WorldWideScience

Sample records for electron channeling contrast

  1. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, Julia I.; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Grassman, Tyler J., E-mail: grassman.5@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-08-08

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  2. Accurate electron channeling contrast analysis of a low angle sub-grain boundary

    International Nuclear Information System (INIS)

    Mansour, H.; Crimp, M.A.; Gey, N.; Maloufi, N.

    2015-01-01

    High resolution selected area channeling pattern (HR-SACP) assisted accurate electron channeling contrast imaging (A-ECCI) was used to unambiguously characterize the structure of a low angle grain boundary in an interstitial-free-steel. The boundary dislocations were characterized using TEM-style contrast analysis. The boundary was determined to be tilt in nature with a misorientation angle of 0.13° consistent with the HR-SACP measurements. The results were verified using high accuracy electron backscatter diffraction (EBSD), confirming the approach as a discriminating tool for assessing low angle boundaries

  3. Study of the structure of the particles of channel black of phase-contrasting electron microscopy of high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Varlakov, V.P.; Fialkov, A.S.; Smirnov, B.N.

    1981-01-01

    The structure of channel black, DG-100, in the initial and graphitized states has been studied by phase-contrasting electron microscopy with a direct resolution of the carbon layers. An individual carbon layer is the main structural element of carbon black. The structure of channel black in the graphitized state looks like a hollow closed polyhedron made up of bundles of continuous carbon layers which can bend and become deformed to a great extent, testifying to the polymeric nature of the structure of channel black. The authors give an interpretation of the roentgen values of the 'dimensions of crystallites' in channel black.

  4. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  5. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  6. Axial channeling of uttrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, V.I.; Khokonov, M.Kh. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-07-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements.

  7. Axial channeling of uttrarelativistic electrons

    International Nuclear Information System (INIS)

    Telegin, V.I.; Khokonov, M.Kh.

    1982-01-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements

  8. Axial channeling in electron diffraction

    International Nuclear Information System (INIS)

    Ichimiya, A.; Lehmpfuhl, G.

    1978-01-01

    Kossel patterns from Silicon and Niobium were obtained with a convergent electron beam. An intensity maximum in the direction of the zone axes [001] and [111] of Nb was interpreted as axial channeling. The intensity distribution in Kossel patterns was calculated by means of the Bloch wave picture of the dynamical theory of electron diffraction. Particularly zone axis patterns were calculated for different substance-energy combinations and they were compared with experimental observations. The intensity distribution in the calculated Kossel patterns was very sensitive to the model of absorption and it was found that a treatment of the absorption close to the model of Humphreys and Hirsch [Phil. Mag. 18, 115 (1968)] gave the best agreement with the experimental observations. Furthermore it is shown which Bloch waves are important for the intensity distribution in the Kossel patterns, how they are absorbed and how they change with energy. (orig.) [de

  9. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  10. Electronic Commerce and Retail Channel Substitution

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); R. van der Noll

    2002-01-01

    textabstractWe analyze a market where firms compete in a conventional and an electronic retail channel. Consumers easily compare prices online, but some incur purchase uncertainties on the online channel. We investigate the market shares of the two retail channels and the prices that are charged. We

  11. Effects of dislocations on electron channeling

    International Nuclear Information System (INIS)

    George, Juby; Pathak, A P

    2009-01-01

    The phenomenon of electron channeling in a crystal affected by dislocations is considered. Earlier we had considered the quantum aspects of the positron channeling in a crystal bent by dislocations where the effects of longitudinal motion of the particle were also considered along with the transverse motion. In this paper, the effective potential for the electron case is found for the two regions of dislocation-affected channel. There is considerable shift in the potential minima due to dislocations. The frequency and the corresponding spectrum of the channeling radiation due to electrons channeling through the perfect channel and the two regions of dislocation-affected channels are calculated. The spectral distribution of radiation intensity changes with the parameters of dislocation. The continuity of wavefunctions and their derivatives is used at the three boundaries and the reflection and transmission coefficients are found using these boundary conditions in the same way as in the positron case.

  12. Channeling contrast microscopy: a new technique for microanalysis of semiconductors

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1985-01-01

    The technique of channeling contrast microscopy has been developed over the past few years for use with the Melbourne microprobe. It has been used for several profitable analyses of small-scale structures in semiconductor materials. This paper outlines the basic features of the technique and examples of its applications are given

  13. Spin sensitivity of a channel electron multiplier

    International Nuclear Information System (INIS)

    Scholten, R.E.; McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1988-01-01

    We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%

  14. Electronic trade effect of marketing channels

    OpenAIRE

    Lovreta Stipe; Stojković Dragan

    2009-01-01

    E-commerce has caused many significant changes in marketing channels. Consumers had obtained multiple benefits from e-commerce. In addition, it has increased the level of competition in marketing channels. However, the focus of this paper is multichannel strategy and integration of physical (store) and electronic marketing channels. E-commerce has induced dynamic development of multichannel strategy. This strategy has evolved as a consequence of multichannel consumer orientation. In developed...

  15. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  16. Critical voltage effects in electron channeling patterns

    International Nuclear Information System (INIS)

    Farrow, R.C.

