ten specialties were included: automotive electronics, avionics, biomedical electronics, business machines, consumer products electronics, general electronics, industrial electronics, instrumentation, microcomputer, and…

  5. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  6. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  7. SATURNUS: the UCLA infrared free-electron laser project

    International Nuclear Information System (INIS)

    Dodd, J.W.; Hartman, S.C.; Park, S.; Pellegrini, C.; Rosenzweig, J.B.; Smolin, J.A.; Hairapetian, G.; Kolonko, J.; Barletta, W.A.; Cline, D.B.; Favis, J.G.; Joshi, C.J.; Luhmann, N.C. Jr.; Ivanchenkov, S.N.; Khlebnikov, A.S.; Lachin, Y.Y.; Varfolomeev, A.A.

    1991-01-01

    A compact 20 MeV linac with an RF laser-driven electron gun will be used to drive a high-gain (10cm gain length), 10.6 μm wavelength FEL amplifier, operating in the SASE mode. Saturnus will mainly study FEL physics in the high-gain regime, including start-up from noise, optical guiding, sidebands, saturation, and superradiance, with emphasis on the effects important for future short wavelength operation of FEL's. The hybrid undulator was designed and built at the Kurchatov Inst. of Atomic Energy in the USSR. The primary magnetic flux is provided by C-shaped iron yokes, where between the poles thin blocks of neodymium-iron-boron magnets are placed to provide additional magnetic flux along the undulator axis. The field strength is adjusted by moving the thin Nd-Fe-B blocks on a set screw mount. The initial assembly will have forty periods, each 1.5 cm long. The gap distance between the yoke pole-pieces is fixed at 5 mm. The undulator field has been measured, yielding on an axis peak value of 6.6kGauss, which closely matches computer simulations

  8. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  9. Thermal study and design of a cooling system for the electronics boards of the LHCb SciFi tracker

    CERN Multimedia

    Hamrat, Sonia

    2017-01-01

    The LHCb detector, one of the four large LHC detectors, has launched a major upgrade program with the goal to enormously boost the rate and selectivity of the data taking. The LHCb upgrade comprises the complete replacement of several sub-detectors, the substantial upgrade of the front-end electronics and the introduction of a new paradigm, namely the suppression of a hardware trigger by reading out the whole experiment synchronously at a rate of 40 MHz. The high readout frequency, unprecedented in a particle physics experiment, and the harsh radiation environment related to the increased LHC intensity, are the major challenges to be addressed by the new sub-detectors. The development and construction of a new large-scale tracking detector, based on a novel scintillating fibre (SciFi) technology, read out with silicon photomultipliers (SiPM), is one of the key projects of the LHCb upgrade program. The LHCb SciFi detector will count more than 500,000 channels. It is composed of 12 layers arranged in 3 tracking...

  10. Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations

    International Nuclear Information System (INIS)

    Bahiraei, Mehdi; Heshmatian, Saeed

    2017-01-01

    Highlights: • Cooling of an electronic processor is performed by means of a biological nanofluid. • Heat transfer coefficient rises by raising either Reynolds number or concentration. • By increasing Reynolds number and concentration, temperature becomes more uniform. • Surface temperature reduces by augmenting either Reynolds number or concentration. • Irreversibility in heat sink reduces by raising concentration and Reynolds number. - Abstract: Hydrothermal characteristics and entropy generation of a biological nanofluid containing silver nanoparticles are evaluated in a liquid block heat sink for cooling of an electronic processor. The liquid block under study has 20 channels, and its bottom surface is placed on the processor. Nanoparticles synthesized through plant extract technique from green tea leaves are employed. The degree of improvement in cooling, pumping power, thermal performance and irreversibilities are examined for case of using the nanofluid instead of water. By increasing Reynolds number and particle concentration, temperature distribution becomes more uniform in processor surface and heat transfer coefficient also increases. Furthermore, the surface temperature decreases with increasing concentration and Reynolds number, such that it reduces by 2.21 °C in case of using the nanofluid with concentration of 1% instead of water at Reynolds number of 500. Moreover, maximum temperature of the processor surface decreases by increasing Reynolds number and concentration and therefore, the possibility of hot spot formation diminishes. Results show that at a constant work consumption, the nanofluid also presents better cooling compared to water. Entropy generation analysis reveals that irreversibility in the whole liquid block decreases with increasing either concentration or Reynolds number, which is a positive result based on second law of thermodynamics.

  11. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  12. Identification of Low Momentum Electrons in The Time Projection Chamber of The ALICE Detector.

    CERN Document Server

    Mwewa, Chilufya

    2013-01-01

    This paper presents results obtained in the study to identify noisy low momentum electrons in the Time Projection Chamber (TPC) of the ALICE detector. To do this, the Circle Hough Transform is employed under the openCV library in python programming. This is tested on simulated tracks in the transverse view of the TPC. It is found that the noisy low momentum electrons can be identified and their exact positions in the transverse plane can be obtained.

  13. The near-infrared free-electron-laser project at Darmstadt

    International Nuclear Information System (INIS)

    Aab, V.; Alrutz-Ziemssen, K.; Genz, H.; Graef, H.D.; Richter, A.; Weise, H.

    1988-07-01

    The superconducting 130 MeV electron accelerator at Darmstadt will be modified for FEL experiments. The FEL project is planned with an electron beam in an energy range from 35 to 50 MeV corresponding to wavelengths from 4.9 to 2.4 μm. The planned FEL setup, a high current injection, the design of a hybrid undulator and the results of simulations of the FEL are presented. (orig.)

  14. Modelling of the passive cooling containment system: European Incon Project; Modelacion del sistema de refrigeracion pasivo de contencion proyecto europeo INCON

    Energy Technology Data Exchange (ETDEWEB)

    Ibarrondo, M. J.; Lucas, A. M.; Perezagua, R. L. [Empresarios Agrupados, A. I. E. Madrid (Spain)

    2000-07-01

    The containment system plays a key role in the prevention and mitigation of severe accidents. For this reason, the European Utility Requirements (EUR) stress the importance of developing innovative designs which address important technological challenges. Among the different design options, a double concrete containment with a passive cooling containment system (PCCS) has been proposed. This system consists of three integrated components: an internal heat exchanger (located inside the primary containment), an external heat exchanger, and and intermediate exchanger (to connect the other two). The INCON (INnnovative CONtainmente Cooling for Double Concrete Containment) project aims to demonstrate the technical viability of the PCCS concept by means of a series of tests and simulations. One of the project's achievements is the identification and characterisation of the heat transfer phenomenon in the three integrated heat exchangers. One of the tasks within the INCON project was to obtain a validated thermohydraulic simulation model of the PCCS system intermediate heat exchanger. As a result, a model has been developed, based on the RELAP5/MOD3.2 code, which is capable of analysing and simulating the thermohydraulic behaviour of a scale test model of the system. The model has the capacity to predict special effects such as back flow, system behaviour with entrapped air, high heat transfer phenomena (simulating hydrogen explosions), startup, etc, giving simulation results, set out in this paper, which are comparable to the results obtained from the tests. (Author)

  15. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  16. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    International Nuclear Information System (INIS)

    Olcese, M.; Caso, C.; Castiglioni, G.; Cereseto, R.; Cuneo, S.; Dameri, M.; Gemme, C.; Glitza, K.-W.; Lenzen, G.; Mora, F.; Netchaeva, P.; Ockenfels, W.; Piano, E.; Pizzorno, C.; Puppo, R.; Rebora, A.; Rossi, L.; Thadome, J.; Vernocchi, F.; Vigeolas, E.; Vinci, A.

    2004-01-01

    The design of an ultra light structure, the so-called 'stave', to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high-dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed

  17. Computational parametric study of an impinging jet in a cross-flow configuration for electronics cooling applications

    International Nuclear Information System (INIS)

    Larraona, Gorka S.; Rivas, Alejandro; Antón, Raúl; Ramos, Juan Carlos; Pastor, Ignacio; Moshfegh, Bahram

    2013-01-01

    A parametric study based on design of experiments (DoE) techniques was carried out by computational simulation in order to evaluate the effect that design parameters have on heat transfer and pressure loss of an impinging jet in a cross-flow configuration. The main effects of each parameter and the interactions between parameters were analyzed in detail through the Response Surface Methodology (RSM). Additionally, the potential of the impinging jet in a cross-flow configuration was assessed by calculating the optimal values of the parameters and comparing the cooling efficiency of the resulting configuration with the efficiency of the conventional cross-flow configuration. It was found that the degree to which the average heat transfer coefficient is enhanced as the result of adding an impinging jet depends on the height of the cooled component. Specifically, it was found that the higher the component, the more significant the enhancement. -- Highlights: ► Five design parameters of an impinging jet in a cross-flow (IJCF) have been considered. ► Channel and jet velocities are found to be the most influential parameters. ► Significant interactions exist between some of the parameters. ► Larger cooling efficiency is achieved with the IJCF compared to the cross-flow solely. ► The enhancement obtained with the IJCF depends on the height of the component

  18. Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors. Report of the collaborative project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-05-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO aims at helping to ensure that nuclear energy is available in the twenty-first century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to jointly consider actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. One of the aims of INPRO is to develop options for enhanced sustainability through promotion of technical and institutional innovations in nuclear energy technology through collaborative projects among IAEA Member States. Collaboration among INPRO members is fostered on selected innovative nuclear technologies to bridge technology gaps. Collaborative projects have been selected so that they complement other national and international R and D activities. The INPRO Collaborative Project COOL on Investigation of Technological Challenges Related to the Removal of Heat by Liquid Metal and Molten Salt Coolants from Reactor Cores Operating at High Temperatures investigated the technological challenges of cooling reactor cores that operate at high temperatures in advanced fast reactors, high temperature reactors and accelerator driven systems by using liquid metals and molten salts as coolants. The project was initiated in 2008 and was led by India; experts from Brazil, China, Germany, India, Italy and the Republic of Korea participated and provided chapters of this report. The INPRO Collaborative Project COOL addressed the following fields of research regarding liquid metal and molten salt coolants: (i) survey of thermophysical properties; (ii) experimental investigations and computational fluid dynamics studies on thermohydraulics, specifically pressure drop and heat transfer under different operating conditions; (iii) monitoring and control of coolant

  19. First Detection of Low Energy Electron Neutrinos in Liquid Argon Time Projection Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Corey James [Yale U.

    2016-01-01

    Electron neutrino appearance is the signature channel to address the most pressing questions in neutrino oscillations physics, at both long and short baselines. This includes the search for CP violation in the neutrino sector, which the U.S. flagship neutrino experiment DUNE will address. In addition, the Short Baseline Neutrino Program at Fermilab (MicroBooNE, SBND, ICARUS-T600) searches for new physics, such as sterile neutrinos, through electron neutrino appearance. Liquid argon time projection chambers are the forefront of neutrino detection technology, and the detector of choice for both short and long baseline neutrino oscillation experiments. This work presents the first experimental observation and study of electron neutrinos in the 1-10 GeV range, the essential oscillation energy regime for the above experiments. The systematic uncertainties for an electron neutrino appearance search for the Fermilab Short Baseline Neutrino Program are carefully quantified, and the characterization of separation between electrons and high energy photons is examined.

  20. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  1. Survey report for fiscal 1999. Project of diffusing gas driven cooling systems in Oman; 1999 nendo Oman koku ni okeru gas reibo fukyu jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the clean development mechanism (CDM) borne in mind, a study is made about the diffusion of gas driven cooling systems in Oman. The project under study aims to replace the motor driven turbo cooling systems, now in use at the Royal Hospital and other buildings in various areas, with gas driven cooling systems. It is then found that, when the Royal Hotel is equipped with such systems, energy will be saved by 1,855 tons/year in terms of oil, and greenhouse gas reduced by 5,129 tons/year in terms of CO2. When the Royal Hospital and other large buildings with heavy cooling loads, situated at or near the center of Muscat City and in the vicinity of the existing natural gas pipelines, are taken into account, energy will be saved by 13,049 tons/year in terms of oil and greenhouse gas will be reduced by 31,636 tons/year in terms of CO2, thanks to the presence of universities, hotels, and a sector occupied by government offices. As for the time necessary for investment recovery, it will be 4.7-5.3 years in case the investment does not cover a gas decompression station construction cost and 6.2-6.8 years in case it covers such. The new system will cost 7% less than the existing system. When a comparison is made in terms of electricity charges, the new system will be 30% lower than the existing system. The Omani Government is critical of a plan for allowing Japan to establish there an energy supply company (financed by Japan). (NEDO)

  2. Survival of plant tissue at super-low temperatures v. An electron microscope study of ice in cortical cells cooled rapidly.

    Science.gov (United States)

    Sakai, A; Otsuka, K

    1967-12-01

    Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.

