WorldWideScience

Sample records for electron conversion experiment

  1. The {nu}MSM and muon to electron conversion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Canetti, Laurent, E-mail: laurent.canetti@epfl.ch; Shaposhnikov, Mikhail, E-mail: mikhail.shaposhnikov@epfl.ch [EPFL, ITP (Switzerland)

    2013-03-15

    We review briefly the different constraints on the three right-handed neutrinos of the {nu}MSM, an extension of the Standard Model that can explain baryon asymmetry, dark matter and neutrino masses. We include in the discussion the proposed experiments on muon to electron conversion Mu2e (Carey et al., Mu2e Collaboration, 2012), COMET and PRISM (Hungerford, COMET Collaboration, AIP Conf Proc 1182:694, 2009; Cui et al., COMET Collaboration, 2012). We find that the expected sensitivity of these experiments is weaker by about two orders of magnitude than the constraints coming from successful baryogenesis.

  2. Conversion-electron experiment to characterize the decay of the 237Np shape isomer

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Bauer, R.W.; Gardner, D.G.; Decman, D.J.; Meyer, R.A.; Roy, N.; Sale, K.E.

    1987-01-01

    Conversion electrons from the decay of low-lying levels of 237 Np have been measured to detect the population of these levels by gamma-ray decay of the 237 Np shape isomer. Analysis of the 208-keV transition L conversion-electron peak gives an upper limit of about 17 μb for the population of the 3/2 - 267-keV level in 237 Np from the shape isomer decay. Model calculations are compared with the measured limit. Improvements are suggested for this experiment. 9 refs., 4 figs

  3. Search for Muon to electron conversion at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Chen Wu on behalf of the COMET Collaboration

    2016-12-15

    This article introduces the search for muon to electron conversion at J-PARC, namely COMET (COherent Muon Electron Transition) experiment, including a brief introduction of its physics motivation, a detailed description of COMET experiment and its staged approach, and an overview of its current status.

  4. The measurement of internal conversion electrons of selected nuclei: A physics undergraduate laboratory experience

    International Nuclear Information System (INIS)

    Nagy, P.; Duggan, J.L.; Desmarais, D.

    1992-01-01

    Thin sources are now commercially available for a wide variety of isotopes that have measurable internal conversion coefficients. The authors have used standard surface barrier detectors, NIM electronics, and a personal computer analyzer to measure conversion electrons from a few of these sources. Conversion electrons energy and intensity were measured for 113 Sn, 133 Ba, 137 Cs, and 207 Bi. From the measured spectra the innershell binding energies of the K ampersand L Shell electrons from the daughter nuclei were determined and compared to theory. The relative conversion coefficients a k /a L and the K/L ration were also measured. The spin and parity change of the transitions will also be assigned based on the selection rules of the transitions

  5. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  6. Conversion electrons in the SDC

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1991-01-01

    We summarize a preliminary analysis of the rates for conversion electrons in the SDC detector, relative to other interesting sources of prompt electrons. We have used Papageno V3.30, and other available NLO calculations to estimate inclusive rates in the central region (η less than 2.0), and we have cross checked these using CDF data at 1.8 TeV. We have considered three sources of ''isolated'' electrons, namely inclusive W/Z production; top quark (Mt=140); and QCD prompt photon production, followed by conversion in 10% XO. This value approximates the inner silicon detector at SDC. Additional conversions will occur in the outer tracking chamber, but the trigger and track reconstruction efficiency will be lower. We have also considered ''nonisolated'' leptons coming from inclusive bottom production, photon conversions resulting from π 0 ,η production in jets, and high pt hadrons faking electrons

  7. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  8. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  9. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  10. Mu2e, a coherent μ → e conversion experiment at Fermilab

    International Nuclear Information System (INIS)

    Brown, D. N.

    2012-01-01

    We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.

  11. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  12. Testing of the SPEDE conversion electron spectrometer at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2157167

    2017-04-24

    The aim of this work was to test the performance of the SPEDE detector in the MINIBALL setup at CERN’s ISOLDE laboratory. The main research objective of MINIBALL is to study properties of atomic nuclei employing radioactive ion beams. Radioactive Bi-207 and Hg-191 were used in this experiment. SPEDE detects internal conversion electrons which are created in transitions between states in atomic nucleus. The internal conversion is competing process to more common γ-ray emission. This way it is possible to measure different properties of nuclear structure for example the E0-transitions. The simultaneous γ and electron measurements are possible when SPEDE is used in conjunction with the MINIBALL spectrometer. The GEANT4 simulation results were used to help interpretation of experimental results. As a result, αK/L-ratio was determined for Bi-207 conversion electrons, for the 5^2− -> 1^2− transition αK/L = 3.29±0.06 and for the 13^2+-> 5^2− transition αK/L = 3.11±0.05 were obtained. Also, the partial...

  13. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  14. COMET/PRISM Muon to Electron Conversion at J-PARC

    International Nuclear Information System (INIS)

    Hungerford, Ed V.

    2009-01-01

    A new experimental search for coherent, neutrinoless, muon-to-electron conversion from a muonic atom has been proposed for the Japanese Proton Accelerator, J-PARC, now under commissioning. The experiment is completing a conceptual design which proposes a single event sensitivity in the branching ratio of lepton number violating to lepton conserving decays of ≅0.26x10 -16 . This note briefly describes the experiment and its objectives.

  15. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  16. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  17. Development of a mini-orange spectrometer for conversion electron study

    International Nuclear Information System (INIS)

    Mishra, N.R.; Chakravarty, V.; Chintalapudi, S.N.; Ghugre, S.S.; Sastry, D.L.

    1996-01-01

    Conversion electrons provide with an unique tool to have an unambiguous multipolarity assignment for the observed gamma transitions. The fabrication of an electron spectrometer to detect these conversion electrons is a non-trivial task

  18. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  19. Reconstruction of photon conversions in {tau} lepton decays in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Michael

    2009-04-15

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, {tau} lepton final states are very powerful decay channels. Therefore the {tau} lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the {tau} lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed {tau} lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense {tau} lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected {tau} lepton track multiplicity is presented. (orig.)

  20. Reconstruction of photon conversions in τ lepton decays in the ATLAS experiment

    International Nuclear Information System (INIS)

    Boehler, Michael

    2009-04-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, τ lepton final states are very powerful decay channels. Therefore the τ lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the τ lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed τ lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense τ lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected τ lepton track multiplicity is presented. (orig.)

  1. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of 137Cs

    International Nuclear Information System (INIS)

    Yunoki, A.; Kawada, Y.; Yamada, T.; Unno, Y.; Sato, Y.; Hino, Y.

    2013-01-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of 137 Cs- 137 Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. - Highlights: • Counting efficiencies for internal conversion electrons from 137 Cs were measured, and compared with those for β-rays. • Electron-X coincidence technique was employed. • A thin NaI(Tl) scintillation detector was used for X-ray detection. • Backscattering fractions of electrons and beta particles were studied by similar experiments

  2. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  3. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    of a protection circuit involving twelve diodes with full voltage/current ratings used only during faulty situations, makes this topology not so attractive. Lately, two stage Direct Power Electronic Conversion (DPEC) topologies have been proposed, providing similar functionality as a matrix converter but allowing...... shared by many loads, making this topology more cost effective. The functionality of the proposed two-stage multi-drive direct power electronic conversion topology is validated by experiments on a realistic laboratory prototype....

  4. High-Intensity Laser-to-Hot-Electron Conversion Efficiency from 1 to 2100 J Using the OMEGA EP Laser System

    Science.gov (United States)

    Nilson, P. M.

    2010-11-01

    Intense laser--matter interactions generate high-current electron beams. The laser-electron conversion efficiency is an important parameter for fast ignition and for developing intense x-ray sources for flash-radiography and x-ray-scattering experiments. These applications may require kilojoules of laser energy focused to greater than 10^18 W/cm^2 with pulse durations of tens of picoseconds. Previous experiments have measured the conversion efficiency with picosecond and subpicosecond laser pulses with energies up to ˜500 J. The research extends conversion-efficiency measurements to 1- to 10-ps laser pulses with energies up to 2100 J using the OMEGA EP Laser System and shows that the conversion efficiency is constant (20±10%) over the entire range The conversion efficiency is measured for interactions with finite-mass, thin-foil targets. A collimated electron jet exits the target rear surface and initiates rapid target charging, causing the majority of laser-accelerated electrons to recirculate (reflux) within the target. The total fast-electron energy is inferred from K-photon spectroscopy. Time-resolved x-ray emission data suggest that electrons are accelerated into the target over the entire laser-pulse duration with approximately constant conversion. This work provides significant insight into high-intensity laser--target interactions. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302 and DE-FC02-04ER54789. [4pt] In collaboration with R. Betti, A. A. Solodov (LLE/FSC), R. S. Craxton, J. A. Delettrez, C. Dorrer, L. Gao, P. A. Jaanimagi, J. H. Kelly, B. E. Kruschwitz, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, C. Stoeckl, W. Theobald, B. Yaakobi, J. D. Zuegel (LLE), A. J. MacKinnon, P. K. Patel (LLNL), K. U. Akli (General Atomics), L. Willingale, K. M. Krushelnick (U. of Michigan).

  5. Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-08-15

    The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.

  6. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  8. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  9. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  10. Nonlinear effects and conversion efficiency of free electron laser in compton regime

    International Nuclear Information System (INIS)

    Taguchi, Toshihiro; Mima, Kunioki; Mochizuki, Takayasu

    1980-01-01

    Nonlinear evolutions of free electron laser are analyzed by using quasi-linear theory. By the analysis, the energy conversion rates and the spectral width of the emitted radiations are calculated self-consistently. Moreover, it is found that the energy conversion rate is remarkably improved, when a RF field is applied to reaccelerate electron beam. (author)

  11. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  12. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  13. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  14. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  15. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  16. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  17. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  18. Parametric down conversion of X-rays, recent experiments

    CERN Document Server

    Adams, B; Novikov, D V; Materlik, G; Mills, D M

    2001-01-01

    Parametric down conversion of X-ray photons in diamond crystals was detected in six experiments, all using the phase matching scheme first employed in the X-ray regime by Eisenberger and McCall (Eisenberger and McCall, Phys. Rev. Lett. 26 (1971) 684). The conversion events were detected by a combination of time correlation spectroscopy and energy discrimination. The time correlation spectra gave a direct comparison of the conversion rate over the accidental coincidence rate.

  19. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  20. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  1. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  2. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  3. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  4. The Finmeccania experience in military conversion

    International Nuclear Information System (INIS)

    Airaghi, A.; Corsi, C.

    1994-01-01

    Experience of the Italian aerospace, defense, energy, transportation and automation group Finmeccanica in military conversion is presented. The defence activities represent about 30% of the total turnover. The group involves 100 laboratories, 7000 fully dedicated employees and several centers of excellence. Since defense market is declining, production volumes are smaller, there is a decline in research and development public expenditures and there are less programs. The industry's challenge is how to survive since conversion in principle is not viable and diversification does not defend the high technology content. Some examples are described which show the possibility of convergence from military to commercial requirements

  5. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  6. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  7. The principles of electronic and electromechanic power conversion a systems approach

    CERN Document Server

    Ferreira, Braham

    2013-01-01

    Teaching the principles of power electronics and electromechanical power conversion through a unique top down systems approach, The Principles of Electromechanical Power Conversion takes the role and system context of power conversion functions as the starting point. Following this approach, the text defines the building blocks of the system and describes the theory of how they exchange power with each other. The authors introduce a modern, simple approach to machines, which makes the principles of field oriented control and space vector theory approachable to undergraduate students as well as

  8. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  9. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  10. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    International Nuclear Information System (INIS)

    Klein-Boesing, Melanie

    2009-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm 2 . The TRD layout and the detector responses

  11. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie

    2009-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm{sup 2}. The TRD layout and the detector

  12. The Future of Electronic Power Processing and Conversion: Highlights from FEPPCON IX

    DEFF Research Database (Denmark)

    Enslin, Johan H.; Blaabjerg, Frede; Tan, Don F.D.

    2017-01-01

    Since 1991, every second year the IEEE Power Electronics Society (PELS) has organized the technical long-range planning meeting "Future of Electronic Power Processing and Conversion" (FEPPCON). FEPPCON IX was held 12-16 June 2017 in beautiful Kruger Park in South Africa (Figure 1). The overall go...

  13. Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector

    International Nuclear Information System (INIS)

    Perajarvi, K.; Turunen, J.; Ihantola, S.; Pollanen, R.; Siiskonen, T.; Toivonen, H.; Kamarainen, V.; Pomme, S.

    2014-01-01

    A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17-75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240 Pu/ 239 Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods. (author)

  14. Conversion electron spectrometry of Pu isotopes with a silicon drift detector

    OpenAIRE

    Pommé, S.; Paepen, J.; Peräjärvi, K.; Turunen, J.; Pöllänen, R.

    2016-01-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5 keV for electrons of 30 keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. 238Pu, 239Pu, 240P...

  15. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    Science.gov (United States)

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed.

  16. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  17. Experiments on FW-IBW mode conversion heating combined with LHCD on Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Imbeaux, F.; Nguyen, F.; Peysson, Y.; Monakhov, I.; Petrov, Y.; Petrov, Y.

    1999-01-01

    Recent RF heating and current drive investigations revealed a growing interest in a scheme based on mode conversion (MC) of externally excited fast waves (FW) to ion Bernstein waves (IBW). Suitability of MC scheme for on/off axis electron heating has already been reported on Tore Supra. New results, which were obtained during MC experiments combined with Low Hybrid Current Drive (LHCD) are presented in this paper. Application of new experimental tools and numerical techniques provided better insight into the problem of MC power deposition. an outcome of active search for synergistic LHCD-IBW current drive effects is also reported

  18. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  19. Feasibility study of internal conversion electron spectroscopy of {sup 229m}Th

    Energy Technology Data Exchange (ETDEWEB)

    Seiferle, Benedict; Wense, Lars von der; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2017-05-15

    With an expected energy of 7.8(5) eV, the isomeric first excited state in {sup 229}Th exhibits the lowest excitation energy of all known nuclei. Until today, a value for the excitation energy has been inferred only by indirect measurements. In this paper we propose an experimental method that is potentially capable of measuring the ground-state transition energy via the detection of the internal conversion electrons. MatLab-based Monte Carlo simulations have been performed to obtain an estimate of the expected statistics and to test the feasibility and the expected precision of the experiment. From the simulations we conclude that with the presented methods an energy determination with a precision of better than 0.1 eV is within reach. (orig.)

  20. The HOR core conversion program development and licensing experiences

    International Nuclear Information System (INIS)

    Vries, J.W. de; Gibcus, H.P.M.; Leege, P.F.A. de

    1997-01-01

    This paper deals with the experiences in the development of a fuel conversion program for a 2 MW university type research reactor, the HOR. It gives an overview of the technical and administrative aspects concerning the fuel conversion program development since the eighties, including the safety review and licensing process. The overall final safety report was submitted in 1995, together with the environmental impact report, and a licence application was submitted accordingly. The licence permitting the conversion was issued in 1996, coming into force at the beginning of this year, although an appeal case is still pending. At the moment the necessary preparations for starting the actual conversion of the HOR are made. The general program characteristics are addressed. (author)

  1. Dose conversion coefficients for electron exposure of the human eye lens

    International Nuclear Information System (INIS)

    Behrens, R; Dietze, G; Zankl, M

    2009-01-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H p (0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H p (3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 deg. and 45 deg. are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  2. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  3. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  4. Preparation of 114mIn low energy conversion electron sources

    International Nuclear Information System (INIS)

    Wrede, C.; Filippone, B.W.; Garcia, A.; Harper, G.C.; Lassell, S.; Liu, J.; Mendenhall, M.P.; Palmer, A.S.C.; Pattie, R.W.; Will, D.I.; Young, A.R.

    2011-01-01

    Highlights: → Controlled ion implantation of In-113 into thin Al substrate. → Production of In-114m (half life = 50 days) by neutron irradiation. → Use of In-114m as a source of electron lines and continuum for calibrations. → Source reactivation by short neutron irradiation. -- Abstract: The preparation of 114m In sources of conversion electrons in the energy range 162-190 keV and β continuum with a 1989 keV endpoint via ion implantation of 113 In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  5. Physical basis of power conversion of energy fluctuations of hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Yater, J C

    1983-12-01

    The design of an experimental reversible-energy-fluctuation (REF) solar converter using hot nonequilibrated (HNE) electrons is presented. The physical principles are introduced, and an idealized model is described and analyzed in terms of radiation and electron-thermalization losses and first-to-third-layer transfer times. It is shown that the 93-percent limiting conversion efficiency can be approached in both a two-level and an N-level model, even in larger-scale circuits. On the other hand, as circuit size is decreased below 100 nm, the maximum power output can exceed 10 MW/sq m. The materials and thicknesses to be used in an experimental thin-film version of the REF device are outlined, including a 10-60-nm-thick Cd3As2 or alpha-Sn absorbing layer, a 4-10-nm-thick doped-semiconductor or semimetal quantum-well layer, and a Schottky-barrier diode layer comprising a 4-10-nm-thick Pb sheet on a 5-20-nm-thick p-GaAs film. Experiments at lattice temperatures of from 300 to 1 K with input radiation at wavelengths from 1 micron to the solar spectrum and intensities from zero to 1 mW are planned to determine whether the predicted practical efficiency of 80 percent can be obtained. 19 references.

  6. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    Science.gov (United States)

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  7. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zboril, M.; Beck, M.; Bonn, J.; Dragoun, O.; Jakubek, J.; Johnston, K.; Kovalik, A.; Otten, E.W.; Schlösser, K.; Slezak, M.; Spalek, A.; Thümmler, T.; Venos, D.; Zemlicka, J.; Weinheimer, C.

    2013-01-01

    The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRIN's energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated fr...

  9. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Science.gov (United States)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  10. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  11. The radiation-induced topotactic conversion of di-para anthracene to anthracene: an electron microscopic study

    International Nuclear Information System (INIS)

    Parkinson, G.M.; Goringe, M.J.; Thomas, J.M.

    1977-01-01

    A study was made of single crystals of di-para anthracene, the product of photodimerisation of anthracene. This undergoes an electron-induced topotactic conversion to anthracene, and the study of this reaction using low temperature TEM enabled the identification of separate stages in the conversion and the elucidation of probable mechanistic routes. (author)

  12. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  13. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  14. Electronics for LHC Experiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document gathers the abstracts of most presentations made at this workshop on electronics for the large hadron collider (LHC) experiments. The presentations were arranged into 6 sessions: 1) electronics for tracker, 2) trigger electronics, 3) detector control systems, 4) data acquisition, 5) electronics for calorimeters and electronics for muons, and 6) links, power systems, grounding and shielding, testing and quality assurance.

  15. Electronics for LHC Experiments

    International Nuclear Information System (INIS)

    2004-01-01

    This document gathers the abstracts of most presentations made at this workshop on electronics for the large hadron collider (LHC) experiments. The presentations were arranged into 6 sessions: 1) electronics for tracker, 2) trigger electronics, 3) detector control systems, 4) data acquisition, 5) electronics for calorimeters and electronics for muons, and 6) links, power systems, grounding and shielding, testing and quality assurance

  16. Search of prompt electrons in the NA14 photoproduction experiment at the CERN

    International Nuclear Information System (INIS)

    de Bouard, G.

    1985-03-01

    The purpose of this thesis is to isolate a prompt electron signal from the data of the NA14 photoproduction experiment at CERN. For that aim, a fast data filtering program has been developed. In order to have a good understanding of the electrons behaviour in the electromagnetic calorimeter, electrons from photon conversion were selected. The observation of events with a reconstructed psi and the sharing between the different psi production mechanism leads to a clear excess of the inelastic process relative to a QCD theoretical expectation. The prompt electrons measurement method, when applied to events obtained from a π - beam, does not give any evidence for a signal. With incident photons, a strong signal is seen which cannot been explained by the Bethe Heitler mechanism and psi production alone. This signal is stronger than the photon-gluon fusion model prediction [fr

  17. Preparation of {sup 114m}In low energy conversion electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, C., E-mail: wrede@uw.ed [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Filippone, B.W. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Garcia, A.; Harper, G.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Lassell, S. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Liu, J. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Mendenhall, M.P. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Palmer, A.S.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Pattie, R.W. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Will, D.I. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Young, A.R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2011-05-15

    Highlights: {yields} Controlled ion implantation of In-113 into thin Al substrate. {yields} Production of In-114m (half life = 50 days) by neutron irradiation. {yields} Use of In-114m as a source of electron lines and continuum for calibrations. {yields} Source reactivation by short neutron irradiation. -- Abstract: The preparation of {sup 114m}In sources of conversion electrons in the energy range 162-190 keV and {beta} continuum with a 1989 keV endpoint via ion implantation of {sup 113}In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  18. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  19. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  20. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); Kubo, S. [National Institute for Fusion Science, Toki, Japan and Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Ogasawara, S.; Makino, R. [Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Idei, H. [Research Institute for Applied Mechanics, Kyusyu Univ., Kasuga (Japan); Nagasaki, K. [Institute of Advanced Energy, Kyoto Univ., Uji (Japan)

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  1. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  2. IRT - Sofia conversion feasibility study experience 2002-2009

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, S.I.; Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Science, Tsarigradsko 72, 1784 Sofia (Bulgaria)

    2010-07-01

    A joint conversion feasibility study concerning the IRT - Sofia research reactor between INRNE and the RERTR Program at ANL was initiated in 2002. The initial steps studies (up to 2006) were mainly focused on neutronics properties significant for reactor application and safety analyses. Thermal hydraulic, accident analyses as well as additional neutronics study required were performed after that (up to 2010). The obtained results show that the IRT-4M LEU fuel assemblies (19.75% {sup 235}U enrichment) are appropriate for IRT-Sofia conversion (IRT-Sofia was initially designed for the IRT-2M HEU fuel assemblies with 36% {sup 235}U enrichment). The results obtained in the frames of the joint study show that the IRT-Sofia operation even with usage of only one pump in the primary circuit meets all safety requirements at power level up to 1000 kW and that safety is maintained for accident transients. Presented results of analyses (neutronics, thermal hydraulic, and accident) and accumulated experience for the IRT-Sofia will be useful for other research reactors where conversion from IRT-2M (HEU) to IRT-4M (LEU) fuel is underway and/or foreseen. (authors)

  3. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  4. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  5. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  6. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  7. Optimising electron microscopy experiment through electron optics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Gatel, C.; Snoeck, E. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Houdellier, F., E-mail: florent.houdellier@cemes.fr [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France)

    2017-04-15

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  8. Optimising electron microscopy experiment through electron optics simulation

    International Nuclear Information System (INIS)

    Kubo, Y.; Gatel, C.; Snoeck, E.; Houdellier, F.

    2017-01-01

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  9. Conversational Pedagogy: Exploring Interactions between a Teaching Artist and Young Learners during Visual Arts Experiences

    Science.gov (United States)

    Eckhoff, Angela

    2013-01-01

    In many early childhood classrooms, visual arts experiences occur around a communal arts table. A shared workspace allows for spontaneous conversation and exploration of the art-making process of peers and teachers. In this setting, conversation can play an important role in visual arts experiences as children explore new media, skills, and ideas.…

  10. Conversion of sulfur and nitrogen oxides in air under exposure to microsecond electron beams

    International Nuclear Information System (INIS)

    Denisov, G.V.; Kuznetsov, D.L.; Novoselov, Yu.N.; Tkachenko, R.M.

    2002-01-01

    Flue gases of power plants realizing sulfur and nitrogen oxides into the atmosphere represent one of the environmental pollution sources. Paper presents the results of experimental investigations of conversion of sulfur and nitrogen oxides in the ionized gas mixture simulating composition of off-gases of thermal power stations. Pulse beam of microsecond duration electrons was used as a source of ionization. Mutual influence of both types of oxides on process of their conversion is shown. One studied possible kinetic mechanisms to remove sulfur and nitrogen oxides from gaseous mixture [ru

  11. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  12. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Ryan [Northern Illinois Univ., DeKalb, IL (United States)

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  13. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  14. A ferroelectric electron gun in a free-electron maser experiment

    International Nuclear Information System (INIS)

    Einat, M.; Jerby, E.; Rosenman, G.

    2002-01-01

    An electron-gun based on a ferroelectric cathode is studied in a free-electron maser (FEM) experiment. In this gun, the electrons are separated from the cathode surface plasma, and are accelerated in two stages. The electron energy-spread is reduced sufficiently for an FEM operation in the microwave regime. A 14 keV, 1-2 A e-beam is obtained in a 0.1-2.1 μs pulse width. The pulse repetition frequency attains 3.1 MHz in ∼50% duty-cycle. This gun is implemented in an FEM oscillator experiment operating around 3 GHz. The paper presents experimental results and discusses the applicability of ferroelectric guns in free-electron laser devices

  15. A ferroelectric electron gun in a free-electron maser experiment

    CERN Document Server

    Einat, M; Rosenman, G

    2002-01-01

    An electron-gun based on a ferroelectric cathode is studied in a free-electron maser (FEM) experiment. In this gun, the electrons are separated from the cathode surface plasma, and are accelerated in two stages. The electron energy-spread is reduced sufficiently for an FEM operation in the microwave regime. A 14 keV, 1-2 A e-beam is obtained in a 0.1-2.1 mu s pulse width. The pulse repetition frequency attains 3.1 MHz in approx 50% duty-cycle. This gun is implemented in an FEM oscillator experiment operating around 3 GHz. The paper presents experimental results and discusses the applicability of ferroelectric guns in free-electron laser devices.

  16. Achievement of extreme resolution for the selective by depth Moessbauer method on conversion electrons

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.; Ryzhikh, V.Yu.; Chubisov, M.A.

    2001-01-01

    At the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan the depth selective conversion electrons Moessbauer spectroscopy (DSCEMS) method was realized on the facility designed on the magnet sector beta-spectrometer base with the dual focusing equipped with non-equipotential electron source in the multi-ribbon variant and the position-sensitive detector. In the work the model statistical calculations of energy and angular distributions experienced not so many times of inelastic scattering acts were carried out

  17. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  18. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  19. A sanctuary of safety: A study of how patients with dual diagnosis experience caring conversations.

    Science.gov (United States)

    Priebe, Åsa; Wiklund Gustin, Lena; Fredriksson, Lennart

    2018-04-01

    The prevalence of dual diagnosis, that is, the combination of psychiatric illnesses and substance use disorders, is high. As a vast majority of previous research in this context focusses on the effects of different treatment methods, rather than interpersonal issues, the purpose of the present study was to explore and illuminate in what way patients with a dual diagnosis experience conversations with nurses in an outpatient clinic to be caring. Five patients were interviewed regarding their experiences of caring conversations. The analysis and interpretation were inspired by a previously-used hermeneutical process. These yielded three themes: (i) reciprocity creates safety and communion; (ii) suffering is made visible and understandable; and (iii) self-esteem is restored. When synthesized, these themes gave rise to a main theme - a sanctuary of safety - where suffering is alleviated and dignity and self-esteem are restored. It is concluded that the caring conversation contributes to experiences of safeness. In this specific context, safety appears to be more fundamental than trust for patients' recoveries. The caring conversation also contributes to recovery, as it supports the individual's learning and understanding as a way to cope with problems, which also enables patients to make informed decisions about their own care. The caring conversation contributes to the alleviation of suffering and restoration of dignity and self-esteem for patients with a dual diagnosis. However, there is a need for further research focussing on how the caring conversation can contribute to psychiatric nurses' caring expertise. © 2017 Australian College of Mental Health Nurses Inc.

  20. Observation of electron beam moiré fringes in an image conversion tube

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yunfei; Liao, Yubo [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Long, Jing-hua [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Cai, Houzhi; Bai, Yanli [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Liu, Jinyuan, E-mail: ljy@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China)

    2016-11-15

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  1. Observation of electron beam moiré fringes in an image conversion tube

    International Nuclear Information System (INIS)

    Lei, Yunfei; Liao, Yubo; Long, Jing-hua; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan

    2016-01-01

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  2. Data analysis for electronic experiments

    International Nuclear Information System (INIS)

    Grote, H.

    1981-01-01

    In this lecture I schell attempt to cover the principal off-line software aspects in electronic experiments. Of course, this is too ambitious an undertaking for two reasons: Firstly the field is vast, and some important aspect will certainly have escaped my attention. Secondly, the choice of methods, features, algorithms, and packages presented will be biased through my personal opinion and experience, although to some extent it is influenced as well by the opinion and experience of my colleagues, who, like myself, are working in this field at CERN. Therefore, beware. Whenever I shall claim something to be evident, a matter of experience -- a fact --it ain't necessarily so. On the other hand, it will not be entirely wrong, since our experience is based on something like 30 experiments in high-energy physics using electronic for other people, and although these people are of course misled, one has to admit their existence. (orig.)