    1984-01-01

    Electron channeling patterns were used to study critical voltage effects in the metals molybdenum and tungsten. The purpose was to characterize both theoretically and experimentally how a critical voltage will affect the channeling pattern line shapes. The study focused on the second order critical voltage that results from the degeneracy between the Bloch wave states of the (110) and (220) reflections. Theoretical (110) series electron channeling pattern line profiles were calculated using the dynamical theory of Hirsch and Humphreys (1970). A 10 beam dynamical electron diffraction calculation was performed (using complex Fourier lattice potentials) to generate Bloch wave coefficients, excitation amplitudes, and absorption coefficients needed for determining backscattering coefficients and subsequent backscattered electron intensities. The theoretical model is applicable to electron diffraction at all energies since no high energy approximation or perturbation method was used

  17. Electronic trade effect of marketing channels

    Directory of Open Access Journals (Sweden)

    Lovreta Stipe

    2009-01-01

    Full Text Available E-commerce has caused many significant changes in marketing channels. Consumers had obtained multiple benefits from e-commerce. In addition, it has increased the level of competition in marketing channels. However, the focus of this paper is multichannel strategy and integration of physical (store and electronic marketing channels. E-commerce has induced dynamic development of multichannel strategy. This strategy has evolved as a consequence of multichannel consumer orientation. In developed economies, consumers are multichannel entities and active marketers aim to meet their requirements by creating multichannel offer.

  18. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  19. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dictionary Indexing of Electron Channeling Patterns.

    Science.gov (United States)

    Singh, Saransh; De Graef, Marc

    2017-02-01

    The dictionary-based approach to the indexing of diffraction patterns is applied to electron channeling patterns (ECPs). The main ingredients of the dictionary method are introduced, including the generalized forward projector (GFP), the relevant detector model, and a scheme to uniformly sample orientation space using the "cubochoric" representation. The GFP is used to compute an ECP "master" pattern. Derivative free optimization algorithms, including the Nelder-Mead simplex and the bound optimization by quadratic approximation are used to determine the correct detector parameters and to refine the orientation obtained from the dictionary approach. The indexing method is applied to poly-silicon and shows excellent agreement with the calibrated values. Finally, it is shown that the method results in a mean disorientation error of 1.0° with 0.5° SD for a range of detector parameters.

  1. Biological applications of phase-contrast electron microscopy.

    Science.gov (United States)

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  2. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  3. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  4. Stresses in the foil of an electron accelerator extraction channel

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Makarenko, T.I.; Tokmakov, I.L.

    1983-01-01

    Stresses in the foil of an electron accelerator extraction channel are assessed with account of contributions of thermal expansion and stress concentrations during switchings. Optimization of extraction grid parameters of the electron accelerator extraction channel and choice of foil material for high current electron beam is conducted. It is suggested that an extraction grid with circular cells and Al-Mg foil should be used. A simple formula applicable for design calculations is proposed for evaluation of stress concentration coefficient during phase switchings

  5. Ultrarelativistic electron and positron radiation in planar channeling

    International Nuclear Information System (INIS)

    Kalashnikov, N.P.; Olchack, A.S.

    1980-01-01

    The coherent electromagnetic radiation from channeling electrons and positrons is given by similar expression. However for the channeling positrons the close collisions are suppressed due to the fact that the positron wave function is exponentially small near the atoms of the crystal lattice. It follows that the coherent bremsstrahlung decreases for the channeling positrons. We have investigated the ultrarelativistic channeling electron and positron radiations, connected with the electromagnetic transitions from the continuum spectrum states to the quasi-bound spectrum states and between the different quasi-bound spectrum states. The radiation probabilities are calculated by using the model continuum planar potential. It is shown that the radiation from the channeling electrons is several orders of magnitude larger than the positron radiation, while the electron and positron radiation have similar characteristics such as frequency limitation and angular distribution of the radiation. (orig.)

  6. Secondary electron emission induced by channeled relativistic electrons in a (1 1 0) Si crystal

    International Nuclear Information System (INIS)

    Korotchenko, K.B.; Kunashenko, Yu P.; Tukhfatullin, T.A.

    2012-01-01

    A new effect that accompanies electrons channeled in a crystal is considered. This phenomenon was previously predicted was called channeling secondary electron emission (CSEE). The exact CSEE cross-section on the basis of using the exact Bloch wave function of electron channeled in a crystal is obtained. The detailed investigation of CSEE cross-section is performed. It is shown that angular distribution of electrons emitted due to CSEE has a complex form.

  7. Molecular type channeling of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Vyatkin, E.G.; Filimonov, Yu.M.; Taratin, A.M.; Vorobiev, S.A.

    1983-01-01

    Channeling of relativistic electrons in direction in a diamond crystal and the channeling radiation spectra are investigated using computer simulation by the binary collision model and using the model of a continuum potential of the atomic rows. In a computer experiment the atomic- and molecular-type states of channeled elcetrons are revealed, and the orientational dependence of the electron trapping probability in these states is obtained. The peculiarities revealed of the angular distributions and radiation spectra of electrons in the molecular-type states allow to discover these states in the experiment. (author)

  8. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  9. Electronic government: Rethinking channel management strategies

    NARCIS (Netherlands)

    Ebbers, Wolfgang E.; Pieterson, Willem Jan; Noordman, H.N.