  3. Project on comparison of structural parameters and electron density maps of oxalic acid dihydrate

    NARCIS (Netherlands)

    Coppens, Philip; Dam, J.; Harkema, Sybolt; Feil, D.

    1984-01-01

    Results obtained from four X-ray and five neutron data sets collected under a project sponsored by the Commission on Charge, Spin and Momentum Densities are analyzed by comparison of thermal parameters, positional parameters and X - N electron density maps. Three sets of theoretical calculations are

  4. 77 FR 12312 - Electronic Submission of Nonclinical Study Data; Notice of Pilot Project

    Science.gov (United States)

    2012-02-29

    ...] Electronic Submission of Nonclinical Study Data; Notice of Pilot Project AGENCY: Food and Drug Administration... and Research (CBER) is announcing an invitation to participate in a pilot evaluation program to test.... Participation in the pilot program is open to all sponsors. The pilot program is intended to provide industry...

  5. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  6. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  7. Undergraduate Electronics Projects Based on the Design of an Optical Wireless Audio Transmission System

    Science.gov (United States)

    Oliveira, Luis Bica; Paulino, Nuno; Oliveira, João P.; Santos-Tavares, Rui; Pereira, Nuno; Goes, João

    2017-01-01

    The two projects presented in this paper can be used either as two separate assignments in two different semesters or as a final assignment for undergraduate students of electrical engineering. They have two main objectives: first, to teach basic electronic circuit design concepts and, second, to motivate the students to learn more about analog…

  8. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  9. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fitzpatrick, R. S.; Fleming, B.; Hackenburg, A.; Horton-Smith, G.; James, C.; Lang, K.; Luo, X.; Mehdiyev, R.; Page, B.; Palamara, O.; Rebel, B.; Schukraft, A.; Scanavini, G.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G. P.

    2017-04-06

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  10. Change On The S-Z Effect Induced By The Cooling Flow CF On The Hot Electronic Gas At The Center OF The Clusters Of Galaxies

    Directory of Open Access Journals (Sweden)

    Enkelejd Caca

    2015-06-01

    Full Text Available ABSTRACT Building more accurate profiles for temperature and density of hot electronic gas concentrated in the center of clusters of galaxies is a constant problem in survey of Sunyeav Zeldovich effect SZ. An effect that consists in the inverse Compton effect of the hot electronic gas interacting with Cosmic Microwave Back- ground CMB photons passing through Intra Cluster Medium ICM. So far the Isothermal model is used for temperature profiling in the calculation of the inverse Compton effect but based on the recent improved observations from satellites which showed that the hot electronic gas presents a feature called Cooling Flow CF. Temperatures in this model differs towards the edges of the Clusters of Galaxies leading to a change on the Compton parameter in comparison with Isothermal model. In this paper are processed data provided by X-ray satellite Chandra. The X-ray analysis is based on two models for the electron density and temperature profile. A sample of 12 clusters of galaxies are analyzed and by building the temperature profiles using CF model the differences on the Compton parameter are 10-100 in comparison with Isothermal model. Therefore to increase the accuracy of evaluation of the Compton parameter we should take into account the change of the electronic gas tempera- ture change that affect changes in both CMB spectrum and temperature from SZ effect.

  11. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  12. The generation of intense heat fluxes by electron bombardment to evaluate the use of swirl flow in the cooling of accelerator targets

    International Nuclear Information System (INIS)

    Genis, G.J.

    1985-11-01

    The thermal performance of isotope production targets for accelerators has been shown to be the limiting factor with regard to the cost of isotopes and the specific activity achievable. To allow the investigation of basic aspects of target cooling and the evaluation of certain target concepts off-line from accelerators, an electron bombardment system, including a radial electron accelerator (REA) in a diode configuration, was developed as heat source. Methods were developed to characterise the performance of the REA to supply a homogeneous heat flux to an axial target by which a technique for the construction of thermocouple placement holes in the body of the target can be evaluated from the measured temperatures. Having identified high velocity swirl flow as the most suitable technique to enhance the convective heat transfer in targets, experiments were conducted to determine the heat-transfer coefficient at high heat fluxes to high velocity swirl flow. The heat-transfer results substantiate the advantages of swirl flow for target cooling. Different correlations obtained indicate the importance of using the film properties instead of the bulk coolant properties in correlations and identify centrifugal convection as one of the most important heat transfer mechanisms in swirl flow

  13. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  14. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

    CERN Document Server

    Hori, Masaki; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-01-01

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Embedded Image can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Embedded Image was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.

  15. Fiscal 1974 Sunshine Project result report. Research on solar cooling/heating and hot water supply system; 1974 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply system. This 3- year project from fiscal 1974 to 1976 aims to predict the share of solar energy in future cooling/heating and hot water supply energy demand, and develop simulation technology. The project surveys and analyzes current domestic and overseas development states, and studies various systems to obtain characteristics of every system, pursuit an optimum implementation, and establish a diffusion plan. Future energy consumptions and prices are predicted in relation to energy saving, and the utilization impact of solar energy is analyzed. Study is also made on diffusion plan, profitability and performance evaluation method. Among these schedules, in fiscal 1974 based on the survey and analysis on previous domestic and overseas development states, features and problems were arranged every system and application. The basic study on system simulation, and rough feasibility study on solar heat systems by conventional technique were carried out. The basic data on performance evaluation standards were also prepared. (NEDO)

  16. Experimental Progress in Fast Cooling in the ESR

    CERN Document Server

    Steck, Markus; Beller, Peter; Franzke, Bernhard; Nolden, Fritz

    2005-01-01

    The ESR storage ring at GSI is operated with highly charged heavy ions. Due to the high electric charge the ions interact much stronger with electromagnetic fields. Therefore both cooling methods which are applied to stored ions in the ESR, stochastic cooling and electron cooling, are more powerful than for singly charged particles. The experimental results exhibit cooling times for stochastic cooling of a few seconds. For cold ion beams, electron cooling provides cooling times which are one to two orders of magnitude smaller. The beams are cooled to beam parameters which are limited by intrabeam scattering. At small ion numbers, however, intrabeam scattering is suppressed by electron cooling, clear evidence was found that the ion beam forms a one-dimensional ordered structure, a linear chain of ions. The strengths of stochastic cooling and electron cooling are complementary and can be combined favorably. Stochastic cooling is employed for pre-cooling of hot secondary beams followed by electron cooling to pro...

  17. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  18. Analysis of radiological accident emissions of a lead-cooled experimental reactor. LEADER Project; Analisis radiologico de las emisiones en caso de accidente de un reactor experimental refrigerado por plomo. Proyecto LEADER

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Salcedo, F.; Cortes Martin, A.

    2013-07-01

    The LEADER project develops a conceptual level industrial size reactor cooled lead and a demonstration plant of this technology. The project objectives are to define the characteristics and design to installation scale reactor using available technologies and short-term components and assess safety aspects conducting a preliminary analysis of the impact of the facility.

  19. Bug tracking and project management system application in an electronic design company

    Directory of Open Access Journals (Sweden)

    Sadık ARSLAN

    2016-05-01

    Full Text Available In this study, commercially available Bug Tracking and Management Information Systems has been investigated in a comprehensive manner. The systems that commonly used described in detail. Bug Tracking and Project Management Systems requirements analysis of medium-sized companies and Kentkart Ege Electronic which is an Information Technology company has been made. Obtained by the analysis requirements, the appropriate tools are selected for system application. JIRA that a product of Atlassian company was determined as a Bug Tracking and Project Management application tool. In this study, JIRA system adapted to the requirements, Bug Tracking and Project Management systems is designed in a structure which can be easily used by R&D employees. Cost-Benefit analysis is done and using this project was determined to be quite useful.

  20. VERTICAL PROJECTION EFFICIENCY OF PIVOT POINTS USING ELECTRONIC TACHEOMETER DURING CONSTRUCTION OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. S. Nesterenok

    2014-01-01

    Full Text Available The paper shows that functional limitation of zenith devices and introduction of modern high-accuracy electronic tacheometers should lead to substitution of the mentioned devices for tacheometers in geodesic works concerning vertical projection of pivot points of the constructed buildings and structures. However the electronic tacheometer has not been considered in the function of a zenith device in ТКП 45-1.03-26-2006.Special experiemnts and practical works executed by UE “Geokart” has proved that in accordance with its design the electronic tacheometer equipped with a compensator for small inclinations and zenith prism attachment for ocular can be applied as a vertical projection device while setting sighting line of a telescope in a fixed vertical position. Corresponding experiments have been carried out for multi-storied building of business centre located in the M. Tank Street in Minsk in order to obtain comparative characteristics of vertical projection accuracy with the help of tacheometer TOPCON GPT 7501 and zenith device PZL-100. An initial point of the staked grid has been situated at the elevation ±0,0 м, standard graph elevation has been equal to +49,5 м (concrete slab of the 14th floor, projection height referred to the device has been equal to Н = 47,8 м. Both devices have been set on the same stand using a purpose made adaptive device in order to exclude centering errors. Deviation in position of final projection points on the standard graph which were obtained with the help of two devices has been equal to 1.2 mm, that testifies practical equal accuracy of the zenith device and tacheometer for vertical projection function.Additional advantage of the electronic tacheometer in comparison with special vertical projection devi ces lies in the fact that in the case of a certain misalignment of geodesic openings in intermediate floors ta- cheometer deviating from the vertical makes it possible to carry out initial point

  1. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  2. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  3. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  4. Teaching Power Electronics with a Design-Oriented, Project-Based Learning Method at the Technical University of Denmark

    Science.gov (United States)

    Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.

    2016-01-01

    Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…

  5. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  6. Evaluating IPCC AR4 cool-season precipitation simulations and projections for impacts assessment over North America

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, Stephanie A. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States); The Wilderness Society, Anchorage, AK (United States); Russell, Joellen L.; Goodman, Paul J. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States)

    2011-12-15

    General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30 N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized. (orig.)

  7. Characterization techniques for nano-electronics, with emphasis to electron microscopy. The role of the European Project ANNA

    Science.gov (United States)

    Armigliato, A.

    2008-07-01

    , however, European laboratories with high-level expertise in materials characterization still operate in a largely independent way; this adversely affects the competitivity of European science and industry at the international level. For this reason the European Commission has started an Integrated Infrastructure Initiative (I3) in the sixth Framework Programme (now continuing in FP7) and funded a project called ANNA (2006-2010). This acronym stands for European Integrated Activity of Excellence and Networking for Nano and Micro- Electronics Analysis. The consortium includes 12 partners from 7 European countries and is coordinated by the Fondazione B.Kessler (FBK) in Trento (Italy); CNR-IMM is one of the 12 partners. Aim of ANNA is the onset of strong, long-term collaboration among the partners, so to form an integrated multi-site analytical facility, able to offer to the European community a wide variety of top-level analytical expertise and services in the field of micro- and nano-electronics. They include X-ray diffraction and scattering, SIMS, electron microscopy, medium-energy ion scattering, optical and electrical techniques. The project will be focused on three main activities: Networking (standardization of samples and methodologies, establishment of accredited reference laboratories), Transnational Access to laboratories located in the partners' premises to perform specific analytical experiments (an example is given by the two STEM methodologies discussed above) and Joint Research activity, which is targeted at the improvement and extension of the methodologies through a continuous instrumental and technical development. It is planned that the European joint analytical laboratory will continue its activity beyond the end of the project in 2010.

  8. Pulsed WIP electron gun. Final report: design phase 1 x 70 cm cooled WIP electron gun, 1 December 1978--2 February 1979

    International Nuclear Information System (INIS)

    Wakalopulos, G.; Gresko, L.

    1979-01-01

    Presented here are design criteria for a full scale (70 cm) WIP electron gun system capable of long run operation with the following specifications: foil area approx. 70 x 1 cm, electron beam current density approx. 1 A/cm 2 , pulse length 2 , voltage -150 kV, voltage droop < 10%, Rep rate approx. 10 KHz, power approx. 20 kW, run time approx. 30 min, and jitter approx. 10 μs

  9. Design of a water based cooling system to take out electronics heat load of MUCH detector in CBM experiment

    International Nuclear Information System (INIS)

    Jain, Vikas; Saini, J.; Chattopadhyay, S.; Dubey, A.K.

    2015-01-01

    A GEM based detector system is being developed at VECC, Kolkata for use as muon tracker in the Compressed Baryonic Matter (CBM) experiment at the upcoming FAIR facility in Germany. The Muon Chambers (MUCH) consists of alternating layers of six absorbers and detector stations. Out of the six stations, VECC has taken responsibility to build the detectors and related readout electronics for the first two stations where each station consists of three detector layers. MUCH will be use a custom built self-triggering ASIC, which will provide both timing and energy information for each incoming signal in its channel. MUCH uses the sensitive electronics where the desired operating temperature range is 25-30 °C. Temperature going above these limits will drift the biasing scheme and further increase may lead to damage of Front End Electronics (FEE) board itself

  10. The international 2D/3D project as a consequence of the results of emergency core cooling

    International Nuclear Information System (INIS)

    Mayinger, F.