  3. Experiments on topographies lacking tidal conversion

    Science.gov (United States)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  4. Electronics for LHC experiments

    International Nuclear Information System (INIS)

    Bourgeois, Francois

    1995-01-01

    Full text: A major effort is being mounted to prepare the way handling the high interaction rates expected from CERN's new LHC proton-proton collider (see, for example, November, page 6). September saw the First Workshop on Electronics for LHC Experiments, organized by Lisbon's Particle Physics Instrumentation Laboratory (LIP) on behalf of CERN's LHC Electronics Review Board (LERB - March, page 2). Its purpose was not only for the LERB to have a thorough review of ongoing activities, but also to promote cross fertilization in the engineering community involved in electronics design for LHC experiments. The Workshop gathered 187 physicists and engineers from 20 countries including USA and Japan. The meeting comprised six sessions and 82 talks, with special focus on radiation-hard microelectronic processes, electronics for tracking, calorimetry and muon detectors, optoelectronics, trigger and data acquisition systems. Each topic was introduced by an invited speaker who reviewed the requirements set by the particular detector technology at LHC. At the end of each session, panel discussions were chaired by each invited speaker. Representatives from four major integrated circuit manufacturers covered advanced radiation hard processes. Two talks highlighted the importance of obsolescence and quality systems in the long-lived and demanding environment of LHC. The Workshop identified areas and encouraged efforts for rationalization and common developments within and between the different detector groups. As a result, it will also help ensure the reliability and the long term maintainability of installed equipment. The proceedings of the Workshop are available from LIP Lisbon*. The LERB Workshop on Electronics for LHC Experiments will become a regular event, with the second taking place in Hungary, by Lake Balaton, from 23-27 September 1996. The Hungarian institutes KFKIRMKI have taken up the challenge of being as successful as LIP Lisbon in the organization

  5. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  6. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1980-01-01

    Dose-rate conversion factors for external exposure to photon and electron radiation are calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each exposure mode, dose-rate conversion factors for photons and electrons are calculated for tissue-equivalent material at the body surface of an exposed individual. Dose-rate conversion factors for photons only are calculated for 22 body organs. (author)

  7. Experiments on hot-electron ECRH in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Stallard, B.W.

    1983-01-01

    Experiments have begun on the Tandem Mirror Experiment Upgrade (TMX-U) using electron-cyclotron resonant heating (ECRH) to generate the hot electron populations required for thermal barrier operation (Energy E/sub eh/ approx. 50 keV, density n/sub eh/ 12 , and hot-to-cold fraction n/sub eh/n approx. 0.9). For this operation, rf power produced by 28-GHz gyrotrons is injected with extraordinary mode polarization at both fundamental and second harmonic locations. Our initial experiments, which concentrated on startup of the hot electrons, were carried out at low density ( 12 cm - 3 ) where Fokker-Planck calculations predict high heating efficiency when the electron temperature (T/sub e/) is low. Under these conditions, we produced substantial hot electron populations (diamagnetic energy > 400 J, E/sub eh/ in the range of 15 to 50 keV, and n/sub eh//n > 0.5)

  8. Investigation of internal conversion electron lines by track counting technique

    CERN Document Server

    Islamov, T A; Kambarova, N T; Muminov, T M; Lebedev, N A; Solnyshkin, A A; Aleshin, Yu D; Kolesnikov, V V; Silaev, V I; Niipf-Tashgu, T

    2001-01-01

    The methodology of counting the tracks of the internal conversion electron (ICE) in the nuclear photoemulsion is described. The results on counting the ICE tracks on the photoplates for sup 1 sup 6 sup 1 Ho, sup 1 sup 6 sup 3 Tm, sup 1 sup 6 sup 6 Tm, sup 1 sup 3 sup 5 Ce is described. The above results are obtained through the MBI-9 microscope and the MAS-1 automated facility. The ICE track counting on the photoplates provides for essentially higher sensitivity as compared to the photometry method. This makes it possible to carry out measurements with the sources by 1000 times weaker as by the study into the density of blackening

  9. A new magnetic spectrometer for the investigation of the internal conversion electron in capture reaction

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1978-01-01

    Planning, development and manufacture of a new beta spectrometer for the investigation of the internal conversion electrons, from 0,02 to 10 MeV, emitted during the radioative capture process of the thermal neutrons. The resolution on the base of resolution curve is about 1,5 X 10 sup(-3) [pt

  10. The conversion to electronic hospital notes at Mayo Clinic. Overcoming barriers and challenges.

    Science.gov (United States)

    Andreen, Debra L; Dobie, Linda J; Jasperson, Jan C; Lucas, Thomas A; Wubbenhorst, Cathryn L

    2010-01-01

    This article describes the conversion to electronic hospital notes at a large, multi-specialty group practice: Mayo Clinic in Rochester, Minnesota. Because of the size of the institution and the barriers to the adoption of electronic notes, the process was a gradual one that took several years. Making a convincing case for change to institutional leaders and maintaining their support was crucial to success. Equally vital was the careful investigation of user requirements and the development of software features that allowed providers to complete their notes quickly in the fast-paced hospital environment. Care providers discovered the value of having immediate access to legible hospital notes throughout the campus and from remote locations.

  11. Electron Bernstein Wave Research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Hosea, J.C.; Kaita, R.; LeBlanc, B.P.; Majeski, R.; Munsat, T.; Phillips, C.K.; Spaleta, J.; Wilson, J.R.; Rasmussen, D.; Bell, G.; Bigelow, T.S.; Carter, M.D.; Swain, D.W.; Wilgen, J.B.; Ram, A.K.; Bers, A.; Harvey, R.W.; Forest, C.B.

    2001-01-01

    Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic field on the midplane of the Current Drive Experiment-Upgrade (CDX-U) and the National Spherical Torus Experiment (NSTX) spherical torus plasmas. The radiation temperature of the EBW emission was compared to Te measured by Thomson scattering and Langmuir probes. EBW mode-conversion efficiencies of over 20% were measured on both CDX-U and NSTX. Sudden increases of mode-conversion efficiency, of over a factor of three, were observed at high-confinement-mode transitions on NSTX, when the measured edge density profile steepened. The EBW mode-conversion efficiency was found to depend on the density gradient at the mode-conversion layer in the plasma scrape-off, consistent with theoretical predictions. The EBW emission source was determined by a perturbation technique to be localized at the electron cyclotron resonance layer and was successfully used for radial transport studies. Recently, a new in-vessel antenna and Langmuir probe array were installed on CDX-U to better characterize and enhance the EBW mode-conversion process. The probe incorporates a local adjustable limiter to control and maximize the mode-conversion efficiency in front of the antenna by modifying the density profile in the plasma scrape-off where fundamental EBW mode conversion occurs. Initial results show that the mode-conversion efficiency can be increased to ∼100% when the local limiter is inserted near the mode-conversion layer. Plans for future EBW research, including EBW heating and current-drive studies, are discussed

  12. Comparison of electron cloud simulation and experiments in the high-current experiment

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Verboncoeur, J.; Stoltz, P.; Veitzer, S.

    2004-01-01

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability

  13. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  14. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  15. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  16. System Requirements Document for the Molten Salt Reactor Experiment 233U conversion system

    International Nuclear Information System (INIS)

    Aigner, R.D.

    2000-01-01

    The purpose of the conversion process is to convert the 233 U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019

  17. Preliminary experiments of electronic duplication

    International Nuclear Information System (INIS)

    Fay, Bernard

    1974-01-01

    Systems of electron sputtering (at the unit scale) use as master mask a photocathode with localized emitting zones. Emitted electrons are accelerated and focussed on a silicon substrate covered with an electrosensitive resin. The very high definition associated with electron masking is obtained whatever the complexity of the master mask is, for a printing duration of the order of the minute. This is a duplication method without any contact that prevents the master mask from any mechanical erosion. Alignment of the successive masks is obtained from an electric signal directly usable through an automatic alignment system. Experiments using the apparatus for reproducing masks through an electronic image or ''electronic duplicator'' developed in Thomson-CSF Laboratory at Corbeville, are presented [fr

  18. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  19. Ion-electron recombination in merged-beams experiments

    International Nuclear Information System (INIS)

    Schmidt, H.T.

    1994-01-01

    In the present thesis, studies of recombination processes applying the technique of merged beams of fast ions and electrons are described. The main advantage of this technique is that the low relative velocity of ions and electrons necessary for these investigations can be achieved, at the same time as the velocity of the ions relative to the molecules of the residual gas is high. The high ion velocity leads to a very low reaction cross section for the leading contribution to the background signal, the capture of electrons in collisions with residual gas molecules. The experimental technique is described, emphasizing the electron beam velocity distribution and its relation to the energy resolution of the experiments. The presentation of the process of electron cooling is aimed at introducing this process as a tool for merged-beams experiments in storage rings rather than investigating the process itself. The non-resonant process of radiative recombination for non-fully stripped ions, showing evidence of incomplete screening is presented. Experimental investigation of dielectronic recombination is presented. Results of measurements of this process for He-like ions form the Aarhus single-pass experiment and the Heidelberg storage ring experiment are compared. Recombination is reduced from being the aim of the investigation to being a tool for high-precision measurements of the lifetimes of the 1s2s 3 S metastable states of HE-like ions of boron, carbon, and nitrogen, performed at the Heidelberg storage ring. The experiment is concerned with the process of dissociative recombination of molecular hydrogen ions. The discussion of this experiment emphasizes the distribution of population on the different vibrational levels of the ions in the initial state. In particular, a laser photo-dissociation technique was introduced to reduce the number of initial levels in the experiment. (EG) 24 refs

  20. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    International Nuclear Information System (INIS)

    Wang Guixiang; Zhang Milin; Wu Ruizhi

    2012-01-01

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  1. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guixiang, E-mail: wgx0357@126.com [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang Milin; Wu Ruizhi [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-01-15

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  2. Deconvolution of 238,239,240Pu conversion electron spectra measured with a silicon drift detector

    DEFF Research Database (Denmark)

    Pommé, S.; Marouli, M.; Paepen, J.

    2018-01-01

    Internal conversion electron (ICE) spectra of thin 238,239,240Pu sources, measured with a windowless Peltier-cooled silicon drift detector (SDD), were deconvoluted and relative ICE intensities were derived from the fitted peak areas. Corrections were made for energy dependence of the full...

  3. High-efficiency free-electron-laser experiments

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Goldstein, J.C.; Hohla, K.L.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.

    1983-01-01

    Experiments with a tapered-wiggler free-electron laser have demonstrated extraction of about 3% of the energy from the electron beam and measured the corresponding optical emission. These results are in excellent agreement with theory and represent an order-of-magnitude improvement over all previous results

  4. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  5. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  6. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  7. 6. workshop on electronics for LHC experiments. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the workshop was to review the electronics for LHC experiments and to identify areas and encourage common efforts for the development of electronics within and between the different LHC experiments and to promote collaboration in the engineering and physics communities involved in the LHC activities. (orig.)

  8. 6. workshop on electronics for LHC experiments. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-25

    The purpose of the workshop was to review the electronics for LHC experiments and to identify areas and encourage common efforts for the development of electronics within and between the different LHC experiments and to promote collaboration in the engineering and physics communities involved in the LHC activities. (orig.)

  9. Electron Bernstein Wave Research on NSTX and PEGASUS

    International Nuclear Information System (INIS)

    Diem, S. J.; LeBlanc, B. P.; Taylor, G.; Caughman, J. B.; Bigelow, T.; Wilgen, J. B.; Garstka, G. D.; Harvey, R. W.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2007-01-01

    Spherical tokamaks (STs) routinely operate in the overdense regime (ω pe >>ω ce ), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees

  10. Electronic Emergency-Department Whiteboards

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2011-01-01

    that whiteboard information has to a larger extent become available where and when they need it. Conversely, the ED respondents’ expectations toward the electronic whiteboards have not been fulfilled when it comes to keeping information current and obtaining improvements for the patients. The ED staff groups...... to their overview and collaboration than the ED respondents. Conclusion. The ED clinicians experience positive effects of electronic over dry-erase whiteboards. However, their assessment of electronic whiteboards depends on their staff group, evolves over time, and differs from that of paediatric clinicians...

  11. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    of internal conversion process containing the dynamic effects appears to be coherent and well understood. The penetration matrix effects can then be used as independent and complementary sources of information for the study of problems on nuclear structure. (author) [French] Dans le premier chapitre, l'auteur demontre l'interet des correlations angulaires electrons de conversion-gamma en spectrometric nucleaire et souligne la presence ''d'elements de matrice de penetration'' et l'importance de corrections ''dynamiques'', causees par la dimension finie du noyau. Dans le chapitre 2, l'auteur expose les methodes experimentales pour l'etude de la correlation electron-gamma. Une etude comparative est faite entre la correlation angulaire electron de conversion-gamma et la correlation angulaire gamma-gamma. Il est demontre qu'une mesure simultanee de ces deux fonctions de correlation permet d'eliminer les facteurs d'attenuations dus a l'action des champs extranucleaires. Une etude complete de ces champs est menee dans le chapitre 3 avec, principalement, la mise en evidence des effets ''de trou'' correspondant a une interaction de structure hyperfine entre le spin du noyau et celui de son atome. Pour une periode du niveau intermediaire de l'ordre de la nanoseconde, les attenuations creees par la formation de trou ne peuvent pas etre negligees, chaque fois que les atomes radioactifs sont inclus dans un milieu isolant. Les experiences permettant la determination des coefficients b{sub 2}(E{sub 2}) et {alpha}{sub K}(E{sub 2}) du {sup 198}Hg sont decrits chapitre 4. Dans le chapitre 5, l'auteur applique la determination des elements de matrice de penetration dans le processus de conversion M{sub 1} a l'etude des problemes sur la structure nucleaire. Dans le chapitre 6 sont decrites des experiences mettant en evidence le mode de transition E{sub 0} en competition directe avec la conversion interne M{sub 1} et E{sub 2}. (auteur)

  12. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  13. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    Science.gov (United States)

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  15. The Mu2e experiment at Fermilab

    International Nuclear Information System (INIS)

    Donghia, R.

    2017-01-01

    The Mu2e experiment searches for the neutrinoless muon to electron conversion in the field of a nucleus, which is a charged lepton flavor violating process. The goal of the experiment is to reach a single event sensitivity of 2.8×10"−"1"7, setting an upper limit on the muon conversion rate of 6.7 × 10"−"1"7. This corresponds to a four order of magnitude improvement with respect to the existing limits.

  16. The Growth of Instructional Coaching Partner Conversations in a PreK-3rd Grade Teacher Professional Development Experience

    Science.gov (United States)

    Thomas, Earl E.; Bell, David L.; Spelman, Maureen; Briody, Jennifer

    2015-01-01

    Instructional coaching that supports teachers' with revising teaching practices is not understood. This study sought to understand the impact of the instructional coaching experience by recording coaching conversations/interactions with teachers. The purpose was to determine if the type of coaching conversations changed overtime during three…

  17. Detecting the phonon spin in magnon-phonon conversion experiments

    Science.gov (United States)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  18. A multicenter experience with generic tacrolimus conversion.

    Science.gov (United States)

    McDevitt-Potter, Lisa M; Sadaka, Basma; Tichy, Eric M; Rogers, Christin C; Gabardi, Steven

    2011-09-27

    The first generic tacrolimus product gained Food and Drug Administration approval in August 2009. This prospective, observational trial sought to determine the need for dose titrations and measure drug cost savings on conversion to generic tacrolimus. Transplant recipients on stable tacrolimus doses were converted from brand to generic tacrolimus on a mg:mg basis. Data were collected at the time of generic conversion (study arm) and at a time point exactly 6 months before conversion (control arm) for all subjects. Seventy conversions from four centers are reported. Subjects were a mean of 70 months after kidney (n=37), liver (n=28), or multiorgan (n=5) transplant. In the study arm, mean tacrolimus doses were 4.4 and 4.5 mg/d and mean tacrolimus trough concentrations were 5.8 and 5.9 ng/mL before and after conversion, respectively. In the control arm, mean tacrolimus doses were 4.6 and 4.6 mg/d and mean tacrolimus trough concentrations were 6.1 and 5.9 ng/mL before and after the control time point, respectively. Dose titrations occurred in five patients (7%) in the control arm and 15 patients (21%) in the study arm (P=0.028). Mean monthly drug costs were $645 for brand, $593 for generic, and $595 for generic after dose titrations. Mean monthly patient copays were $38 for brand and $15 for generic. These cumulative data show that dose requirements and trough levels are similar between brand and generic tacrolimus and that generic substitution allows for savings. However, postconversion monitoring is prudent as patients may require dose titration.

  19. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  20. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  1. Gas flow counter conversion electron Moessbauer spectroscopy (GFC-CEMS)

    International Nuclear Information System (INIS)

    Williamson, A.; Vijay, Y.K.; Jain, I.P.

    1999-01-01

    Conversion Electron Moessbauer Spectroscopy (CEMS) is well established technique to study surface properties of materials. However non availability of commercial experimental set up and complexity of operational parameters have been restricting the working experimental groups with in the country and abroad. In this paper we have presented the development work for the design of Gas Flow Counter (GFC), e.g. convenient sample mount, grounding, steady flow rate adjustment and minimum He-losses so that the detector operation and installation becomes convenient and dependable. The basic design is modified e.g. large volume to maintain steady gas flow, sample mount close to central wire and O-ring fitted flange. The CEMS spectra are recorded using conventional Moessbauer drive and 57 Co source. The calibrated spectrum shows a detection efficiency of about 20% for natural iron and steel foil. The CEMS spectrum for FeTi bulk and transmission Moessbauer Spectroscopy (TMS) spectrum of FeTi thin film deposited by vacuum evaporation on thin glass substrate were recorded to test the performance of GFC-CEMS. (author)

  2. Preparations for Muon Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Popovic, M.; Prebys, E.; /Fermilab; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  3. Conversion electron Moessbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    International Nuclear Information System (INIS)

    Terwagne, G.; Hutchings, R.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI 3 ) at 350 C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ε-Fe 2 N through ε-Fe 3 N to γ'-Fe 4 N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone. (orig.)

  4. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may mot be possible by other techniques

  5. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques

  6. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    Energy Technology Data Exchange (ETDEWEB)

    Morace, A. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Bellei, C.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Bartal, T.; Kim, J.; Beg, F. N. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Willingale, L.; Maksimchuk, A.; Krushelnick, K. [University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, Michigan 48109 (United States); Wei, M. S. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); Batani, D. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Piovella, N. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  7. Electron beam induced cationic polymerization of epoxy resins. Dependence of Tg on conversion

    International Nuclear Information System (INIS)

    Degrand, H.; Cazaux, F.; Coqueret, X.

    2002-01-01

    Complete text of publication follows. The high-energy radiation curing of monomer blends polymerizing by a free radical or by a cationic mechanism receives increasing attention in the perspective of high performance composite materials. In the present work, we have focused our attention on epoxy formulations as models of the matrices polymerizing by a cationic mechanism that could be used in fiber-reinforced composites for aerospace applications. We have examined the progress of the electron beam (EB) induced polymerization of diglycidylether of bisphenol A (DGEBA) in the presence of a diaryliodonium salt (DAIS) by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results allow to draw the gradual increase of the temperature for the network thermomechanical transition (T a , associated with the glass transition temperature T g ) over a broad range of conversion (p) and reveal a peculiar behavior at high conversion. In this domain (p > 0.90), the material's T g is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective 'dark curing', appears to induce a decrease of T g , with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerisation, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior

  8. An innovative seeding technique for photon conversion reconstruction at CMS

    International Nuclear Information System (INIS)

    Giordano, D; Sguazzoni, G

    2012-01-01

    The conversion of photons into electron-positron pairs in the detector material is a nuisance in the event reconstruction of high energy physics experiments, since the measurement of the electromagnetic component of interaction products results degraded. Nonetheless this unavoidable detector effect can also be extremely useful. The reconstruction of photon conversions can be used to probe the detector material and to accurately measure soft photons that come from radiative decays in heavy flavor physics. In fact a converted photon can be measured with very high momentum resolution by exploiting the excellent reconstruction of charged tracks of a tracking detector as the one of CMS at LHC. The main issue is that photon conversion tracks are difficult to reconstruct for standard reconstruction algorithms. They are typically soft and very displaced from the primary interaction vertex. An innovative seeding technique that exploits the peculiar photon conversion topology, successfully applied in the CMS track reconstruction sequence, is presented. The performances of this technique and the substantial enhancement of photon conversion reconstruction efficiency are discussed. Application examples are given.

  9. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Gunnlaugsson, H.P; Weyer, G.

    2005-01-01

    We have grown 4 nm thin films of Fe-57 on InAs(100) and InP(100) surfaces by use of MBE and studied the samples by Fe-57 conversion electron Mossbauer spectroscopy. In the case of InAs, the Mossbauer spectrum showed a sextet due to alpha-Fe and a further magnetically split component with slightly...

  10. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment

    NARCIS (Netherlands)

    Scholten, J.C.M.; Bodegom, van P.M.; Vogelaar, J.; Ittersum, van A.; Hordijk, K.; Roelofsen, W.; Stams, A.J.M.

    2002-01-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and

  11. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  12. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments

    International Nuclear Information System (INIS)

    Michalik, A.M.; Sipe, J.E.

    2006-01-01

    We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs

  13. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  14. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system

    Science.gov (United States)

    2009-01-01

    Background Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to represent the existing clinical

  15. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system

    Directory of Open Access Journals (Sweden)

    Karlsson Daniel

    2009-07-01

    Full Text Available Abstract Background Exchange of Electronic Health Record (EHR data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM and Archetype Model (AM specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to

  16. Electron Bernstein Wave Emission Based Diagnostic on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.; Wilgen, John B.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B(T) less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T(e) measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T(e) measurements in the ST. Practically, a robust T(e)(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T(e)(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T(e)< 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T(e) inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  17. Modeling the Nab Experiment Electronics in SPICE

    Science.gov (United States)

    Blose, Alexander; Crawford, Christopher; Sprow, Aaron; Nab Collaboration

    2017-09-01

    The goal of the Nab experiment is to measure the neutron decay coefficients a, the electron-neutrino correlation, as well as b, the Fierz interference term to precisely test the Standard Model, as well as probe for Beyond the Standard Model physics. In this experiment, protons from the beta decay of the neutron are guided through a magnetic field into a Silicon detector. Event reconstruction will be achieved via time-of-flight measurement for the proton and direct measurement of the coincident electron energy in highly segmented silicon detectors, so the amplification circuitry needs to preserve fast timing, provide good amplitude resolution, and be packaged in a high-density format. We have designed a SPICE simulation to model the full electronics chain for the Nab experiment in order to understand the contributions of each stage and optimize them for performance. Additionally, analytic solutions to each of the components have been determined where available. We will present a comparison of the output from the SPICE model, analytic solution, and empirically determined data.

  18. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  19. Longitudinal electron cooling experiments at HIRFL-CSRe

    International Nuclear Information System (INIS)

    Mao, L.J.; Zhao, H.; Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J.; Parkhomchuk, V.V.; Reva, V.B.; Ma, X.M.; Yan, T.L.; Tang, M.T.; Xia, J.W.

    2016-01-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  20. Longitudinal electron cooling experiments at HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Parkhomchuk, V.V.; Reva, V.B. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ma, X.M.; Yan, T.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  1. Electron characterization in OPERA Experiment; Caracterisation des electrons dans l'experience OPERA

    Energy Technology Data Exchange (ETDEWEB)

    Caffari, Yvan [Institut de Physique Nucleaire de Lyon, 4, Rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Universite Claude Bernard Lyon-I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex (France)

    2006-09-15

    In 1998 by making use of a water Cherenkov detector the Super-Kamiokande Experiment in Japan has measured a deficit of {nu}{sub {tau}} atmospheric neutrinos without observing a corresponding rise in the {nu}{sub e} flux. This phenomenon is understood as neutrino oscillations, a mechanism implying a non vanishing neutrino mass. In 1999 the CHOOZ Experiment has definitely excluded the oscillations {nu}{sub {mu}} {yields} {nu}{sub e} within atmosphere. The OPERA Experiment aims at evidencing the {nu}{sub {mu}} {yields} {nu}{sub {tau}}oscillations through occurrence of {nu}{sub {tau}} and of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations by occurrence of {nu}{sub e} starting from a muon neutrino beam almost totally clean. Such a beam is actually produced at CERN (CNGS beam) in Switzerland and then directed upon the OPERA detector located 732 km southward under Gran Sasso mountains in Italy. The detector consists of more than 200,000 bricks (what amounts to a total mass of 1,800 tons made up of a nuclear emulsion foils / lead foils sandwich. This module structure allows reconstructing with a high spatial resolution ({delta}{sub {theta}} {approx_equal} 1 mrad and {delta}{sub r} {approx_equal} 1 {mu}m) the kink topology created by the {tau} lepton (issued from charged current interaction of a {nu}{sub {tau}} lepton with a lead nucleus) and its decay products. The work reported in this thesis consists in characterization of the electrons needed in the study of {nu}{sub {mu}} {yields} {nu}{sub {tau}}oscillations, with {tau} {yields} e, and the {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, the {nu}{sub e} interacting through charged currents with a lead nucleus and producing an electron. A reconstruction algorithm of the electromagnetic cascades in nuclear emulsion was developed. This algorithm allows reproducing the longitudinal and transverse profiles used in evaluating the electron energies and their identification as well ({pi}/e separation by mean of a neuron

  2. Ortho-para-H2 conversion by hydrogen exchange: comparison of theory and experiment.

    Science.gov (United States)

    Lique, François; Honvault, Pascal; Faure, Alexandre

    2012-10-21

    We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional (de)excitation of H(2) by H. Our calculations are based on the H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. The reactive hydrogen exchange channels are taken into account. We show that the ortho-para and para-ortho conversion of H(2) are significant processes at temperatures above ~300 K and for the last process we provide the first comparison with available experimental rate coefficients between 300 and 444 K. The good agreement between theory and experiment is a new illustration of our detailed understanding of the simplest chemical reaction. The importance of the ortho-para-H(2) conversion by hydrogen exchange in astrophysics is discussed.

  3. The electron capture in 163Ho experiment - ECHo

    Science.gov (United States)

    Gastaldo, L.; Blaum, K.; Chrysalidis, K.; Day Goodacre, T.; Domula, A.; Door, M.; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Faessler, A.; Filianin, P.; Fleischmann, A.; Fonnesu, D.; Gamer, L.; Haas, R.; Hassel, C.; Hengstler, D.; Jochum, J.; Johnston, K.; Kebschull, U.; Kempf, S.; Kieck, T.; Köster, U.; Lahiri, S.; Maiti, M.; Mantegazzini, F.; Marsh, B.; Neroutsos, P.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Saenz, A.; Sander, O.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Schweiger, Ch.; Simkovic, F.; Stora, T.; Szücs, Z.; Türler, A.; Veinhard, M.; Weber, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2017-06-01

    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3H β-decay and the 163Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163Ho EC spectrum are of utmost importance. The high-energy resolution 163Ho spectra measured with the first MMC prototypes with ion-implanted 163Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163Ho will allow to reach a neutrino mass sensitivity below 10 eV/ c 2. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass.

  4. Free-electron laser experiments in the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Cummings, J.C.; Fenstermacher, M.E.; Foote, J.H.; Hooper, E.B.; Jong, R.A.; Langdon, A.B.; Lasinski, B.F.; Lasnier, C.J.; Matsuda, Y.; Meyer, W.H.; Moller, J.M.; Nexsen, W.E.; Rice, B.W.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.; Thomassen, K.I.; Throop, A.L.; Turner, W.C.; Wood, R.D.; Cook, D.R.; Makowski, M.A.; Oasa, K.; Ogawa, T.