    2008-01-01

    This article explores how an alternative multichannel management strategy can improve the way governments and citizens interact. Improvement is necessary because, based on empirical data from various sources, the conclusion can be drawn that there is a gap between the communication channels

  10. Single-electron quantum tomography in quantum Hall edge channels

    International Nuclear Information System (INIS)

    Grenier, Ch; Degiovanni, P; Herve, R; Bocquillon, E; Parmentier, F D; Placais, B; Berroir, J M; Feve, G

    2011-01-01

    We propose a quantum tomography protocol to measure single-electron coherence in quantum Hall edge channels, and therefore access for the first time the wavefunction of single-electron excitations propagating in ballistic quantum conductors. Its implementation would open the way to quantitative studies of single-electron decoherence and would provide a quantitative tool for analyzing single- to few-electron sources. We show how this protocol could be implemented using ultrahigh-sensitivity noise measurement schemes.

  11. Experimental study of intensive electron beam scattering in melting channel

    International Nuclear Information System (INIS)

    Balagura, V.S.; Kurilko, V.I.; Safronov, B.G.

    1988-01-01

    Multiple scattering of an intensive electron beam at 28 keV energy passing through a melting channel in iron targets is experimentally studied. The dependence of scattering on the melting current value is established. The material density in the channel on the basis of the binary collision method is evaluated. It is shown that these density values are of three orders less than the estimations made on the basis of the data on energy losses of electrons in the channel. 6 refs.; 4 figs

  12. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  13. Momentum distribution at great depths when electron axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.Kh.; Tuguz, F.K.

    1989-01-01

    The electron distribution in momenta during axial channeling in thick monocrystals in great depths is estimated. The estimate was carried out with respect to the fact that due to diffusion the angular momentum of the electron can change only in a limited region of phase space and that multiple scattering only takes place on thermal oscillations of nuclei of the crystal lattice. It is shown that in thick monocrystals the distribution in momenta can be considered uniform on the greater part of the way of channeled electrons which can simplity the qualitative consideration of spectral-angular characteristics forming during this radiation

  14. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  15. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  16. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    Science.gov (United States)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  17. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  18. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments

    Science.gov (United States)

    Kondolf, G. M.; Piégay, H.; Landon, N.

    2002-06-01

    The catchments of Pine Creek, Idaho, USA (200 km 2), and the Drôme River in the Drôme Department, France (1640 km 2), illustrate contrasting changes in land use, bedload sediment production, and channel response. Hard-rock mining began in the catchment of Pine Creek near the end of the 19th century and, together with road construction, timber harvest, and historically heavy grazing of uplands, resulted in increased tributary bedload yield. Increased bedload migrating to the channel, combined with removal of large cedar trees on the floodplain, resulted in channel instability, which propagated downstream over a period of decades. On many reaches of Pine Creek, active channel width has increased by over 50% since 1933. Over roughly the same time period, the Drôme River catchment was extensively reforested (after at least one century of denudation and heavy grazing) and numerous check dams were constructed on torrents to reduce erosion. As a result, the Drôme River has experienced a reduction in bedload sediment supply since the late 19th century. In addition, gravel has been extracted from some reaches. Consequently, the channel has degraded and gravel bars have been colonized with woody riparian vegetation. Channel widths in wide, braided reaches decreased from 1947 to 1970 by 60%. On Pine Creek, channel instability has resulted in bank erosion (exposing contaminated mine tailings) and increased flood hazard. On the Drôme River, degradation has undermined bridges and embankments, and lowered the water table in areas dependent on groundwater for irrigation, resulting in loss of 6 million m 3 of groundwater storage since 1960. Though they differ in drainage area by nearly an order of magnitude, Pine Creek and the Drôme River provide an excellent contrast in that they represent two sides of an epicycle of alluvial sedimentation set off in each case by land disturbance. In both cases, the most recent channel changes, though in opposite directions, were viewed as

  20. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  1. Relativistic electron planar channeling and diffraction in thin monocrystals

    International Nuclear Information System (INIS)

    Vorob'ev, S.A.; Nurmagambetov, S.B.; Kaplin, V.V.; Rozum, E.I.

    1985-01-01

    The interaction of relativistic electrons with thin monocrystals was investigated in approximation of continuous potential of crystal plane system. Numerical technique for solution of one-dimensional Schroedinger equation with a periodic potential was developed. Numerical solutions conducted according to the technique were used to determine the forms of ngular distributions of electrons located in various zones of lteral motion. Calculation results were applied for analyzing experimentally obtained data on agular distribution of 5.1 MeV electrons projected at small angles onto the (110) planar system of a Si monocrystal. The conducted complex experimental and theoretical: investigations demonstrated the possibility of prevalen occupation of certain states of lateral motion and enabled to determine angular reg in directions of the electron beam projection on a crystal where either channeling effects or those of electron diffraction are important

  2. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nuo; King Liu, Tsu-Jae [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J. [Mears Technologies, Inc., Wellesley Hills, Massachusetts 02481 (United States); Kwak, Byungil; Cha, Seon Yong [SK Hynix, Icheon-si, Gyeonggi-do 467-701 (Korea, Republic of)