    1980-01-01

    As a part of the trilateral co-operation between the Federal Republic of Germany, Japan and the USA large projects have been set about which are adapted to one another by contract and closely coupled as regards the test performance as well as the analysis of the results. These projects simulate on a 1:1 scale the constructive situations in the reactor and verify the fluid dynamic conditions for the heat transport. The experimental investigations are closely coupled with theoretical analyses as a part of the development of a new generation of tridimensional computer codes. (orig./HP) [de

  11. The TAPin electronic libraries project and the experience at the University of Birmingham

    Directory of Open Access Journals (Sweden)

    Tracy K. Mulvaney

    1997-01-01

    Full Text Available The TAPin Project and its implementation at the University of Birmingham is described. Local issues and key features of a hybrid approach to Networked Learner Support are addressed. The methods of NLS adopted included electronic mail and the Internet. The key role in NLS played by subject librarians is stressed. Transfer of skills to learners by means of targeted individual training and a web guide is discussed.

  12. Particle deposition and resuspension in gas-cooled reactors—Activity overview of the two European research projects THINS and ARCHER

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Lecrivain, G. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Jayaraju, S.T. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Hampel, U. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2015-08-15

    Highlights: • A summary on particle deposition and resuspension experiments is provided. • Similarities between single and multilayer particle deposits are found. • Numerical models for simulation of particle deposits are successfully developed. - Abstract: The deposition and resuspension behaviour of radio-contaminated aerosol particles is a key issue for the safety assessment of depressurization accidents of gas-cooled high temperature reactors. Within the framework of two European research projects, namely Thermal Hydraulics of Innovative Nuclear Systems (THINS) and Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D (ARCHER), a series of investigations was performed to investigate the transport, the deposition and the resuspension of aerosol particles in turbulent flows. The experimental and numerical tests can be subdivided into four different parts: (1) Monolayer particle deposition, (2) Monolayer particle resuspension, (3) Multilayer particle deposition and (4) Multilayer particle resuspension. The experimental results provide a new insight into the formation and removal of aerosol particle deposits in turbulent flows and are used for the development and validation of numerical procedures in gas-cooled reactors. Good agreement was found between the numerical and the experimental results.

  13. Time-resolved photoemission spectroscopy of electronic cooling and localization in CH3NH3PbI3 crystals

    Science.gov (United States)

    Chen, Zhesheng; Lee, Min-i.; Zhang, Zailan; Diab, Hiba; Garrot, Damien; Lédée, Ferdinand; Fertey, Pierre; Papalazarou, Evangelos; Marsi, Marino; Ponseca, Carlito; Deleporte, Emmanuelle; Tejeda, Antonio; Perfetti, Luca

    2017-09-01

    We measure the surface of CH3NH3PbI3 single crystals by making use of two-photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from slower dynamical processes. The reported results disclose the fast-dissipation channels of hot carriers (0.25 ps), set an upper bound to the surface-induced recombination velocity (PbI3 samples is consistent with the progressive reduction of photoconversion efficiency in operating devices. Minimizing the density of shallow traps and solving the aging problem may boost the macroscopic efficiency of solar cells to the theoretical limit.

  14. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Li Peiwen; Liu Hong; Hernandez-Guerrero, Abel

    2011-01-01

    A study of the heat transfer performance of liquid-cooled heat sinks with conventional and novel micro-channel flow field configurations for application in electronic devices, fuel cells, and concentrated solar cells is presented in this paper. The analyses were based on computations using the CFD software ANSYS FLUENT. The flow regime in heat sinks is constrained to laminar flow in the study. Details of the heat transfer performance, particularly, the uniformity of temperature distribution on the heating surface, as well as the pressure losses and pumping power in the operation of the studied heat sinks were obtained. Comparisons of the flow distribution uniformity in multiple flow channels, temperature uniformity on heating surfaces, and pumping power consumption of heat sinks with novel flow field configurations and conventional flow field configurations were conducted. It was concluded that the novel flow field configurations studied in this work exhibit appreciable benefits for application in heat sinks. - Highlights: → We present novel designs of flow channel configurations in liquid cooled heat sinks. → The flow and heat transfer in heat sinks were simulated using CFD tool. → The temperature and pressure loss in novel and conventional heat sinks were studied. → Figure of merit of heat sinks in different flow channel configurations was presented. → The heat sinks having our novel design of flow channel configurations are excellent.

  15. Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances

    International Nuclear Information System (INIS)

    Ishizuka, M; Hatakeyama, T; Kibushi, R; Inoue, M

    2012-01-01

    This paper describes the effects of the outlet vent size and the distance between the outlet vent location and the power heater position on the flow resistance in natural-air-cooled electronic equipment casings. An experiment was carried out using a simple model casing simulated for the practical natural-air-cooled casing which is composed of 4 side walls, a top plate and bottom plate which has an inlet opening. A power heater to served as a power dissipation unit was placed at its open bottom. An outlet opening was set on one of the side walls. The opening area, the height of the outlet and the heater location were varied. The experimental results were analyzed using the flow resistance coefficient K which was related to the distance between the outlet vent and the power heater position and the heat removal from the outlet vent, and K values were plotted against a pair of Reynolds numbers Re and the outlet vent porosity β which is defined as the ratio of outlet vent open area to the top surface area of the casing.

  16. Development of functional requirements for electronic health communication: preliminary results from the ELIN project.

    Science.gov (United States)

    Christensen, Tom; Grimsmo, Anders

    2005-01-01

    User participation is important for developing a functional requirements specification for electronic communication. General practitioners and practising specialists, however, often work in small practices without the resources to develop and present their requirements. It was necessary to find a method that could engage practising doctors in order to promote their needs related to electronic communication. Qualitative research methods were used, starting a process to develop and study documents and collect data from meetings in project groups. Triangulation was used, in that the participants were organised into a panel of experts, a user group, a supplier group and an editorial committee. The panel of experts created a list of functional requirements for electronic communication in health care, consisting of 197 requirements, in addition to 67 requirements selected from an existing Norwegian standard for electronic patient records (EPRs). Elimination of paper copies sent in parallel with electronic messages, optimal workflow, a common electronic 'envelope' with directory services for units and end-users, and defined requirements for content with the possibility of decision support were the most important requirements. The results indicate that we have found a method of developing functional requirements which provides valid results both for practising doctors and for suppliers of EPR systems.

  17. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  18. Dragon project reference design assessment study for a 528 MW (E) thorium cycle high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.

    1967-05-01

    The report presents an assessment of the feasibility, safety and cost of a large nuclear power station employing a high temperature gas-cooled reactor. A thermal output 1250 MW was chosen for the study, resulting in a net electrical output of 528.34 MW from a single reactor station, or 1056.7 MW from a twin reactor station. A reference design has been developed and is described. The reactor uses a U-235/Th-232/U-233 fuel cycle, on a feed and breed basis. It is believed that such a reactor could be built at an early date, requiring only a relatively modest development programme. Building costs are estimated to be Pound46.66/kW for a single unit station and Pound42.6/kW for a twin station, with power generation costs of 1.67p/kWh and 1.50p/kWh respectively. Optimisation studies have not been carried out and it should be possible to improve on the costs. The design has been made as flexible as possible to allow units of smaller or larger outputs to be designed with a minimum of change. (U.K.)

  19. The ACS LCID project. X. the star formation history of IC 1613: Revisiting the over-cooling problem

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio, E-mail: skillman@astro.umn.edu, E-mail: shidalgo@iac.es, E-mail: monelli@iac.es, E-mail: carme@iac.es, E-mail: aparicio@iac.es [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife, Canary Islands (Spain); and others

    2014-05-01

    We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ∼1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the 'over-cooling problem'). The depth of the present photometry of IC 1613 shows that, at a resolution of ∼1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.

  20. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    Directory of Open Access Journals (Sweden)

    Inoue T.

    2014-03-01

    Full Text Available We plan to measure the permanent electric dipole moment (EDM of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  1. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  2. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  3. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  4. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  5. Characterization of working fluid in vertically mounted finned U-shape twin heat pipe for electronic cooling

    International Nuclear Information System (INIS)

    Elnaggar, Mohamed H.A.; Abdullah, M.Z.; Abdul Mujeebu, M.

    2012-01-01

    Highlights: ► Detailed characterization of working fluid of vertical finned U-shape heat pipe. ► The present configuration, considering the working fluid, was not studied previously. ► The low difference in evaporator and condenser temperatures enhances heat transfer. ► The high pressure drop across the porous wick causes easy return flow of the liquid. ► The predicted evaporator and condenser temperatures are validated by experiment. - Abstract: As part of the ongoing research on finned U-shape heat pipes for CPU cooling, the present work focuses on the characterization of working fluid in vertically oriented twin U-shape heat pipe, by taking into account the gravity of flow. Two-dimensional FE simulation is performed under natural and forced convection modes, by using ANSYS-FLOTRAN. The best heat input and coolant velocity for the simulations are determined experimentally, corresponding to the least thermal resistance. The wall temperatures at the evaporator, adiabatic and condenser sections, and the velocity and pressure distributions of vapor and liquid, are analyzed. The total heat input for minimum thermal resistance in both natural and forced convection is found to be 50 W, and the coolant velocity is 3 m/s. The predicted and experimental wall temperatures are found in excellent match. It is observed that for the present U-shape heat pipe configuration, the difference in evaporator and condenser temperatures is significantly small, resulting in enhanced heat transfer compared to the conventional heat pipes. The sintered copper wick has a small pore size, resulting in low wick permeability, leading to the generation of high capillary forces for anti-gravity applications.

  6. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  7. Pulsed WIP electron gun. Fabrication phase 1 x 40 cm and 1 x 70 cm cooled WIP electron gun. Final report, March 1979-December 1980

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1980-01-01

    An electron gun capable of long-run operation at 10 KHz and 1 A/cm 2 has been fabricated and tested. Pulse widths of 200 to 600 nsec and a total life of greater than 10 7 shots have been demonstrated. During the acceptance tests, the electron gun was operated at a total average power of 20 KW for 30 minutes. This basically satisfied the contract requirements. To establish some upper limit of the gun's capability, the device was operated at a repetition rate of 3.5 KHz at a total average power of 54.5 KW for greater than 10 minutes. During these tests, no high voltage breakdown occurred after the device was processed. The beam uniformity at high repetition rates is +-10% and the efficiency is 50%

  8. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  9. Corrosion study of heat exchanger tubes in pressurized water cooled nuclear reactors by conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Homonnay, Z.; Kuzmann, E.; Varga, K.; Nemeth, Z.; Szabo, A.; Rado, K.; Schunk, J.; Tilky, P.; Patek, G.

    2005-01-01

    Nuclear energy production tends to return into the focus of interest because of the constantly increasing energy need of the world and the green house effect problems of the strongest competitor oil or gas based power plants. In addition to the construction of new nuclear power plants, lifetime extension of the existing ones is the most cost effective investment in the energy business. However, feasibility and safety issues become very important at this point, and corrosion of the construction materials should be carefully investigated before decision on a potential lifetime extension of a reactor. 57 Fe-Conversion Electron Moessbauer Spectroscopy (CEMS) is a sensitive tool to analyze the phase composition of corrosion products on the surface of stainless steel. The upper ∼300 nm can be investigated due to the penetration range of conversion electrons. The corrosion state of heat exchanger tubes from the four reactor units of the Paks Nuclear Power Plant, Hungary, were analyzed by several methods including CEMS. The primary circuit side of the tubes was studied on selected samples cut out from the heat exchangers during regular maintenance. Cr- and Ni-substituted magnetite, sometimes hematite, amorphous Fe-oxides/oxyhydroxides as well as the signal of bulk austenitic steel of the tubes were detected. The level of Cr- and Ni-substitution in the magnetite phase could be estimated from the Moessbauer spectra. Correlation between earlier decontamination cycles and the corrosion state of the heat exchangers was sought. In combination with other methods, a hybrid structure of the surface oxide layer of several microns was established. It is suggested that previous AP-CITROX decontamination cycles can be responsible for this structure which makes the oxide layer mobile. This mobility may be responsible for unwanted corrosion product transport into the reactor vessel by the primary coolant.

  10. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets

  11. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  12. Modelling and Simulation of National Electronic Product Code Network Demonstrator Project

    Science.gov (United States)

    Mo, John P. T.