    1990-08-01

    Microwave pulses have been injected from a free electron-laser (FEL) into the Microwave Tokamak Experiment (MTX) at up to 0.2 GW at 140 GHz in short pulses (10-ns duration) with O-mode polarization. The power transmitted through the plasma was measured in a first experimental study of high power pulse propagation in the plasma; no nonlinear effects were found at this power level. Calculations indicate that nonlinear effects may be found at the higher power densities expected in future experiments. 9 refs., 2 figs

  5. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    Science.gov (United States)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  6. The electron accelerator for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Pepitone, K., E-mail: kevin.pepitone@cern.ch [CERN, Geneva (Switzerland); Doebert, S., E-mail: steffen.doebert@cern.ch [CERN, Geneva (Switzerland); Burt, G. [The University of Lancaster, Lancaster (United Kingdom); Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G. [CERN, Geneva (Switzerland); Mete, O. [The University of Manchester, Manchester (United Kingdom); Verzilov, V. [Triumf, Vancouver (Canada); Apsimon, R. [The University of Lancaster, Lancaster (United Kingdom)

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  7. A survey of mode-conversion transparency windows between external electromagnetic waves and electron Bernstein waves for various plasma slab boundaries

    International Nuclear Information System (INIS)

    Igami, H; Tanaka, H; Maekawa, T

    2006-01-01

    For the plasma slab boundary with monotonically increasing density profile along the x axis and the magnetic field along the z axis, both N z and N y components of the refractive index are parallel to the plasma slab and are conserved in the mode-conversion process between the vacuum transverse electromagnetic (TEM) waves and the electron Bernstein (B) waves. Information of N z and N y is sufficient to identify the waves uniquely both for TEM waves and B waves coupled by mode conversion. Furthermore, the wave differential equation which governs the mode-conversion process can be written in the normalized form with a few numbers of the normalized parameters and variables for the linear density profile. Thus, the mode-conversion transparency window, which is presented as a contour plot of the mode-conversion rate versus the N z -N y plane, can be categorized for the pair of parameters of the density scale length normalized to the wavelength in vacuum L n /λ 0 and the frequency to the cyclotron frequency ω/Ω. A survey of the transparency windows for various parameter ranges of L n /λ 0 and ω/Ω is presented. The windows are categorized into four types. The frosted type at the steepest density gradient region has a broad transparency profile but even the peak is not completely transparent. The perpendicular-X type at the next steep density gradient region also has a broad transparency profile with a completely transparent peak by the perpendicularly propagating extraordinary waves. The OXB type at the gentle density gradient region has a pair of completely transparent sharp peaks by the obliquely propagating ordinary waves at the optimal propagation angles with N z = ±N parallelopt and N y 0. The fourth is the g 1 type in the intermediate density gradient region between the above two cases, which has two completely transparent peaks in the window. Finally, a simulation to examine the applicability of the survey to experiments is made using a test density profile

  8. Strategy for the procurement of electronics for the LHC experiments

    CERN Document Server

    2002-01-01

    At its meeting on 14 March 2001 the Finance Committee requested the preparation of a document outlining the strategy for future procurement of electronics for the LHC experiments. The bulk of the electronics for the LHC experiments is based on custom-developed designs, the manufacturing of which will be contracted out to industry using the CERN purchasing procedures to ensure competitive prices. Analysis of on-going procurement activities for the electronics for the LHC experiments shows that in almost all cases the application of the CERN purchasing procedures has resulted in bids from a sufficient number of qualified companies to ensure competitive prices and a reasonable distribution of returns between CERN Member States. There is no reason to expect that this pattern will change significantly for the electronics that still remains to be purchased to complete the construction of the LHC experiments.

  9. Absorption and emission from mode conversion theory

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-02-01

    The effects of mode conversion theory on emission have led to some surprising results. The classical expressions were originally derived from models which did not include mode conversion or its attendant reflection. When mode conversion was included, the first surprise was that the transmission coefficient is totally independent of absorption and due exclusively to tunneling. The other surprise is that the observed emission arises from two distinct sources, one direct, and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for laboratory plasmas, leading to the validation of the classical formula, but via an entirely new paradigm in its interpretation. This paper includes a summary of the absorption process for electron cyclotron harmonics, and reviews the emission physics, including both potential error estimates and a discussion of the spatial emission source distribution

  10. Synchrotron radiation and absorption at electron cyclotron harmonics in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Hu, Jian-Long.

    1993-01-01

    In order to understand fully the absorption, emission and conversion phenomena for any electron cyclotron harmonic, one must include all relevant mode conversion processes and a finite parallel wave number k parallel . Relativistic plasma mode conversion and tunneling equations at the second and third electron cyclotron harmonics have been derived analytically. A finite k parallel has been introduced which keeps the coupling between the O-mode, the X-mode and the Bernstein wave in the mode conversion problems without absorption have been obtained, and the connection formulas between different wave branches have been established. The corresponding transmission, reflection and conversion coefficients have also been given. Mode conversion problem at any harmonic has been generalized to either a three branch or a five branch problem. A comparison between the coupled equation and the uncoupled equation has been made. The effort has been directed at the third harmonic since the adsorption at ω = 2ω ce is known to be very strong in virtually every fusion case. Both the low density limit and the high density limit cases have been studied separately. The relativistic effects on the mode conversion and absorption problem has been analyzed. The mode conversion equation with absorption has been solved by using the Green function method. The electron cyclotron emission experiments have already begun at 3ω ce , and the third harmonic is the first nontrivial case of importance

  11. Quantum Hall Effect: proposed multi-electron tunneling experiment

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Here we propose a tunneling experiment for the fractional and Integral Quantum Hall Effect. It may demonstrate multi-electron tunneling and may provide information about the nature of the macroscopic quantum states of 2D electronic liquid or solid. (author)

  12. Two-state model of excess electron relaxation and geminate recombination in water and aqueous solutions

    International Nuclear Information System (INIS)

    Fedorenko, S.G.

    2010-01-01

    Graphical abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then recombines with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed and applied to the experiment of three-pulse generation of excess electrons in water. - Abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then can recombine with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed here for the general type of the Markovian motion of reactants. A contact model is used for analytical solution of the problem of geminate recombination of neutral and charged reactants. The theory is applied to the experiment of three-pulse generation of excess electrons in water.

  13. Progress in Fast Ignition Studies with Electrons and Protons

    Science.gov (United States)

    MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.

    2009-09-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  14. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  15. Facility for electron cooling experiments

    International Nuclear Information System (INIS)

    Budker, G.I.; Dikanskij, N.S.; Kudelajnen, V.I.

    1982-01-01

    The NAP-M proton storage ring intended for electron cooling experiments is described. The NAP-M magnetic system comprises four bending magnets and eight correction elements. located at the ends of rectilinear gaps. An electron beam facility is located in one of the rectilinear gaps. An 1.5 MeV electrostatic accelerator is used as a proton injector. The NAP-M accelerating system includes a driving generator, a power amplifier and a resonator. The proton beam lifetime (at the RF-system switched-off) up to 7 s has been obtained at the NAP-N at the injection energy, and up to 600 s at 65 MeV and the proton current of 120 μA

  16. A 20 keV electron gun system for the electron irradiation experiments

    International Nuclear Information System (INIS)

    Mahapatra, S.K.; Dhole, S.D.; Bhoraskar, V.N.

    2005-01-01

    An electron gun consisting of cathode, focusing electrode, control electrode and anode has been designed and fabricated for the electron irradiation experiments. This electron gun can provide electrons of any energy over the range 1-20 keV, with current upto 50 μA. This electron gun and a Faraday cup are mounted in the cylindrical chamber. The samples are fixed on the Faraday cup and irradiated with electrons at a pressure ∼10 -7 mbar. The special features of this electron gun system are that, at any electron energy above 1 keV, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. The variation in the electron current over the beam spot of 120 mm diameter is less than 15% and the beam current stability is better than 5%. This system is being used for studying the irradiation effects of 1-20 keV energy electrons on the space quality materials in which the irradiation time may vary from a few tens of seconds to hours

  17. A 20 keV electron gun system for the electron irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S.K. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411007 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India)]. E-mail: vnb@physics.unipune.ernet.in

    2005-01-01

    An electron gun consisting of cathode, focusing electrode, control electrode and anode has been designed and fabricated for the electron irradiation experiments. This electron gun can provide electrons of any energy over the range 1-20 keV, with current upto 50 {mu}A. This electron gun and a Faraday cup are mounted in the cylindrical chamber. The samples are fixed on the Faraday cup and irradiated with electrons at a pressure {approx}10{sup -7} mbar. The special features of this electron gun system are that, at any electron energy above 1 keV, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. The variation in the electron current over the beam spot of 120 mm diameter is less than 15% and the beam current stability is better than 5%. This system is being used for studying the irradiation effects of 1-20 keV energy electrons on the space quality materials in which the irradiation time may vary from a few tens of seconds to hours.

  18. Four questions and a conversation: Can theory enrich conversation partner training?

    DEFF Research Database (Denmark)

    Pound, Carole; Ahlsén, Elisabeth; Simmons-Mackie, NIna

    Background and aimsConversation partner training (CPT) is an umbrella term for different approaches to intervention aiming to facilitate and improve communication between people with aphasia (PWA) and their conversation partners (CP). Some approaches are grounded in a bottom-up approach...... and interactions. Philosophically informed by existential-phenomenological perspectives, the humanisation framework encourages reflection on what practices can make people feel more (or less) human. Reviewing experiences of conversation against the eight suggested dimensions of what it means to be human may offer...

  19. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  20. Electron Bernstein wave emission based diagnostic on National Spherical Torus Experiment (invited)

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B-T less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T-e measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T-e measurements in the ST. Practically, a robust T-e(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T-e(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T-e < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T-e inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  1. Electron cooling and recombination experiments with an adiabatically expanded electron beam

    International Nuclear Information System (INIS)

    Pastuszka, S.; Heidelberg Univ.; Schramm, U.; Heidelberg Univ.; Grieser, M.; Heidelberg Univ.; Broude, C.; Heidelberg Univ.; Grimm, R.; Heidelberg Univ.; Habs, D.; Heidelberg Univ.; Kenntner, J.; Heidelberg Univ.; Miesner, H.J.; Heidelberg Univ.; Schuessler, T.; Heidelberg Univ.; Schwalm, D.; Heidelberg Univ.; Wolf, A.; Heidelberg Univ.

    1996-01-01

    Magnetically guided electron beams with transverse temperatures reduced with respect to the cathode temperature by a factor of more than 7 were realized in the electron cooling device of the heavy-ion storage ring TSR and the effect of the reduced transverse temperature in recombination and electron cooling experiments was studied. Measured dielectronic recombination resonances at low relative energy and spectra of laser-stimulated recombination indicate that transverse electron temperatures of about 17 meV have been obtained at cathode temperatures of about 110 meV. The temperature dependence of the spontaneous electron-ion recombination rate during electron cooling was investigated and found to follow the inverse square-root law expected from the theory of radiative recombination, although the measured absolute rates are higher than predicted. A new method based on analyzing the intensity of the fluorescence light emitted during simultaneous laser and electron cooling is used to measure the longitudinal electron cooling force in a range of relative velocities extending over two orders of magnitude (10 5 -10 7 cm/s). The results confirm the occurrence of 'magnetized electron cooling' also at the reduced transverse temperature and show that, compared to earlier measurements at the high transverse temperature, the cooling force increases by about a factor of 2; a considerably larger increase by a factor of ∼5 would be expected if 'magnetized electron cooling' would not exist. (orig.)

  2. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  3. Staged electron laser accelerator (STELLA) experiment at brookhaven ATF

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I V; Steenbergen, A van; Gallardo, J C [Brookhaven National Lab., Upton, NY (United States); and others

    1998-03-01

    The STELLA experiment is being prepared at the BNL Accelerator Test Facility (STF). The goal of the experiment is to demonstrate quasi-monochromatic inverse Cherenkov acceleration (ICA) of electrons bunched to the laser wavelength period. Microbunches on the order of 2 {mu}m in length separated by 10.6 {mu}m will be produced using an inverse free electron laser (IFEL) accelerator driven by a CO{sub 2} laser. The design and simulations for two phases of this experiment including demonstration of 10 MeV and 100 MeV acceleration are presented. (author)

  4. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  5. Spheres of public conversation: Experiences in strategic environmental assessment

    International Nuclear Information System (INIS)

    Illsley, Barbara; Jackson, Tony; Deasley, Neil

    2014-01-01

    This paper draws on earlier research, a national review of Scottish SEA practice and a survey of practitioners and stakeholders engaged in SEA and spatial planning in one Scottish city-region, to explore claims being made in the academic literature for Strategic Environmental Assessment (SEA) as a tool for deliberative plan-making. We consider whether there is evidence that Scottish SEA practice is helping create more inclusive plan-making processes in light of recent legislative changes, thereby fulfilling one of the expectations of Scottish Government. The macro analysis found that although there are opportunities for stakeholders to engage in the Scottish SEA process the level in practice is extremely low, a finding which mirrors experience in England and elsewhere. The more detailed micro analysis reveals a more nuanced picture within the spatial planning system, however, suggesting the existence of two distinct spheres of public conversations, one characterised by active dialogue about the environmental effects of alternative strategies amongst public sector stakeholders and the other involving non-governmental stakeholders and community groups in a much more limited way. The paper concludes with a discussion of possible explanations for this outcome, concerning asymmetric incentive structures and the application of power, and a consideration of the implications in relation to the competing discourses of SEA. -- Highlights: • We examine the extent to which Scottish SEA is helping promote inclusive plan-making. • Low levels of stakeholder engagement generally in Scottish SEA. • Stronger SEA dialogue amongst public agencies than with the wider community. • Importance of incentive structures and power capture in framing SEA public conversations

  6. Spheres of public conversation: Experiences in strategic environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Illsley, Barbara, E-mail: b.m.illsley@dundee.ac.uk [School of the Environment, University of Dundee, Dundee DD1 1HN, Scotland (United Kingdom); Jackson, Tony, E-mail: a.a.jackson@dundee.ac.uk [School of the Environment, University of Dundee, Dundee DD1 1HN, Scotland (United Kingdom); Deasley, Neil, E-mail: neil.deasley@sepa.org.uk [Scottish Environment Protection Agency, Strathearn House, Lamberkine Drive, Perth PH1 1RX (United Kingdom)

    2014-01-15

    This paper draws on earlier research, a national review of Scottish SEA practice and a survey of practitioners and stakeholders engaged in SEA and spatial planning in one Scottish city-region, to explore claims being made in the academic literature for Strategic Environmental Assessment (SEA) as a tool for deliberative plan-making. We consider whether there is evidence that Scottish SEA practice is helping create more inclusive plan-making processes in light of recent legislative changes, thereby fulfilling one of the expectations of Scottish Government. The macro analysis found that although there are opportunities for stakeholders to engage in the Scottish SEA process the level in practice is extremely low, a finding which mirrors experience in England and elsewhere. The more detailed micro analysis reveals a more nuanced picture within the spatial planning system, however, suggesting the existence of two distinct spheres of public conversations, one characterised by active dialogue about the environmental effects of alternative strategies amongst public sector stakeholders and the other involving non-governmental stakeholders and community groups in a much more limited way. The paper concludes with a discussion of possible explanations for this outcome, concerning asymmetric incentive structures and the application of power, and a consideration of the implications in relation to the competing discourses of SEA. -- Highlights: • We examine the extent to which Scottish SEA is helping promote inclusive plan-making. • Low levels of stakeholder engagement generally in Scottish SEA. • Stronger SEA dialogue amongst public agencies than with the wider community. • Importance of incentive structures and power capture in framing SEA public conversations.

  7. Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion

    Science.gov (United States)

    Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.

    1996-01-01

    Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.

  8. Precise measurement in elastic electron scattering: HAPPEX and E-158 experiments

    International Nuclear Information System (INIS)

    Vacheret, A.

    2004-12-01

    Parity Violation asymmetry measurements in elastic electron scattering are in one hand an interesting way of retrieving new informations about the sea quarks of the nucleon and in the other hand a powerful test of the Standard Model electroweak sector at low energy. This thesis describes the HAPPEX experiment at JLab and the E-158 experiment at SLAC (USA) which measure de parity violation asymmetries in elastic scattering of polarized electron on nuclei like Hydrogen or Helium and on atomic electrons. With the measurements on hadronic targets one can extract the strange quarks contribution to the charge and current density of the nucleon. With the electron-electron scattering one can test the standard model at the loop level and far from the Z pole by extracting sin 2 θ W . In this thesis we describe the formalism associated with the electroweak probe. We present in detail the experimental methods used to make such precise measurements of parity violation asymmetry. Then, we describe the experimental set-up of each experiment and in particular the electron detector and the feedback loop on the beam current for the HAPPEX experiment and the analysis of E-158 run III with a dedicated systematic study on the beam sub-pulse fluctuations. We present the preliminary results for each experiment with a comparison with the other existing results and the future experiments. (author)

  9. Search for nuclear excitation by laser-driven electron motion

    International Nuclear Information System (INIS)

    Bounds, J.A.; Dyer, P.

    1992-01-01

    It has been proposed that a nucleus may be excited by first exciting the atom's electrons with UV photons. The incident photons couple to the electrons, which would then couple via a virtual photon to the nucleus. As a test case, experiments with 235 U have been performed. A pulsed infrared laser produces an atomic vapor of 235 U which is then bombarded by a high-brightness UV laser beam. The resulting ions are collected. The first excited nuclear state of 235 U has a 26-min half-life and decays by internal conversion, resulting in emission of an atomic electron. These conversion electrons are detected by a channel electron multiplier. An upper limit of 4.0x10 -5 has been obtained for the probability of exciting the nucleus of a 235 U atom that is in the 248-nm UV beam for 700 fs at an irradiance in the range of 1.0x10 15 to 2.5x10 15 W/cm 2

  10. The Special Education Story: Obituary, Accident Report, Conversion Experience, Reincarnation, or None of the Above?

    Science.gov (United States)

    Kauffman, James M.

    2000-01-01

    The current status of special education and possible futures are examined through a true news story of current "reform" efforts in Washington, D.C. schools and in imaginary future news stories reporting on special education as an obituary, an accident, a conversion experience, and a reincarnation. The author urges special educators to reject…

  11. The design study of an ultra-high power EB/X-ray conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    He, Zi-Feng, E-mail: hezifeng@sinap.ac.cn; Li, Deming; Huang, Jian-Ming; Yang, Yong-Jin; Zhu, Xi-Kai; Zhang, Yu-Tian

    2014-10-15

    Highlights: • We describe a 100 kW electron beam to X-rays conversion system. • We give an idea to improve the conversion efficiency and lifetime of the target. • We describe the design and thermal characteristics of the X-ray converter. - Abstract: X-ray conversion is a frequent need for irradiating the products that cannot be processed by electron beams, duo to their limited penetration capacity in materials, in radiation sterilization of disposable healthcare products and food irradiation. In this paper, we report the design of a conversion facility with a 5-MeV/120-kW electron accelerator, regarding the considerations on selection of the target materials and target structure, design of the electron beam transport line and approaches to improve the conversion efficiency and lifetime.

  12. Simultaneous spectroscopy of $\\gamma$- rays and conversion electrons: Systematic study of EO transitions and intruder states in close vicinity of mid-shell point in odd-Au isotopes

    CERN Multimedia

    Venhart, M; Grant, A F; Petrik, K

    This proposal focuses on detailed systematic studies of the $\\beta$ /EC-decays of $^{179,181,183,185}$Hg leading to excited states in the neutron-deficient Au isotopes in the vicinity of the N=104 midshell. $\\gamma$-ray, X-ray and conversion electron de-excitations of odd-A Au isotopes will be studied simultaneously. These studies will address important structural questions such as the excitation energies of coexisting states, properties of multiple intruder states (i.e. intruder particles coupled to intruder cores) and mixing of coexisting structures. The unique combination of Hg beam purity and yields make ISOLDE a unique facility for these experiments.

  13. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  14. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  15. Having "The Talk": Youth-Parent Climate Conversations

    Science.gov (United States)

    Anderson, R. K.; Flora, J. A.; Lertzman, R.; Saphir, M.

    2017-12-01

    Youth are concerned about climate change. Recent research conducted by the Alliance for Climate Education, in partnership with the Skoll Global Threats Fund, demonstrates that youth have agency within their families regarding climate relevant behaviors, particularly resulting from conversations that rely on listening. In this pilot project, we examined whether youth involved in a year-long climate action program will carry out climate related conversations with their parents, and whether youth who have engaged online with a climate education group, will carry out similar conversations with their parents when asked to do so via SMS. In study one, we used mixed methods to determine if youth participating in a training would carry out a climate conversation with their parents, adhere to guidelines such as reflective listening, and have positive experiences. Further, we investigated to what extent parents would experience the conversation as a positive and impactful event. Parents overall reported a positive experience, and were proud of their child's work. In study two, in a randomized controlled trial conducted entirely via SMS, we investigated whether youth would watch a brief instructional animated video, and have a conversation with a parent. Results showed the majority of youth reported gained confidence in conducting a climate conversation and intended to speak to relatives. Preliminary results indicate when youth can express their climate engagement to a parent using these techniques, they have positive experiences, gain confidence in future engagements and can influence family. The studies highlight the positive impact of climate conversations as well as the potential to scale climate conversations to reach more youth and families.

  16. Conversation in the museum: experiments in dynamic hypermedia with the intelligent labelling explorer

    OpenAIRE

    Oberlander, Jon; O'donnell, Mick; Mellish, Chris; Knott, Alistair

    1998-01-01

    We outline experience with the Intelligent Labelling Explorer, a dynamic hypertext system developed at the University of Edinburgh, in collaboration with the National Museums of Scotland. First, we indicate a number of ways in which labels on museum objects ought to be tuned to take into account types of visit, the interests of visitors, and their evolving knowledge during a visit. Secondly, we sketch the general architecture of our system, and then focus on the conversational effects which t...

  17. Electron Transfer and Geometric Conversion of Co-NO Moiety in Saddled Porphyrins: Implications for Trigger Role of Tetrapyrrole Distortion.

    Science.gov (United States)

    Tang, Min; Yang, Yan; Zhang, Shaowei; Chen, Jiafu; Zhang, Jian; Zhou, Zaichun; Liu, Qiuhua

    2018-01-02

    The electrons of NO and Co are strongly delocalized in normal {Co-NO} 8 species. In this work, {Co-NO} 8 complexes are induced to convert from (Co II ) +• -NO • to Co III -NO - by a core contraction of 0.06 Å in saddled cobalt(II) porphyrins. This intramolecular electron transfer mechanism indicates that nonplanarity of porphyrin is involved in driving conversion of the NO units from electrophilic NO • as a bent geometry to nucleophilic NO - as a linear geometry. This implies that distortion acts as a trigger in enzymes containing tetrapyrrole. The electronic behaviors of the Co II ions and Co-NO moieties were confirmed by X-ray crystallography, EPR spectroscopy, theoretical calculation, UV-vis and IR spectroscopy, and electrochemistry.

  18. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  19. General experiments concerning particle-matter interactions; Experiences interdisciplinaires d'interaction particule-matiere

    Energy Technology Data Exchange (ETDEWEB)

    Dauvergne, D

    2006-07-15

    The author gathers in this document several papers he has already published in order to shed light on different aspects concerning ion-crystal interactions. This document is divided into 3 chapters. In the first chapter the author presents results obtained from experiments dedicated to charge exchanges and energy released by heavy ions in channeling conditions. Different processes involved in ion-electron interactions are considered: The tri-electronic recombination, the electron capture through nuclear excitation (NEEC), resonant transfer and excitation (RTE), resonant transfer and double excitation (RTDE) and electron impact ionization (EII). The second chapter deals with the measurement of nuclear fission times through crystal blocking experiments. The crystal blocking technique allows the measurement in a model-independent way of the recoil distance covered by the excited nucleus during the whole fission process (starting from the initial collision and ending at the scission point). The last chapter is dedicated to the photon impact ionization through the conversion of a high-energy photon into an electron-positron pair.

  20. Status of the experiment on the laboratory search for the electron antineutrino magnetic moment at the level mu subnu <= 3 x 10 sup - sup 1 sup 2 mu sub B

    CERN Document Server

    Neganov, B S; Yukhimchuk, A A; Bogdanova, L N; Beda, A G; Starostin, A S

    2001-01-01

    The experiment on the direct detection of antineutrino-electron scattering using a 40 MCi tritium beta-active source will allow to lower the present-day laboratory limit for the neutrino magnetic moment by two orders of magnitude. The experiment brings together novel unique technologies in studies of rare processes of neutrino-electron scattering: 1) and artificial source of antineutrinos from tritium decay of 40-MCi activity with the antineutrino flux density approx = 6 x 10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1; 2) new types of detectors capable of detecting electrons with energy down to approx 10 eV, namely, a silicon cryogenic detector based on the ionization-into-heat conversion effect, a high-pure germanium detector with the internal signal amplification in the electric field. A compact installation located in a specially equipped laboratory underground (<= 100 water equivalent meters) will provide favorable background conditions for running the experiment. With the background level about 0.1 even...

  1. Atomic effects in tritium beta-decay. II. Muon to electron conversion in atoms

    International Nuclear Information System (INIS)

    Wampler, K.D.

    1989-01-01

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. The author treats the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. He finds that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. He presents a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus characteristics have the gate on the substrate and the source-drain contacts on the top of the sample. The first use as an FET dielectric is reported of hydrogenated amorphous silicon-carbon (prepared from silane and propane mixture), photo-oxidised by UV lamp or laser. These FETs have similar characteristics to those with silicon nitride gate insulator but without the difficulties of preparing good insulator/semiconductor interfaces. Using the same materials attempts have been made to produce charge coupled devices

  2. Femtosecond spectroscopy of bacterial photosynthesis--towards an understanding of the most important energy conversion process on earth

    International Nuclear Information System (INIS)

    Zinth, W.; Hamm, P.; Arlt, T.; Wachtveitl, J.

    1996-01-01

    Reaction centers of bacterial photosynthesis are ideal systems to study photosynthetic energy conversion. Femtosecond spectroscopy has delivered extensive information on the molecular mechanisms of the primary electron transfer. The data show, that primary electron transfer is an ultrafast stepwise reaction, where the electron is transferred via closely spaced pigments with reaction times as fast as 0.9 ps and 3.5 ps. Experiments on mutated and modified reaction centers allow to determine the energetics of the various intermediates in the reaction center. Recently, femtosecond experiments with light pulses in the mid infrared have shown, that an additional fast process occurs on the 200 fs timescale in the initially excited special pair. Only afterwards the well established electron transfer reactions take place. This fast process may be of importance for the optimization of the primary reaction

  3. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Song Dalei; Jing Xiaoyan; Wang Jun; Lu Shanshan; Yang Piaoping; Wang Yanli; Zhang Milin

    2011-01-01

    Graphical abstract: Highlights: → The method of microwave is used to synthesize lanthanum conversion coating. → Lanthanum conversion coating on Mg-Li alloy was studied. → Different conditions between room temperature and microwave were compared. → The corrosion behavior of lanthanum conversion coatings was studied. → The corrosion mechanism of lanthanum conversion coatings was studied. - Abstract: Lanthanum-based conversion coating on Mg-Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg-Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg-Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.

  4. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Vertes, Cs.; Kuzmann, E.; Lakatos-Varsanyi, M.; Vertes, A.; Vass, G.; Romhanyi, K.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  5. Determination of the Electron Neutrino Mass from Experiments on Electron-Capture Beta-Decay (EC)

    CERN Multimedia

    2002-01-01

    The aim of the programme is to measure the electron-neutrino mass, for which at present an upper limit of 500~eV is known. \\\\ \\\\ The experiment studies the shape of the internal bremsstrahlung spectrum in electron-capture near its upper end-point and deduces a mass from small shape changes completely analogous to those in the well-known determination of the electron antineutrino mass in the tritium beta-minus decay. \\\\ \\\\ In a low-energy bremsstrahlung process, the capture takes place from a virtual S state associated with a radiative P~@A~S electromagnetic transition, and the resonant nature of the process leads to important enhancements of the photon intensities at low energy, in particular near the resonance energies co (X-rays). This effect gives this type of experiment a chance to compete with experiments on continuous beta spectra. \\\\ \\\\ The programme concentrates on two long-lived isotopes: \\\\ \\\\ 1)~~|1|6|3Ho. The Q value for this isotope has been found to be 2.6-2.7 keV. A detector specially construct...

  6. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  7. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  8. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  9. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  10. Developing multimodal conversational agents for an enhanced e-learning experience

    Directory of Open Access Journals (Sweden)

    David GRIOL

    2014-10-01

    Full Text Available Conversational agents have become a strong alternative to enhance educational systems with intelligent communicative capabilities, provide motivation and engagement, and increment significant learning and helping in the acquisition of meta-cognitive skills. In this paper, we present Geranium, a multimodal conversational agent that helps children to appreciate and protect their environment. The system, which integrates an interactive chatbot, has been developed by means of a modular and scalable framework that eases building pedagogic conversational agents that can interact with the students using speech and natural language.

  11. TeV electron measurement with CREST experiment

    Science.gov (United States)

    Park, Nahee; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Muller, D.; Musser, J.; Nutter, S.

    CREST, the Cosmic Ray Electron Synchrotron Telescope is a balloon-borne experiment de-signed to measure the spectrum of multi-TeV electrons by the detection of the x-ray synchrotron photons generated in the magnetic field of the Earth. Electrons in the TeV range are expected to reflect the properties of local sources because fluxes from remote locations are suppressed by radiative losses during propagation. Since CREST needs to intersect only a portion of the kilometers-long trail of photons generated by the high-energy electron, the method yields a larger effective area than the physical size of the detector, boosting detection areas. The in-strument is composed of an array of 1024 BaF2 crystals and a set of scintillating veto counters. A long duration balloon flight in Antarctica is currently planned for the 2010-11 season.

  12. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    CERN Document Server

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  13. Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation

    Directory of Open Access Journals (Sweden)

    Daniel Guyomar

    2011-06-01

    Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.