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  3. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myung-Geun, E-mail: mghan@bnl.gov [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Garlow, Joseph A. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States); Marshall, Matthew S.J.; Tiano, Amanda L. [Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Wong, Stanislaus S. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854 (United States); Walker, Frederick J.; Ahn, Charles H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520 (United States); Zhu, Yimei [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2017-05-15

    Highlights: • Electron-beam-induced-current (EBIC) and active secondary-electron voltage-contrast (SE-VC) are demonstrated in STEM mode combined with in situ electrical biasing in a TEM. • Electrostatic potential maps in ferroelectric thin films, multiferroic nanowires, and single crystals obtained by off-axis electron holography were compared with EBIC and SE-VC data. • Simultaneous EBIC and active SE-VC performed with atomic resolution STEM are demonstrated. - Abstract: The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fields and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.

  4. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  5. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  6. Self-mixing differential vibrometer based on electronic channel subtraction

    International Nuclear Information System (INIS)

    Donati, Silvano; Norgia, Michele; Giuliani, Guido

    2006-01-01

    An instrument for noncontact measurement of differential vibrations is developed, based on the self-mixing interferometer. As no reference arm is available in the self-mixing configuration, the differential mode is obtained by electronic subtraction of signals from two (nominally equal) vibrometer channels, taking advantage that channels are servo stabilized and thus insensitive to speckle and other sources of amplitude fluctuation. We show that electronic subtraction is nearly as effective as field superposition. Common-mode suppression is 25-30 dB, the dynamic range (amplitude) is in excess of 100 μm, and the minimum measurable (differential) amplitude is 20 nm on aB=10 kHz bandwidth. The instrument has been used to measure vibrations of two metal samples kept in contact, revealing the hysteresis cycle in the microslip and gross-slip regimes, which are of interest in the study of friction induced vibration damping of gas turbine blades for aircraft applications

  7. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Breese, M B.H.; Prawer, S; Dooley, S P; Allen, M G; Bettiol, A A; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C G [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  8. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  9. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    Energy Technology Data Exchange (ETDEWEB)

    Khokonov, M.K. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki); Telegin, V.I. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1983-07-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasi-channeling is also considered.

  10. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons

    International Nuclear Information System (INIS)

    Walker, R.L.

    1976-01-01

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 μm thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the [111] axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig

  11. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Philipp, E-mail: philipp.franke@uniklinik-freiburg.de [Institut für Diagnostische Radiologie, Gartenstr. 28, 79098 Freiburg (Germany); Markl, Michael, E-mail: mmarkl@northwestern.edu [Departments of Radiology and Biomedical Engineering, Northwestern University Chicago, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611 (United States); Heinzelmann, Sonja, E-mail: sonja.heinzelmann@uniklinik-freiburg.de [Department of Ophthalmology, University Hospital Freiburg, Killianstr. 5, 79106 Freiburg (Germany); Vaith, Peter, E-mail: peter.vaith@uniklinik-freiburg.de [Department of Rheumatology and Immunology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Bürk, Jonas, E-mail: jonas.buerk@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Langer, Mathias, E-mail: mathias.langer@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Geiger, J., E-mail: julia.geiger@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Department of Radiology, University Children‘s Hospital Zurich, Steinwiesstr. 75, 8032 Zurich (Switzerland)

    2014-10-15

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3 T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3 T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries’ inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries’ inflammation was achieved with both coils with excellent inter-observer agreement (κ = 0.89 for 12-channel and κ = 0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ = 0.5) and substantial for the 32-channel coil (κ = 0.63). Significantly higher SNR and improved image quality (p < 0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  12. Channelling and related effects in electron microscopy: The current status

    International Nuclear Information System (INIS)

    Krishnan, K.M.

    1989-05-01

    Channelling or Borrmann effect in electron diffraction has been developed into a versatile, high spatial resolution, crystallographic technique with demonstrated applicability in solving a variety of materials problems. In general, either the characteristic x-ray emissions or the electron energy-loss intensities are monitored as a function of the orientation of the incident beam. The technique, as formulated in the planar geometry has found wide applications in specific site occupancy and valence measurements, determination of small atomic displacements and crystal polarity studies. For site occupancy studies, the appropriate orientations in most cases can be determined by inspection and the analysis carried out according to a simple classification of the crystal structure discussed in this paper. Concentration levels as low as 0.1 wt% can be easily detected. The reciprocity principle may be used to advantage in all these studies, if electron energy-loss spectra are monitored, as both the channelling of the incoming beam and the blocking of the outgoing beam are included in the formulation and analysis. The formulation in the axial geometry is an useful alternative, particularly for monatomic crystals. Localization effects are important if, either the experiment is performed in the axial geometry or if low atomic number elements (z < 11) are detected. In general, the sensitivity to L-shells is lower compared to K-shell excitations. Other experimental parameters to be considered include temperature of the sample, the acceleration voltage and parallelism of the incident beam. Any detrimental effects of channelling on conventional microanalysis can be minimized either by tilting the crystal to an orientation where no lower order diffraction vectors are excited or by using a convergent probe such that a large range of incident beam orientations are averaged in the analysis. 49 refs., 9 figs

  13. Creation and dynamical co-evolution of electron and ion channel transport barriers

    International Nuclear Information System (INIS)

    Newman, D.E.