    The National Electronic Product Code (EPC) Network Demonstrator Project (NDP) was the first large scale consumer goods track and trace investigation in the world using full EPC protocol system for applying RFID technology in supply chains. The NDP demonstrated the methods of sharing information securely using EPC Network, providing authentication to interacting parties, and enhancing the ability to track and trace movement of goods within the entire supply chain involving transactions among multiple enterprise. Due to project constraints, the actual run of the NDP was 3 months only and was unable to consolidate with quantitative results. This paper discusses the modelling and simulation of activities in the NDP in a discrete event simulation environment and provides an estimation of the potential benefits that can be derived from the NDP if it was continued for one whole year.

  13. The European X-ray Free Electron Laser Project at DESY

    CERN Document Server

    Schwarz, Andreas

    2004-01-01

    On February 5, 2003, the German Federal Ministry of Education and Research decided that the X-ray free-electron laser XFEL, proposed by the International TESLA Collaboration, should be realized as a European project and located at DESY/Hamburg. The ministry also announced that in view of the locational advantage, Germany is prepared to cover half of the investment and personnel costs for the XFEL. In the course of the last year work has concentrated on the following areas: setting up of an organizational structure at DESY for the preparation of the project, discussions with potential European partners on several levels, selection of a new site for the XFEL facility and the preparation of the 'plan approval procedure'. The present status of the technical layout of the Linear Accelerator, the SASE Undulator and Photon Beamlines and the experiment stations will be presented.

  14. Development of a time projection chamber using gas electron multipliers (GEM-TPC)

    International Nuclear Information System (INIS)

    Oda, S.X.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Isobe, T.; Gunji, T.; Morino, Y.; Saito, S.; Yamaguchi, Y.L.; Sawada, S.; Yokkaichi, S.

    2006-01-01

    We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with three kinds of gases (Ar(90%)-CH 4 (10%), Ar(70%)-C 2 H 6 (30%) and CF 4 ). Detection efficiency of 99%, and spatial resolution of 79μm in the pad-row direction and 313μm in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described

  15. Data description and quality assessment of ionospheric electron density profiles for ARPA modeling project. Technical report

    International Nuclear Information System (INIS)

    Conkright, R.O.

    1977-03-01

    This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The automated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado

  16. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  17. ePORT, NASA's Computer Database Program for System Safety Risk Management Oversight (Electronic Project Online Risk Tool)

    Science.gov (United States)

    Johnson, Paul W.

    2008-01-01

    ePORT (electronic Project Online Risk Tool) provides a systematic approach to using an electronic database program to manage a program/project risk management processes. This presentation will briefly cover the standard risk management procedures, then thoroughly cover NASA's Risk Management tool called ePORT. This electronic Project Online Risk Tool (ePORT) is a web-based risk management program that provides a common framework to capture and manage risks, independent of a programs/projects size and budget. It is used to thoroughly cover the risk management paradigm providing standardized evaluation criterion for common management reporting, ePORT improves Product Line, Center and Corporate Management insight, simplifies program/project manager reporting, and maintains an archive of data for historical reference.

  18. Engineered design of SSC cooling ponds

    International Nuclear Information System (INIS)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project's successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency

  19. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  20. Projection-reduction method applied to deriving non-linear optical conductivity for an electron-impurity system

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang

    2013-07-01

    Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.

  1. Project based education as motivation factor in undergraduate program in Electronics at Copenhagen University College of Engineering

    DEFF Research Database (Denmark)

    Friesel, Anna

    2012-01-01

    This paper summarizes the contents of our experience with project based courses and team work in the undergraduate program in Electronics. The main points of our program are described in this paper, where the leading idea is to combine theory with practical engineering projects. Our students work...

  2. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  3. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  4. A study on corium melt pool behavior under external vessel cooling : investigation of the first phase research results in the OECD RASPLAV project

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Yoo, Kun Joong

    1998-04-01

    The scope and contents of the OECD RASPLAV program are to investigate natural convection heat transfer in the corium, chemical and mechanical interaction between the corium and the reactor vessel, crust formation of the corium, and thermal behaviour of the corium by experiments and model development during external vessel cooling to prevent reactor vessel failure in severe accidents of nuclear power plant. This study includes evaluation and analysis of the RASPLAV V phase I results for three years between July 1, 1994 and June 30, 1997. These results supply technical basis for our experimental program on severe accident research. Two large-scale experiments of RASPLAV-AW-between the corium and the reactor vessel. Several small-scale experiments were conducted to analyze thermal stratification in the corium. The salt experiments were conducted to estimate the crust and the mushy region formation, and natural convection heat transfer in the corium. In the analytical studies, pre and post analysis of the RASPLAV-AW-200 experiments and evaluation of the salt test results have been performed using CONV 2 and 3D computer codes, which were developed during RASPLAV program phase I. Low density corium was separated from the high density corium during the RASPLAV-AW-200 tests and the TULPAN test, which was a new finding in the RASPLAV project phase I. From the salts test, heat flux distribution in the side wall heating case is similar to the direct internal heat generation case, and the crust formation is a little effect on heat transfer rate. The results of CONV 2 and 3 D were very well with with the experimental results. The results of RASLAV project phase I, such as furnace design and the techniques on fuel melting, are very helpful to our severe accident experimental program. (author). 57 refs., 13 tabs., 52 figs.

  5. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink

    International Nuclear Information System (INIS)

    Wang, Yi-Hsien; Yang, Yue-Tzu

    2011-01-01

    Transient three-dimensional heat transfer numerical simulations were conducted to investigate a hybrid PCM (phase change materials) based multi-fin heat sink. Numerical computation was conducted with different amounts of fins (0 fin, 3 fins and 6 fins), various heating power level (2 W, 3 W and 4 W), different orientation tests (vertical/horizontal/slanted), and charge and discharge modes. Calculating time step (0.03 s, 0.05 s, and 0.07 s) size was discussed for transient accuracy as well. The theoretical model developed is validated by comparing numerical predictions with the available experimental data in the literature. The results showed that the transient surface temperatures are predicted with a maximum discrepancy within 10.2%. The operation temperature can be controlled well by the attendance of phase change material and the longer melting time can be conducted by using a multi-fin hybrid heat sink respectively. -- Highlights: → Electronic device cooling use phase change materials. → N-eicosane is adapted as phase change materials. → Present surface transient temperatures prediction error is within 10.2%. → Hybrid PCM-heat sink system provides stable operation temperature. → Orientation effects show independent on the phase change performance.

  6. Liquid-filled buried heat-exchanger for direct room cooling - Measurement project; Messprojekt: Fluessigkeits-Erdregister zur direkten Klimakuehlung - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, M.

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a study concerning a buried heat-exchanger that provides cooling energy for an industrial building in Wohlen, Switzerland. The cooling power of the system is discussed, as is its mid and long-term regeneration. The building being cooled is described and the installations are discussed. The measurement technologies employed are described and the results for the 1999 season are presented. Also, the results of specific, short-term measurements are discussed. The costs incurred are noted and a comparison is made with more traditional types of compressor-driven cooling systems. Also, ecological factors are discussed.

  7. NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report

    Science.gov (United States)

    Kessel, Kurt

    2011-01-01

    . The longer the transition period, the greater the likelihood of Pb-free parts inadvertently being mixed with Pb parts and ending up on what are supposed to be Pb systems. As a result, OEMs, depots, and support contractors need to take action now to either abate the influx of Pb-free parts, or accept it and deal with the likely interim consequences of reduced reliability due to a wide variety of matters, such as Pb contamination, high temperature incompatibility, and tin whiskering. Allowance of Pb-free components produces one of the greatest risks to the reliability of a weapon system. This is due to new and poorly understood failure mechanisms, as well as unknown long-term reliability. If the decision is made to consciously allow Pb-free solder and component finishes into SnPb electronics, additional effort (and cost) will be required to make the significant number of changes to drawings and task order procedures. This project is a follow-on effort to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Pb-free Solder Project which was the first group to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community.

  8. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  9. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces

    Science.gov (United States)

    Petersen, T. C.; Ringer, S. P.

    2010-03-01

    Upon discerning the mere shape of an imaged object, as portrayed by projected perimeters, the full three-dimensional scattering density may not be of particular interest. In this situation considerable simplifications to the reconstruction problem are possible, allowing calculations based upon geometric principles. Here we describe and provide an algorithm which reconstructs the three-dimensional morphology of specimens from tilt series of images for application to electron tomography. Our algorithm uses a differential approach to infer the intersection of projected tangent lines with surfaces which define boundaries between regions of different scattering densities within and around the perimeters of specimens. Details of the algorithm implementation are given and explained using reconstruction calculations from simulations, which are built into the code. An experimental application of the algorithm to a nano-sized Aluminium tip is also presented to demonstrate practical analysis for a real specimen. Program summaryProgram title: STOMO version 1.0 Catalogue identifier: AEFS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2988 No. of bytes in distributed program, including test data, etc.: 191 605 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Depends upon the size of experimental data as input, ranging from 200 Mb to 1.5 Gb Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 External routines: Dev-C++ ( http://www.bloodshed.net/devcpp.html) Nature of problem: Electron tomography of specimens for which conventional back projection may fail and/or data for which there is a limited angular

  10. An experimental and ab initio study of the electronic spectrum of the jet-cooled F{sub 2}BO free radical

    Energy Technology Data Exchange (ETDEWEB)

    Grimminger, Robert; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Sheridan, Phillip M. [Department of Chemistry and Biochemistry, Canisius College, Buffalo, New York 14208 (United States)

    2014-04-28

    We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.

  11. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  12. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    Science.gov (United States)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  13. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L

    2008-10-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  14. Arduino projects for dummies

    CERN Document Server

    Craft, Brock

    2013-01-01

    Discover all the amazing things you can do with Arduino Arduino is a programmable circuit board that is being used by everyone from scientists, programmers, and hardware hackers to artists, designers, hobbyists, and engineers in order to add interactivity to objects and projects and experiment with programming and electronics. This easy-to-understand book is an ideal place to start if you are interested in learning more about Arduino's vast capabilities. Featuring an array of cool projects, this Arduino beginner guide walks you through every step of each of the featured projects so

  15. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  16. The State of Open Source Electronic Health Record Projects: A Software Anthropology Study.

    Science.gov (United States)

    Alsaffar, Mona; Yellowlees, Peter; Odor, Alberto; Hogarth, Michael

    2017-02-24

    Electronic health records (EHR) are a key tool in managing and storing patients' information. Currently, there are over 50 open source EHR systems available. Functionality and usability are important factors for determining the success of any system. These factors are often a direct reflection of the domain knowledge and developers' motivations. However, few published studies have focused on the characteristics of free and open source software (F/OSS) EHR systems and none to date have discussed the motivation, knowledge background, and demographic characteristics of the developers involved in open source EHR projects. This study analyzed the characteristics of prevailing F/OSS EHR systems and aimed to provide an understanding of the motivation, knowledge background, and characteristics of the developers. This study identified F/OSS EHR projects on SourceForge and other websites from May to July 2014. Projects were classified and characterized by license type, downloads, programming languages, spoken languages, project age, development status, supporting materials, top downloads by country, and whether they were "certified" EHRs. Health care F/OSS developers were also surveyed using an online survey. At the time of the assessment, we uncovered 54 open source EHR projects, but only four of them had been successfully certified under the Office of the National Coordinator for Health Information Technology (ONC Health IT) Certification Program. In the majority of cases, the open source EHR software was downloaded by users in the United States (64.07%, 148,666/232,034), underscoring that there is a significant interest in EHR open source applications in the United States. A survey of EHR open source developers was conducted and a total of 103 developers responded to the online questionnaire. The majority of EHR F/OSS developers (65.3%, 66/101) are participating in F/OSS projects as part of a paid activity and only 25.7% (26/101) of EHR F/OSS developers are, or have been

  17. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    This report presents the results from the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) collaborative project (CP) on Advanced Water Cooled Reactor Case Studies in Support of Passive Safety Systems (AWCR), undertaken under the INPRO Programme Area C. INPRO was launched in 2000 - on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21) - to ensure that nuclear energy is available in the 21st century in a sustainable manner, and it seeks to bring together all interested Member States to consider actions to achieve innovation. An important objective of nuclear energy system assessments is to identify 'gaps' in the various technologies and corresponding research and development (R and D) needs. This programme area fosters collaboration among INPRO Member States on selected innovative nuclear technologies to bridge technology gaps. Public concern about nuclear reactor safety has increased after the Fukushima Daiichi nuclear power plant accident caused by the loss of power to pump water for removing residual heat in the core. As a consequence, there has been an increasing interest in designing safety systems for new and advanced reactors that are passive in nature. Compared to active systems, passive safety features do not require operator intervention, active controls, or an external energy source. Passive systems rely only on physical phenomena such as natural circulation, thermal convection, gravity and self-pressurization. Passive safety features, therefore, are increasingly recognized as an essential component of the next-generation advanced reactors. A high level of safety and improved competitiveness are common goals for designing advanced nuclear power plants. Many of these systems incorporate several passive design concepts aimed at improving safety and reliability. The advantages of passive safety systems include simplicity, and avoidance of human intervention, external power or signals. For these reasons, most

  18. Dimensioning of a two-phase loop for the study of the cooling of power electronics components; Dimensionnement d`une boucle diphasique pour l`etude du refroidissement des composants d`electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Bricard, A [CEA Centre d` Etudes Nucleaires de Grenoble, 38 (France). STTGRETh

    1997-12-31

    After having chosen between different cooling solutions for a given power electronics component, the dimensioning of a two-phase forced convection loop is described. The power electronics component is a 12 x 12 mm silicon pellet which can dissipate up to 400 W/cm{sup 2} heat fluxes. In a first step, the minimum size of channels is determined according to fluid characteristics, pressure drop and critical fluxes. In a second step, the coupled dimensioning of both the evaporator and the condenser is determined for different values of pipes diameter and mass flow rates. (J.S.) 8 refs.