  14. Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons

    Science.gov (United States)

    Shen, Kan

    2009-01-01

    This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…

  15. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM

    International Nuclear Information System (INIS)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-01-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  16. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  17. Influence of electron-phonon interaction on soliton mediated spin-charge conversion effects in two-component polymer model

    International Nuclear Information System (INIS)

    Sergeenkov, S.; Moraes, F.; Furtado, C.; Araujo-Moreira, F.M.

    2010-01-01

    By mapping a Hubbard-like model describing a two-component polymer in the presence of strong enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schroedinger equations with U(2) symmetry group, some nontrivial correlations between topological solitons mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in low-dimensional systems with charge and spin soliton carriers is discussed.

  18. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  19. The APSEL4D Monolithic Active Pixel Sensor and its Usage in a Single Electron Interference Experiment

    CERN Document Server

    Alberghi, Gian Luigi

    We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at ...

  20. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  1. Retrocausation acting in the single-electron double-slit interference experiment

    Science.gov (United States)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  2. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  3. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1993-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na 2 SO 4 +0.001M NaHSO 3 (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only γ-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the spectra, and also FeSO 4 .H 2 O could be detected in low concentration. (orig.)

  4. Mikheyev-Smirnov-Wolfenstein effect in electron-neutrino scattering experiments

    International Nuclear Information System (INIS)

    Bahcall, J.N.; Gelb, J.M.; Rosen, S.P.

    1987-01-01

    We calculate the influence of resonant neutrino scattering [the Mikheyev-Smirnov-Wolfenstein (MSW) effect] in the Sun and in the Earth on measurable quantities in solar-neutrino--electron scattering experiments. The MSW effect reduces the expected rate for 8 B-neutrino--electron scattering by a factor that ranges from --0.8 to --0.2 if resonant scattering is the correct explanation for the discrepancy between observation and calculation in the /sup 37/Cl experiment. The Earth can produce a significant diurnal effect for certain values of the neutrino mixing angle and mass difference

  5. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    International Nuclear Information System (INIS)

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  6. Preliminary experiments on a planar electron beam for an intense free electron maser

    International Nuclear Information System (INIS)

    Kato, Katsumasa; Iwata, Kazuma; Kitamura, Taro; Yamada, Naohisa; Soga, Yukihiro; Kamada, Keiichi; Yoshida, Mitsuhiro; Ginzburg, Naum S.

    2013-01-01

    A planar wiggler magnetic field was used to increase the output power of an intense free electron maser. As a preliminary experiment, a cylindrical electron beam was injected into a planar wiggler field with an axial magnetic field. Without the axial magnetic field, the cylindrical beam could not propagate through the wiggler field with length of 1 m. The microwave with frequency of 40 GHz was observed only when the beam propagates through the wiggler field. The frequency was nearly equal to the expected frequency of the free electron maser interaction. Though a sheet electron beam with nearly the same energy propagated through the planar wiggler field with deformation of its cross section, the microwave with frequency of 40 GHz was not observed. (author)

  7. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  8. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  9. Family assessment conversations as a tool to support families affected by parental mental illness: a retrospective review of electronic patient journals.

    Science.gov (United States)

    Lauritzen, Camilla; Kolmannskog, Anne Berit; Iversen, Anette Christine

    2018-01-01

    Previous research has shown a link between parental mental illness and adverse development in their offspring. In Norway, it is mandatory for health professionals to identify if patients in adult mental health services have children, and subsequently to provide support for the children. An important tool to detect if families are affected by parental mental illness and to assess if there is a need for further intervention is the Family Assessment Conversation. Family Assessment Conversations is potentially a powerful tool for communication with families affected by parental mental illness because it facilitates early identification of children at risk of various adversities due to the family situation. Additionally the tool may initiate processes that enable children and parents to cope with the situation when a parent becomes seriously ill. Little is however known about how the mental health practitioners use the family assessment form in conversations, and to what extent they record relevant information in the electronic patient journals. The main aim of the study was to provide information about the existing practice within mental health services for adults in terms of parental mental illness and family assessment conversations. The project is a retrospective journal review. The data base consists of relevant journal data from 734 patients aged 20-60 years admitted. In total, 159 recordings of family assessment conversations were discovered. The main result in this study was that many of the questions in the family assessment form lacked documented responses and assessments from the healthcare professionals. Only 17% of the participants had been assessed with the total family assessment form. Additionally, there was a lack of documentation about whether or not the children had been informed in a large proportion of the assessment forms (31%). A total of 55% say that the child has not been informed. This implies that there is still a long way to go in order to

  10. Documentation Experiences for Jamaican SLOWPOKE-2 Conversion from HEU to LEU

    International Nuclear Information System (INIS)

    Warner, T.-A.; Dennis, H.; Antoine, J.

    2015-01-01

    The Jamaican SLOWPOKE–2 (JM–1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited and has been operating since March 1984, in the department of the International Centre for Environmental and Nuclear Sciences (ICENS), at the University of the West Indies, Mona Campus in Kingston, Jamaica. The pool type reactor has been primarily used for Neutron Activation Analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration. The University, assisted by the IAEA under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Extensive documentation on policies, general requirements, elements of the conversion quality assurance (QA) system and conversion QA administrative procedures is required for the conversion. The core conversion activities are being carried out in accordance with current international standards and regulatory guidelines of the newly established Jamaican Radiation Safety Authority (RSA) with agreement between the RSA and IAEA or DOE related to Nuclear Safety and Control. The documentation structure has taken into consideration nuclear safety and licensing, LEU fuel design and conversion analysis, LEU fuel procurement and fabrication, removal of HEU fuel and reactor maintenance and conversion and commissioning, with the conversion QA manual at the apex of the structure. To a large extent, the documentation format will adhere to that of the IAEA applicable regulatory standards and guidance documents. The major challenge of the conversion activities, it is envisioned, will come from the absence of any previous regulatory framework in Jamaica; however, a timeline for the process, which includes training and equipping of regulators, will guide operation. (author)

  11. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    Science.gov (United States)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  12. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Science.gov (United States)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  13. Accelerator Preparations for Muon Physics Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  14. The electron accelerator for FELIX [Free Electron Laser for Infrared eXperiments

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van; Geer, C.A.J. van der; Meer, A.F.G. van der; Bruinsma, P.J.T.; Hoekstra, R.; Kroes, F.B.; Luyckx, G.; Noomen, J.G.; Poole, M.W.; Saxon, G.

    1989-01-01

    The authors discuss the design of the electron accelerator for the Free Electron Laser for Infrared eXperiments (FELIX), which is meant to provide the Dutch science community with a rapidly tunable source of infrared radiation. The first stage of the project will (at least) cover the wavelength range between 8 and 80 μm. The accelerator consists of a triode with a grid modulated at 1 GHz, a 3.8-MeV buncher, and two travelling-wave S-band linac structures, with which 70-A, 3-ps bunches are accelerated to an energy between 15 and 4-5 MeV. The system has been designed to minimize the energy spread in the electron beam. 8 refs., 2 figs., 1 tab

  15. Development of an electron gun for high power CW electron linac (1). Beam experiment for basic performance of electron gun

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro; Komata, Tomoki

    1999-05-01

    Presently, the Beam Group of Oarai Engineering Center in Japan Nuclear Cycle Development Institute (JNC) completed the high power CW electron linac. Then we started full-scale beam experiments after the government permission for a radiation equipment had given last January. Measurements of basic performance for the mesh-grid type electron gun have been done to launch stable beam at 300 mA peak current downstream of the accelerator. These experiments disclosed to increase beam loss in the electron gun in some cases of voltage supplied the mesh-grid in spite of same beam current from gun. Consequently, we could find the best condition for mesh-grid voltage and heater current to supply stable beam at 300 mA peak current for accelerator study. (author)

  16. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  17. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  18. An angular selective electron gun for the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zacher, Michael; Ortjohann, Hans-Werner; Steinbrink, Nicholas; Josten, Lorenz; Hannen, Volker; Weinheimer, Christian; Winzen, Daniel [Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2013-07-01

    The KArlsruhe TRItium Neutrino experiment aims for a measurement of the electron anti-neutrino mass with a sensitivity of 200 meV/c{sup 2} (95% C.L.) by analysing the endpoint region of the tritium β-decay. The main spectrometer (MAC-E filter type, 23m length) is one of the central parts of the experiment, featuring an energy resolution of Δ E<1 eV. For commissioning of the spectrometer a well defined electron source is needed that allows to determine the transmission characteristics and compare the electromagnetic properties to simulations. For this purpose an angular selective electron gun was developed. A pulsed UV-Laser produces electrons via the photo-electric effect, which are then accelerated electrostatically in a magnetic field. It features a small energy spread, a sharp selectable emission angle and covers the whole magnetic flux tube of KATRIN. By that, the characteristics of the spectrometer can be investigated with high precision. The time structure of the electron pulses allows time of flight measurements, offering enhanced sensitivity. The talk gives an overview about the e-gun design and its properties.

  19. Scaled electron experiments at the University of Maryland

    International Nuclear Information System (INIS)

    Haber, I.; Bai, G.; Bernal, S.; Beaudoin, B.; Feldman, D.; Fiorito, R.B.; Godlove, T.F.; Kishek, R.A.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Rodgers, J.; Stratakis, D.; Sutter, D.; Thangaraj, J.C.T.; Tian, K.; Walter, M.; Wu, C.

    2007-01-01

    The University of Maryland Electron Ring (UMER) and the Long Solenoid Experiment (LSE) are two electron machines that were designed explicitly to study the physics of space-charge-dominated beams. The operating parameters of these machines can be varied by choice of apertures and gun operating conditions to access a wide range of parameters that reproduce, on a scaled basis, the full nonlinear time-dependent physics that is expected in much costlier ion systems. Early operation of these machines has demonstrated the importance of the details of beam initial conditions in determining the downstream evolution. These machines have also been a convenient tested for benchmarking simulation codes such as WARP, and for development of several novel diagnostic techniques. We present our recent experience with multi-turn operation as well as recent longitudinal and transverse physics experiments and comparisons to simulation results. Development of novel diagnostic techniques such as time-dependent imaging using optical transition radiation and tomographic beam reconstruction are also described

  20. ECO steam explosion experiments on the conversion of thermal into mechanical energy

    International Nuclear Information System (INIS)

    Cherdron, W.; Kaiser, A.; Schuetz, W.; Will, H.

    2001-01-01

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, so-called ECO experiments, are being directed to measure the conversion factor under well-defined conditions. In ECO, alumina from a thermite reaction is used as a simulating material instead of corium. Dimensions of the test facility as well as major test conditions, e.g. temperature and release mode of the melt, water inventory and test procedure, are based on the former PREMIX experimental series. In the paper, results of the first test, ECO 01, are given. (orig.)

  1. Recent single ARM electron scattering experiments at Saclay

    International Nuclear Information System (INIS)

    Frois, B.

    1981-07-01

    Some recent electron scattering experiments at intermediate energies performed at the Saclay linear accelerator (ALS) are presented. First the definitive results of the measurements of the size of valence orbits by magnetic elastic electron scattering are discussed and followed by an overview of the study of charge distributions in closed shell nuclei. These results are among the most stringent experimental tests of nuclear theory because they probe without ambiguity the shape of nuclei. Then, it is shown how the details of the transition densities of the first excited states of 152 Sm have been brought out by very high momentum transfer experiments. Finally, the results of the investigation of mesonic degrees of freedom in deuterium and helium-3 are presented

  2. Results and analysis of the TMX electron-beam injection experiments

    International Nuclear Information System (INIS)

    Poulsen, P.; Grubb, D.P.

    1980-01-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma

  3. The direct conversion of heat into electricity in reactors; Conversion directe de la chaleur en electricite dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Devin, B; Bliaux, J; Lesueur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [French] La conversion directe de chaleur en electricite par emission thermionique dans une

  4. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  5. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  6. Stern-Gerlach experiment, electron spin and intermediate quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, A.R. (Copenhagen Univ. (Denmark). H.C. Oersted Inst.)

    1983-01-01

    The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered.

  7. Energy Conversion in Imploding Z-Pinch Plasma

    International Nuclear Information System (INIS)

    Fisher, V.I.; Gregorian, L.; Davara, G.; Kroupp, E.; Bernshtam, V.A.; Ralchenko, Yu. V.; Starobinets, A.; Maron, Y.

    2002-01-01

    Due to important applications, Z-pinches became a subject of extensive studies. In these studies, main attention is directed towards improvement in efficiency of electric energy conversion into high-power radiation burst. At present, knowledge available on physics of Z-pinch operation, plasma motion, atomic kinetics, and energy conversion is mainly knowledge of numerical simulation results. We believe further progress require (i) experimental determination of spatial distribution and time history of thermodynamic parameters and magnetic field, as well as (ii) utilization of this data for experiment-based calculation of r,t-distribution of driving forces, mass and energy fluxes, and local energy deposition rates due to each of contributing mechanisms, what provides an insight into a process of conversion of stored electric energy into radiation burst. Moreover, experimentally determined r, t-distribution of parameters may serve for verification of computer programs developed for simulation of Z-pinch operation and optimization of radiation output. Within this research program we performed detailed spectroscopic study of plasmas imploding in modest-size (25 kV, 5 kJ, 1.2 μs quaterperiod) gas-puff Z-pinch. This facility has reasonably high repetition rate and provides good reproducibility of results. Consistent with plasma ionization degree in the implosion period, measurements are performed in UV-visible spectral range. Observation of spectral lines emitted at various azimuthal angles f showed no dependence on f. Dependence on axial coordinate z is found to be weak in near-anode half of the anode-cathode gap. Based on these observations and restricting the measurements to near-anode half of the gap, an evolution of parameters is studied in time and radial coordinate r only. In present talk we report on determination of radial component of plasma hydrodynamic velocity u r (r,t), magnetic field B ζ (r,t), electron density n e (r,t), density of ions in various

  8. General Properties of Scattering Matrix for Mode Conversion Process between B Waves and External EM Waves and Their Consequence to Experiments

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, H.; Uchida, M.; Igami, H.

    2003-01-01

    General properties of scattering matrix, which governs the mode conversion process between electron Bernstein (B) waves and external electromagnetic (EM) waves in the presence of steep density gradient, are theoretically analyzed. Based on the analysis, polarization adjustment of incident EM waves for optimal mode conversion to B waves is possible and effective for a range of density gradient near the upper hybrid resonance, which are not covered by the previously proposed schemes of perpendicular injection of X mode and oblique injection of O mode. Furthermore, the analysis shows that the polarization of the externally emitted EM waves from B waves is uniquely related to the optimized polarization of incident EM waves for B wave heating and that the mode conversion rate is the same for the both processes of emission and the injection with the optimized polarization

  9. ICRF power deposition profile and determination of the electron thermal diffusivity by modulation experiments in JET

    International Nuclear Information System (INIS)

    Gambier, D.J.; Evrard, M.P.; Adam, J.

    1990-01-01

    The power deposition profile in the ion cyclotron range of frequencies (ICRF) has been investigated experimentally in JET by means of a square wave modulated RF perturbation. The study has been conducted in D(H) and D( 3 He) plasmas for two heating scenarios. In D( 3 He) plasmas and for central heating in a scenario where mode conversion to Bernstein waves is accessible, the direct power deposition profile on electrons has been derived. It accounts for 15% of the total coupled power and extends over 25% of the minor radius. Outside the RF power deposition zone, the electron thermal diffusivity χ e inside the inversion radius surface (r i ) can be estimated through observation of the diffusive electronic transport. In discharges without monster sawteeth and for a low central temperature gradient (∇T e (r ≤ r i ) ≤ ∇T e (r ≥ r i ) approx. = 5 keV·m -1 ) the value obtained is small (approx. =0.24 +- 0.05 m 2 · s -1 ), typically ten times lower than χ e values deduced from heat pulse propagation in similar discharges at radii larger than the inversion radius. For the D(H) minority heating scheme, a large fraction of the ICRF modulated power is absorbed by minority ions, and the minority tail is modulated with a characteristic ion-electron (i-e) slowing-down time. In this scheme, electron heating occurs only through collisions with the minority ion tail and no modulation of the electron temperature is observed in sawtoothing discharges. This is interpreted as a consequence of the long i-e equipartition time, acting as an integrator for the modulated ICRF signal. Finally, a correlation between the time of the sawtooth crash and the periodic turn-off of the ICRF power is found and its consequence for modulation experiments is reviewed. (author). 22 refs, 16 figs

  10. General experiments concerning particle-matter interactions

    International Nuclear Information System (INIS)

    Dauvergne, D.

    2006-07-01

    The author gathers in this document several papers he has already published in order to shed light on different aspects concerning ion-crystal interactions. This document is divided into 3 chapters. In the first chapter the author presents results obtained from experiments dedicated to charge exchanges and energy released by heavy ions in channeling conditions. Different processes involved in ion-electron interactions are considered: The tri-electronic recombination, the electron capture through nuclear excitation (NEEC), resonant transfer and excitation (RTE), resonant transfer and double excitation (RTDE) and electron impact ionization (EII). The second chapter deals with the measurement of nuclear fission times through crystal blocking experiments. The crystal blocking technique allows the measurement in a model-independent way of the recoil distance covered by the excited nucleus during the whole fission process (starting from the initial collision and ending at the scission point). The last chapter is dedicated to the photon impact ionization through the conversion of a high-energy photon into an electron-positron pair

  11. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  12. Electron collisions—experiment, theory, and applications

    Science.gov (United States)

    Bartschat, Klaus

    2018-07-01

    Electron collisions with atoms, ions, and molecules have represented an important area of ‘applied quantum mechanics’ for more than a century. This Topical Review is the write-up of the Allis Prize Lecture given by the author at the 2016 meeting of the Division of Atomic, Molecular, and Optical Physics of the American Physical Society and the 2017 Gaseous Electronics Conference. In light of the enormous size of the field, the examples presented were selected in order to tell the story of how experimental and theoretical/numerical methods have developed over time, how fruitful collaborations between data producers (experimentalists and theorists) and data users have led to significant progress, and how the results of these studies, which were often designed for fundamental research in order to push both experiment and theory to new frontiers, continue to be highly sought after for modeling applications in a variety of fields. The impact of electron collision studies on other fields, such as photoinduced processes and quantum information, is also discussed.

  13. HEU to LEU conversion experience at the UMass-Lowell research reactor

    International Nuclear Information System (INIS)

    White, John R.; Bobek, Leo M.

    2005-01-01

    The UMass-Lowell Research Reactor (UMLRR) operated safely with high-enriched uranium (HEU) fuel for over 25 years. Having reached the end of core lifetime and due to proliferation concerns, the reactor was recently converted to low-enriched uranium silicide (LEU) fuel. The actual process for converting the UMLRR from HEU to LEU fuel covered a period of over 15 years. The conversion effort - from the initial conceptual design studies in the late 1980s to the final offsite shipment of the spent HEU fuel in August 2004 - was a unique experience for the faculty and staff of a small university research reactor. This paper gives a historical view of the process and it highlights several key milestones along the road to successful completion of this project. (author)

  14. Electron cooling experiments at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beller, P.; Beckert, K.; Franzke, B.; Nolden, F.

    2004-01-01

    The properties of electron cooled beams of highly charged ions have been studied at the ESR. New experiments using a beam scraper to determine the transverse beam size provide the beam parameters in the intrabeam scattering dominated intensity regime, but also at very low intensity when the ion beam enters into an ultra-cold state. Extremely low values of longitudinal and transverse beam temperature on the order of meV were achieved for less than 1000 stored ions. An experiment with bunched ultra-cold beam showed a limit of the line density which agrees with the one observed for coasting beams. Cooling of decelerated ions at a minimum energy of 3 MeV/u has been demonstrated recently

  15. An analysis of the SCEX 3 ionospheric electron beam injection experiment

    International Nuclear Information System (INIS)

    Goerke, R.T.

    1992-01-01

    The SCEX 3 experiment (Several Compatible EXperiments using a rocket-borne accelerator) was carried to ionospheric altitudes (375 km) by a Black Brant 11 rocket on February 1, 1990. The experiment was launched from Poker Flat Research Range (65.1 degree N, 147.5 degree W) at 1207 UT. The payload split into two parts (hereafter forward and aft payloads) 116 seconds after launch. The aft payload carried two electron accelerators as well as several diagnostic instruments. The forward payload was ejected at an angle of 6 degree with the magnetic field in a northwesterly direction. This payload carried a multiband plasma wave receiver and various particle detectors to make in situ measurements of the Beam Plasma Interaction (BPI) region. Two Throw Away Detectors (TAD's 1 and 2) were also ejected from the aft payload in the east and west directions respectively. TAD 1 also carried a multiband plasma wave receiver. Preceding the launch an auroral arch along the southern boundary of a diffuse auroral patch suddenly brightened, split into two separate arcs and moved to a position north of the rocket's trajectory. SCEX 3 was launched into an active breakup aurora consisting of tall rays and diffuse patches. The purpose of this experiment were (1) to observe injected electrons reflected from the naturally occurring parallel electric field structures which are thought to accelerate the auroral electron, (2) to observe a variety of plasma effects caused by the artificial electron beam and the associated spacecraft charging, and (3) study the natural phenomena associated with auroral activity. This work is a summary of the interesting observations made by the SCEX 3 experiment. These observations include VHF emissions produced by the electron beam via the Beam Plasma Discharge (BPD), Diffuse resonance emissions by the hot plasma region surrounding the electron beam and auroral Z-mode emissions

  16. Electron-cyclotron heating in the Constance 2 mirror experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  17. Electron-cyclotron heating in the Constance 2 mirror experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation

  18. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  19. ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY

    International Nuclear Information System (INIS)

    PRATER, R; PETTY, CC; LUCE, TC; HARVEY, RW; CHOI, M; LAHAYE, RJ; LIN-LIU, Y-R; LOHR, J; MURAKAMI, M; WADE, MR; WONG, K-L

    2003-01-01

    A271 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY. Experiments on the DIII-D tokamak in which the measured off-axis electron cyclotron current drive has been compared systematically to theory over a broad range of parameters have shown that the Fokker-Planck code CQL3D provides an excellent model of the relevant current drive physics. This physics understanding has been critical in optimizing the application of ECCD to high performance discharges, supporting such applications as suppression of neoclassical tearing modes and control and sustainment of the current profile

  20. Electron identification capabilities of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Claudia; Kisel, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lebedev, Semen [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna (Russian Federation); Ososkov, Gennady [Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2010-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a RICH and TRD detectors. In this contribution, methods which have been developed for the electron identification in CBM are presented. A fast and efficient RICH ring recognition algorithm based on the Hough Transform has been implemented. An ellipse fitting algorithm has been elaborated because most of the CBM RICH rings have elliptic shapes. An Artificial Neural Network can be used in order to suppress fake rings. The electron identification in RICH is substantially improved by the use of TRD detectors for which several different algorithms for electron identification are implemented. Results of electron identification and pion suppression are presented.

  1. Experiments on the Nuclear Interactions of Pions and Electrons

    International Nuclear Information System (INIS)

    Ralph C. Minehart

    2005-01-01

    This is the final technical report. Yearly Progress Reports were submitted throughout the duration of the project. Along with our publications, these reports provide a detailed record of our accomplishments. This report largely consists of a summary of the technical activities carried out during last 2-1/2 years of the project, along with a list of papers published in the period from 2002-2005. Our work during this period involved the following: 1. Electro-production of excited states of the nucleon through the analysis of exclusive single pion production reactions induced by polarized electrons incident on both polarized and unpolarized nucleon targets. (JLab) 2. Measurement of proton and deuteron spin structure functions in and above the nucleon resonance region at low and moderate Q 2 , using inclusive electron-proton and electron deuteron scattering (JLAB). 3. Contributions to the PRIMEX experiment (JLab). 4. A precise measurement of the branching ratio for pion beta decay was carried out along with other members of the PIBETA collaboration (PSI). The first three, labeled JLab, were experiments made with the CLAS detector at the Thomas Jefferson Laboratory in Newport News, VA. The PIBETA experiment was carried out using a low energy pion beam at the Paul Scherrer Institute in Villigen, Switzerland

  2. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  3. ELEC-2002: ELECTRONICS IN HEP

    CERN Multimedia

    Technical Training; Davide.Vite@cern.ch

    2001-01-01

    ELEC-2002 is a 15-session modern electronic course, given by CERN physicists and engineers, in a new format within the framework of the Technical Training Programme. This course is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2002 will composed of two terms: sessions will take place on Tuesdays and Thursdays, from 14h00 to 16h30, in the Training Centre Auditorium, bldg. 593. Winter term: Readout and system electronics for physics (January-February 2002) Introduction: the basics of electronics (Philippe Farthouat, 15 January) Analogue signal processing (Francis Anghinolfi, 17 January) Analogue to digital conversions and data transmission (Philippe Farthouat, 22 January) Digital design with Field-Programmable Gate Arrays (Erik van der Bij, 24 January) Modular el...

  4. Electron beam water calorimetry measurements to obtain beam quality conversion factors.

    Science.gov (United States)

    Muir, Bryan R; Cojocaru, Claudiu D; McEwen, Malcolm R; Ross, Carl K

    2017-10-01

    To provide results of water calorimetry and ion chamber measurements in high-energy electron beams carried out at the National Research Council Canada (NRC). There are three main aspects to this work: (a) investigation of the behavior of ionization chambers in electron beams of different energies with focus on long-term stability, (b) water calorimetry measurements to determine absorbed dose to water in high-energy beams for direct calibration of ion chambers, and (c) using measurements of chamber response relative to reference ion chambers, determination of beam quality conversion factors, k Q , for several ion chamber types. Measurements are made in electron beams with energies between 8 MeV and 22 MeV from the NRC Elekta Precise clinical linear accelerator. Ion chamber measurements are made as a function of depth for cylindrical and plane-parallel ion chambers over a period of five years to investigate the stability of ion chamber response and for indirect calibration. Water calorimetry measurements are made in 18 MeV and 22 MeV beams. An insulated enclosure with fine temperature control is used to maintain a constant temperature (drifts less than 0.1 mK/min) of the calorimeter phantom at 4°C to minimize effects from convection. Two vessels of different designs are used with calibrated thermistor probes to measure radiation induced temperature rise. The vessels are filled with high-purity water and saturated with H 2 or N 2 gas to minimize the effect of radiochemical reactions on the measured temperature rise. A set of secondary standard ion chambers are calibrated directly against the calorimeter. Finally, several other ion chambers are calibrated in the NRC 60 Co reference field and then cross-calibrated against the secondary standard chambers in electron beams to realize k Q factors. The long-term stability of the cylindrical ion chambers in electron beams is better (always <0.15%) than plane-parallel chambers (0.2% to 0.4%). Calorimetry measurements

  5. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  6. Calibration of the isomer shift of {sup 133}Cs from internal conversion measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiroko; Tanaka, Eiji; Muramatsu, Hisakazu [Shinshu Univ., Matsumoto, Nagano (Japan)] [and others

    1997-03-01

    In this study, for 81 KeV transition of 133-Cs which is one of Moessbauer nuclides belonged to alkaline element and can be useful probe on study of binding state in a compound with high ionic boundability specific to alkaline element, an experiment to obtain {Delta}R/R was conducted by measurement of Moessbauer isomer shift and of internal conversion intensity of outer shell electron, using an internal conversion method, one of obtaining methods of {Delta} at the most accuracy. 133-Xe was buried at shallow surface of a host metal, reduced energy loss of internal conversion electron to realize high resolution and aimed to separate O-shell from P-shell to reduce injected ionic spaced and prepare a source. In range measurement of various energy to confirm actual speed reduction of ion, transmittance of 133-Xe on Cu layer vapor-deposited 2 to 10 micro g/sq cm thick on an Ni-foil was conducted. As a result, mean ranges of each energy were 5:2.2, 10:3.7, 15:4.8, and 20:5.6 micro g/sq cm, respectively. It was thought to be proved that speed reduction was certainly conducted by facts that the range increased with increase of the incident energy which showed good agreement with calculation results due to TRIM-95 code. (G.K.)

  7. Electron microbeam specifications for use in cell irradiation experiments

    International Nuclear Information System (INIS)

    Kim, E.-H.; Choi, M.-C.; Lee, D.-H.; Chang, M.; Kang, C.-S.