    2002-01-01

    A wide variety of magnetic confinement devices have found transitions to an enhanced confinement regime. Simple dynamical models have been able to capture much of the dynamics of these barriers however an open question has been the disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard ('ion channel' barrier. By adding to simple barrier model an evolution equation for electron fluctuations we can investigate the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. Barrier formation in the electron channel is even more sensitive to the alignment of the various gradients making up the sheared radial electric field than the ion barrier is. Electron channel heat transport is found to significantly increase after the formation of the ion channel barrier but before the electron channel barrier is formed. This increased transport is important in the barrier evolution. (author)

  14. Vibrationally inelastic electron scattering in a two-channel approximation

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr; Čurík, Roman

    2008-01-01

    Roč. 41, č. 5 (2008), , , 055203-1-6 ISSN 0953-4075 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413; GA AV ČR KJB400400803; GA ČR GA202/08/0631; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40400503 Keywords : inelastic electron scattering * two-channel approximation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.089, year: 2008

  15. Soft component of channeled electron radiation in silicon crystals

    International Nuclear Information System (INIS)

    Vnukov, I.E.; Kalinin, B.N.; Kiryakov, A.A.; Naumenko, G.A.; Padalko, D.V.; Potylitsyn, A.P.

    2001-01-01

    Radiation spectrum and orientation dependences of photon yield with the energy much lower than characteristic radiation energy during channeling were measured using a crystal-diffraction spectrometer. For electron drop along axis radiation intensity in the spectral range 30 ≤ ω ≤ 360 keV exceeds by nearly an order the intensity of Bremsstrahlung. The shape of radiation spectrum does not coincide with Bremsstrahlung spectrum. Radiation intensity increases gradually with photons energy growth. Bremsstrahlung spectrum from a disoriented crystalline target is described in a satisfactory manner by the currently used theory with phenomenological account of the medium polarization [ru

  16. Electron ion interactions in crystal channels: Collisions in ultra-dense electron media

    International Nuclear Information System (INIS)

    Datz, S.; Dittner, P.F.; Gomez del Campo, J.; Krause, H.F.; Rosseel, T.M.; Vane, C.R.

    1990-01-01

    Dielectronic excitation of H-like S, Ca and Ti is shown to occur in the dense electron gas of a crystal channel. Cross sections for collisional ionization of the short lived excited states can then be determined. Ionic excitation can also be achieved by resonant coherent excitation in which case specific m states can be excited for further study. 12 refs., 8 figs

  17. Laser-electron Compton interaction in plasma channels

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO 2 lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider

  18. Resonant influence of a longitudinal hypersonic field on the radiation from channeled electrons

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.R.; Mkrtchyan, A.H.; Khachatryan, H.F.; Prade, H.; Wagner, W.; Piestrup, M.A.

    2001-01-01

    The wave function of a planar/axially channeled electron with energy 10 MeV≤E<<1 GeV under the influence of a longitudinal hypersonic wave excited in a single crystal is calculated. Conditions for the resonant influence of the hypersonic wave on the quantum state of the channeled electron are deduced. Expressions for the wave function that are applicable in the case of resonance are obtained. Angular and spectral distributions of the radiation intensity from the planar/axially channeled electron are also calculated. The possibility of significant amplification of channeling radiation by a hypersonic wave is substantiated. It is found that the hypersound can excite inverse radiative transitions through which the transversal energy of the channeled electron is increased. These transitions have a resonant nature and can lead to a considerable intensification of the electron channeling radiation. In the case of axial channeling, the resonance radiation is sustained also by direct radiative transitions of the electron

  19. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.K.; Telegin, V.I.

    1983-01-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasichanneling is also considered. (author)

  20. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    Energy Technology Data Exchange (ETDEWEB)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  1. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    Directory of Open Access Journals (Sweden)

    Thomas Kowoll

    2017-01-01

    Full Text Available This study is concerned with backscattered electron scanning electron microscopy (BSE SEM contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC- simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  2. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    Science.gov (United States)

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  3. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  4. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  5. Effect of the channel electron multiplier connection diagram on its parameters

    International Nuclear Information System (INIS)

    Ajnbund, M.R.

    1976-01-01

    Basic alternatives of connection of a channel electron multiplier are described. A dependence of a gain factor and amplitude resolution of the channel electron multiplier upon its connection diagram is studied. The studies have shown that the maximum gain factor is typical of an open-output circuit where the signal is recorded from the anode of the channel electron multiplier at a potential with respect to the channel outlet. The highest amplitude resolution is inherent in a separate-anode circuit where the loading resistance is connected directly to the channel outlet

  6. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens

    2009-01-01

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  7. Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, J., E-mail: jacques.cazaux@univ-reims.fr [LISM, EA 4695 Faculty of Sciences, BP 1039, 51687 Reims Cedex 2 (France); Kuwano, N. [Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Sato, K. [Steel Research Laboratory, JFE Steel Corporation, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan)