  19. Dimensioning of a two-phase loop for the study of the cooling of power electronics components; Dimensionnement d`une boucle diphasique pour l`etude du refroidissement des composants d`electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Bricard, A. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France). STTGRETh

    1996-12-31

    After having chosen between different cooling solutions for a given power electronics component, the dimensioning of a two-phase forced convection loop is described. The power electronics component is a 12 x 12 mm silicon pellet which can dissipate up to 400 W/cm{sup 2} heat fluxes. In a first step, the minimum size of channels is determined according to fluid characteristics, pressure drop and critical fluxes. In a second step, the coupled dimensioning of both the evaporator and the condenser is determined for different values of pipes diameter and mass flow rates. (J.S.) 8 refs.

  20. Development of magnets for infra-red-free electron laser project at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Thakur, Vanshree; Das, S.; Biswas, Bhaskar; Singh, Kushraj; Amalraj, William; Sreeramulu, K.; Mishra, Anil Kumar; Shinde, R.S.

    2015-01-01

    This paper describes the design and development of the magnets for the beam transport line of Infra- red- Free Electron Laser (IR-FEL) project at RRCAT. All the magnets have been developed and fiducialized after magnetic characterization for installation in the tunnel. These magnets include three dipole magnets, twelve quadrupole magnets and twenty two steering magnets for bending, focussing and steering of 15 to 35 MeV electron beam through a dog-leg type beam line. The dipole magnet is designed as H type for a maximum magnetic field of 0.25 tesla with pole gap and bending angle of 42 mm and 22.5° respectively. The dipole magnet is quite thin (effective length ∼200 mm) therefore entry-exit ends were chamfered to achieve the integrated field uniformity of < 1 x 10 -3 within the good field zone. The quadrupole magnet is designed for maximum integrated strength of 2.5 T/m. The poles are wider than the coil to enhance the good field region and made detachable type. The pole profile is chosen as pure hyperbola with extension. Quadrupole magnets with two different sizes of apertures (aperture diameters of 60 mm and 40 mm) were developed. The steering magnet is designed for kick strength of 12 mrad at 25 MeV. Out of 22 steering magnets, 8 are vertical steering, 6 are horizontal steering and 8 combined function steering magnets. Magnetic measurements of dipole magnets were carried out in 3 axes Hall probe bench. Quadrupole and steering magnets were characterized in a rotating coil based harmonic measurement bench. The details of the design and magnetic measurements of these magnets with results will be discussed in this paper. (author)

  1. Fast three-material modeling with triple arch projection for electronic cleansing in CTC.

    Science.gov (United States)

    Lee, Hyunna; Lee, Jeongjin; Kim, Bohyoung; Kim, Se Hyung; Shin, Yeong-Gil

    2014-07-01

    In this paper, we propose a fast three-material modeling for electronic cleansing (EC) in computed tomographic colonography. Using a triple arch projection, our three-material modeling provides a very quick estimate of the three-material fractions to remove ridge-shaped artifacts at the T-junctions where air, soft-tissue (ST), and tagged residues (TRs) meet simultaneously. In our approach, colonic components including air, TR, the layer between air and TR, the layer between ST and TR (L(ST/TR)), and the T-junction are first segmented. Subsequently, the material fraction of ST for each voxel in L(ST/TR) and the T-junction is determined. Two-material fractions of the voxels in L(ST/TR) are derived based on a two-material transition model. On the other hand, three-material fractions of the voxels in the T-junction are estimated based on our fast three-material modeling with triple arch projection. Finally, the CT density value of each voxel is updated based on our fold-preserving reconstruction model. Experimental results using ten clinical datasets demonstrate that the proposed three-material modeling successfully removed the T-junction artifacts and clearly reconstructed the whole colon surface while preserving the submerged folds well. Furthermore, compared with the previous three-material transition model, the proposed three-material modeling resulted in about a five-fold increase in speed with the better preservation of submerged folds and the similar level of cleansing quality in T-junction regions.

  2. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the

  3. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  4. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    results in relatively low water withdrawal. Typical heat sink options for closed-cycle systems are wet cooling system (mechanical or natural draft cooling towers, and cooling ponds). When water availability is low, a dry cooling system may be utilized. Dry cooling can be either direct or indirect and in each case uses convective heat transfer to provide cooling, eliminating evaporation losses. An innovative indirect dry cooling system is the Heller{sup R} System. The Heller{sup R} System air moving equipment can be either a natural draft or a mechanical draft. The Heller{sup R} System design concepts and equipment provides the maximum possible availability and minimum maintenance. Also, it is totally environmental-friend as saves water equivalent to the consumption of a town of 50,000 inhabitants for each 100 MWe facilitating the licensing of power projects. (authors)

  5. c-Axis projected electron-positron momentum density in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Bansil, A.; Smedskjaer, L.C.

    1990-11-01

    The authors present the theoretical c-axis projected electron-positron momentum density N 2γ (P x ,p y ) in YBa 2 Cu 3 O 7 based on the local density approximation (LDA) framework along various lines in momentum space. The calculations use the Korringa-Kohn-Rostoker (KKR) band structure formalism. The anisotropic distribution defined by taking cuts through the calculated spectra along different lines in the (p x ,p y ) plane possesses complex structures which arise from both Fermi surface effects and the anisotropy of the smoothly varying underlying background from filled bands; the maximum size of the anisotropy is about 10% of N 2γ (0,0). The theoretically predicted N 2γ (p x , y ) distribution is compared with the measured 2D-ACAR spectrum. The considerations suggest that in interpreting the 2D-ACAR data on YBa 2 Cu 3 O 7 in terms of a band theory LDA picture, a substantial, largely isotropic, background should be subtracted from both the 2D-ACAR's and the associated LCW-folded spectra

  6. Lessons learned from positron-electron project low level rf and longitudinal feedback

    Directory of Open Access Journals (Sweden)

    J. Fox

    2010-05-01

    Full Text Available The Positron-Electron Project II (PEP-II B Factory collider ended the final phase of operation at nearly twice the design current and 4X the design luminosity. In the ultimate operation state, eight 1.2 MW radio-frequency (rf klystrons and 12 accelerating cavities were added beyond the original implementation, and the two storage rings were operating with longitudinal instability growth rates roughly 5X in excess of the original design estimates. From initial commissioning there has been continual adaptation of the low level rf (LLRF control strategies, configuration tools, and some new hardware in response to unanticipated technical challenges. This paper offers a perspective on the original LLRF and longitudinal instability control design, and highlights via two examples the system evolution from the original design estimates through to the final machine with 1.2×10^{34} luminosity. The impact of unanticipated signals in the coupled-bunch longitudinal feedback and the significance of nonlinear processing elements in the LLRF systems are presented. We present valuable “lessons learned” which are of interest to designers of next generation feedback and impedance controlled LLRF systems.

  7. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  8. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  9. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  10. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  11. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  12. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  13. Research project AUS-10370/CF: electron impact ionization and surface induced reactions of edge plasma constituents

    International Nuclear Information System (INIS)

    Maerk, T.D.

    1999-01-01

    In order to better understand elementary reactions which are taking place at the plasma edge of thermonuclear fusion devices, three areas of research were persuaded: I) Experimental studies about electron ionization of neutrals and ions and electron attachment to molecules, II) Theoretical studies about electron ionisation of neutrals and ions and III) Reactive interaction of molecular ions with surfaces

  14. Project of the electron linear accelerator on the biperiodical accelerating structure with deep energy retuning in a pulse mode

    International Nuclear Information System (INIS)

    Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.

    2001-01-01

    The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru

  15. Factors influencing the development of primary care data collection projects from electronic health records: a systematic review of the literature.

    Science.gov (United States)

    Gentil, Marie-Line; Cuggia, Marc; Fiquet, Laure; Hagenbourger, Camille; Le Berre, Thomas; Banâtre, Agnès; Renault, Eric; Bouzille, Guillaume; Chapron, Anthony

    2017-09-25

    Primary care data gathered from Electronic Health Records are of the utmost interest considering the essential role of general practitioners (GPs) as coordinators of patient care. These data represent the synthesis of the patient history and also give a comprehensive picture of the population health status. Nevertheless, discrepancies between countries exist concerning routine data collection projects. Therefore, we wanted to identify elements that influence the development and durability of such projects. A systematic review was conducted using the PubMed database to identify worldwide current primary care data collection projects. The gray literature was also searched via official project websites and their contact person was emailed to obtain information on the project managers. Data were retrieved from the included studies using a standardized form, screening four aspects: projects features, technological infrastructure, GPs' roles, data collection network organization. The literature search allowed identifying 36 routine data collection networks, mostly in English-speaking countries: CPRD and THIN in the United Kingdom, the Veterans Health Administration project in the United States, EMRALD and CPCSSN in Canada. These projects had in common the use of technical facilities that range from extraction tools to comprehensive computing platforms. Moreover, GPs initiated the extraction process and benefited from incentives for their participation. Finally, analysis of the literature data highlighted that governmental services, academic institutions, including departments of general practice, and software companies, are pivotal for the promotion and durability of primary care data collection projects. Solid technical facilities and strong academic and governmental support are required for promoting and supporting long-term and wide-range primary care data collection projects.

  16. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  17. Sum rules and other properties involving resonance projection operators. [for optical potential description of electron scattering from atoms and ions

    Science.gov (United States)

    Berk, A.; Temkin, A.

    1985-01-01

    A sum rule is derived for the auxiliary eigenvalues of an equation whose eigenspectrum pertains to projection operators which describe electron scattering from multielectron atoms and ions. The sum rule's right-hand side depends on an integral involving the target system eigenfunctions. The sum rule is checked for several approximations of the two-electron target. It is shown that target functions which have a unit eigenvalue in their auxiliary eigenspectrum do not give rise to well-defined projection operators except through a limiting process. For Hylleraas target approximations, the auxiliary equations are shown to contain an infinite spectrum. However, using a Rayleigh-Ritz variational principle, it is shown that a comparatively simple aproximation can exhaust the sum rule to better than five significant figures. The auxiliary Hylleraas equation is greatly simplified by conversion to a square root equation containing the same eigenfunction spectrum and from which the required eigenvalues are trivially recovered by squaring.

  18. CeB6 electron gun for the soft X-ray FEL project at SPring-8

    International Nuclear Information System (INIS)

    Togawa, K.; Baba, H.; Onoe, K.; Inagaki, T.; Shintake, T.; Matsumoto, H.

    2004-01-01

    A pulsed high-voltage electron gun with a thermionic cathode is under development for the injector system of the soft X-ray FEL project at SPring-8 (SCSS project). A CeB 6 single crystal of 3 mm diameter was chosen as a thermionic cathode because of its excellent emission properties, i.e., high resistance against contamination, uniform emission density and smooth surface. The CeB 6 cathode can produce a 3 A beam with 2 μs FWHM. A gun voltage of -500 kV was chosen as a compromise between the need for controlling emittance growth and minimizing the risks of high-voltage arcing. We have constructed a 500 kV electron gun test stand and have begun performance tests. This paper describes the basic design and the current status of the hardware R and D on the CeB 6 gun

  19. Teaching Power Electronics with a Design-Oriented and Project-Based Learning Method at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.

    2016-01-01

    Power electronics is a fast developing technology within the electrical engineering field. This paper presents the results and experiences gained from DesignOriented Project Based Learning of switch-mode power supply design within a power electronics course at the Technical University of Denmark...... (DTU). Project-based learning (PBL) is known to be a motivating and problem-centered teaching method that not only places students at the core of the teaching and learning activities but also gives students the ability to transfer their acquired scientific knowledge into industrial practices. Students...... are asked to choose a specification from different power converter applications such as a fuel cell power conditioning converter, a light-emitting diode (LED) driver or a battery charger. Based upon their choice, the students select topology, design magnetic components, calculate input/output filters...

  20. Investigations on passive containment cooling

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Neitzel, H.J.; Erbacher, F.J.; Hofmann, F.