    2003-01-01

    The microbeam irradiation system was devised originally to identify the hit and unhit cells by confining the beam within the target cell. The major achievement through the microbeam experiment studies has turned out to be the discovery of the 'bystander effect'. Microbeam experiments have been performed with alpha and proton beams in major and with soft x-rays in minor. The study with electron microbeam has been deferred mainly due to the difficulty in confining the electron tracks within a single target cell. In this paper, the electron microbeam irradiation system under development in Korea is introduced in terms of the beam specifications. The KIRAMS electron microbeam irradiation system consists of an electron gun, a vacuum chamber for beam collimation into 5 μm in diameter and a biology stage. The beam characteristics in terms of current and energy spectrum of the electrons entering a target cell and its neighbor cells were investigated by Monte Carlo simulation for the electron source energies of 25, 50, 75 and 100 keV. Energy depositions in the target cell and the neighbor cells were also calculated. The beam attenuation in current and energy occurs while electrons pass through the 2 μm-thick Mylar vacuum window, 100 μm-thick air gap and the 2 μm-thick Mylar bottom of cell dish. With 25 keV electron source, 80 % of decrease in current and 30 % of decrease in average energy were estimated before entering the target cell. With 75 keV electron source, on the other hand, 55 % of decrease in current and less than 1 % of decrease in average energy were estimated. Average dose per single collimated electron emission was 0.067 cGy to the target cell nucleus of 5 μm in diameter and 0.030 cGy to the cytoplasm of 2.5 μm in thickness with 25 keV electron source while they were 0.15 cGy and 0.019 cGy, respectively, with 75 keV electron source. The multiple scattering of electrons resulted in energy deposition in the neighbor cells as well. Dose to the first

  8. Experiments on the nuclear interactions of pions and electrons

    International Nuclear Information System (INIS)

    Minehart, R.C.; Ziock, K.O.H.

    1989-07-01

    We have completed the analysis of the 3 He(π + ,pp)n reaction, and are working on the analysis of data for the 3 He(π - ,pn)p reaction. An experiment to study the π + d → 2p reaction at LAMPF was successful in studying incident pion energies as low as 6 MeV. Preliminary results have been reported, and work is continuing to improve the accuracy in the calculation of the fraction of pions in the incident beam. A proposal has been accepted by LAMPF for a new experiment, scheduled to run in the summer of 1990, to study pion absorption in 3 He and 4 He using an extensive scintillator time-of-flight system capable of detecting neutrons as well as charged particles. We are continuing to analyze data obtained in PSI in the search for the admixture of massive neutrinos in pion decay and have continued the search for fractionally charged particles. We are also fully involved in some major collaborations: the search for the decay μ + → e + + γ, and the study of anti-proton absorption in heavy nuclei. We are taking part in a U.Va.-PSI collaboration to measure pion beta decay to an accuracy of about 1%, using a large acceptance CsI detector to measure the π 0 following decay of stopped π + mesons. We have also been working on experiments to study electron scattering, using the SLAC-NPAS facility for nuclear physics and the electron accelerator at SACLAY in France. Data from experiment NE-9 at SLAC are being analyzed. This experiment, which was run near the end of 1987, is intended to separate the transverse and longitudinal cross sections for inclusive electron scattering in the QFS region. Experiment NE-8 measured the cross section for photo-disintegration of the deuteron in the GeV range. Some design work was carried out this year on Experiment NE-16 at SLAC, a study of the (e,e'p) reaction in 4 He, expected to run late in 1990

  9. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  10. Electron effects in the Neutralized Transport Experiment (NTX)

    Energy Technology Data Exchange (ETDEWEB)

    Eylon, S. [Lawrence Berkeley National Laboratory (LBNL), MS47R 0112, 1 Cyclotron Road, Berkeley, CA 94720 (United States) and Heavy Ion Fusion Virtual National Laboratory, Cyclotron Road, CA 94720 (United States)]. E-mail: S_Eylon@lbl.gov; Henestroza, E. [Lawrence Berkeley National Laboratory (LBNL), MS47R 0112, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Heavy Ion Fusion Virtual National Laboratory, Cyclotron Road, CA 94720 (United States); Roy, P.K. [Lawrence Berkeley National Laboratory (LBNL), MS47R 0112, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Heavy Ion Fusion Virtual National Laboratory, Cyclotron Road, CA 94720 (United States); Yu, S.S. [Lawrence Berkeley National Laboratory (LBNL), MS47R 0112, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Heavy Ion Fusion Virtual National Laboratory, Cyclotron Road, CA 94720 (United States)

    2005-05-21

    The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.

  11. Electron effects in the Neutralized Transport Experiment (NTX)

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Roy, P.K.; Yu, S.S.

    2005-01-01

    The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons

  12. Electron effects in the Neutralized Transport Experiment (NTX)

    Science.gov (United States)

    Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.

    2005-05-01

    The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.

  13. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  14. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  15. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  16. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  17. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  18. The Heisenberg Uncertainty Principle Demonstrated with An Electron Diffraction Experiment

    Science.gov (United States)

    Matteucci, Giorgio; Ferrari, Loris; Migliori, Andrea

    2010-01-01

    An experiment analogous to the classical diffraction of light from a circular aperture has been realized with electrons. The results are used to introduce undergraduate students to the wave behaviour of electrons. The diffraction fringes produced by the circular aperture are compared to those predicted by quantum mechanics and are exploited to…

  19. Hot-electron-plasma accumulation in the CIRCE mirror experiment

    International Nuclear Information System (INIS)

    Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.

    1975-01-01

    In the CIRCE experiment, the plasma is obtained by the trapping of a plasma injected into a magnetic bottle by electron heating at cyclotron resonance. The plasma density lies between 5x10 11 cm -3 and 10 12 cm -3 , the electron temperature is about 100 keV and the ion temperature is in the range of few hundred electronvolts. Gross instabilities are not observed. The ratio of the plasma density to the neutral-gas density inside the plasma is higher than 100. A few kilowatts of r.f. power at 8 GHz are sufficient to obtain these results, a fact which looks encouraging as far as the creation of a more effective fast-neutral-target plasma using the CIRCE-experiment concept is concerned. (author)

  20. Estimation of saturation activities for activation experiments in CHARM and CSBF using Fluence Conversion Coefficients

    CERN Document Server

    Guerin, Helene Chloe; Iliopoulou, Elpida; CERN. Geneva. HSE Department

    2017-01-01

    As summer student at CERN, I have been working in the Radiation Protection group for 10 weeks. I worked with the \\textsc{Fluka} Monte Carlo simulation code, using Fluence Conversion Coefficients method to perform simulations to estimate the saturation activities for activation experiments in the \\textsc{CSBF} and the \\textsc{Charm} facility in the East Experimental Area. The provided results will be used to plan a Monte Carlo benchmark in the \\textsc{CSBF} during a beam period at the end of August 2017.

  1. Experiments on neutron-proton and neutron-electron interaction

    International Nuclear Information System (INIS)

    Koester, L.

    1975-01-01

    The paper reports on zero-energy experiments with neutrons, protons and electrons with a wavelength that is considerably longer than the particle expansion. Scattering amplitudes are measured for the reactions n + p and n + e. A neutron gravity refractometer is used. (WL/AK) [de

  2. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  3. Standard-Cell, Open-Architecture Power Conversion Systems

    National Research Council Canada - National Science Library

    Boroyevich, D; Wang, F; Lee, F. C; Odendaal, W. G; Edwards, S

    2005-01-01

    ...). This project was purposefully aimed to develop a standardized hierarchical design and analysis methodology for modular power electronics conversion systems using as basis the ISO/OSI seven-layer reference model...

  4. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  5. The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics

    International Nuclear Information System (INIS)

    Mackintosh, A.R.

    1983-01-01

    The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered. (U.K.)

  6. Measuring international relations in social media conversations

    OpenAIRE

    Barnett, GA; Xu, WW; Chu, J; Jiang, K; Huh, C; Park, JY; Park, HW

    2017-01-01

    © 2016 Elsevier Inc. This paper examines international relations as perceived by the public in their social media conversations. It examines over 1.8 billion Facebook postings in English and 51 million Chinese posts on Weibo, to reveal the relations among nations as expressed in social media conversations. It argues that social media represent a transnational electronic public sphere, in which public discussions reveal characteristics of international relations as perceived by a foreign publi...

  7. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    Science.gov (United States)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  8. Test of New Readout Electronics for the BONuS12 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Mathieu [Inst. de Physique Nucleaire (IPN), Orsay (France)

    2017-07-01

    For decades, electron-proton scattering experiments have been providing a large amount of data on the proton structure function. However, because of the instability of free neutrons, fewer experiments have been able to study the neutron structure function. The BONuS collaboration at Jefferson Laboratory addresses this challenge by scattering electrons off a deuterium target, using a RTPC capable of detecting the low-momentum spectator protons near the target. Events of electrons scattering on almost free neutrons are selected by constraining the spectator protons to very low momenta and very backward scattering angles. In 2005, BONuS successfully measured the neutron structure with scattering electrons of up to 5.3 GeV energy. An extension of this measurement has been approved using the newly upgraded 12 GeV electron beam and CLAS12 (CEBAF Large Acceptance Spectrometer). For this new set of measurements, a new RTPC detector using GEM trackers is being developed to allow measurements of spectator protons with momenta as low as 70 MeV/c. The new RTPC will use a new readout electronic system, which is also used by other trackers in CLAS12. This thesis will present the first tests of this electronics using a previously built RTPC of similar design.

  9. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  10. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    Science.gov (United States)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  11. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Westover, B. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chen, C. D.; Patel, P. K.; McLean, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Beg, F. N., E-mail: fbeg@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  12. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  13. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    Science.gov (United States)

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  14. Theoretical expression of the internal conversion coefficient of a M1 transition between two atomic states

    International Nuclear Information System (INIS)

    Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.

    1997-01-01

    We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7

  15. Theory and simulation of an inverse free-electron laser experiment

    Science.gov (United States)

    Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.

    1997-03-01

    An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.

  16. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  17. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Kadoya, N; Chiba, M; Matsushita, H; Jingu, K [Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Sato, K; Nagasaka, T; Yamanaka, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.

  18. New Insight into Carbon Nanotube Electronic Structure Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  19. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  20. Electron cyclotron current drive experiments on DIII-D

    International Nuclear Information System (INIS)

    James, R.A.; Giruzzi, G.; Gentile, B. de; Rodriguez, L.; Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V.; Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R.; Janz, S.

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and τ E much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T e , η e and Z eff are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs

  1. Electron cyclotron current drive experiments on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    James, R.A. (Lawrence Livermore National Lab., CA (USA)); Giruzzi, G.; Gentile, B. de; Rodriguez, L. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 - Saint-Paul-les-Durance (France)); Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V. (Kurchatov Inst. of Atomic Energy, Moscow (USSR)); Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R. (General Atomics, San Di

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and {tau}{sub E} much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T{sub e}, {eta}{sub e} and Z{sub eff} are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs.

  2. On the presentation of wave phenomena of electrons with the Young-Feynman experiment

    International Nuclear Information System (INIS)

    Matteucci, Giorgio

    2011-01-01

    The Young-Feynman two-hole interferometer is widely used to present electron wave-particle duality and, in particular, the buildup of interference fringes with single electrons. The teaching approach consists of two steps: (i) electrons come through only one hole but diffraction effects are disregarded and (ii) electrons come through both holes and interference fringes are described. Therefore, a student might believe that wave phenomena are not revealed in case (i), but they arise only by the combined effect of electrons from the two holes. To avoid misunderstanding regarding the distribution of electrons passing through one hole, Fresnel and Fraunhofer diffraction patterns are discussed. In particular, an original experiment, realized with a standard electron microscope and a sample with round holes, is presented to introduce the wave nature of electrons. The experimental results clearly show that a careful discussion of electron diffraction phenomena from one hole provides students with the evidence that the interference experiment from both holes is not strictly required to show the superposition of electron waves.

  3. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  4. Synchrotron radiation-based Mössbauer spectra of {sup 174}Yb measured with internal conversion electrons

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Ryo, E-mail: masudar@rri.kyoto-u.ac.jp; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Saito, Makina [Beamline Spectroscopy/Scattering Group, Elettra-Sincrotrone Trieste, S. S. 14 Km 163.5, I-34149 Trieste (Italy); Yoda, Yoshitaka [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mitsui, Takaya [Condensed Matter Science Division, Japan Atomic Energy Agency, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Iga, Fumitoshi [College of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Seto, Makoto [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Condensed Matter Science Division, Japan Atomic Energy Agency, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2014-02-24

    A detection system for synchrotron-radiation (SR)-based Mössbauer spectroscopy was developed to enhance the nuclear resonant scattering counting rate and thus increase the available nuclides. In the system, a windowless avalanche photodiode (APD) detector was combined with a vacuum cryostat to detect the internal conversion (IC) electrons and fluorescent X-rays accompanied by nuclear de-excitation. As a feasibility study, the SR-based Mössbauer spectrum using the 76.5 keV level of {sup 174}Yb was observed without {sup 174}Yb enrichment of the samples. The counting rate was five times higher than that of our previous system, and the spectrum was obtained within 10 h. This result shows that nuclear resonance events can be more efficiently detected by counting IC electrons for nuclides with high IC coefficients. Furthermore, the windowless detection system enables us to place the sample closer to the APD elements and is advantageous for nuclear resonant inelastic scattering measurements. Therefore, this detection system can not only increase the number of nuclides accessible in SR-based Mössbauer spectroscopy but also allows the nuclear resonant inelastic scattering measurements of small single crystals or enzymes with dilute probe nuclides that are difficult to measure with the previous detection system.

  5. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  6. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Baek, J. S [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  7. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  8. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  9. Corrosion study of heat exchanger tubes in pressurized water cooled nuclear reactors by conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Homonnay, Z.; Kuzmann, E.; Varga, K.; Nemeth, Z.; Szabo, A.; Rado, K.; Schunk, J.; Tilky, P.; Patek, G.

    2005-01-01

    Nuclear energy production tends to return into the focus of interest because of the constantly increasing energy need of the world and the green house effect problems of the strongest competitor oil or gas based power plants. In addition to the construction of new nuclear power plants, lifetime extension of the existing ones is the most cost effective investment in the energy business. However, feasibility and safety issues become very important at this point, and corrosion of the construction materials should be carefully investigated before decision on a potential lifetime extension of a reactor. 57 Fe-Conversion Electron Moessbauer Spectroscopy (CEMS) is a sensitive tool to analyze the phase composition of corrosion products on the surface of stainless steel. The upper ∼300 nm can be investigated due to the penetration range of conversion electrons. The corrosion state of heat exchanger tubes from the four reactor units of the Paks Nuclear Power Plant, Hungary, were analyzed by several methods including CEMS. The primary circuit side of the tubes was studied on selected samples cut out from the heat exchangers during regular maintenance. Cr- and Ni-substituted magnetite, sometimes hematite, amorphous Fe-oxides/oxyhydroxides as well as the signal of bulk austenitic steel of the tubes were detected. The level of Cr- and Ni-substitution in the magnetite phase could be estimated from the Moessbauer spectra. Correlation between earlier decontamination cycles and the corrosion state of the heat exchangers was sought. In combination with other methods, a hybrid structure of the surface oxide layer of several microns was established. It is suggested that previous AP-CITROX decontamination cycles can be responsible for this structure which makes the oxide layer mobile. This mobility may be responsible for unwanted corrosion product transport into the reactor vessel by the primary coolant.

  10. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  11. Source theory analysis of electron--positron annihilation experiments

    International Nuclear Information System (INIS)

    Schwinger, J.

    1975-01-01

    The phenomenological viewpoint already applied to deep inelastic scattering is extended to the discussion of electron-positron annihilation experiments. Some heuristic arguments lead to simple forms for the pion differential cross section that are in reasonable accord with the published experimental data in the energy interval 3 to 4.8 GeV

  12. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    2013-01-01

    Practical Electronics Handbook, Third Edition provides the frequently used and highly applicable principles of electronics and electronic circuits.The book contains relevant information in electronics. The topics discussed in the text include passive and active discrete components; linear and digital I.C.s; microprocessors and microprocessor systems; digital-analogue conversions; computer aids in electronics design; and electronic hardware components.Electronic circuit constructors, service engineers, electronic design engineers, and anyone with an interest in electronics will find the book ve

  13. Research Update: Utilizing magnetization dynamics in solid-state thermal energy conversion

    Directory of Open Access Journals (Sweden)

    Stephen R. Boona

    2016-10-01

    Full Text Available We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.

  14. Conversion of Abbandoned Military Areas

    Directory of Open Access Journals (Sweden)

    Daiva Marcinkevičiūtė

    2011-03-01

    Full Text Available The article analyses the situation of abandoned military sites, their value and significance of their conservation. It also reviews their impact on their environment and their potential in tourism, environmental, economic and social spheres. Further the positive experiences in military sites' conversion are studied. The importance of society's involvement in the conversions is discussed. The situation of XIX-XX age's military object's, the significance of their conservation and their potential in tourism market is separately analysed. The results of two researches are introduced, one of which inquires about the Lithuanian military objects' potential in tourism sphere, another one explores the possibilities of conversion. Article in Lithuanian

  15. Discovering the puzzling behaviour of electrons with the Grimaldi-Young experiment

    International Nuclear Information System (INIS)

    Matteucci, Giorgio; Castaneda, Roman; Serna, Samuel; Garcia-Sucerquia, Jorge; Medina, Francisco

    2010-01-01

    An experiment analogous to that devised by Grimaldi and subsequently repeated by Young to study the nature of light has been realized with electrons. Following the Grimaldi and Young line of thought, an original approach is presented to introduce undergraduate physics students to the wave behaviour of electrons. An electron microscope equipped with a low coherent source of electrons and a thin platinum wire, acting as an opaque obstacle, is used to reproduce the experimental conditions adopted by Grimaldi and Young with light. Electron interference fringes produced in the geometrical shadow of the obstacle are interpreted by assuming that electrons behave like a sound or a light wave. This hypothesis is confirmed by the modelling of the experimental electron interference patterns.

  16. The Non-Ergodic Nature of Internal Conversion

    DEFF Research Database (Denmark)

    Sølling, Theis I.; Kuhlman, Thomas Scheby; Stephansen, Anne B.

    2014-01-01

    The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects...... of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight...... it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion...

  17. Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model

    International Nuclear Information System (INIS)

    Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.

    2006-01-01

    We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed

  18. Low-cost electron-gun pulser for table-top maser experiments

    Science.gov (United States)

    Grinberg, V.; Jerby, E.; Shahadi, A.

    1995-04-01

    A simple 10 kV electron-gun pulser for small-scale maser experiments is presented. This low-cost pulser has operated successfully in various table-top cyclotron-resonance maser (CRM) and free-electron maser (FEM) experiments. It consists of a low-voltage capacitor bank, an SCR control circuit and a transformer bank (car ignition coils) connected directly to the e-gun. The pulser produces a current of 3 A at 10 kV voltage in a Gaussian like shape of 1 ms pulse width. The voltage sweep during the pulse provides a useful tool to locate resonances of CRM and FEM interactions. Analytical expressions for the pulser design and experimental measurements are presented.

  19. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    International Nuclear Information System (INIS)

    Casado, A; Guerra, S; Placido, J

    2008-01-01

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements

  20. Search for Axions with the CDMS Experiment

    International Nuclear Information System (INIS)

    CDMS Collaboration

    2009-01-01

    We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local Galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g aγγ of 2.4 x 10 ?9 GeV -1 at the 95% confidence level for an axion mass less than 0.1 keV/c 2 . This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The Galactic axion search analysis sets a world-leading experimental upper limit on the axio-electric coupling g a# bar e# e of 1.4 x 10 -12 at the 90% confidence level for an axion mass of 2.5 keV/c 2 . This analysis excludes an interpretation of the DAMA annual modulation result in terms of Galactic axion interactions for axion masses above 1.4 keV/c 2

  1. The future of electronic power processing and conversion

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Consoli, A.; Ferreira, J.A.

    2005-01-01

    . - A large penetration of power electronics into power systems will happen within the next 25-30 years. The main transmission grid will not be affected. The power electronics development will be in distributed generation and in the loads. - The success of the integrated starter/generator, hybrid or electric...... cars depends on political decisions more than on technological advances. However, the success of a recent Japanese hybrid car and the cost of oil could trigger the critical momentum for large-scale use of power electronics in automotive applications. - We are moving toward standardized power supply...

  2. Irradiation experiment conceptual design parameters for MURR LEU U-Mo fuel conversion

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.; Wilson, E.

    2013-03-01

    This report contains the results of reactor design and performance calculations for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the nominal steady-state irradiation conditions of a key set of plates containing peak irradiation parameters found in MURR cores fueled with the LEU monolithic U-Mo alloy fuel with 10 wt% Mo.

  3. Solid electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zbořil, Miroslav; Vénos, D

    The KArlsruhe TRItium Neutrino (KATRIN) experiment represents a next-generation tritium $\\beta$-decay experiment designed to perform a high precision direct measurement of the electron anti-neutrino mass m($\

  4. Optical analysis of down-conversion OLEDs

    Science.gov (United States)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  5. Studies on Chromium-free Conversion coatings on Aluminum | Oki ...

    African Journals Online (AJOL)

    The development of a chromium-free conversion coating on aluminum has been studied using transmission electron microscopy (TEM), Auger Electron (AES) and Secondary ion mass spectroscopy (SIMS) techniques. Within the limits of the resolution of the TEM, the coating is uniformly clear and featureless. It is composed ...

  6. Conversion coefficients and yrast state spins in 180Os

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Kibedi, T.; Byrne, A.P.; Fabricius, B.; Stuchbery, A.E.

    1989-11-01

    Internal conversion coefficients of transitions in 180 Os have been measured using a superconducting, solenoidal electron spectrometer, operated in the lens mode. The high energy resolution and efficiency allow a precise measurement of the conversion coefficients of the 528 keV yrast transition. The values obtained, α K = 0.015 (2), α L = 0.004(1) define pure E2 multipolarity. Taken with the measured γ-ray angular distribution, the conversion coefficient leads to an unambiguous assignment of 16 + →14 + for the 528 keV transition. 14 refs., 5 figs., 1 tab

  7. Progress on Electron Cyclotron Heating Experiments in LHD

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Nagasaki, K.; Notake, T.; Inagaki, S.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Takita, Y.; Ohkubo, K.; Saito, K.; Seki, T.; Kumazawa, R.; Watari, T.; Mutoh, T.

    2005-01-01

    Electron cyclotron resonance heating (ECH) is a powerful heating method because of its well-controlled local heating and high deposition power density. Together with the development of high power long pulse gyrotrons, ECH becomes one of the major heating scenarios to control electron temperature and current profiles for the improved plasma confinement and suppression of some magneto-hydro-dainamic (MHD) instabilities in both tokamaks and stellarators [1]. In the Large Helical Device (LHD), ECH has been worked as a method of plasma initiation and electron heating. The ECH system has been improved with respect to each experimental campaign. In the recent campaign, nine gyrotrons were operated reliably and steadily. As a diagnostic objective, a modulated ECH (MECH) was injected together with main ECH power. A Fourier analysis of the induced heat wave gave useful information of not only the heat transport in the plasmas but also precise power deposition layer [2]. Several kinds of ECH experiment were performed by using this flexible ECH system. In LHD, electron ITB formation have been observed by using strongly focused ECH in the plasma core [3].Two different kinds of improved confinement were realized depending on the direction of tangentially injected NBI. NBI beam driven currents modify the profiles of the rotational transform 2 ro and the existence low order rational surfaces, 2 = 0.5 in special, affects the difference of appearance of the improved confinement states. The MECH method was used to investigate the internal structure of the thermal diffusion in such plasmas [4]. Another important role of the MECH is the precise determination of the ECH power deposition. Shift of the deposition location by changing an injection polarization in the electron Bernstein wave (EBW) heating was clearly demonstrated by the MECH method. Electron cyclotron current drive (ECCD) experiments were proceeded by using a flexible antenna system, which had wide scanning range in both

  8. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  9. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site.

    Science.gov (United States)

    Godsave, Susan F; Wille, Holger; Kujala, Pekka; Latawiec, Diane; DeArmond, Stephen J; Serban, Ana; Prusiner, Stanley B; Peters, Peter J

    2008-11-19

    Prion diseases are caused by accumulation of an abnormally folded isoform (PrP(Sc)) of the cellular prion protein (PrP(C)). The subcellular distribution of PrP(Sc) and the site of its formation in brain are still unclear. We performed quantitative cryo-immunogold electron microscopy on hippocampal sections from mice infected with the Rocky Mountain Laboratory strain of prions. Two antibodies were used: R2, which recognizes both PrP(C) and PrP(Sc); and F4-31, which only detects PrP(C) in undenatured sections. At a late subclinical stage of prion infection, both PrP(C) and PrP(Sc) were detected principally on neuronal plasma membranes and on vesicles resembling early endocytic or recycling vesicles in the neuropil. The R2 labeling was approximately six times higher in the infected than the uninfected hippocampus and gold clusters were only evident in infected tissue. The biggest increase in labeling density (24-fold) was found on the early/recycling endosome-like vesicles of small-diameter neurites, suggesting these as possible sites of conversion. Trypsin digestion of infected hippocampal sections resulted in a reduction in R2 labeling of >85%, which suggests that a high proportion of PrP(Sc) may be oligomeric, protease-sensitive PrP(Sc).

  10. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  11. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan); Noto, Yoshiyuki [Department of Radiology, Niigata University Medical and Dental Hospital, Niigata 951-8520 (Japan); Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  12. Bilingualism and Conversational Understanding in Young Children

    Science.gov (United States)

    Siegal, Michael; Iozzi, Laura; Surian, Luca

    2009-01-01

    The purpose of the two experiments reported here was to investigate whether bilingualism confers an advantage on children's conversational understanding. A total of 163 children aged 3-6 years were given a Conversational Violations Test to determine their ability to identify responses to questions as violations of Gricean maxims of conversation…

  13. Electronic trigger for the ASP experiment

    International Nuclear Information System (INIS)

    Wilson, R.J.

    1985-11-01

    The Anomalous Single Photon (ASP) electronic trigger is described. The experiments is based on an electromagnetic calorimeter composed of arrays of lead glass blocks, read out with photo-multiplier tubes, surrounding the interaction point at the PEP storage ring. The primary requirement of the trigger system is to be sensitive to low energy (approx. =0.5 GeV and above) photons whilst discriminating against high backgrounds at PEP. Analogue summing of the PMT signals and a sequence of programmable digital look-up tables produces a ''dead-timeless'' trigger for the beam collision rate of 408 kHz. 6 refs., 6 figs

  14. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  15. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  16. A Conversation about Professionalism and Community.

    Science.gov (United States)

    Bauch, Patricia A.; Crowson, Robert L.; Goldring, Ellen B.; Mawhinney, Hanne B.; Ogawa, Rodney T.; Driscoll, Mary Erina

    1998-01-01

    Presents an interactive electronic conversation among a group of scholars. Participants examined the nature of relationships between professionals and school communities and debated the degree to which conflict was either inevitable or useful in sustaining this connection. They tried to imagine the organizational structures and policies needed to…

  17. Einstein-Podolsky-Rosen-Bohm experiment and Bell inequality violation using Type 2 parametric down conversion

    Science.gov (United States)

    Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.

    1994-01-01

    We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.

  18. Bilingualism accentuates children's conversational understanding.

    Directory of Open Access Journals (Sweden)

    Michael Siegal

    Full Text Available BACKGROUND: Although bilingualism is prevalent throughout the world, little is known about the extent to which it influences children's conversational understanding. Our investigation involved children aged 3-6 years exposed to one or more of four major languages: English, German, Italian, and Japanese. In two experiments, we examined the children's ability to identify responses to questions as violations of conversational maxims (to be informative and avoid redundancy, to speak the truth, be relevant, and be polite. PRINCIPAL FINDINGS: In Experiment 1, with increasing age, children showed greater sensitivity to maxim violations. Children in Italy who were bilingual in German and Italian (with German as the dominant language L1 significantly outperformed Italian monolinguals. In Experiment 2, children in England who were bilingual in English and Japanese (with English as L1 significantly outperformed Japanese monolinguals in Japan with vocabulary age partialled out. CONCLUSIONS: As the monolingual and bilingual groups had a similar family SES background (Experiment 1 and similar family cultural identity (Experiment 2, these results point to a specific role for early bilingualism in accentuating children's developing ability to appreciate effective communicative responses.

  19. Study of requirements and performances of the electromagnetic calorimeter for the Mu2e experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Soleti, S. [Sapienza Univ. of Rome (Italy)

    2015-06-15

    In this thesis we discuss the simulation and tests carried out for the optimization and design of the electromagnetic calorimeter for the Mu2e (Muon to electron conversion) experiment, which is a proposed experiment part of the Muon Campus hosted at Fermi National Accelerator Laboratory (FNAL) in Batavia, United States.

  20. Internal conversion theory of gamma radiation in unfilled atomic shells

    International Nuclear Information System (INIS)

    Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.