    2013-12-15

    Due to the influence of refraction effects on the escape probability of the Back-Scattered Electrons (BSE), an expression of the fraction of these BSE is given as a function of the beam energy, E°, and emission angle (with respect to the normal) α. It has been shown that these effects are very sensitive to a local change of the work function in particular for low emerging angles. This sensitivity suggests a new type of contrast in Low Voltage Scanning Electron Microscopy (LVSEM for E°<2 keV): the work function contrast. Involving the change of ϕ with crystalline orientation, this possibility is supported by a new interpretation of a few published images. Some other correlated contrasts are also suggested. These are topographical contrasts or contrasts due to subsurface particles and cracks. Practical considerations of the detection system and its optimization are indicated. - Highlights: • Refraction effects experienced by Back-Scattered Electrons at sample/vacuum interfaces are evaluated as a function of energy and angles. • Sensitive to local work function changes with crystalline orientation these effects concern mainly keV-electrons at low emerging angles. • A new type of contrast in SEM is thus deduced and illustrated. • Some other correlated contrasts, topographical contrasts or contrasts due to subsurface particles and cracks are also suggested.

  8. Zernike phase contrast cryo-electron tomography of whole bacterial cells.

    Science.gov (United States)

    Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R

    2014-01-01

    Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Transmission electron microscope examination of rare-gas bubbles in metals: analysis of observed contrast effects

    International Nuclear Information System (INIS)

    Levy, V.

    1964-01-01

    Metallic samples containing rare gas bubbles have been examined by transmission electron microscopy. The different features of the contrast patterns of the bubbles have been explained by the dynamical theory of contrast, assuming that the bubble behaves as a hole in the metal. Experimental results are in good agreement with the theory. (author) [fr

  10. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  11. Phenomenological studies of electron-beam transport in wire-plasma channels

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Beezhold, W.

    1980-01-01

    Multiple electron-beam transport in air through plasma channels is an important method for delivering many intense beams to a bremsstrahlung converter system. This paper reports work intended to optimize this transport technique with emphasis on transport through curved channels and on transport efficiencies. Curved-channel transport allows accelerators such as Sandia's PROTO II and PBFA I facilities to be used as flash x-ray sources for weapon effects simulation without reconfiguring the diodes or developing advanced converters. The formation mechanisms of wire-initiated plasma channels in air were examined and the subsequent transport efficiencies of relativistic electron beams through various-length straight and curved plasma channels were determined. Electron transport efficiency through a channel was measured to be 80 to 100% of a zero length channel for 40 cm long straight channels and for curved channels which re-directed the electron beam through an angle of 90 0 . Studies of simultaneous e-beam transport along two curved channels closely spaced at the converter showed that transport efficiency remained at 80 to 100%. However, it was observed that the two e-beams were displaced towards each other. Transport efficiency was observed to depend only weakly on parameters such as wire material, wire length and shape, diode anode aperture, e-beam injection time, and wire-channel applied voltage. For off-center injection conditions the electron beam strongly perturbed the plasma channel in periodic or regularly spaced patterns even though the total energy lost by the electron beam remained small. Plasma-channel transport, when all experimental parameters have been optimized for maximum transport efficiency, is a workable method for directing electron beams to a converter target

  12. Exponential decay and exponential recovery of modal gains in high count rate channel electron multipliers

    International Nuclear Information System (INIS)

    Hahn, S.F.; Burch, J.L.

    1980-01-01

    A series of data on high count rate channel electron multipliers revealed an initial drop and subsequent recovery of gains in exponential fashion. The FWHM of the pulse height distribution at the initial stage of testing can be used as a good criterion for the selection of operating bias voltage of the channel electron multiplier

  13. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

    Science.gov (United States)

    Danev, Radostin; Nagayama, Kuniaki

    2008-02-01

    We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

  14. Mean secondary electron yield of avalanche electrons in the channels of a microchannel plate detector

    International Nuclear Information System (INIS)

    Funsten, H.O.; Suszcynsky, D.M.; Harper, R.W.

    1996-01-01

    By modeling the statistical evolution of an avalanche created by 20 keV protons impacting the input surface of a z-stack microchannel plate (MCP) detector, the mean secondary electron yield γ C of avalanche electrons propagating through a MCP channel is measured to equal 1.37 for 760 V per MCP in the z stack. This value agrees with other studies that used MCP gain measurements to infer γ C . The technique described here to measure γ C is independent of gain saturation effects and simplifying assumptions used in the segmented dynode model, both of which can introduce errors when inferring γ C through gain measurements. copyright 1996 American Institute of Physics

  15. Investigation of quantum states of fast electrons under planar channeling in silicon crystals

    International Nuclear Information System (INIS)

    Gridnev, V.I.; Kaplin, V.V.; Khlabutin, V.G.; Rozum, E.I.; Vorobiev, S.A.