    1997-01-01

    The composite containment design for advanced LWRs that has been examined under the PASCO project is a promising design concept for purely passive decay heat removal after a severe accident. The passive cooling processes applied are natural convection and radiative heat transfer. Heat transfer through the latter process removes at an emission coefficient of 0.9 about 50% of the total heat removed via the steel containment, and thus is an essential factor. The heat transferring surfaces must have a high emission coefficient. The sump cooling concept examined under the SUCO project achieves a steady, natural convection-driven flow from the heat source to the heat sink. (orig./CB) [de

  1. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  2. Factors influencing the development of primary care data collection projects from electronic health records: a systematic review of the literature

    OpenAIRE

    Gentil, Marie-Line; Cuggia, Marc; Fiquet, Laure; Hagenbourger, Camille; Le Berre, Thomas; Banâtre, Agnès; Renault, Eric; Bouzille, Guillaume; Chapron, Anthony

    2017-01-01

    Background Primary care data gathered from Electronic Health Records are of the utmost interest considering the essential role of general practitioners (GPs) as coordinators of patient care. These data represent the synthesis of the patient history and also give a comprehensive picture of the population health status. Nevertheless, discrepancies between countries exist concerning routine data collection projects. Therefore, we wanted to identify elements that influence the development and dur...

  3. Addressing Electronic Communications System Learning through a Radar-Based Active Learning Project

    Science.gov (United States)

    Hernandez-Jayo, Unai; López-Garde, Juan-Manuel; Rodríguez-Seco, J. Emilio

    2015-01-01

    In the Master's of Telecommunication Engineering program at the University of Deusto, Spain, courses in communication circuit design, electronic instrumentation, advanced systems for signal processing and radiocommunication systems allow students to acquire concepts crucial to the fields of electronics and communication. During the educational…

  4. Dynamical fragmentation and very high speed projection of micro-particulates with a pulsed electrons generator

    International Nuclear Information System (INIS)

    Cassany, B.; Courchinoux, R.; Bertron, I.; Malaise, F.; Hebert, D.

    2003-01-01

    This paper shows how to use a pulsed electrons beam to simulate the dynamical fragmentation of copper sheets and to eject diamond, tantalum and tungsten micro-particulates at very high speed (∼1000 m/s). These experiments were performed with the electrons generator CESAR of CEA/CESTA (France). (J.S.)

  5. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  6. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  7. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    Bosser, J.

    1994-01-01

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  8. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  9. Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Guo, Liang [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Lin, Jia [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Dou, Letian [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Yang, Peidong [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States)

    2017-06-29

    A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe in this paper amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb–I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. Finally, the pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.

  10. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    Science.gov (United States)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  11. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  12. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    The aim of The Cool 100 book is to document 100 inspiring, educational and practical examples of sustainable and accessible energy supply solutions created by, or suitable for, isolated communities in the cooler regions of the world. The book features the following projects, explored in detail: 1. Promoting Unst Renewable Energy (PURE) project, a pioneering project that demonstrates how wind power and hydrogen technologies can be combined to meet the energy needs of a remote industrial estate on the island of Unst in the British Isles. 2. The EDISON project, or Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks that explored increased renewable energy use and electric vehicle operation in Denmark, with a case study on the island of Bornholm. 3. The Sarfannguit Wireless Electricity Reading project, which has significantly improved utility metering and enabled improved energy management, reduced electricity demand, and the introduction of renewable energy technologies in the isolated villages of Greenland. 4. The Renewable Energy Croft and Hydrogen facility, which uses innovative technologies to support a gardening facility in the Outer Hebrides (Scotland), and is also a working laboratory for students of the local university to develop a hydrogen energy economy. 5. The Samsoe Renewable Energy Island in Denmark, an iconic example of how an island community can consume only green electricity by using a range of innovative technologies and behavioural changes to reduce demand and to harness green energy resources. 6. The Hydrogen Office Project which demonstrates how a commercial office in the coastal town of Methil in Scotland can be supported by a novel renewable, hydrogen and fuel cell energy system, and how the local community is engaged with the project. 7. The Northern Sustainable House in Nunavut, Canada, which explores the process and results of a project to design and implement housing for local families that

  13. A Power Electronic and Drives Curriculum with Project-oriented and Problem-based Learning: A Dynamic Teaching Approach for the Future

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2002-01-01

    extra study time. This paper present a teaching approach which makes it possible very fast for the student to get in-depth skills in this important area which is the problem-oriented and project-based learning. The trend and application of power electronics are illustrated. The necessary skills...... for power electronic engineers are outlined followed up by a discussion on how problem-oriented and project-based learning are implemented. A complete curriculum at Aalborg University is presented where different power electronics related projects at different study levels are carried out....

  14. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  15. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  16. Philips high tension generator (x-ray machine) testing for baby ebm (electron beam machine) project

    International Nuclear Information System (INIS)

    Norman Awalludin; Leo Kwee Wah; Abu Bakar Mhd Ghazali

    2005-01-01

    This paper describes the test of the HT system (from X-ray machine) for usage of the mini EBM (Electron Beam Machine). It consists the procedures of the installation, the safety procedures when deals with HT, modification of the system for testing purpose and the technique/method for testing the HT system. As a result, the voltage for the HT system and the electron gun (filament) current can be measured. Based on the results, suitability of the machine for baby EBM could be confirmed. (Author)

  17. Probing sea quarks and gluons: the electron-ion collider project

    International Nuclear Information System (INIS)

    Horn, T.

    2014-01-01

    A future Electron-Ion Collider (EIC) would be the world's first polarized electron-proton collider, and the world's first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge. (authors)

  18. Nuclear demagnetisation cooling of a nanoelectronic device

    Science.gov (United States)

    Jones, Alex; Bradley, Ian; Guénault, Tony; Gunnarsson, David; Haley, Richard; Holt, Stephen; Pashkin, Yuri; Penttilä, Jari; Prance, Jonathan; Prunnila, Mika; Roschier, Leif

    We present a new technique for on-chip cooling of electrons in a nanostructure: nuclear demagnetisation of on-chip, thin-film copper refrigerant. We are motivated by the potential improvement in the operation of nanoelectronic devices below 10 mK . At these temperatures, weak electron-phonon coupling hinders traditional cooling, yet here gives the advantage of thermal isolation between the environment and the on-chip electrons, enabling cooling significantly below the base temperature of the host lattice. To demonstrate this we electroplate copper onto the metallic islands of a Coulomb blockade thermometer (CBT), and hence provide a direct thermal link between the cooled copper nuclei and the device electrons. The CBT provides primary thermometry of its internal electron temperature, and we use this to monitor the cooling. Using an optimised demagnetisation profile we observe the electrons being cooled from 9 mK to 4 . 5 mK , and remaining below 5 mK for an experimentally useful time of 1200 seconds. We also suggest how this technique can be used to achieve sub- 1 mK electron temperatures without the use of elaborate bulk demagnetisation stages.

  19. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  20. The SHARPn project on secondary use of Electronic Medical Record data: progress, plans, and possibilities.

    Science.gov (United States)

    Chute, Christopher G; Pathak, Jyotishman; Savova, Guergana K; Bailey, Kent R; Schor, Marshall I; Hart, Lacey A; Beebe, Calvin E; Huff, Stanley M

    2011-01-01

    SHARPn is a collaboration among 16 academic and industry partners committed to the production and distribution of high-quality software artifacts that support the secondary use of EMR data. Areas of emphasis are data normalization, natural language processing, high-throughput phenotyping, and data quality metrics. Our work avails the industrial scalability afforded by the Unstructured Information Management Architecture (UIMA) from IBM Watson Research labs, the same framework which underpins the Watson Jeopardy demonstration. This descriptive paper outlines our present work and achievements, and presages our trajectory for the remainder of the funding period. The project is one of the four Strategic Health IT Advanced Research Projects (SHARP) projects funded by the Office of the National Coordinator in 2010.

  1. CEBAF [Continuous Electron Beam Accelerator Facility] design overview and project status

    International Nuclear Information System (INIS)

    Leemann, C.

    1988-01-01

    This paper discusses the design and specifications of the Continuous Electron Beam Accelerator Facility. Beam performance objectives are discussed, as well as the recirculating linac concept, the injector, cavities, cryogenic system, beam transport and optics, rf system and construction progress. 19 refs., 10 figs

  2. The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling

    International Nuclear Information System (INIS)

    Pancheshnyi, S.; Biagi, S.; Bordage, M.C.; Hagelaar, G.J.M.; Morgan, W.L.; Phelps, A.V.; Pitchford, L.C.

    2012-01-01

    Graphical abstract: LXCat is an open-access website containing data needed for low temperature plasma modeling as well as on-line tools useful for their manipulation. Highlights: ► LXCat: an open-access website with data for low temperature plasma modeling. ► Contains compilations of electron scattering cross sections and transport data. ► Data from different contributors for many neutral, ground-state species. ► On-line tools for browsing, plotting, up/downloading data. ► On-line Boltzmann solver for calculating electron swarm parameters. - Abstract: LXCat is a dynamic, open-access, website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature, non-equilibrium plasmas. Contributors set up individual databases, and the available databases, indicated by the contributor’s chosen title, include mainly complete sets of electron-neutral scattering cross sections, although the option for introducing partial sets of cross sections exists. A database for measured swarm parameters is also part of LXCat, and this is a growing activity. On-line tools include options for browsing, plotting, and downloading cross section data. The electron energy distribution functions (edfs) in low temperature plasmas are in general non-Maxwellian, and LXCat provides an option for execution of an on-line Boltzmann equation solver to calculate the edf in homogeneous electric fields. Thus, the user can obtain electron transport and rate coefficients (averages over the edfs) in pure gases or gas mixtures over a range of values of the reduced electric fields strength, E/N, the ratio of the electric field strength to the neutral density, using cross sections from the available databases. New contributors are welcome and anyone wishing to create a database and upload data can request a username and password. LXCat is part of a larger, community

  3. The ELAStiC (Electronic Longitudinal Alcohol Study in Communities project

    Directory of Open Access Journals (Sweden)

    Ashley Akbari

    2017-04-01

    Our project will aim to provide evidence that informs the UK Government’s commitment to “radically reshape the approach to alcohol and reduce the number of people drinking to excess”, by working with existing longitudinal data collected in the UK to inform policy and practice.

  4. Fundamental Studies in Blow-Down and Cryogenic Cooling

    Science.gov (United States)

    1993-09-01

    Mudawar , I. and Anderson, T.M., -High Flux Electronic Cooling by Means of Pool Boiling - Part I: Parametric Investigation of the Effects of Coolant...Electronics, pp. 25-34, 1989. 30 Mudawar , I. and Anderson, T.M., "High Flux Electronic Cooling by Means of Pool Boiling - Part 1I: Optimization of

  5. The desktop muon detector: A simple, physics-motivated machine- and electronics-shop project for university students

    Science.gov (United States)

    Axani, S. N.; Conrad, J. M.; Kirby, C.

    2017-12-01

    This paper describes the construction of a desktop muon detector, an undergraduate-level physics project that develops machine-shop and electronics-shop technical skills. The desktop muon detector is a self-contained apparatus that employs a plastic scintillator as the detection medium and a silicon photomultiplier for light collection. This detector can be battery powered and is used in conjunction with the provided software. The total cost per detector is approximately 100. We describe physics experiments we have performed, and then suggest several other interesting measurements that are possible, with one or more desktop muon detectors.

  6. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  7. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  8. Awareness, Trial, and Current Use of Electronic Cigarettes in 10 Countries: Findings from the ITC Project

    OpenAIRE

    Gravely, Shannon; Fong, Geoffrey T.; Cummings, K. Michael; Yan, Mi; Quah, Anne C. K.; Borland, Ron; Yong, Hua-Hie; Hitchman, Sara C.; McNeill, Ann; Hammond, David; Thrasher, James F.; Willemsen, Marc C.; Seo, Hong Gwan; Jiang, Yuan; Cavalcante, Tania

    2014-01-01

    Background: In recent years, electronic cigarettes (e-cigarettes) have generated considerable interest and debate on the implications for tobacco control and public health. Although the rapid growth of e-cigarettes is global, at present, little is known about awareness and use. This paper presents self-reported awareness, trial and current use of e-cigarettes in 10 countries surveyed between 2009 and 2013; for six of these countries, we present the first data on e-cigarettes from probabilit...

  9. Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA

    International Nuclear Information System (INIS)

    Berglund, G.Z.M.

    2001-09-01

    HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)

  10. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  11. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  12. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  13. Cooling solutions in an operational data centre: A case study

    International Nuclear Information System (INIS)

    Fakhim, B.; Behnia, M.; Armfield, S.W.; Srinarayana, N.