    1980-01-01

    The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells

  1. Conversion of electromagnetic waves at the ionisation front

    International Nuclear Information System (INIS)

    Chegotov, M V

    2001-01-01

    It is shown that a weak electromagnetic pulse interacting with a copropagating ionisation front is converted in the general case into three electromagnetic pulses with higher and lower frequencies, which propagate in different directions. The coefficients of conversion to these pulses (for intensities) were found as functions of the frequency. The electromagnetic energy is shown to decrease during this conversion because of the losses for the residual electron energy. (interaction of laser radiation with matter. laser plasma)

  2. Design and performance of TPC readout electronics for the NA49 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bieser, F. [Lawrence Berkeley Lab., CA (United States); Cooper, G. [Lawrence Berkeley Lab., CA (United States); Cwienk, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Eckardt, V. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Fessler, H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Fischer, H.G. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Gabler, F. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Gornicki, E. [Institute of Nuclear Physics, Cracow (Poland); Hearn, W.E. [Lawrence Berkeley Lab., CA (United States); Heupke, W. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Irmscher, D. [Lawrence Berkeley Lab., CA (United States); Jacobs, P. [Lawrence Berkeley Lab., CA (United States); Kleinfelder, S. [Lawrence Berkeley Lab., CA (United States); Lindenstruth, V. [Lawrence Berkeley Lab., CA (United States); Machowski, B. [Institute of Nuclear Physics, Cracow (Poland); Marks, K. [Lawrence Berkeley Lab., CA (United States); Milgrome, O. [Lawrence Berkeley Lab., CA (United States); Mock, A. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Noggle, T. [Lawrence Berkeley Lab., CA (United States); Pimpl, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Poskanzer, A.M. [Lawrence Berkeley Lab., CA (United States); Rauch, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Renfordt, R. [European Lab. for Particle Physics (CERN), Geneva (Switzerland)]|[Frankfurt Univ. (Germany). Fachbereich 13 -Physik; Ritter, H.G. [Lawrence Berkeley Lab., CA (United States)]|[European Lab. for Particle Physics (CERN), Geneva (Switzerland); Roehrich, D. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Rudolph, H. [Lawrence Berkeley Lab., CA (United States); Rueschmann, G.W. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Schaefer, E. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Seyboth, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Seyerlein, J.

    1997-02-01

    Highly integrated readout electronics were developed and produced for the 182000 channels of the four TPCs of the NA49 heavy-ion fixed target experiment at the CERN SPS. The large number of channels, the high packing density and required cost minimization led to the choice of a custom electronics system. The requirements, the design and the performance of the electronics components are described. (orig.).

  3. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  4. Measurement of conversion coefficients in 208Tl

    International Nuclear Information System (INIS)

    Wendling, F.

    1976-06-01

    A electron spectrometer composed by a Li drifted Si detector and a uniform magnetic field was constructed. The magnetic field is used to focus the electrons on the detector and to filter the other radiations. After the construction the instrument was calibrated in absolute eficience and was used together with a Ge(Li) spectrometer also calibrated, in the measurement of internal conversion coeficients of the 433 and 453 keV transitions in 208 Tl [pt

  5. Searching for TeV cosmic electrons with the CREST experiment

    International Nuclear Information System (INIS)

    Coutu, S.; Anderson, T.; Bower, C.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.H.; Schubnell, M.; Tarle, G.; Wakely, S.; Yagi, A.

    2011-01-01

    The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. Such would be the markers of nearby cosmic accelerators, as energetic electrons from distant Galactic sources are expected to be depleted by radiative losses during interstellar transport. Electrons will be detected indirectly by the characteristic signature of their geomagnetic synchrotron losses, in the form of a burst of coaligned x-ray photons intersecting the plane of the instrument. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m 2 instrument. The payload is composed of an array of 1024 BaF2 crystals surrounded by a set of veto scintillator detectors. A long-duration balloon flight in Antarctica is planned for the 2011-12 season.

  6. Searching for TeV cosmic electrons with the CREST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coutu, S., E-mail: coutu@phys.psu.edu [Department of Physics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802 (United States); Anderson, T. [Department of Physics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802 (United States); Bower, C. [Physics Department, Indiana University, 117 Swain Hall West, Bloomington, IN 47405 (United States); Gennaro, J. [Department of Physics, University of Michigan, Randall Physics Laboratory, 500 E. University Ave, Ann Arbor, MI 48109 (United States); Geske, M. [Department of Physics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802 (United States); Mueller, D. [Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E. 56th St., Chicago, IL 60637 (United States); Musser, J. [Physics Department, Indiana University, 117 Swain Hall West, Bloomington, IN 47405 (United States); Nutter, S. [Department of Physics and Geology, Northern Kentucky University, Highland Heights, KY 41099 (United States); Park, N.H. [Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E. 56th St., Chicago, IL 60637 (United States); Schubnell, M.; Tarle, G. [Department of Physics, University of Michigan, Randall Physics Laboratory, 500 E. University Ave, Ann Arbor, MI 48109 (United States); Wakely, S. [Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E. 56th St., Chicago, IL 60637 (United States); Yagi, A. [Department of Physics, University of Michigan, Randall Physics Laboratory, 500 E. University Ave, Ann Arbor, MI 48109 (United States)

    2011-06-15

    The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. Such would be the markers of nearby cosmic accelerators, as energetic electrons from distant Galactic sources are expected to be depleted by radiative losses during interstellar transport. Electrons will be detected indirectly by the characteristic signature of their geomagnetic synchrotron losses, in the form of a burst of coaligned x-ray photons intersecting the plane of the instrument. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m{sup 2} instrument. The payload is composed of an array of 1024 BaF2 crystals surrounded by a set of veto scintillator detectors. A long-duration balloon flight in Antarctica is planned for the 2011-12 season.

  7. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  8. Reduced Effectiveness of Interruptive Drug-Drug Interaction Alerts after Conversion to a Commercial Electronic Health Record.

    Science.gov (United States)

    Wright, Adam; Aaron, Skye; Seger, Diane L; Samal, Lipika; Schiff, Gordon D; Bates, David W

    2018-05-15

    Drug-drug interaction (DDI) alerts in electronic health records (EHRs) can help prevent adverse drug events, but such alerts are frequently overridden, raising concerns about their clinical usefulness and contribution to alert fatigue. To study the effect of conversion to a commercial EHR on DDI alert and acceptance rates. Two before-and-after studies. 3277 clinicians who received a DDI alert in the outpatient setting. Introduction of a new, commercial EHR and subsequent adjustment of DDI alerting criteria. Alert burden and proportion of alerts accepted. Overall interruptive DDI alert burden increased by a factor of 6 from the legacy EHR to the commercial EHR. The acceptance rate for the most severe alerts fell from 100 to 8.4%, and from 29.3 to 7.5% for medium severity alerts (P fell by 50.5%, and acceptance of Tier 1 alerts rose from 9.1 to 12.7% (P < 0.01). Changing from a highly tailored DDI alerting system to a more general one as part of an EHR conversion decreased acceptance of DDI alerts and increased alert burden on users. The decrease in acceptance rates cannot be fully explained by differences in the clinical knowledge base, nor can it be fully explained by alert fatigue associated with increased alert burden. Instead, workflow factors probably predominate, including timing of alerts in the prescribing process, lack of differentiation of more and less severe alerts, and features of how users interact with alerts.

  9. Electron-nucleon scattering experiments in the GeV range

    International Nuclear Information System (INIS)

    Glawe, U.B.

    1980-01-01

    In the framework of this thesis a computer code systems was developed which describes the inclusive electron scattering on bound nucleons in the impact approximation. It could be shown that the structure functions for the quasi-free scattering can be represented as an incoherent superposition of the structure functions of the free processes. The structure functions of the free processes were determined from experimental cross sections. From the comparison of the calculations with electron scattering experiments on the nuclei 6 Li, 9 Be, 12 C, 27 Al, and 28 Si in the kinematic range 0.0 2 2 and W [de

  10. Identification of electrons in the ZEUS hadron-electron separator with neural networks

    International Nuclear Information System (INIS)

    Carstens, J.O.

    1994-10-01

    An electron finder for the ZEUS experiment was constructed, which is specialized to electrons in the momentum range 0.5 to 3.0 GeV/c. For the first time this electron finder connects the informations of the calorimeter with those of the hadron-electron separator (HES). For this purpose the electron finder was equipped with a neural network. The electron finder reached on a data set of photoproduction events with conversion electrons an efficiency and discriminance of E=(62.9±2.2±0.6)% and D=(91.4±0.8±1.1)%. From these two quantities it can be calculated that the electron finder the ratio electrons to background increases by the factoe E/(1-D)=7.4 (Signal amplification). For the comparison: A neural net, to which only calorimeter informations have been made available, reached at the same efficiency a signal amplification of 2.4. A simple cut in the variable HES-signal reaches a signal amplification of 6.3. Hints were given, how training data sets with electrons and hadrons of higher energies can be obtained. With such data sets the working range of the electron finder can be without problems extended to higher momenta. As preparation for the construction of the electron finder an introduction to the foundations of the mathematics and the application of neural networks was given. By means of examples different methods for the convergence improvement have been tested. Numerous representations mediate illustrative imaginations on the mathematical process of the training of neural networks

  11. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  12. E-Cigarette Social Media Messages: A Text Mining Analysis of Marketing and Consumer Conversations on Twitter

    Science.gov (United States)

    2016-01-01

    Background As the use of electronic cigarettes (e-cigarettes) rises, social media likely influences public awareness and perception of this emerging tobacco product. Objective This study examined the public conversation on Twitter to determine overarching themes and insights for trending topics from commercial and consumer users. Methods Text mining uncovered key patterns and important topics for e-cigarettes on Twitter. SAS Text Miner 12.1 software (SAS Institute Inc) was used for descriptive text mining to reveal the primary topics from tweets collected from March 24, 2015, to July 3, 2015, using a Python script in conjunction with Twitter’s streaming application programming interface. A total of 18 keywords related to e-cigarettes were used and resulted in a total of 872,544 tweets that were sorted into overarching themes through a text topic node for tweets (126,127) and retweets (114,451) that represented more than 1% of the conversation. Results While some of the final themes were marketing-focused, many topics represented diverse proponent and user conversations that included discussion of policies, personal experiences, and the differentiation of e-cigarettes from traditional tobacco, often by pointing to the lack of evidence for the harm or risks of e-cigarettes or taking the position that e-cigarettes should be promoted as smoking cessation devices. Conclusions These findings reveal that unique, large-scale public conversations are occurring on Twitter alongside e-cigarette advertising and promotion. Proponents and users are turning to social media to share knowledge, experience, and questions about e-cigarette use. Future research should focus on these unique conversations to understand how they influence attitudes towards and use of e-cigarettes. PMID:27956376

  13. The industrial policy experience of the electronics industry in Malaysia

    OpenAIRE

    Rasiah, Rajah

    2015-01-01

    Despite the use of industrial policies to stimulate economic growth by several successful developers, latecomers have faced mixed experiences. Hence, this paper analyses the industrial policy experience of the electronics industry in Malaysia. A blend of institutions have guided technological upgrading in the industry, especially in the state of Penang. Smooth co-ordination between the state government, multinational corporations, national firms, and the federal government helped stimulate te...

  14. Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO{sub 2} nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Thomas; Kuster, Simon; Nueesch, Frank [Empa, Swiss Federal Laboratories for Materials Testing and Research Laboratory for Functional Polymers, Duebendorf (Switzerland); Yum, Jun-Ho; Moon, Soo-Jin; Nazeeruddin, Mohammad K.; Graetzel, Michael [Laboratory for Photonics and Interfaces Institute of Chemical Sciences and Engineering School of Basic Sciences, Swiss Federal Institute of Technology, Lausanne (Switzerland)

    2009-09-09

    An optimized unsymmetrical squaraine dye 5-carboxy-2-[[3-[(2,3-dihydro-1, 1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium (SQ02) with carboxylic acid as anchoring group is synthesized for dye-sensitized solar cells (DSCs). Although the {pi}-framework of SQ02 is insignificantly extended compared to its antecessor squaraine dye SQ01, photophysical measurements show that the new sensitizer has a much higher overall conversion efficiency {eta} of 5.40% which is improved by 20% when compared to SQ01. UV-vis spectroscopy, cyclic voltammetry and time dependent density functional theory calculations are accomplished to rationalize the higher conversion efficiency of SQ02. A smaller optical band gap including a higher molar absorption coefficient leads to improved light harvesting of the solar cell and a broadened photocurrent spectrum. Furthermore, all excited state orbitals relevant for the {pi}-{pi}* transition in SQ02 are delocalized over the carboxylic acid anchoring group, ensuring a strong electronic coupling to the conduction band of TiO{sub 2} and hence a fast electron transfer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  16. Electron collector and ion species experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.; Greenly, J.B.; Hammer, D.A.; Horioka, K.; Meyerhofer, D.D.

    1987-01-01

    Studies of the effects of an electron collector on the electron flow in an ion diode and on diode impedance history are being done with an extractor geometry ion diode (B/sub r/ magnetic insulation field) on the LION accelerator (1.5 MV, 4Ω, 40 ns). The collector is a flux-penetrable metal protrusion on the inner radius of the anode that collects electrons. This device increases the diode operating impedance particularly during the later part of the pulse when the diode impedance collapses without the collector. In the present set of experiments, several thin wires are inserted into the anode and allowed to protrude a few millimeters into the A-K gap. These wires are damaged by the electron flow during the pulse and by measuring the length of the remaining wire, the distance of the electron layer from the anode can be inferred. The ion current density is also measured in three radial locations across the diode, giving a measure, through the Child-Langmuir law, of the effective gap spacing between the anode and the electron sheath. A simple model is proposed to account for the scaling of ion current density with the diode voltage observed in the experiment

  17. On the scalar electron mass limit from single photon experiments

    International Nuclear Information System (INIS)

    Grivaz, J.F.

    1987-03-01

    We discuss how the 90% C.L. lower limit on the mass of the scalar electron, as extracted from the single photon experiments, is affected by the way the background from radiative neutrino pair production is handled. We argue that some of the results presented at the Berkeley conference are overoptimistic, and that the mass lower limit is 65 GeV rather than the advertized value of 84 GeV, for the case of degenerate scalar electrons with massless photinos

  18. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    natural gas from the subsurface. The participants discussed--key microbial conversion paths; overarching research issues; current funding models and microbial energy research; education, training, interdisciplinary cooperation and communication. Their recommendations are--Cellulose and lignocellulose are the preferred substrates for producing liquid transportation fuels, of which ethanol is the most commonly considered example. Generating fuels from these materials is still difficult and costly. A number of challenges need to be met in order to make the conversion of cellulose and lignocellulose to transportation fuels more cost-competitive. The design of hydrogen-producing bioreactors must be improved in order to more effectively manage hydrogen removal, oxygen exclusion, and, in the case of photobioreactors, to capture light energy more efficiently. Methane production may be optimized by fine-tuning methanogenic microbial communities. The ability to transfer electrons to an anode in a microbial fuel cell is probably very broadly distributed in the bacterial world. The scientific community needs a larger inventory of cultivated microorganisms from which to draw for energy conversion development. New and unusual organisms for manufacturing fuels and for use in fuel cells can be discovered using bioprospecting techniques. Particular emphasis should be placed on finding microbes, microbial communities, and enzymes that can enhance the conversion of lignocellulosic biomass to usable sugars. Many of the microbial processes critical to energy conversion are carried out by complex communities of organisms, and there is a need to better understand the community interactions that make these transformations possible. Better understanding of microbial community structure, robustness, networks, homeostasis, and cell-to-cell signaling is also needed. A better understanding of the basic enzymology of microorganisms is needed in order to move forward more quickly with microbial energy

  19. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  20. FELIX: A proposal for a free electron laser experiment at Daresbury

    International Nuclear Information System (INIS)

    Thompson, D.J.

    1980-01-01

    Although the Stanford Group has clearly demonstrated the feasibility of the free electron laser (of the type working in the low current density regime), and a great deal of theoretical work has been done before and since that time, there is still very little experimental data on such devices and very little practical experience. One of the reasons for this is the cost of suitable electron beam sources. At Daresbury the NINA injector linac is in store and could be recommissioned at much less than the cost of a new machine. It is believed that there is a scientific case for infra-red sources of the FEL type, because of their high power and tunability and that they would complement a synchrotron radiation source which provides intense VUV and X-ray beams. FELIX is a free electron laser experiment using the NINA linac with an output tunable over the range 57-150 μm, proposed as a project to produce experimental data on FEL characteristics and provide practical experience which could lead to a new generation of infra-red sources. The paper will describe a design study which has been carried out and is presently under consideration by the Science Research Council. (orig.)

  1. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  2. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recombination luminescence from H centers and conversion of H centers into I centers in alkali iodides

    International Nuclear Information System (INIS)

    Berzina, B.J.

    1981-01-01

    The study is aimed at the search for H-plus-electron centers of luminescence and the investigation of the conversion of H- into I centers by the luminescence of H-plus-electron centers in alkali iodide crystals. KI, RbI and NaI crystals were studied at 12 K. H and F centers were created by irradiation with ultraviolet light corresponding to the absorption band of anion excitons. Then the excitation of electron centers by red light irradiation was followed. The spectra of stimulated recombination luminescence were studied. The luminescence of H-plus- electron centers had been observed and the conclusion was made that this center was formed on immobile H centers. In case of stable H centers the optically stimulated conversion of H centers into I centers occurs. The assumption is advanced on the spontaneous annihilation of near placed unstable F, H centers which leads to the creation of H-plus-electron luminescence centers and to the spontaneous H-I-centers conversion [ru

  4. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  5. Generation and focusing of high energy, 35-kA electron beams for pulsed-diode radiographic machines: Theory and experiment

    International Nuclear Information System (INIS)

    Carlson, R.L.; George, M.J.; Hughes, T.P.; Welch, D.R.

    1993-01-01

    Cathode ball and anode planar-foil geometries used to generate self-focused beams onto x-ray conversion targets via beam-induced ionization in gas cells have been investigated since the early 1970's by J. C. Martin et al at Aldermaston, U.K. The building of a succession of increasingly higher voltage, pulsed-diode machines tailored for flash x radiography has resulted. Given sufficient dose to penetrate an object, the spot size of the x-ray source generally determines the resolution of a radiograph. Reported are particle-in-cell code simulations applied to beam generation in the A-K gap and the self-focusing onto the target. A Monte Carlo code for neutron, photon, and electron transport converts the beam particles at the target to photons with transport to a film plane used to calculate the spot size. Comparisons are made to experiments using the Ector (3.5--4 MeV) and PIXY (4--8 MeV) pulsed-diode radiographic machines at Los Alamos

  6. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  7. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  8. Newnes electronics engineers pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    This book is packed with information and material which everyone involved in electronics will find indispensable. Now when you need to know a transistor's characteristics, or an integrated circuit's pinout details, simply look it up! The book is full of tables, symbols, formulae, conversions and illustrations.Promotion via the new Newnes Pocket Book catalogue to the electronics trade will drive sales into the book trade Covers component data; encapsulations; pin-outs; symbols & codings Extensive material on conversion factors, formulae; units and relationships

  9. Measurement of the fast electron distribution in laser-plasma experiments in the context of the 'fast ignition' approach to inertial confinement fusion

    International Nuclear Information System (INIS)

    Batani, Dimitri; Morace, Alessio

    2010-01-01

    The recent 'fast ignition approach' to ICF relies on the presence of fast electrons to provide the 'external' ignition spark triggering the nuclear fusion reaction in the compressed core of a thermonuclear target. Such fast electron beam is produced by the interaction of a short-pulse high-intensity laser with the target itself. In this context, it becomes essential to characterize the density of fast electrons and their average energy (i.e. the 'laser to fast electron' energy conversion efficiency) but also the finer details of the velocity and angular distribution. In this work we will discuss several techniques used to determine the fast electron distribution function.

  10. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-05-15

    While the most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluid physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We have also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. Assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.

  11. Experiments on the nuclear interactions of pion and electrons. Final progress report

    International Nuclear Information System (INIS)

    Minehart, R.C.

    1998-05-01

    The work in this report is grouped into four categories. (1) The experiments in pion nucleus physics were primarily studies of pion absorption and scattering in light nuclei, carried out at the Los Alamos Meson Physics Facility (LAMPF). (2) The experiments on fundamental particle properties were carried out at LAMPF and at the Paul Scherrer Institute (PSI) in Switzerland, the pion-beta decay experiment is still under construction and will begin taking data in 1999. (3) The experiments in electro-nuclear physics were performed at the Stanford Linear Electron Accelerator (SLAC), at the Saclay Laboratory in France, at the LEGS facility at the Brookhaven National Laboratory, and at the Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Laboratory. These experiments relate mainly to the question of the role of longitudinal and transverse strength for inelastic scattering from nuclei, measurements of fundamental nuclear properties with tagged polarized photons, and to the quark structure of the nucleon and its excited states. (4) Experiments on absorption of antiprotons in heavy nuclei, were carried out by K. Ziock primarily while on a sabbatical leave in Munich, Germany

  12. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  13. Lower hybrid heating experiment in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Uchara, K.; Nagashima, T.

    1982-01-01

    Lower hybrid heating experiments in JFT-2 are reviewed. Good maintenance and controlling of the coupling structure are very important in the injection of RF power before heating experiments. Accessibility of waves and the existence of the mode conversion region are necessary for ion heating in the main plasma. Parametric instabilities which may bring undesirable power deposition are suppressed by enough electron heating in the boundary region. Optimizing the Nsub(z) spectrum and the improvement of the plasma confinement may lead the electron heating in the high density region. Current generation by use of quasi-linear Landau damping is confirmed and is suggested to bring the improvement of plasma confinement. High power and long pulse klystrons may be expected to open a frontier toward a stational reactor plasma in tokamaks. (author)

  14. Literary text reading and conversation: beyond ethnomethodology boundaries

    Directory of Open Access Journals (Sweden)

    Viviana Suárez Galvis

    2014-01-01

    Full Text Available This article leaves aside ethnomethodological approaches to conversation, and aims at opening the debate about the need of conceiving it under the light of pedagogical principles that position it as a propitious discursive gender to express the emotional, aesthetics, thoughtful, and intellectual meetings embodied while reading literary texts. Such interest arose from a research centered on finding the existing relationships between conversation and construction of aesthetical-literary experiences. The results show that students get a pleasant feeling when giving sense to what they read, and this encourages them to share with others their significant experiences when reading, allowing the internal process of meaning construction and the dialogic strengthening of the experiences to be connected.

  15. Low-cost workbench client / server cores for remote experiments in electronics

    OpenAIRE

    José M. M. Ferreira; Americo Dias; Paulo Sousa; Zorica Nedic; Jan Machotka; Ozdemir Gol; Andrew Nafalski

    2010-01-01

    This paper offers an open-source solution to implement low-cost workbenches serving a wide range of remote experiments in electronics. The proposed solution comprises 1) a small (9,65 x 6,1 cm) Linux server board; 2) a server core supporting two TCP/IP communication channels, and general purpose I/O pin drivers to interface the remote experiment hardware; and 3) a client core based on a multi-tab user interface supporting text file management to exchange experiment scripts / status informatio...

  16. [Conversion Disorder in Children and Adolescents].

    Science.gov (United States)

    Duque, Paula Andrea; Vásquez, Rafael; Cote, Miguel

    2015-01-01

    Conversion disorder is diagnosed late, by exclusion and with a high risk of complications. There is a wide experience in adults that is not extrapolated to paediatric patients. According to the literature, the prognosis is better in children, but this changes when other variables such are included, such as comorbidities, late diagnosis and a very convincing social image of the neurological disease. To review the medical literature on the clinical features, diagnosis, comorbidities and treatment of this disorder. A literature research was performed on Medline and Pubmed, the terms used were "conversion disorder", pseudoseizures, treatment, clinic, children ("conversion disorder" OR hysteria OR hysterical) (child OR children OR childhood OR pediatric OR paediatric). The most relevant material found is included in this review. Conversion disorder is often an imprecise diagnosis in high complexity paediatric services. No consensus was found in the literature search on how to treat patients after the initial diagnosis. The evidence that it becomes chronic is not strong enough, just as the evidence is not convincing enough to argue that comorbidity factors are those maintained over time. Clearly, there is no medical experience of the natural history of this disorder in children and adolescents. It is only known is that it is a complex condition, on which there is experience only in the diagnosis and treatment of the acute state, but not so in the long-term care. It is proposed that each patient is studied in detail in order to define the psychiatric diagnosis and its treatment. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. The organization of digital conversation on MSN

    Directory of Open Access Journals (Sweden)

    Artarxerxes Tiago Tácito Modesto

    2012-02-01

    Full Text Available The emergence of the Internet has caused a revolution with regard to new forms of interaction between people, offering experiences of real-time communication in so-called virtual environments. Given this scenario, new textual genres emerge, making room for innumerous possibilities of analysis under various approaches. In this paper, we aim at analyzing digital conversations, trying to verify, at first, the extent to which they approach or move away from face-to-face conversations. We also seek to identify, describe and analyze some interactional strategies inherent in this new genre. We base our analyzes on Conversation Analysis theory and Interactional Sociolinguistics to define conversational strategies of the “spoken written text” on the Internet. The corpus used in this work consists of digital conversations coming from the MSN instant messaging software from Microsoft Corporation, chosen because of its wide use among people who use the internet for communication.

  18. Photoactive Molecular Dyads [Ru(bpy)3-M(ttpy)2] n+ on Gold (M = Co(III), Zn(II)): Characterization, Intrawire Electron Transfer, and Photoelectric Conversion.

    Science.gov (United States)

    Le-Quang, Long; Farran, Rajaa; Lattach, Youssef; Bonnet, Hugues; Jamet, Hélène; Guérente, Liliane; Maisonhaute, Emmanuel; Chauvin, Jérôme

    2018-04-23

    We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy) 3 ] 2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ ). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10 -11 mol cm -2 . The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s -1 for Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ , respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[Zn II -Ru II ] 4+ , the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 μA cm -2 for Au/[Co III -Ru II ] 5+ and 5 μA cm -2 for Au/[Zn II -Ru II ] 4+ , proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[Co III -Ru II ] 5+ , since each bound dyad, once excited, injects an electron around 10 times per second.

  19. E-Cigarette Social Media Messages: A Text Mining Analysis of Marketing and Consumer Conversations on Twitter.

    Science.gov (United States)

    Lazard, Allison J; Saffer, Adam J; Wilcox, Gary B; Chung, Arnold DongWoo; Mackert, Michael S; Bernhardt, Jay M

    2016-12-12

    As the use of electronic cigarettes (e-cigarettes) rises, social media likely influences public awareness and perception of this emerging tobacco product. This study examined the public conversation on Twitter to determine overarching themes and insights for trending topics from commercial and consumer users. Text mining uncovered key patterns and important topics for e-cigarettes on Twitter. SAS Text Miner 12.1 software (SAS Institute Inc) was used for descriptive text mining to reveal the primary topics from tweets collected from March 24, 2015, to July 3, 2015, using a Python script in conjunction with Twitter's streaming application programming interface. A total of 18 keywords related to e-cigarettes were used and resulted in a total of 872,544 tweets that were sorted into overarching themes through a text topic node for tweets (126,127) and retweets (114,451) that represented more than 1% of the conversation. While some of the final themes were marketing-focused, many topics represented diverse proponent and user conversations that included discussion of policies, personal experiences, and the differentiation of e-cigarettes from traditional tobacco, often by pointing to the lack of evidence for the harm or risks of e-cigarettes or taking the position that e-cigarettes should be promoted as smoking cessation devices. These findings reveal that unique, large-scale public conversations are occurring on Twitter alongside e-cigarette advertising and promotion. Proponents and users are turning to social media to share knowledge, experience, and questions about e-cigarette use. Future research should focus on these unique conversations to understand how they influence attitudes towards and use of e-cigarettes. ©Allison J Lazard, Adam J Saffer, Gary B Wilcox, Arnold DongWoo Chung, Michael S Mackert, Jay M Bernhardt. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 12.12.2016.

  20. Electron-cyclotron current drive in the tokamak physics experiment

    International Nuclear Information System (INIS)

    Smith, G.R.; Kritz, A.H.; Radin, S.H.

    1992-01-01

    Ray-tracking calculations provide estimates of the electron-cyclotron heating (ECH) power required to suppress tearing modes near the q=2 surface in the Tokamak Physics Experiment. Effects of finite beam width and divergence are included, as are the effects of scattering of the ECH power by drift-wave turbulence. A frequency of about 120 GHz allows current drive on the small-R (high-B) portion of q=2, while 80 GHz drives current on the large-R (low-B) portion. The higher frequency has the advantages of less sensitivity to wave and plasma parameters and of no trapped-electron degradation of current-drive efficiency. Less than 1 MW suffices to suppress tearing modes even with high turbulence levels

  1. Design of a Flexible Hardware Interface for Multiple Remote Electronic practical Experiments of Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Farah Said

    2012-03-01

    Full Text Available The objective of this work is to present a new design of a Flexible Hardware Interface (FHI based on PID control techniques to use in a virtual laboratory. This flexible hardware interface allows the easy implementation of different and multiple remote electronic practical experiments for undergraduate engineering classes. This interface can be viewed as opened hardware architecture to easily develop simple or complex remote experiments in the electronic domain. The philosophy of the use of this interface can also be expanded to many other domains as optic experiments for instance. It is also demonstrated that software can be developed to enable remote measurements of electronic circuits or systems using only Web site Interface. Using standard browsers (such as Internet explorer, Firefox, Chrome or Safari, different students can have a remote access to different practical experiments at a time.