    1987-01-01

    The angular distributions of (1.87 to 5.7) MeV electrons channeled in 2 μm Si crystals along (100), (110), and (111) atomic planes are measured. The half-width of measured angular distributions is defined by a critical Lindhard angle. A relation is obtained connecting those energies of electrons at which their angular distributions are similar for various atomic planes. The effect of a 'critical energy' under planar channeling of electrons is found and investigated. (author)

  16. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  17. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  18. Total yield of channeling radiation from relativistic electrons in thin Si and W crystals

    International Nuclear Information System (INIS)

    Abdrashitov, S.V.; Bogdanov, O.V.; Dabagov, S.B.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2013-01-01

    Orientation dependences of channeling radiation total yield from relativistic 155–855 MeV electrons at both 〈1 0 0〉 axial and (1 0 0) planar channeling in thin silicon and tungsten crystals are studied by means of computer simulations. The model as well as computer code developed allows getting the quantitative results for orientation dependence of channeling radiation that can be used for crystal alignment in channeling experiments and/or for diagnostics of initial angular divergence of electron beam

  19. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages.

    Science.gov (United States)

    Dai, Wei; Fu, Caroline; Khant, Htet A; Ludtke, Steven J; Schmid, Michael F; Chiu, Wah

    2014-11-01

    Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes ∼12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.

  20. Zernike Phase Contrast Electron Cryo-Tomography Applied to Marine Cyanobacteria Infected with Cyanophages

    Science.gov (United States)

    Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408

  1. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G., E-mail: terry.ireland@brunel.ac.uk; Fern, George R.; Silver, Jack

    2015-10-15

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions.

  2. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    Science.gov (United States)

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  3. Angular distributions of relativistic electrons under channeling in half-wavelength crystal and corresponding radiation

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Bagrov, V.G.; Bogdanov, O.V.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2015-01-01

    New experiments on channeling of 255 MeV electrons in a half-wavelength crystals (HWC) were performed at SAGA Light Source facilities. The simulations of trajectories for (2 2 0) and (1 1 1) planar channeling in Si were performed using the computer code BCM-1.0. Comparison of experimental and theoretical results shows a good agreement. The results of calculations of spectral distribution of radiation in forward direction (θ = 0°) from 255 MeV electrons at (2 2 0) channeling in HWC silicon are presented. Qualitative comparison with radiation spectrum from an electron moving in an arc is performed

  4. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  6. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronekton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sula) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplankton biomass close to the surface. Our results highlight the importance

  7. Hypoxic augmentation of Ca2+ channel currents requires a functional electron transport chain.

    Science.gov (United States)

    Brown, Stephen T; Scragg, Jason L; Boyle, John P; Hudasek, Kristin; Peers, Chris; Fearon, Ian M

    2005-06-10

    The incidence of Alzheimer disease is increased following ischemic episodes, and we previously demonstrated that following chronic hypoxia (CH), amyloid beta (Abeta) peptide-mediated increases in voltage-gated L-type Ca(2+) channel activity contribute to the Ca(2+) dyshomeostasis seen in Alzheimer disease. Because in certain cell types mitochondria are responsible for detecting altered O(2) levels we examined the role of mitochondrial oxidant production in the regulation of recombinant Ca(2+) channel alpha(1C) subunits during CH and exposure to Abeta-(1-40). In wild-type (rho(+)) HEK 293 cells expressing recombinant L-type alpha(1C) subunits, Ca(2+) currents were enhanced by prolonged (24 h) exposure to either CH (6% O(2)) or Abeta-(1-40) (50 nm). By contrast the response to CH was absent in rho(0) cells in which the mitochondrial electron transport chain (ETC) was depleted following long term treatment with ethidium bromide or in rho(+) cells cultured in the presence of 1 microm rotenone. CH was mimicked in rho(0) cells by the exogenous production of O2(-.). by xanthine/xanthine oxidase. Furthermore Abeta-(1-40) enhanced currents in rho(0) cells to a degree similar to that seen in cells with an intact ETC. The antioxidants ascorbate (200 microm) and Trolox (500 microm) ablated the effect of CH in rho(+) cells but were without effect on Abeta-(1-40)-mediated augmentation of Ca(2+) current in rho(0) cells. Thus oxidant production in the mitochondrial ETC is a critical factor, acting upstream of amyloid beta peptide production in the up-regulation of Ca(2+) channels in response to CH.

  8. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    Science.gov (United States)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  9. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  10. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  11. Spectral distribution of radiation on plane and axial channeling of ultrarelativistic electrons

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Glebov, V.I.; Zhevago, N.K.

    1980-01-01

    The spectral angular and polarization charactristics of the radiation from channeled ultrarelativistic electrons are calculated. Analytic expressions for the spectral-angular power density of the radiation are obtained for some realistic models of the continuous potential of the crystal planes and axes. A critical analysis is also presented of some existent results of the theory of radiation on channeling

  12. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  13. Anomaly in the Kumakhov radiation temperature dependence at axial channeling of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F.F.; Telegin, V.I.; Khokonov, M.Kh.

    1983-01-01

    The results of numerical solution of a kinetic equation for distribution function of axially channelled electrons obtained by Belostritsky and Kumakhov at different temperatures of crystals and calculated for the determined electron distributions spectral density of radiation are given. Analysis of the obtained dependence of the number of channelled 5 GeV electrons in tungsten along the <111> axis on depth Z has revealed that 2% of incidence beam electrons have anomalously large depths of dechannelling. Ratio of electrons with large by modulus cross section energies grows at decreasing crystal temperature from 293 to 40 K and, therefore, radiation intensity increases. Two-fold increase of radiation intensity can be attained at axial channelling of 1 GeV electrons in tungsten <111> at the temperatures of the crystal equal to 40 and 293 K and its thickness equal to 220 ..mu..m.