    2011-01-01

    The rapid growth in data centres - large computing infrastructures containing vast quantities of data processing and storage equipment - has resulted in their consumption of up to 100 times more energy per square metre than office accommodation. The decrease in processing server sizes and the more efficient use of space and server processing are challenging data centre facilities to provide more power and cooling, significantly increasing energy demands. Energy consumption of data centres can be severely and unnecessarily high due to inadequate localised cooling and densely packed server rack layouts. However, as heat dissipation in data centres rises by orders of magnitude, inefficiencies such as air recirculation causing hot spots and flow short-circuiting will have a significant impact on the thermal manageability and energy efficiency of the cooling infrastructure. Therefore, an efficient thermal management of high-powered electronic equipment is a significant challenge for cooling of data centres. To highlight the importance of some of these issues, in this project, an operational data centre has been studied. Field measurements of temperature have been performed. Numerical analysis of flow and temperature fields is conducted in order to evaluate the thermal behaviour of the data centre. A number of undesirable hot spots have been identified. To rectify the problem, a few practical design and remedial solutions to improve the cooling effectiveness have been proposed and examined to allow a reduced air-conditioning power requirement. The findings lead to a better understanding of the cooling issues and the respective proposed solutions allow an improved design for future data centres. - Highlights: → Study of flow and temperature distribution in an operational data centre. → Both field measurements and numerical simulations are conducted. → Numerical simulations are validated by field measurements. → Various modifications to improve the thermal

  14. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  15. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  16. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  17. Project and construction of energy degrading and scattering plates for electron beam radiotherapy for skin diseases

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva

    2010-01-01

    There are many radiosensitive epidermotropics diseases such as mycosis fungo-ids and the syndrome of Sezary, coetaneous neoplasics originated from type T lymphocytes. Several studies indicate the eradication of the disease when treated with linear accelerators emitting electron beams with energies between 4 to 10 MeV. However, this treatment technique presents innumerable technical challenges since the disease in general reaches all patient's body, becoming necessary not only a very large field size radiation beam, but also deliver superficial doses limited to the skin depth. To reach the uniformity in the dose distribution, many techniques had already been developed. Based on these previous studies and guided by the report no. 23 of the American Association of Physicists in Medi-cine (AAPM), the present study developed an energy scattering and degrading plates and made dosimetry (computational and experimental), supplying subsidies for a future installation of Total Skin Electron Therapy (TSET) at the Servico de Radioterapia do Hospital das Clinicas de Sao Paulo. As part of the plates design, first of all, the energy spectrum of the 6 MeV electron beam of the VARIAN 2100C accelerator was reconstructed through Monte Carlo simulations using the MCNP4C code and based on experimental data. Once the spectrum is built, several materials were analyzed for the plates design based on radial and axial dose distribution, production of rays-x and dose attenuation. The simulation results were validated by experimental measurements in order to obtain a large field of radiation with 200 cm x 80 cm that meets the specifications of the AAPM protocol. (author)

  18. Improving immunization delivery using an electronic health record: the ImmProve project.

    Science.gov (United States)

    Bundy, David G; Persing, Nichole M; Solomon, Barry S; King, Tracy M; Murakami, Peter N; Thompson, Richard E; Engineer, Lilly D; Lehmann, Christoph U; Miller, Marlene R

    2013-01-01

    Though an essential pediatric preventive service, immunizations are challenging to deliver reliably. Our objective was to measure the impact on pediatric immunization rates of providing clinicians with electronic health record-derived immunization prompting. Operating in a large, urban, hospital-based pediatric primary care clinic, we evaluated 2 interventions to improve immunization delivery to children ages 2, 6, and 13 years: point-of-care, patient-specific electronic clinical decision support (CDS) when children overdue for immunizations presented for care, and provider-specific bulletins listing children overdue for immunizations. Overall, the proportion of children up to date for a composite of recommended immunizations at ages 2, 6, and 13 years was not different in the intervention (CDS active) and historical control (CDS not active) periods; historical immunization rates were high. The proportion of children receiving 2 doses of hepatitis A immunization before their second birthday was significantly improved during the intervention period. Human papillomavirus (HPV) immunization delivery was low during both control and intervention periods and was unchanged for 13-year-olds. For 14-year-olds, however, 4 of the 5 highest quarterly rates of complete HPV immunization occurred in the final year of the intervention. Provider-specific bulletins listing children overdue for immunizations increased the likelihood of identified children receiving catch-up hepatitis A immunizations (hazard ratio 1.32; 95% confidence interval 1.12-1.56); results for HPV and the composite of recommended immunizations were of a similar magnitude but not statistically significant. In our patient population, with high baseline uptake of recommended immunizations, electronic health record-derived immunization prompting had a limited effect on immunization delivery. Benefit was more clearly demonstrated for newer immunizations with lower baseline uptake. Copyright © 2013 Academic

  19. Retrieval of the projected potential by inversion from the scattering matrix in electron-crystal scattering

    International Nuclear Information System (INIS)

    Allen, L.J.; Spargo, A.E.C.; Leeb, H.

    1998-01-01

    The retrieval of a unique crystal potential from the scattering matrix S in high energy transmission electron diffraction is discussed. It is shown that, in general, data taken at a single orientation are not sufficient to determine all the elements of S. Additional measurements with tilted incident beam are required for the determination of the whole S-matrix. An algorithm for the extraction of the crystal potential from the S-matrix measured at a single energy and thickness is presented. The limiting case of thin crystals is discussed. Several examples with simulated data are considered

  20. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  1. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  2. Using electronic health records for clinical research: the case of the EHR4CR project.

    Science.gov (United States)

    De Moor, Georges; Sundgren, Mats; Kalra, Dipak; Schmidt, Andreas; Dugas, Martin; Claerhout, Brecht; Karakoyun, Töresin; Ohmann, Christian; Lastic, Pierre-Yves; Ammour, Nadir; Kush, Rebecca; Dupont, Danielle; Cuggia, Marc; Daniel, Christel; Thienpont, Geert; Coorevits, Pascal

    2015-02-01

    To describe the IMI EHR4CR project which is designing and developing, and aims to demonstrate, a scalable, widely acceptable and efficient approach to interoperability between EHR systems and clinical research systems. The IMI EHR4CR project is combining and extending several previously isolated state-of-the-art technical components through a new approach to develop a platform for reusing EHR data to support medical research. This will be achieved through multiple but unified initiatives across different major disease areas (e.g. cardiovascular, cancer) and clinical research use cases (protocol feasibility, patient identification and recruitment, clinical trial execution and serious adverse event reporting), with various local and national stakeholders across several countries and therefore under various legal frameworks. An initial instance of the platform has been built, providing communication, security and terminology services to the eleven participating hospitals and ten pharmaceutical companies located in seven European countries. Proof-of-concept demonstrators have been built and evaluated for the protocol feasibility and patient recruitment scenarios. The specifications of the clinical trial execution and the adverse event reporting scenarios have been documented and reviewed. Through a combination of a consortium that brings collectively many years of experience from previous relevant EU projects and of the global conduct of clinical trials, of an approach to ethics that engages many important stakeholders across Europe to ensure acceptability, of a robust iterative design methodology for the platform services that is anchored on requirements of an underlying Service Oriented Architecture that has been designed to be scalable and adaptable, EHR4CR could be well placed to deliver a sound, useful and well accepted pan-European solution for the reuse of hospital EHR data to support clinical research studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Project-Based Learning and Agile Methodologies in Electronic Courses: Effect of Student Population and Open Issues

    Directory of Open Access Journals (Sweden)

    Marina Zapater

    2013-12-01

    Full Text Available Project-Based Learning (PBL and Agile methodologies have proven to be very interesting instructional strategies in Electronics and Engineering education, because they provide practical learning skills that help students understand the basis of electronics. In this paper we analyze two courses, one belonging to a Master in Electronic Engineering and one to a Bachelor in Telecommunication Engineering that apply Agile-PBL methodologies, and compare the results obtained in both courses with a traditional laboratory course. Our results support previous work stating that Agile-PBL methodologies increase student satisfaction. However, we also highlight some open issues that negatively affect the implementation of these methodologies,such as planning overhead or accidental complexity. Moreover,we show how differences in the student population, mostly related to the time spent on-campus, their commitment to the course or part-time dedication, have an impact on the benefits of Agile-PBL methods. In these cases, Agile-PBL methodologies by themselves are not enough and need to be combined with other techniques to increase student motivation.

  4. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  5. Antecedent and progress of the project on the treatment of chimney gases with electrons in Mexico

    International Nuclear Information System (INIS)

    Pina V, G.

    1991-10-01

    After the realization of the chimney gases treatment seminar with electrons, organized jointly among the National Institute of Nuclear Research (ININ) and the International Atomic Energy Agency (IAEA), in August of 1990 and following one of the received recommendations, it was elaborated an economic technical feasibility study of this process in Mexico, using technical data of a thermoelectric power station of Federal Commission of Electricity, where is being consumed fuel oil. This study is good to know some technical parameters of a plant of this process, proposed to settle in Mexico, so as some economic estimates of installation and operation costs of this plant; also, it is traced about the construction of a demonstration plant of the process, with capacity of 20,000 m 3 N/h, using the same data of the thermoelectric power station considered previously, as the first step in the scaling of this process toward industrial level. (Author)

  6. The Continuous Electron Beam Accelerator Facility: Project status and physics outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Nuclear physics research program planning, accelerator tunnel construction, and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility, Newport News, Virginia. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. An experimental program is being defined in collaboration with the user community. The experimental halls have been designed, and preliminary experimental equipment conceptual designs have been prepared. Planned for Hall A are two 4-GeV/c high-resolution (δp/p ≤ 10 -4 ) spectrometers (HRS) with moderate acceptance (∼8 msr) for a program of completely exclusive experiments in which the nuclear final state has to be fully specified. A CEBAF large acceptance spectrometer (CLAS) is planned for the program of Hall B, which will include bias-free investigation of hadronic final states in inelastic electron scattering and detection of multiple-particle final states. The CLAS will be a multi-gap device based on a toroidal magnet with six superconducting coils arranged around the beamline to produce an essentially circular magnetic field. Hall C is envisioned as serving a diversity of interests, including form factor measurements, parity violation investigations, form factors of nucleon resonances, and a high-Q 2 baryon resonance program. A moderate-resolution, high-momentum, 6-GeV/c spectrometer (HMS) together with several specialized second arms -- in particular, a symmetric toroidal array spectrometer -- are being planned to carry out Hall C experimentation. 14 figs., 8 tabs

  7. Wet-Chemical Synthesis of Enhanced-Thermopower Bi1 -xSbx Nanowire Composites for Solid-State Active Cooling of Electronics

    Science.gov (United States)

    Vandaele, K.; He, Bin; Van Der Voort, P.; De Buysser, K.; Heremans, J. P.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)., 10.1103/PhysRevB.47.16631] suggested that Bi nanowires could result in values of the thermoelectric figure of merit z T >1 . The Dresselhaus group also calculated a ternary phase diagram for Bi1 -xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1 -xSbx -silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1 -xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6 -silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase.

  8. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  9. Development of free electron laser and accelerator technology in Poland (CARE and EuCARD projects)

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  10. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  11. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  12. Electronic Health Record Tools to Care for At-Risk Older Drivers: A Quality Improvement Project.

    Science.gov (United States)

    Casey, Colleen M; Salinas, Katherine; Eckstrom, Elizabeth

    2015-06-01

    Evaluating driving safety of older adults is an important health topic, but primary care providers (PCP) face multiple barriers in addressing this issue. The study's objectives were to develop an electronic health record (EHR)-based Driving Clinical Support Tool, train PCPs to perform driving assessments utilizing the tool, and systematize documentation of assessment and management of driving safety issues via the tool. The intervention included development of an evidence-based Driving Clinical Support Tool within the EHR, followed by training of internal medicine providers in the tool's content and use. Pre- and postintervention provider surveys and chart review of driving-related patient visits were conducted. Surveys included self-report of preparedness and knowledge to evaluate at-risk older drivers and were analyzed using paired t-test. A chart review of driving-related office visits compared documentation pre- and postintervention including: completeness of appropriate focused history and exam, identification of deficits, patient education, and reporting to appropriate authorities when indicated. Data from 86 providers were analyzed. Pre- and postintervention surveys showed significantly increased self-assessed preparedness (p < .001) and increased driving-related knowledge (p < .001). Postintervention charts showed improved documentation of correct cognitive testing, more referrals/consults, increased patient education about community resources, and appropriate regulatory reporting when deficits were identified. Focused training and an EHR-based clinical support tool improved provider self-reported preparedness and knowledge of how to evaluate at-risk older drivers. The tool improved documentation of driving-related issues and led to improved access to interdisciplinary care coordination. Published by Oxford University Press on behalf of the Gerontological Society of America 2015.