  2. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  3. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  4. Emotional experiences predict the conversion of individuals with Attenuated Psychosis Syndrome to psychosis: A six-month follow up study

    Directory of Open Access Journals (Sweden)

    Fa Zhan Chen

    2016-06-01

    Full Text Available The present study explored the conversion rate in individuals with Attenuated Psychosis Syndrome (APS and potential predictor for transition in China. Sixty-three participants were identified as APS were followed up six months later. The results showed that 17% of individuals with APS converted to psychosis. The converters exhibited poorer emotional experience and expression than the non-converters at baseline. A further binary logistic regression analysis showed that emotional experience could predict the transition (Wald = 4.18, p = 0.041, 95% CI = 1.04~6.82. The current study suggested an important role of emotional processing in the prediction of the development of full-blown psychosis.

  5. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  6. Experiments in electron microscopy: from metals to nerves

    International Nuclear Information System (INIS)

    Unwin, Nigel

    2015-01-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse. (invited comment)

  7. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  8. Electron identification at CDF

    International Nuclear Information System (INIS)

    Kim, Shinhong

    1990-01-01

    Electron identification at CDF is performed using the information of lateral and longitudinal shower spread, the track-cluster position match and the energy-momentum match. The tracking chamber with a solenoidal magnetic field at CDF is powerful for rejecting the backgrounds such as the π ± - π 0 overlaps, the π 0 /γ conversions and interactive π ± in electromagnetic calorimeter: The energy- momentum match cut can decrease the background due to the π ± - π 0 overlaps for non-isolated electrons with Et above 10 GeV by a factor of 20. The conversion electrons are identified using track information with an efficiency of 80 ± 3%. The charge of electrons from W decay can be determined in the pseudorapidity range of |η| < 1.7 at CDF. The charge determination is useful for background estimation of Drell-Yan physics and heavy flavor physics. 5 refs., 5 figs

  9. Complete experiments in electron-atom collisions

    International Nuclear Information System (INIS)

    Anderson, N.; Bartschat, K.

    1996-01-01

    This paper addresses the advances up to the present in complete electron-atom collision experiments. The aim is to present a series of key examples for fundamental scattering processes, together with the experimental techniques that have been used. The purpose is not a full presentation of all processes studied, nor of all data that have been accumulated; rather, it is to select examples of the most recent theoretical and experimental results that will enable the reader to assess the present level of achievement. We hope that the power of this approach will become evident along the way, in the sense that it provides an efficient framework for a systematic, and complete test of the current theoretical understanding. In addition, it may produce specific recipes for ways to select experimental geometries that most efficiently test theoretical predictions, and it may reveal connections between apparently unrelated observables from often very different and highly sophisticated experiments, thus providing valuable consistency checks. The presentation is structured in the following way. To begin with, a general analysis of scattering amplitude properties concludes in a recipe for determination of the number of independent parameters necessary to define a complete experiment for a given process. We then proceed to analyze in a systematic way a string of specific cases of elastic and inelastic collisions, with gradually increasing levels of sophistication. Finally, we comment on directions in which future studies could fruitfully be pursued. 77 refs., 53 figs

  10. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  11. Efficient broadband third harmonic frequency conversion via angular dispersion

    International Nuclear Information System (INIS)

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-01-01

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3ω) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than ∼60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1ω input intensity of ∼ 4 GW/cm 2 for near optimal dispersion for phase matching, 5.2 μrad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 μrad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360 degrees about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%

  12. Theory and Simulation of an Inverse Free Electron Laser Experiment

    Science.gov (United States)

    Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.

    1996-11-01

    An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.

  13. MIL-HDBK-338-Environmental Conversion Table Correction

    Science.gov (United States)

    Hark, Frank; Novack, Steve

    2017-01-01

    In reliability analysis for space launch vehicles, limited data is frequently a challenge due to the pure number of launches. A common solution is to use surrogate historical data of similar components from other industries (military data). The operating environment of the common data may be different from that of the necessary target analysis. The military electronic design handbook (MIL-HDBK-338) has a table for converting Mean Time Between Failure (MTBF) data from one environment to another. However, the table has some discrepancies and rounding of complementary conversions; namely going from environment A to B does not given the same result as going from B to A. This presentation will show the discrepancies in the original conversation table, the greater than expected magnitude, the problem with the updated published table and a suggested corrected table to reference when doing MTBF data environment conversion.

  14. Pengaruh Citra Merek Dan Pengalaman Konsumen Terhadap Loyalitas Konsumen Sepatu Sneaker Merek Converse (Studi Kasus Pada Pengguna Sepatu Sneaker Merek Converse Di Kota Semarang)

    OpenAIRE

    Wicaksono, Aldo Dwi; Nugraha, Hari Susanta

    2017-01-01

    Every company expect to have a high customer loyalty. But, there is a Converse sneakers product sales degression in Semarang City based on observation that also indicate a degression in customer loyalty. Based on observation and theoritical study, that degression supected caused by low brand image factor and low customer experience factor. Therefore, the purpose of this research is to find out the impacts of brand image and cutomer experience towards Converse sneakers cutomer loyalty, both in...

  15. Conversion of laproscopic cholecystectomy into open cholecystectomy: an experience in 300 cases

    International Nuclear Information System (INIS)

    Rashid, T.; Farooq, U.; Naheed, A.; Iqbal, M.; Barkat, N.

    2016-01-01

    Background: Laparoscopic cholecystectomy is getting popularity in developing countries especially in Pakistan. Conversion from laparoscopic to open cholecystectomy is also common. This study intends to evaluate the causes of conversion from laparoscopic cholecystectomy to open cholecystectomy and to establish the efficacy and safety of the procedure. Methods: This descriptive case series was conducted in the department of General Surgery at Social Security Teaching Hospital Islamabad from November 2012 to October 2015. Patients of more than 20 years of age presenting in OPD with symptomatic gallstones were included in the study. Patients with dilated CBD (>8 mm in diameter), jaundice, acute cholecystitis, mass at porta hepatis and positive hepatitis B or C virology were excluded. Results: A total of 300 patients were included in the study; 262 (87.33 percentage) were females and 38 (12.67 percentage) were males. Twenty-one (7 percentage) patients were converted to open cholecystectomy. Most common cause of conversion was dense adhesions followed by obscure anatomy at Calots triangle. Other common causes were bleeding, bile leakage, visceral injuries and instrument failure. In the first 100 cases, 10 percentage patients were converted to open cholecystectomy followed by 6 percentage in the next 100 cases. Only 5 percentage patients were converted to open cholecystectomy in the last 100 cases. Conclusion: Most common cause of conversion from laparoscopic cholecystectomy to open cholecystectomy was dense adhesions followed by obscure anatomy at Calots triangle. (author)

  16. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  17. Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors

    KAUST Repository

    Bloking, Jason T.

    2011-12-27

    A new series of electron-deficient molecules based on a central benzothiadiazole moiety flanked with vinylimides has been synthesized via Heck chemistry and used in solution-processed organic photovoltaics (OPV). Two new compounds, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (PI-BT) and 4,7-bis(4-(N-hexyl-naphthalimide)vinyl)benzo[c]1,2,5-thiadiazole (NI-BT), show significantly different behaviors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor. Two-dimensional grazing incidence X-ray scattering (2D GIXS) experiments demonstrate that PI-BT shows significant crystallization in spin-coated thin films, whereas NI-BT does not. Density functional theory (DFT) calculations predict that while PI-BT maintains a planar structure in the ground state, steric interactions cause a twist in the NI-BT molecule, likely preventing significant crystallization. In BHJ solar cells with P3HT as donor, PI-BT devices achieved a large open-circuit voltage of 0.96 V and a maximum device power-conversion efficiency of 2.54%, whereas NI-BT containing devices only achieved 0.1% power-conversion efficiency. © 2011 American Chemical Society.

  18. New experiments on few-electron very heavy atoms

    International Nuclear Information System (INIS)

    Gould, H.

    1985-07-01

    New experiments, to test quantum electrodynamics (QED) in strong Coulomb fields and to study atomic collisions at ultrarelativistic energies, are proposed. A 0.1% measurement of the 2 2 P/sub 1/2/-2 2 S/sub 1/2/ splitting in lithium like uranium (Z=92) and the 2 3 P 0 - 2 3 S 1 splitting in heliumlike uranium is proposed as a sub 1% test of the Lamb shift in a strong Coulomb field. Measurements of the hyperfine splitting of hydrogenlike thallium (Z=81) and the g/sub j/ factor of the ground state of hydrogenlike uranium are propsed as a test of the QED contribution to the magnetic moment of an electron bound in a strong Coulomb field. Measurements of capture cross sections for ultra relativistic very heavy nuclei are proposed to look for the capture of electrons from pair production. 40 refs., 7 figs., 2 tabs

  19. Total cross section of furfural by electron impact: Experiment and theory

    Science.gov (United States)

    Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.

    2017-08-01

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  20. Total cross section of furfural by electron impact: Experiment and theory.

    Science.gov (United States)

    Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G

    2017-08-07

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  1. Direct measurement of macroscopic electric fields produced by collective effects in electron-impact experiments

    International Nuclear Information System (INIS)

    Velotta, R.; Avaldi, L.; Camilloni, R.; Giammanco, F.; Spinelli, N.; Stefani, G.

    1996-01-01

    The macroscopic electric field resulting from the space charge produced in electron-impact experiments has been characterized by using secondary electrons of well-defined energy (e.g., Auger or autoionizing electrons) as a probe. It is shown that the measurement of the kinetic-energy shifts suffered by secondary electrons is a suitable tool for the analysis of the self-generated electric field in a low-density plasma. copyright 1996 The American Physical Society

  2. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  3. Effect of Short-Circuit Faults in the Back-to-Back Power Electronic Converter and Rotor Terminals on the Operational Behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Giaourakis

    2015-02-01

    Full Text Available This paper deals with the operational behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System under power electronic converter and rotor terminals faulty conditions. More specifically, the effect of the short-circuit fault both in one IGBT of the back-to-back power electronic converter and in rotor phases on the overall system behavior has been investigated via simulation using a system of 2 MW. Finally, the consequences of these faults have been evaluated.

  4. Contribution to the experimental study of excited levels of some light nuclei by using the method of angular correlation of internal conversion pairs and monopolar pairs; Contribution a l'etude experimentale de niveaux excites de quelques noyaux legers par la methode des Correlations angulaires des paires de conversion interne Et des paires monopolaires

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Raymond

    1950-07-01

    In a first part, the author presents a brief theory of angular correlations of internal conversion pairs and monopolar pairs, and indicates the complete formulations which are used to compute all the angular correlations corresponding to the performed experiments. In a second part, he describes a beta spectrometer, outlines factors which govern the energy resolving power, and the peculiarity of summation of two pulses proportional to the energy of the electron and positron which build up an internal pair. In a third part, the author reports experiments of angular correlations, indicates the shapes of monopolar spectra for different angles between electron and positron emission directions, determines the multipolarity of gamma radiations from the first excited levels of {sup 13}C and {sup 12}C, and gives the angular moments, parity and isobaric spin of two excited levels of the {sup 12}C [French] Dans la premiere partie de notre travail, nous exposons une theorie sommaire des correlations angulaires des paires de conversion interne et des paires monopolaires. A la fin de cette premiere partie sont indiquees les formules completes, qui nous ont servi a calculer pratiquement toutes les correlations angulaires correspondant a nos experiences. Dans la deuxieme partie, nous decrivons un spectrometre beta a scintillation. Nous insistons surtout sur les elements qui determinent le pouvoir de resolution en energie et sur la particularite de sommation de deux impulsions proportionnelles a l'energie de l'electron et du positron formant une paire interne. Dans la troisieme partie, nous exposons nos experiences de correlations angulaires. Nous avons repris une mesure precise de la correlation angulaire des paires monopolaires provenant du niveau 6,05 Mev de l'Oxygene 16. Il nous a ete egalement possible de donner l'allure des spectres monopolaires pour differents angles formes par les directions d'emission de l'electron et du positron. Nous avons determine par la methode des

  5. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM; Obtencion de la curva de conversion de numeros TC a densidad electronica a partir de la energia efectiva del TC usando el maniqui de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-07-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  6. Conversion and the Real: The (Im)Possibility of Testimonial Representation.

    Science.gov (United States)

    Sremac, Srdjan

    Although the spiritual vibration of conversion can be felt (by the curious outsider) through what conversion performers say in their testimonial discourse, what transforms the convert 'on stage' into a 'new being' and what is 'the real' ( le réel ) in conversion performance remain unclear. An important question in this connection is, What is 'real' in a conversion representation, both with respect to the convert's interaction with the audience and to the construction of social reality? Following Lacan's tripartite register of the imaginary, the symbolic, and the real, in this essay I argue that through testimonial discourse converts construct social reality as an answer to the impossibility of 'the real' in their performative discursive practice. In the first part, I question the constructed nature of testimonial representations-as well as some academic knowledge production that has governed conversion research in the last few decades-and how these representations encourage 'outsiders' to read the narrative repertoire as a negation or mirroring 'the real' of the conversion experience. In the second part, I apply Roland Barthes' analytic reflections on photography to conversion research, especially the notions of the studium (the common ground of cultural meanings) and the punctum (a personal experience that inspires private meaning). This brings me to a number of theorists (mostly never used in the field of religious conversion)-Jacques Lacan, Roland Barthes, and Slavoj Žižek-who are important to the perspective that is developed in this essay.

  7. Preoperative risk factors for conversion and learning curve of minimally invasive distal pancreatectomy.

    Science.gov (United States)

    Hua, Yongfei; Javed, Ammar A; Burkhart, Richard A; Makary, Martin A; Weiss, Matthew J; Wolfgang, Christopher L; He, Jin

    2017-11-01

    Although laparoscopic distal pancreatectomy is considered a standard approach, 10% to 40% of these are converted. The preoperative risk factors for conversion are not well described. The aim of this study was to identify risk factors associated with conversion. Clinicopathological variables of 211 consecutive patients who underwent laparoscopic distal pancreatectomy between January 2007 and December 2015 at Johns Hopkins were analyzed to identify factors associated with conversion. Furthermore, the learning curve for laparoscopic distal pancreatectomy was studied. On univariate analysis of diabetes mellitus, preoperative diagnosis of malignant disease, multiorgan resection, surgeons' years and case experience were significantly associated with conversion (all P pancreatectomy with a preoperative diagnosis of malignant disease or possible multiorgan resection are at a higher risk of conversion. Surgeon experience of performing >15 procedures significantly reduces the risk of conversion. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  9. Development of a high repetition rate laser-plasma accelerator for ultra-fast electron diffraction experiments

    International Nuclear Information System (INIS)

    Beaurepaire, B.

    2009-01-01

    Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femto-seconds (fs). Laser accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Such accelerators used to work at a low repetition rate, so that it was necessary to develop a new one operating at a high repetition rate in order to accumulate a large amount of data. In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generates electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated. (author)

  10. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  11. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  12. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  13. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    Science.gov (United States)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  14. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite

    Science.gov (United States)

    Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi

    2018-05-01

    This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.

  15. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  16. Studies of electron and proton isochoric heating for fast ignition

    International Nuclear Information System (INIS)

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-01-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu Kα fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced Kα. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed

  17. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    Science.gov (United States)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g

  18. A numerical model of the mirror electron cyclotron resonance MECR source

    International Nuclear Information System (INIS)

    Hellblom, G.

    1986-03-01

    Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)

  19. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  20. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    Science.gov (United States)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  1. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  2. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  3. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  4. Experimental Study on Conversion of Stored Thermal Energy to Mechanical Work in FCI

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kondo, S.; Mivazaki, K.

    1976-01-01

    In the present study the process how the thermal energy stored in the coolant should be converted into the mechanical work is emphasized as well as the generation of pressure waves, eliminating the complicated problems involved in FCI, such as fragmentation, heat transfer from molten fuel to coolant, etc. A simulation experiment has been performed in a small scale vertical channel using stagnant potassium. Large superheat inherent in liquid metals was utilized as the method to accumulate the thermal energy. The following experimental parameters were chosen to examine their effects on the energy conversion ratio: the heat flux, the cover gas pressure, the liquid column length, the temperature of the upper unheated region and the incipient boiling superheat (corresponding to the stored thermal energy). The results are summarized that the conversion ratio from thermal to kinetic energies has increasing trends with increases of the incipient boiling superheat, the cover gas pressure and the temperature of upper unheated region, ranging over 0.02-0.75% in the present experiment. The important conclusions of the present experiment are summarized as follows. The thermal to kinetic energy conversion ratio n k ranges over 0.02-0.75 % for ΔT s = 10-150 deg.C, estimating from the maximum velocity measured. The thermal to mechanical work conversion ratio n w ranges over 0.14-5.6%. The effect of the heat flux on the both conversion ratios is small within the range covered by the present experiment (g≤133 W/cm 2 ). The effect of the liquid column length is not presented. The thermal to kinetic energy conversion ratio increases with the incipient boiling superheat which corresponds to the stored thermal energy in the present experiment. The both conversion ratio decrease with a decrease of the cover gas pressure. This is attributable to the thermal contact in the upper unheated region. The both conversion ratios increase with an increase in the temperature of the upper

  5. AMTEC thermo-electric conversion. Final report; AMTEC termo-elektrisk konvertering. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1994-10-15

    The aim was to gain experience on how to produce Alkali Metal Thermo-Electric-Converter (AMTEC) cells, for the demonstration of their principles and potentials, as a basis for future commercialization. These cells should be able to present an efficient and direct conversion of thermal energy to electric energy. The system is based on an electro-chemical concentration cell built around a {beta}`` aluminium oxide membrane that separates the two chambers. This material is a good conductor of sodium and a bad conductor of electrons, and it is this property which is taken advantage of. In the two chambers of the cell is found saturated sodium vapour at two temperatures. The motive power is the expansion over the membrane where the sodium ions are transported through it whilst the electrons are forced through the outer cycle. This concept is described in detail in addition to the choice of materials, performance testing and results. It was found possible to produce AMTEC electrodes via serigraphic feeding. The strengths and weaknesses of the finished product are illuminated. (AB) (10 refs.)

  6. Monte Carlo simulation of Tabata's electron backscattering experiments

    International Nuclear Information System (INIS)

    Kirihara, Y.; Namito, Y.; Iwase, H.; Hirayama, H.

    2010-01-01

    Electron backscattering coefficients, η, obtained from several targets in the MeV range were calculated by using electron-photon Monte Carlo transport calculation codes, i.e., EGS5 and ITS 3.0. These calculated values were compared with those obtained from the electron backscattering experiment performed by Tabata using an ionization chamber . We found that Tabata's estimation of the multiplication factor of the ionization chamber, f, had a non-negligible error. Then, we calculated the ionization chamber output, I, which is a product of η and f. The ratios of I between the experimental and the calculated values were within 1.5 and 1.3 for the EGS5 code and the ITS 3.0 code, respectively. The ratios of η between the experimental and the calculated values were within 2.4 and 1.5 for the EGS5 code and the ITS 3.0 code, respectively. The differences between the experimental and the calculated values of I and η are large for low-Z targets (Be and C). Here, the ratios obtained by using the ITS 3.0 code are closer to unity than those obtained by using the EGS5 code. The reason of this is the fact that the calculated value obtained by using the ITS 3.0 code is underestimated for low-Z targets; this underestimation can, in turn, be attributed to the use of the default value of the number of steps in the electron transport algorithm in the ITS 3.0 code.

  7. Rare earth conversion coating on Mg-8.5Li alloys

    International Nuclear Information System (INIS)

    Yang Xiaowei; Wang Guixiang; Dong Guojun; Gong Fan; Zhang Milin

    2009-01-01

    The conversion coating formed by immersion in a solution containing rare earth salt on Mg-8.5Li alloy was studied and the corrosion resistance was evaluated as well. The surface morphology was observed by scanning electron microscopy (SEM), and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). The corrosion behaviors of Mg-8.5Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves, electrochemical impedance spectra (EIS) and immersion tests. The experimental results indicated that the coating with cracked morphology was homogeneous. It was mainly composed of La 2 O 3 , CeO 2 , Mn 2 O 3 and MnO 2 as detected by XPS. The results of electrochemical measurements and immersion tests revealed that the rare earth conversion coating possessed better corrosion resistance than bare alloy and chromate conversion coating.

  8. Ultrafast electron field emission from gold resonant antennas studied by two terahertz pulse experiments

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew C.

    2015-01-01

    Summary form only given. Ultrafast electron field emission from gold resonant antennas induced by strong terahertz (THz) transient is investigated using two THz pulse experiments. It is shown that UV emission from nitrogen plasma generated by liberated electrons is a good indication of the local...

  9. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  10. Study of a reconstruction algorithm for electrons in the ATLAS experiment in LHC

    International Nuclear Information System (INIS)

    Kerschen, N.

    2006-09-01

    The ATLAS experiment is a general purpose particle physics experiment mainly aimed at the discovery of the origin of mass through the research of the Higgs boson. In order to achieve this, the Large Hadron Collider at CERN will accelerate two proton beams and make them collide at the centre of the experiment. ATLAS will discover new particles through the measurement of their decay products. Electrons are such decay products: they produce an electromagnetic shower in the calorimeter by which they lose all their energy. The calorimeter is divided into cells and the deposited energy is reconstructed using an algorithm to assemble the cells into clusters. The purpose of this thesis is to study a new kind of algorithm adapting the cluster to the shower topology. In order to reconstruct the energy of the initially created electron, the cluster has to be calibrated by taking into account the energy lost in the dead material in front of the calorimeter. Therefore. a Monte-Carlo simulation of the ATLAS detector has been used to correct for effects of response modulation in position and in energy and to optimise the energy resolution as well as the linearity. An analysis of test beam data has been performed to study the behaviour of the algorithm in a more realistic environment. We show that the requirements of the experiment can be met for the linearity and resolution. The improvement of this new algorithm, compared to a fixed sized cluster. is the better recovery of Bremsstrahlung photons emitted by the electron in the material in front of the calorimeter. A Monte-Carlo analysis of the Higgs boson decay in four electrons confirms this result. (author)

  11. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  12. Method for internal conversion coefficients determination by means of a magnetic spectrometer. Application to 129Xe and 77Se

    International Nuclear Information System (INIS)

    Arqueros, F.; Campos, J.

    1986-01-01

    The method used for efficiency calibration of a magnetic electron spectrometer and its applications to conversion electron spectrometry is described. The present results point out that apparatus combining magnetic deflection and semiconductor detection have a nondecreasing interest in nuclear spectrometry for applications where good resolution and large background rejection are both necessary. The present apparatus can be employed with source of relatively low activity, (0.lμCi). The nuclides studied were 129 Xe and 77 Se resulting from 129 Cs and 77 Br decay. The parent nulcides were produced in ISOLDE on line isotope separator at CERN. The efficiency calibration method used for energies higher than 200 keV made use of the well known beta spectrum of 36 Cl. The calibration for low energies was made with Auger electron intensities and suitable conversion lines of 129 Xenon. Results for relative intensities of conversion electron lines and intense gamma lines of 129 Xe and 77 Se are given. From these measurements internal conversion coefficients for transitions of both nuclides were obtained. The results were in agreement with theoretical calculations. (author)

  13. Triggering, front-end electronics, and data acquisition for high-rate beauty experiments

    International Nuclear Information System (INIS)

    Johnson, M.; Lankford, A.J.

    1988-04-01

    The working group explored the feasibility of building a trigger and an electronics data acquisition system for both collider and fixed target experiments. There appears to be no fundamental technical limitation arising from either the rate or the amount of data for a collider experiment. The fixed target experiments will likely require a much higher rate because of the smaller cross section. Rates up to one event per RF bucket (50 MHz) appear to be feasible. Higher rates depend on the details of the particular experiment and trigger. Several ideas were presented on multiplicity jump and impact parameter triggers for fixed target experiments. 14 refs., 3 figs

  14. Electronics. Module 2: Fundamentals of Electronics. Instructor's Guide.

    Science.gov (United States)

    Everett, Jim

    This guide contains instructor's materials for a nine-unit secondary school course on fundamentals of electronics. The units are conductors, insulators, semiconductors, and atomic structure; basic concepts and sources of electrical quantities; Ohm's Law; units and conversions; use of multimeters; circuits; electromagnetics and electrostatics;…

  15. Conversion from Filgrastim to Tbo-filgrastim: Experience of a Large Health Care System.

    Science.gov (United States)

    Agboola, Foluso; Reddy, Prabashni

    2017-12-01

    In 2008, tbo-filgrastim was approved as a biosimilar in Europe and then approved in the United States by the FDA in 2012 as a biologic product with 1 similar indication to filgrastim. Because tbo-filgrastim was less expensive than filgrastim, and clinical information and expert opinion supported similarity, the Pharmacy & Therapeutics Committee of a large health care system approved tbo-filgrastim as the preferred granulocyte-colony stimulating factor (G-CSF) product in March 2014. To (a) assess the use of filgrastim and tbo-filgrastim products by comparing baseline characteristics, setting of care, indication for use, and payer type and (b) understand potential barriers of conversion to tbo-filgrastim. A retrospective evaluation of filgrastim and tbo-filgrastim use was conducted on all patients (N = 204) who received the drugs between July 2015 and December 2015 at the 2 largest hospitals in the health system. Baseline characteristics, indication requiring use of filgrastim or tbo-filgrastim, setting of care, and payer information were collected from electronic medical records, and descriptive analyses were conducted. Overall, G-CSFs were administered to 204 patients for 261 episodes of care (filgrastim and tbo-filgrastim were used in 65 and 196 episodes of care, respectively). Baseline characteristics were similar between the 59 patients who received filgrastim and the 174 patients who received tbo-filgrastim. G-CSF was primarily used in the inpatient setting (163 episodes of care, 63%) with 90% of patients using tbo-filgrastim. In the outpatient setting (98 episodes of care, 38%), filgrastim and tbo-filgrastim were each used by 50% of patients. Tbo-filgrastim was the preferred G-CSF by clinical providers for all indications, except for stem cell mobilization, where filgrastim use was higher (55% vs. 45% of 71 episodes of care). In the outpatient setting, analysis by payers showed that the majority of patients on commercial plans were using filgrastim (58

  16. Research on spacecraft electrical power conversion

    Science.gov (United States)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  17. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  18. Free electron laser experiments using a long pulse induction linac

    International Nuclear Information System (INIS)

    Pasour, J.A.; Lucey, R.

    1983-01-01

    The NRL Long Pulse Induction Linac is being employed in a Free Electron Laser (FEL) experiment. The authors present results of beam transport and focusing experiments as well as measurements of the output radiation generated by various magnetic wigglers. The electron gun of the accelerator presently has a 17-cmdiam. cold cathode which is located in a nearly zero magnetic field (B /SUB z/ less than or equal to 5 G). The gun voltage is flat to within approx. = + or - 5% for 1.5 μsec with this graphite brush cathode. The beam is focused by a series of solenoidal coils as it propagates through the 4-m-long accelerator. 2 A solenoidal field which can be varied from 1-10 kG confines the beam in the FEL interaction region. Previous experiments were limited by poor beam transport, focusing, and matching into the relatively large solenoidal field in the FEL region. By smoothing the axial magnetic field profile in the accelerator and making a more adiabatic transition from the low field in the accelerator to the high field in the FEL, beam transport into the wiggler has been substantially improved. Currently, a 700 kV beam with I > 500 A and r /SUB b/ < 0.75 cm is transported through the FEL region. Beam transport is in qualitative agreement with envelope code calculations

  19. Transition-metal chlorides as conversion cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Ting; Chen, Zhong X.; Cao, Yu L.; Ai, Xin P.; Yang, Han X.

    2012-01-01

    Insoluble AgCl and soluble CuCl 2 were selected and investigated as model compounds of transition-metal chlorides for electrochemical conversion cathode materials. The experimental results demonstrated that the AgCl nanocrystals can convert reversibly to metallic Ag with nearly full utilization of its one-electron redox capacity (187 mAh g −1 ). Similarly, the CuCl 2 -filled mesoporous carbon can realize a reversible two-electron transfer reaction, giving a very high reversible capacity of 466 mAh g −1 after 20 cycles. These data imply that the metal chlorides can undergo complete electrochemical conversion utilizing their full oxidation states for electrical energy storage as previously reported metal fluorides, possibly being used as high capacity cathode materials for Li-ion batteries.

  20. Low-temperature catalytic conversion of carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available Laws of the rate of carbon conversion in steam atmosphere at a temperature in modes of the catalytic low-temperature treatment of peat, brown coal, semi-coke from peat and brown coal are obtained by experiments. Increasing of the rate of carbon conversion in temperature range up to 500 °C is achieved by using of catalysts. The possibility of using results is associated with the burners, a working zone of which is porous filling from carbonaceous particles.

  1. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  2. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  3. Archetype-based conversion of EHR content models : pilot experience with a regional EHR system

    OpenAIRE

    Chen, Rong; Klein, Gunnar O; Sundvall, Erik; Karlsson, Daniel; Åhlfeldt, Hans

    2009-01-01

    Background: Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of re...