  13. Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors: project overview and strong Wind PRA methodology - 15031

    International Nuclear Information System (INIS)

    Yamano, H.; Nishino, H.; Kurisaka, K.; Okano, Y.; Sakai, T.; Yamamoto, T.; Ishizuka, Y.; Geshi, N.; Furukawa, R.; Nanayama, F.; Takata, T.; Azuma, E.

    2015-01-01

    This paper describes mainly strong wind probabilistic risk assessment (PRA) methodology development in addition to the project overview. In this project, to date, the PRA methodologies against snow, tornado and strong wind were developed as well as the hazard evaluation methodologies. For the volcanic eruption hazard, ash fallout simulation was carried out to contribute to the development of the hazard evaluation methodology. For the forest fire hazard, the concept of the hazard evaluation methodology was developed based on fire simulation. Event sequence assessment methodology was also developed based on plant dynamics analysis coupled with continuous Markov chain Monte Carlo method in order to apply to the event sequence against snow. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or out-take in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6*10 -9 /year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system. (authors)

  14. Determination of the Projected Atomic Potential by Deconvolution of the Auto-Correlation Function of TEM Electron Nano-Diffraction Patterns

    Directory of Open Access Journals (Sweden)

    Liberato De Caro

    2016-11-01

    Full Text Available We present a novel method to determine the projected atomic potential of a specimen directly from transmission electron microscopy coherent electron nano-diffraction patterns, overcoming common limitations encountered so far due to the dynamical nature of electron-matter interaction. The projected potential is obtained by deconvolution of the inverse Fourier transform of experimental diffraction patterns rescaled in intensity by using theoretical values of the kinematical atomic scattering factors. This novelty enables the compensation of dynamical effects typical of transmission electron microscopy (TEM experiments on standard specimens with thicknesses up to a few tens of nm. The projected atomic potentials so obtained are averaged on sample regions illuminated by nano-sized electron probes and are in good quantitative agreement with theoretical expectations. Contrary to lens-based microscopy, here the spatial resolution in the retrieved projected atomic potential profiles is related to the finer lattice spacing measured in the electron diffraction pattern. The method has been successfully applied to experimental nano-diffraction data of crystalline centrosymmetric and non-centrosymmetric specimens achieving a resolution of 65 pm.

  15. Electron-cloud simulation studies for the CERN-PS in the framework of the LHC Injectors Upgrade project

    CERN Document Server

    Rioja Fuentelsaz, Sergio

    The present study aims to provide a consistent picture of the electron cloud effect in the CERN Proton Synchrotron (PS) and to investigate possible future limitations due to the requirements foreseen by the LHC Injectors Upgrade (LIU) project. It consists of a complete simulation survey of the electron cloud build-up in the different beam pipe sections of the ring depending on several controllable beam parameters and vacuum chamber surface properties, covering present and future operation parameters. As the combined function magnets of the accelerator constitute almost the $80\\%$ in length of the ring, the implementation of a new feature for the simulation of any external magnetic field on the PyECLOUD code, made it possible to perform this study. All the results of the simulations are given as a function of the vacuum chamber surface properties in order to deduce them, both locally and globally, when compared with experimental data. In a first step, we characterize locally the maximum possible number of ...

  16. Awareness, Trial, and Current Use of Electronic Cigarettes in 10 Countries: Findings from the ITC Project

    Directory of Open Access Journals (Sweden)

    Shannon Gravely

    2014-11-01

    Full Text Available Background: In recent years, electronic cigarettes (e-cigarettes have generated considerable interest and debate on the implications for tobacco control and public health. Although the rapid growth of e-cigarettes is global, at present, little is known about awareness and use. This paper presents self-reported awareness, trial and current use of e-cigarettes in 10 countries surveyed between 2009 and 2013; for six of these countries, we present the first data on e-cigarettes from probability samples of adult smokers. Methods: A cross-sectional analysis of probability samples of adult (≥ 18 years current and former smokers participating in the International Tobacco Control (ITC surveys from 10 countries. Surveys were administered either via phone, face-to-face interviews, or the web. Survey questions included sociodemographic and smoking-related variables, and questions about e-cigarette awareness, trial and current use. Results: There was considerable cross-country variation by year of data collection and for awareness of e-cigarettes (Netherlands (2013: 88%, Republic of Korea (2010: 79%, United States (2010: 73%, Australia (2013: 66%, Malaysia (2011: 62%, United Kingdom (2010: 54%, Canada (2010: 40%, Brazil (2013: 35%, Mexico (2012: 34%, and China (2009: 31%, in self-reports of ever having tried e-cigarettes (Australia, (20%, Malaysia (19%, Netherlands (18%, United States (15%, Republic of Korea (11%, United Kingdom (10%, Mexico (4%, Canada (4%, Brazil (3%, and China (2%, and in current use (Malaysia (14%, Republic of Korea (7%, Australia (7%, United States (6%, United Kingdom (4%, Netherlands (3%, Canada (1%, and China (0.05%. Conclusions: The cross-country variability in awareness, trial, and current use of e-cigarettes is likely due to a confluence of country-specific market factors, tobacco control policies and regulations (e.g., the legal status of e-cigarettes and nicotine, and the survey timing along the trajectory of e

  17. Awareness, trial, and current use of electronic cigarettes in 10 countries: Findings from the ITC project.

    Science.gov (United States)

    Gravely, Shannon; Fong, Geoffrey T; Cummings, K Michael; Yan, Mi; Quah, Anne C K; Borland, Ron; Yong, Hua-Hie; Hitchman, Sara C; McNeill, Ann; Hammond, David; Thrasher, James F; Willemsen, Marc C; Seo, Hong Gwan; Jiang, Yuan; Cavalcante, Tania; Perez, Cristina; Omar, Maizurah; Hummel, Karin

    2014-11-13

    In recent years, electronic cigarettes (e-cigarettes) have generated considerable interest and debate on the implications for tobacco control and public health. Although the rapid growth of e-cigarettes is global, at present, little is known about awareness and use. This paper presents self-reported awareness, trial and current use of e-cigarettes in 10 countries surveyed between 2009 and 2013; for six of these countries, we present the first data on e-cigarettes from probability samples of adult smokers. A cross-sectional analysis of probability samples of adult (≥ 18 years) current and former smokers participating in the International Tobacco Control (ITC) surveys from 10 countries. Surveys were administered either via phone, face-to-face interviews, or the web. Survey questions included sociodemographic and smoking-related variables, and questions about e-cigarette awareness, trial and current use. There was considerable cross-country variation by year of data collection and for awareness of e-cigarettes (Netherlands (2013: 88%), Republic of Korea (2010: 79%), United States (2010: 73%), Australia (2013: 66%), Malaysia (2011: 62%), United Kingdom (2010: 54%), Canada (2010: 40%), Brazil (2013: 37%), Mexico (2012: 34%), and China (2009: 31%)), in self-reports of ever having tried e-cigarettes (Australia, (20%), Malaysia (19%), Netherlands (18%), United States (15%), Republic of Korea (11%), United Kingdom (10%), Brazil (8%), Mexico (4%), Canada (4%), and China (2%)), and in current use (Malaysia (14%), Republic of Korea (7%), Australia (7%), United States (6%), United Kingdom (4%), Netherlands (3%), Canada (1%), and China (0.05%)) [corrected]. The cross-country variability in awareness, trial, and current use of e-cigarettes is likely due to a confluence of country-specific market factors, tobacco control policies and regulations (e.g., the legal status of e-cigarettes and nicotine), and the survey timing along the trajectory of e-cigarette awareness and trial

  18. Assessment of the effect of water source of health risk in a pilot project to promote the reuse of reclaimed water in cooling towers; Valoracion del efecto del origen del agua en el riesgo sanitario en una experiencia piloto para promover la reutilizacion de agua regenerada en torres de refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Fittipaldi, M.; Codony, F.; Puigdengoles, J. M.; Molist; Morato, J.

    2009-07-01

    Wastewater regeneration and reuse of regenerated water permits to increase the amount of water and guarantees the availability required, in terms of both quantity and quality. In this context, a research project on regenerated water reuse for cooling towers has been carried out by the Universitat Politecnica de Catalunya (UPC), the Water Catalan Agency (ACA) and the Council of Chambers of Commerce. The research consisted of two steps. A first objective was to verify the effect of water source in the colonization of cooling towers by Legionella. In order to achieve those objectives, effluents from different wastewater treatment plant stages were used. The second objective was to evaluate in situ the disinfection process in order to decrease the sanitary risk from water reuse for cooling towers. For the entire duration of the project, both conventional culture methods and new molecular techniques with real times PCR were performed to detect Legionella from water samples. (Author) 17 refs.

  19. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  20. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  1. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  3. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  4. The future cooling tower; Fremtidens koeletaarn

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, C.H. (Vestas Aircoil A/S, Lem St. (Denmark)); Schneider, P. (Teknologisk Institut, AArhus (Denmark)); Haaning, N. (Ramboell A/S, Copenhagen (Denmark)); Lund, K. (Nyrup Plast A/S, Nyrup (Denmark)); Soerensen, Ole (MultiWing A/S, Vedbaek (Denmark)); Dalsgaard, T. (Silhorko A/S, Skanderborg (Denmark)); Pedersen, Michael (Skive Kommune, Skive (Denmark))

    2011-03-15

    This project has designed and built a pilot-scale cooling tower with an output of up to 100 kW for which good correlation has been ascertained between measured and calculated values for output and pressure loss. The new cooling tower will save approximately 15% of electricity consumption compared with the widespread dry coolers. The pilot tower uses rainwater so that both water consumption and electricity consumption are saved in softening plants. On the basis of this cooling tower, models have been made and these have been implemented in PackCalc II in order to calculate electricity and other operating savings. (Energy 11)

  5. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  6. Advanced thermal management technologies for defense electronics

    Science.gov (United States)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  7. Strength assessment of a cryostat used by the hollow electron test station.

    CERN Document Server

    Efremov, Filip

    2015-01-01

    The following report explains the work I have done on my summer student work project and the experience I have gained during the process. The work consisted of a strength assessment of a cryogenic vacuum insulated vessel according to European regulations. The cryogenic vacuum insulated vessel is used for the cooling of the solenoids. The solenoids are used in the hollow electron test station and create the magnetic fields used for testing electron guns and validating the concept of a hollow electron lens.

  8. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  9. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  10. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  11. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  12. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  13. The project of the technological line of the electronic-beam drains disinfection in the infected hospitals' divisions and tubercular centres

    International Nuclear Information System (INIS)

    Shlapatska, V.V.; Volkonsky, V.G.; Sakhno, V.I.; Tomchaj, S.P.

    1999-01-01

    The purpose of the project was to create the electrophysical facility for the environmental protection from contamination by drains of the infected hospitals' divisions and tubercular centres and prevention of open water reservoirs. Development of the economically approved methods of the radiative disinfection of contaminated drains; development of the inexpensive compact facility for the electron-beam disinfection of small volume drains

  14. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  15. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  16. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  17. Inverter power module with distributed support for direct substrate cooling

    Science.gov (United States)

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  18. W-030, AY/AZ tank farm cooling and miscellaneous instrumentation

    International Nuclear Information System (INIS)

    Cole, D.B.

    1996-01-01

    This is the acceptance test report for construction functional testing of Project W-030 cooling systems and related instrumentation. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The Tank Farm Cooling System consists of four forced draft cooling towers, a chilled water system, and associated controls

  19. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Taylor [Colorado Energy Office, Denver, CO (United States)

    2017-12-05

    This measurement and verification (M and V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with cooling tower efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M and V plan, and details the procedures to use to determine water savings.

  20. Formulation and development of a methodology for selecting desulfurization processes, applicable to diluted sulfurous emissions from copper. Preparation of the engineering for a draft project using electron beam process, selected with this methodology

    International Nuclear Information System (INIS)

    Aros M, Patricia.

    1997-01-01

    A comparative study of clean desulfurization technologies was prepared. Sulfur abatement processes from S O 2 gas streams were analyzed in 21 processes grouped into 8 different types. Since there are a large number of potentially applicable processes, this thesis presents a process selection methodology based on a technical/economic analysis series, which produces a ranking by scores. Visual Basic 3.0 software was used to develop the program, which can be installed in any computer and uses Windows 95. Based on these results in Chilean Nuclear Energy Commission decided to present a draft project for electron beam technology. The full design and calculation for the humidifying and cooling tower was prepared together with the design of the remaining equipment for size, in order to estimate probable costs. The pre-feasibility evaluation determined that the process would generate profits, when the selling price of ammonium sulfate - which is a byproduct of the process that is used as fertilizer - is above US$ 110/ton. The process cost is heavily influenced by the capital cost of storage facilities, since a long term supply for ammonia reagent is needed. This product is imported in Chile and it is currently an expensive reagent. (author). 33 app., 7 tabs