  4. Electron distributions in the plasmas of the earth's magnetosphere - an experiment for AMPTE-UKS

    International Nuclear Information System (INIS)

    Hall, D.S.; Chaloner, C.P.; Shah, H.

    1982-06-01

    The objectives, measurement techniques and technical requirements of the electron experiment to be included in the UK-Satellite of the Active Magnetospheric Particle Explorer (AMPTE) mission are described under sections entitled; experiment objectives, experiment technique, mechanical, electrical, command and data handling requirements, ground support equipment interfaces, test procedures, and special requirements. In appendices the experiment controller and the measurement sequence are shown. (U.K.)

  5. Dry gel conversion synthesis of SAPO-34 nanocrystals

    International Nuclear Information System (INIS)

    Hirota, Yuichiro; Murata, Kenji; Tanaka, Shunsuke; Nishiyama, Norikazu; Egashira, Yasuyuki; Ueyama, Korekazu

    2010-01-01

    SAPO-34 nanocrystals were synthesized by a dry gel conversion method using tetraethylammonium hydroxide as a structure-directing agent. The crystal growth of SAPO-34 was studied by X-ray diffraction and field-emission scanning electron microscopy. After 3 h, 45-nm SAPO-34 crystals with an amorphous phase were observed. The crystal size increased to 70 nm after 6 h, but did not increase greatly thereafter. The average crystal size of the final product was 75 nm. The nucleation density for SAPO-34 crystals in dry gel conversion appeared to be much higher than that under hydrothermal conditions, resulting in the formation of small crystals.

  6. Couples, contentious conversations, mobile telephone use and driving.

    Science.gov (United States)

    Lansdown, Terry C; Stephens, Amanda N

    2013-01-01

    Studies have shown that the inappropriate use of in-vehicle technology may lead to hazardous disruption of driver performance. This paper reports an investigation into the socio-technical implications of maintaining a difficult conversation while driving. Twenty romantically involved couples participated in a driving-simulator experiment. The participants engaged in emotionally difficult conversations while one partner drove. The contentious conversation topics were identified using a revealed differences protocol, requiring partners to discuss sources of ongoing disagreement in their relationship. The conversations were conducted either using handsfree telephone or with both parties present in the simulator. Results indicate that the revealed differences tasks were subjectively viewed as emotionally more difficult than a control. Driver performance was found to be adversely effected for both longitudinal and lateral vehicle control. Performance was worst during contentious conversations with the partner present, suggesting the drivers may be better able to regulate driving task demands with the partner not in the vehicle during difficult discussions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Indication of Electron Neutrino Appearance in the T2K experiment and its long-term implications

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino oscillation experiment primarily searching for oscillations of muon neutrinos into electron neutrinos. T2K will also make precise measurements of the atmospheric oscillation parameters via muon neutrino disappearance. The experiment uses 30 GeV protons from the new J-PARC Main Ring accelerator, located in Tokai, Japan, to generate a conventional neutrino beam to the Super-Kamiokande far detector. The hadron production measurements of the NA61 experiment at CERN were used to predict the neutrino fluxes at the near and far detectors. The T2K oscillation analysis compares the rates of observed and predicted muon and electron neutrino candidates in the far detector. We present first results based on data accumulated from January 2010 to March 2011. Six electron neutrino events pass the selection criteria for electron appearance at Super-Kamiokande, whereas the expected number of background events is 1.5±0.3. The probability of a fluctuation of the back...

  8. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  9. Photon - axion conversion cross sections in an electromagnetic field

    International Nuclear Information System (INIS)

    Dang Van Soa; Ha Huy Bang

    1999-12-01

    Photon - axion conversions in static magnetic fields and in a periodic field with frequency equal to the axion mass are reconsidered in detail by Feynman methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. Some estimates for experiments are given from our results. (author)

  10. Construction and operation of a fast calorimeter electronic for an experiment for the measurement of the parity violation in the elastic electron scatterinf; Aufbau und Betrieb einer schnellen Kalorimeterelektronik fuer ein Experiment zur Messung der Paritaetsverletzung in der elastischen Elektronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Rainer

    2008-01-07

    The A4-collaboration at the Mainzer Mikrotron MAMI studies the structure of the proton using the elastic scattering of polarized electrons off an unpolarized hydrogen target. When the electrons are longitudinally polarized, the parity violating asymmetry in the cross section can be measured. From this measurement the contribution of the strange quarks to the form factors of the proton can be extracted. In particular, a new measurement at backward angles and a beam energy of 319 MeV allows in combination with a recent value measured at the same Q{sup 2} under forward angles, to separate the magnetic and electric strange form factors via the Rosenbluth method. As part of this work, an electronic system implementing the trigger, analog signal processing, A/D-conversion and event counting was developed. This system contains a locally coupled network structure of the 1022 single channels and was designed to process rates in the range of 100 MHz. For the experimental operation it was necessary to examine the quality and stability of the system and to extract characteristic calibration values. The reliable operation of the system in a parity violating experiment measuring at the 10{sup -6} level was demonstrated. Moreover, the system was successfully upgraded to incorporate an electron tagger system, which was necessary to supress the dominating inelastic background of photons at backward angles. The preliminary value for the parity violating asymmetry for the elastic scattering of longitudinal polarized electrons off an unpolarized hydrogen target under backward angles for Q{sup 2}=0.23 GeV{sup 2}/c{sup 2} is A{sub PV}=(-16.37{+-}0.93{sub stat}{+-}0.69{sub syst}) ppm. This determines the difference of the measured asymmetry A{sub PV} and the theoretical prediction A{sub 0}=(-16.27{+-}1.22) ppm to be A{sub S}=A{sub PV}-A{sub 0}=(-0.10{+-}1.68) ppm. In combination with the value measured at forward angles, A{sub PV}=(-5.59{+-}0.57{sub stat}{+-}0.29{sub syst}) ppm, the

  11. Theory of mind understanding and conversational patterns in middle childhood.

    Science.gov (United States)

    Bosacki, Sandra Leanne

    2013-01-01

    The author investigated the longitudinal relations between theory of mind (ToM) understanding and perceptions of self and social conversations in 17 school-aged children (12 girls, 5 boys, age 8-12 years). ToM was assessed at Time 1 (T1; M age = 8 years 5 months, SD = 8.7 months, and perceptions of self and conversational experiences assessed two years later at Time 2 (T2; M age = 10 years 4 months, SD = 7.9 months. Most importantly, longitudinal findings showed that children who scored relatively high on ToM at T1 reported relatively lower perceptions of self-worth and higher number of mental states verbs in their perceptions of peer and family conversations at T2. Significant negative longitudinal associations were found between children's number of siblings and their perceptions of self-worth (T1) and number of cognitive terms in their perceptions of peer and family conversations (T2). Frequency analysis suggested that girls' perceptions of conversations referred to more social and psychological aspects of self and relationships, whereas boys focused mainly on physical activities. Most children were more likely to prefer listening to talking during social conversations. The majority of children reported feelings of mixed or ambiguous emotions during experiences of silence. Implications for socioemotional and cognitive development in early adolescents are discussed.

  12. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, Stefan [CERN (Switzerland)], E-mail: koestner@mpi-halle.mpg.de

    2009-09-11

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  13. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    Science.gov (United States)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  14. A 4096-pixel MAPS detector used to investigate the single-electron distribution in a Young–Feynman two-slit interference experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielli, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Department of Physics, University of Bologna (Italy); Giorgi, F.M., E-mail: giorgi@bo.infn.it [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Semprini, N.; Villa, M.; Zoccoli, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Department of Physics, University of Bologna (Italy); Matteucci, G.; Pozzi, G. [Department of Physics, University of Bologna (Italy); Frabboni, S. [Department of Physics, University of Modena and Reggio Emilia (Italy); CNR-Institute of Nanoscience-S3, Modena (Italy); Gazzadi, G.C. [CNR-Institute of Nanoscience-S3, Modena (Italy)

    2013-01-21

    A monolithic CMOS detector, made of 4096 active pixels developed for HEP collider experiments, has been used in the Young–Feynman two-slit experiment with single electrons. The experiment has been carried out by inserting two nanometric slits in a transmission electron microscope that provided the electron beam source and the electro-optical lenses for projecting and focusing the interference pattern on the sensor. The fast readout of the sensor, in principle capable to manage up to 10{sup 6} frames per second, allowed to record single-electron frames spaced by several empty frames. In this way, for the first time in a single-electron two-slit experiment, the time distribution of electron arrivals has been measured with a resolution of 165μs. In addition, high statistics samples of single-electron events were collected within a time interval short enough to be compatible with the stability of the system and coherence conditions of the illumination.

  15. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  16. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  17. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    International Nuclear Information System (INIS)

    Fang, Jyan-Min.

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO 2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator

  18. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-01-01

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT + daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs

  19. Diarrhea-predominant irritable bowel syndrome: creation of an electronic version of a patient-reported outcome instrument by conversion from a pen-and-paper version and evaluation of their equivalence

    Directory of Open Access Journals (Sweden)

    Delgado-Herrera L

    2017-07-01

    Full Text Available Leticia Delgado-Herrera,1 Benjamin Banderas,2 Oluwafunke Ojo,2 Ritesh Kothari,3 Bernhardt Zeiher1 1Astellas Pharma Global Development, Inc., Northbrook, IL, 2Adelphi Values LLC, Boston, MA, 3ACCESS Medical LLC, Chicago, IL, USA Background: Subjects with diarrhea-predominant irritable bowel syndrome (IBS-D experience abdominal cramping, bloating, pressure, and pain. Due to an absence of clinical biomarkers for IBS-D severity, evaluation of clinical therapy benefits depends on valid and reliable symptom assessments. A patient-reported outcome (PRO instrument has been developed, comprising of two questionnaires – the IBS-D Daily Symptom Diary and IBS-D Symptom Event Log – suitable for clinical trials and real-world settings. This program aimed to support instrument conversion from pen-and-paper to electronic format.Materials and methods: Digital technology (Android/iOS and a traditional mode of administration study in the target population were used to migrate or convert the validated PRO IBS-D pen-and-paper measure to an electronic format. Equivalence interviews, conducted in three waves, each had three parts: 1 conceptual equivalence testing between formats, 2 electronic-version report-history cognitive debriefing, and 3 electronic version usability evaluation. After each interview wave, preliminary analyses were conducted and modifications made to the electronic version, before the next wave. Final revisions were based on a full analysis of equivalence interviews. The final analysis evaluated subjects’ ability to read, understand, and provide meaningful responses to the instruments across both formats. Responses were classified according to conceptual equivalence between formats and mobile-format usability assessed with a questionnaire and open-ended probes.Results: Equivalence interviews (n=25 demonstrated conceptual equivalence between formats. Mobile-application cognitive debriefing showed some subjects experienced difficulty with font

  20. Cost effective electronics for proportional and drift chambers of 'EPECUR' experiment

    International Nuclear Information System (INIS)

    Alekseev, I.G.; Andreev, V.A.; Budkovsky, P.E.; Filimonov, E.A.; Golubev, V.V.; Kanavets, V.P.; Kats, M.M.; Koroleva, L.I.; Kovalev, A.I.; Kozlenko, N.G.; Kozlov, V.S.; Krivshich, A.G.; Kulikov, V.V.; Morozov, B.V.; Nesterov, V.M.; Novinsky, D.V.; Ryltsov, V.V.; Sadler, M.E.; Sakharov, V.A.; Soboyede, D.; Sulimov, A.D.; Sumachev, V.V.; Svirida, D.N.; Trautman, V.Yu.; Walker, E.; Watson, S.

    2007-01-01

    The 'EPECUR' experimental setup is under construction at beam line 322 of the ITEP proton synchrotron. The experiment requires several large area drift chambers to provide reasonable acceptance and fine-pitch proportional chambers for beam particle tracking. The total number of electronic channels is about 7000. A new compact and cost effective readout system for these gaseous detectors was designed, prototyped and tested in the last two years. It is based on modern technologies in analog and digital electronics and data transfer protocols. This paper presents the functional description of the whole DAQ system, including test results as an illustration of its performance

  1. Tester of the TRT front-end electronics for the ATLAS-experiment

    CERN Document Server

    Hajduk, Z; Kisielewski, B; Kotarba, A; Malecki, P; Natkaniec, Z; Olszowska, J; Ostrowicz, W; Krupinska, G

    2000-01-01

    The VME based tester for front-end electronics of the TRT (Transition Radiation Tracker) detector of the ATLAS-LHC experiment at CERN, Geneva, is described. The TRT read-out electronics for 424576 proportional tubes grouped on many thousands of cards requires stringent quality control after assembly and during installation. The tester provides all required data, pulses, timing and power supplies for tested cards. The essential part of the tester is its software that allows for device handling as well as facilitates functional and statistical tests. The prototype, present design as well as the new design for mass production tests are discussed. (17 refs).

  2. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  3. Solid waste information and tracking system client-server conversion project management plan

    International Nuclear Information System (INIS)

    May, D.L.

    1998-01-01

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  4. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    Science.gov (United States)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  5. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up

    Energy Technology Data Exchange (ETDEWEB)

    Frabboni, Stefano [Department FIM, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Grillo, Vincenzo [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, 43100 Parma (Italy); Pozzi, Giulio [Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-07-15

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. - Highlights: • Fabrication by focused ion beam and electron beam induced deposition of two slits covered by electron transparent materials. • Two slits interference experiment with elastic and inelastic electrons. • Analysis of Fraunhofer and Fresnel images of the two slits formed with elastic and inelastic (plasmon loss) electrons.

  6. MO-A-BRB-00: Electronic Charting in EBRT and Brachytherapy

    International Nuclear Information System (INIS)

    2015-01-01

    The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiation therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy

  7. Observation of fluxes of electrons scattered by the atmosphere in the second Araks experiment

    International Nuclear Information System (INIS)

    Lyachov, S.B.; Managadze, G.G.

    1980-01-01

    This paper describes the results of the USHBA spectrometer measurements of the fluxes of atmospheric scattered electrons in the second Araks experiment. The experimental data are presented for heights from 100 to 140 km. The spectral distributions of the scattered electron fluxes are given and the altitude variation of their intensity is compared with the atmosphere models. The conclusion is made about the possible effect of rocket gassing on the electron scattering processes for definite angles of injection

  8. Linguistic input, electronic media, and communication outcomes of toddlers with hearing loss.

    Science.gov (United States)

    Ambrose, Sophie E; VanDam, Mark; Moeller, Mary Pat

    2014-01-01

    The objectives of this study were to examine the quantity of adult words, adult-child conversational turns, and electronic media in the auditory environments of toddlers who are hard of hearing (HH) and to examine whether these factors contributed to variability in children's communication outcomes. Participants were 28 children with mild to severe hearing loss. Full-day recordings of children's auditory environments were collected within 6 months of their second birthdays by using Language ENvironment Analysis technology. The system analyzes full-day acoustic recordings, yielding estimates of the quantity of adult words, conversational turns, and electronic media exposure in the recordings. Children's communication outcomes were assessed via the receptive and expressive scales of the Mullen Scales of Early Learning at 2 years of age and the Comprehensive Assessment of Spoken Language at 3 years of age. On average, the HH toddlers were exposed to approximately 1400 adult words per hour and participated in approximately 60 conversational turns per hour. An average of 8% of each recording was classified as electronic media. However, there was considerable within-group variability on all three measures. Frequency of conversational turns, but not adult words, was positively associated with children's communication outcomes at 2 and 3 years of age. Amount of electronic media exposure was negatively associated with 2-year-old receptive language abilities; however, regression results indicate that the relationship was fully mediated by the quantity of conversational turns. HH toddlers who were engaged in more conversational turns demonstrated stronger linguistic outcomes than HH toddlers who were engaged in fewer conversational turns. The frequency of these interactions was found to be decreased in households with high rates of electronic media exposure. Optimal language-learning environments for HH toddlers include frequent linguistic interactions between parents and

  9. Lexical Cues of Interaction Involvement in Dyadic Instant Messaging Conversations

    Science.gov (United States)

    Nguyen, Duyen T.; Fussell, Susan R.

    2014-01-01

    We explore how people express and interpret lexical cues of interaction involvement in dyadic conversations via instant messaging (IM) in two studies. In Study 1, an experiment with 60 participants, we manipulated level of involvement in a conversation with a distraction task. We examined how participants' uses of verbal cues such as pronouns…

  10. ELECTRONIC EDUCATION IN UNDERGRADUATE RADIOLOGY: THE EXPERIENCE OF THE UNIVERSITY OF MALAGA

    Directory of Open Access Journals (Sweden)

    Francisco Sendra Portero

    2010-07-01

    Full Text Available Since 1998, radiology teaching and learning electronic resources have been developed at the University of Málaga. Some experiences on undergraduate radiology education are presented in this paper: a self-conducted training on radiology called “A Walk through Radiology”, some projects to create and develop radiology consulting tools, a project about audio-recorded virtual lectures (AMERAM, started on 2005, and a Web portal to collect radiology education Internet resources. Finally, we conclude with some reflections about the experience along these years, which has contributed to improve the student’s radiology learning in our centre and has supplied educative tools to students and postgraduates of this and other cities. We consider that the European Space of Higher Education learning philosophy, student centered and self-learning based, gives a vital role to undergraduate electronic education tools.

  11. Conversion and Operation of CAST as a massive axion detector

    CERN Document Server

    Elias, Nuno; Bordalo, Paula

    2010-01-01

    The axion was postulated after an elegant solution proposed by R. Peccei and H. Quinn to solve the strong CP problem of Quantum Chromodynamics. The CAST experiment searches for axions created in the core of the Sun. It uses an LHC superconducting prototype magnet to trigger the axion conversion into detectable X-ray photons. During its First Phase, with the magnetic field region kept under vacuum, CAST searched with high sensitivity for axion masses up to 0.02 eV/c2, for higher values the conversion coherence is lost. This thesis reflects the work that allows CAST to extend its search up to axion masses of 1 eV/c2. To restore the lost coherence a buffer gas is introduced in the magnet cold bores, such that the photon arising from the Primakoff conversion acquires an effective mass. The axion mass can be effectively scanned by fine tuning the gas density. The conversion of the experiment required the study, design and construction of a complex gas handling system to deal with a rare helium isotope, 3He. It rep...

  12. Experiments to Improve Power Conversion Parameters in a Traveling Wave Direct Energy Converter Simulator

    International Nuclear Information System (INIS)

    Takeno, Hiromasa; Kiriyama, Yuusuke; Yasaka, Yasuyoshi

    2005-01-01

    An experimental study of direct power conversion for D- 3 He fusion is presented. In a small-scale simulator of direct energy converter, which is based on a principle of deceleration of 14.7MeV protons by traveling wave field, a new structure of an external transmission circuit in experiment is proposed for the purpose of enhancement of deceleration electrode voltages. A prototype circuit was designed and constructed, resulting improvement of voltage amplitude in an order of magnitude. A more practical circuit, in which inductor elements were manufactured by using coaxial cables, was also constructed and tested. An excitation of the third harmonic frequency with a significant amplitude was observed. The cause of this problem is attributed to the modulated ion beam which has a third harmonic component and fact that the inductance of the element nonlinearly depends on frequency. This problem is serious for a practical scale energy converter, and a careful design of the circuit could avoid the problem

  13. HEU/LEU-conversion of BER II successfully finished

    International Nuclear Information System (INIS)

    Haas, K.; Fischer, C.-O.; Krohn, H.

    2000-01-01

    The BER II (Berliner Experimental Reactor) research reactor is a swimming pool type reactor located in Berlin, Germany. The reactor operates with a thermal power of 10 MW and is primarily used to produce neutrons for neutron scattering experiments. The conversion from HEU- to LEU-fuel elements began in August, 1997. At the last RERTR Meeting 1999 in Budapest, Hungary, Hahn-Meitner-Institut (HMI) presented a 'Status Report' on the conversion of 10 HEU/LEU mixed cores. In February 2000, HMI finished the HEU/LEU-conversion. Hereby, the first pure LEU-standard-core went into operation. Our second LEU-core just ends its operation at the end of July. The third LEU-core will be built up in the beginning of August. The average burn-up rate was improved from 50 - 55% (HEU) to 60 - 65% (LEU). Therefore, only 14 elements/year are now used instead of 28/year. The following report describes our first steps in building pure LEU-cores from mixed HEU/LEU-cores, as well as our initial experience using the pure LEU-cores. (author)

  14. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up.

    Science.gov (United States)

    Frabboni, Stefano; Gazzadi, Gian Carlo; Grillo, Vincenzo; Pozzi, Giulio

    2015-07-01

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  16. Radiation load experiments with electronic components of the SYMPHONIE satellite

    International Nuclear Information System (INIS)

    Spencker, A.; Wagemann, H.G.; Braeunig, D.

    1975-09-01

    This report surveys fundamentals, realization and results of irradiation experiments which applied to 36 different electronic components of the Symphonie satellite and which were completed at the HMI Berlin and the C.N.E.T. Lannion in the years 1972/73. In a general section the evaluation of equivalent fluencies concerning 1 MeV electrons as radiation simulating the extraterrestric particle spectra with regard to the well-known semiconductor damage mechanisms is discussed. Then the realization of irradiation testing for the Symphonie satellite is described. Three selected examples demonstrate typical failure modes of semiconductor devices under radiation stress: Finally the main experimental results are shown in a standardized manner; a survey in English is given on p. 44. (orig.) [de

  17. Direct energy conversion in fission reactors: A U.S. NERI project

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Seidel, David B.; Polansky, Gary F.; Rochau, Gary E.; Lipinski, Ronald J.; Besenbruch, G.; Brown, L.C.; Parish, T.A.; Anghaie, S.; Beller, D.E.

    2000-01-01

    In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented

  18. Seeking the best training model for difficult conversations in neonatology.

    Science.gov (United States)

    Lechner, Beatrice E; Shields, Robin; Tucker, Richard; Bender, G Jesse

    2016-05-01

    We hypothesize that a formal simulation curriculum prepares neonatology fellows for difficult conversations better than traditional didactics. Single-center neonatology fellowship graduates from 1999 to 2013 were sent a retrospective web-based survey. Some had been exposed to a Difficult Conversations curriculum (simulation group), others had not (no simulation group). The simulation group participated in one workshop annually, consisting of lecture, simulation, and debriefing. Scenarios were customized to year of training. Epoch comparisons were made between the simulation and no simulation groups. Self-rated baseline effectiveness at discussing difficult topics was not different. The simulation group reported more supervised family meetings and feedback after fellow-led meetings. Simulations were rated very positively. The simulation group reported increased comfort levels. Strategic pause and body positioning were specific communication skills more frequently acquired in the simulation group. In both groups, the highest ranked contributors to learning were mentor observation and clinical practice. In the simulation group, simulation and debriefing outranked didactics or other experiences. Simulation-based workshops improve communication skills in high stakes conversations. However, they do not substitute for mentor observation and experience. Establishing a structured simulation-based difficult conversations curriculum refines vital communication skills necessary for the high stakes conversations neonatologists direct in clinical practice.

  19. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Bayram, E-mail: bkilic@yalova.edu.tr, E-mail: kbayramkilic@gmail.com [Department of Energy Systems Engineering, Faculty of Engineering, Yalova University, 77100 Yalova (Turkey); Telli, Hakan; Başaran, Ali; Pirge, Gursev [Turkish Air Force Academy, Institute of Aeronautics and Space Technologies, Istanbul (Turkey); Tüzemen, Sebahattin [Department of Physics, Faculty of Science, Ataturk University, Erzurum (Turkey)

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  20. Electronic and optical properties of doped oxides for energy conversion

    International Nuclear Information System (INIS)

    Silva, Antonio Ferreira da

    2016-01-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O 4 , ZnO , SnO 2 , WO 3 and TiO 2 have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO 2 -NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  1. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  2. The Electronic Logbook for the Information Storage of ATLAS Experiment at LHC (ELisA)

    CERN Document Server

    Corso-Radu, A; The ATLAS collaboration; Magnoni, L

    2012-01-01

    A large experiment like ATLAS at LHC (CERN), with over three thousand members and a shift crew of 15 people running the experiment 24/7, needs an easy and reliable tool to gather all the information concerning the experiment development, installation, deployment and exploitation over its lifetime. With the increasing number of users and the accumulation of stored information since the experiment start-up, the electronic logbook actually in use, ATLOG, started to show its limitations in terms of speed and usability. Its monolithic architecture makes the maintenance and implementation of new functionality a hard-to-almost-impossible process. A new tool ELisA has been developed to replace the existing ATLOG. It is based on modern web technologies: the Spring framework using a Model-View-Controller architecture was chosen, thus helping building flexible and easy to maintain applications. The new tool implements all features of the old electronic logbook with increased performance and better graphics: it uses the ...

  3. Stannate conversion coatings on Mg-8Li alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Zhang Milin; Li Junqing; Yu Xiang; Niu Zhongyi

    2009-01-01

    The stannate conversion coatings (SnCC) on Mg-8Li alloy were investigated by simple immersion method. The surface morphology and composition were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD) techniques. The corrosion resistance was assessed by means of potentiodynamic polarization measurements and electrochemical impedance spectra (EIS). The effects of time of a stannate bath on the quality of stannate conversion coatings were investigated by SEM and EIS. It was found that the coating particles were mainly composed of hemispherical particles MgSnO 3 .3H 2 O. A comparison of results revealed the coating treated for 60 min exhibited the most uniform, dense and corrosion-resistant

  4. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    Science.gov (United States)

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  5. Student Emotions in Conversation-Based Assessments

    Science.gov (United States)

    Lehman, Blair A.; Zapata-Rivera, Diego

    2018-01-01

    Students can experience a variety of emotions while completing assessments. Some emotions can get in the way of students performing their best (e.g., anxiety, frustration), whereas other emotions can facilitate student performance (e.g., engagement). Many new, non-traditional assessments, such as automated conversation-based assessments (CBA), are…

  6. Applied nonlinear optics in the journal 'Quantum Electronics'

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-01-01

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  7. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-01-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed

  8. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers.

    Science.gov (United States)

    Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Paulus, Gerhard G; Förster, Eckhart; Zastrau, Ulf

    2013-09-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  9. Ortho-para conversion in the solid hydrogens at high pressures

    International Nuclear Information System (INIS)

    Strzhemechny; Hemley, R.J.

    2003-01-01

    At low pressures the ortho-para conversion in H 2 and D 2 is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H 2 after an initial slowdown predicted by theory increases immensely. As for solid D 2 , conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H 2 , we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D 2 taking into account the differences between H 2 and D 2 in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D 2 in conversion rates under pressure that are by an order of magnitude larger than at P = 0

  10. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  11. Precision electron-gamma spectroscopic studies in 111Cd

    International Nuclear Information System (INIS)

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  12. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  13. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  14. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  15. Recent Results from the MINOS Experiment

    International Nuclear Information System (INIS)

    Diwan, M.V.

    2009-01-01

    MINOS is an accelerator neutrino oscillation experiment at Fermilab. An intense high energy neutrino beam is produced at Fermilab and sent to a near detector on the Fermilab site and also to a 5 kTon far detector 735 km away in the Soudan mine in northern Minnesota. The experiment has now had several years of running with millions of events in the near detector and hundreds of events recorded in the far detector. I will report on the recent results from this experiment which include precise measurement of |Δm 2 32 |, analysis of neutral current data to limit the component of sterile neutrinos and the search for ν μ → ν e conversion. The focus will be on the analysis of data for ν μ → ν e conversion. Using data from an exposure of 3.14 x 10 20 protons on target, we have selected electron type events in both the near and the far detector. The near detector is used to measure the background which is extrapolated to the far detector. We have found 35 events in the signal region with a background expectation of 27 ± 5(stat) ± 2(syst). Using this observation we set a 90% C.L. limit of sin 2 2θ 13 cp = 0 and normal mass hierarchy. Further analysis is under way to reduce backgrounds and improve sensitivity.

  16. Very large solid angle spectrometer for single arm electron scattering experiments

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of

  17. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  18. 'TRISTAN'; a database for electron colliding beam experiments

    International Nuclear Information System (INIS)

    Shimizu, Y.; Igarashi, M.; Nakazawa, N.; Oyanagi, Y.

    1982-01-01

    In this data base, the reference papers on the experiments of positron-electron colliding beam were collected for the purpose to utilize them for the TRISTAN project. The on-line retrieval of the references is possible. The number of the references is 289 during the period from January, 1974, to September, 1981. The collection of data will be continued hereafter. The terms retrievable are accelerator, incident beam, code, and radiation correction formula. The SC (name of the first author, year), incident energy, detector, luminocity, integrated luminosity, reaction, purpose and comments are also included as the data. The system is written in FORTRAN 77, and is portable. (Kato, T.)

  19. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  20. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    Beam-plasma interaction experiment has been made in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the satellite JIKIKEN (EXOS-B). Various types of wave emission are detected by LF and HF wave detectors. Waves near at upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is also observed outside the plasmapause