  14. Channeling effect in electronic spectra produced by grazing impact of fast protons on insulator surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D; Gravielle, M S, E-mail: archubi@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428, Buenos Aires (Argentina)

    2009-11-01

    Electron emission due to grazing scattering of fast protons from LiF and KCl surfaces is studied under axial incidence conditions. The differential emission probability is calculated within a distorted-wave formalism, taking into account axial channeled trajectories. For different emission angles, electronic spectra for proton incidence along the two principal crystal axes ([100] and [110]) are compared with those corresponding to an impact velocity in a random direction, finding effects associated with the channeling conditions.

  15. Solution of the Fokker-Planck equation for axially-channeled relativistic electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    A method of the two dimensional kinetic equation of the Fokker-Planck type for axially-channeled electrons is proposed. This equation has been obtained recently by Beloshitsky and Kumakhov to describe the diffusion of channeling negative particles over the transverse energy and angular momentum. The results of computation of the dechanneling function of 1 GeV electrons in tungsten are presented. (author)

  16. The injected-charse contrast mechanism in scanned imaging of doped semiconductors by very slow electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Müllerová, Ilona

    2005-01-01

    Roč. 106, č. 1 (2005), s. 28-36 ISSN 0304-3991 R&D Projects: GA ČR(CZ) GA202/04/0281 Keywords : Low-energy electrons * SEM * Dopant contrast Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.490, year: 2005

  17. On the influence of the electron dose rate on the HRTEM image contrast

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Juri, E-mail: ju.barthel@fz-juelich.de [RWTH Aachen University, Ahornstraße 55, 52074 Aachen (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lentzen, Markus; Thust, Andreas [Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2017-05-15

    We investigate a possible dependence between the applied electron dose-rate and the magnitude of the resulting image contrast in HRTEM of inorganic crystalline objects. The present study is focussed on the question whether electron irradiation can induce excessively strong atom vibrations or displacements, which in turn could significantly reduce the resulting image contrast. For this purpose, high-resolution images of MgO, Ge, and Au samples were acquired with varying dose rates using a C{sub S}-corrected FEI Titan 80–300 microscope operated at 300 kV accelerating voltage. This investigation shows that the magnitude of the signal contrast is independent from the dose rates occurring in conventional HRTEM experiments and that excessively strong vibrations or displacements of bulk atoms are not induced by the applied electron irradiation. - Highlights: • No dependence between electron dose rate and HRTEM image contrast is found. • This finding is in full accordance with established solid-state physics theory. • Object-related causes for the previous Stobbs-factor phenomenon are ruled out.

  18. Radiation from 39 and 45 MEV electrons channeled in lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Diedrich, E.; Kufner, W.; Buschhorn, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik)

    1991-12-01

    Channeling radiation from 39 and 45 MeV electrons channeled along the (0001) axis, the (0110) plane and the (1210) plane of a 30 {mu}m thick LiNbO{sub 3} crystal has been measured. Calculations of the planar crystal potentials were performed by means of the many-beam formalism. Good agreement between theory and experiment is obtained for the planar channeling radiation. Associated with channeling, additional radiation lines have been observed, which may be explained by a periodic perturbation of the continuum potential. (author).

  19. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Science.gov (United States)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  20. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  1. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  2. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  3. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  4. The effect of closed channels on the electron impact excitation of Mg +, Cd + ions

    Science.gov (United States)

    Li, Yueming

    2018-04-01

    Based on the developed method for solving the multi-channel equation, which had been applied to the calculations of several kinds of ions including only open-open interactions, closed channels and their interactions with open channels have been studied. The wave functions of the closed channels are also expressed in terms of their homogeneous solutions which is just the same as for open channels. The homogeneous solutions are described and solved in WKB form, therefore the regular and irregular solutions as well as the quantum defect numbers can be obtained simultaneously. Excitations of Mg +, Cd + ions impact by electrons are calculated for energies close to the thresholds. The results are compared with those of the experimental observations and previous theoretical calculations. The effect of including the closed channels, especially when the energy passes through the resonance energies, has been discussed according to the deduced formulae and the calculated results.

  5. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  6. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Walter, Andreas; Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, André; Gölzhäuser, Armin; Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter; Kühlbrandt, Werner; Rhinow, Daniel

    2012-01-01

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90° achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen–hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: ► Various obstacles need to be overcome before Boersch phase plates can be used routinely. ► Technical problems include electrostatic charging, mechanical drift, and image artefacts.

  7. X-ray and γ-ray emission from channeled relativistic electrons and positrons

    International Nuclear Information System (INIS)

    Terhune, R.W.; Pantell, R.H.

    1977-01-01

    The characteristics of the radiation from channeled relativistic electrons and positrons are discussed and model calculations carried out. Radiation near 2.5 keV associated with transitions etween the 2 p→1s eigenstates of 2-MeV electrons channeled along the axis of MgO is predicted with 50 times the usual bremsstrahlung intensity in a 10% bandwidth. Recent low-energy bremsstrahlung measurements made with 28-MeV electrons propagating along an axis in silicon are interpreted in terms of this model

  8. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  9. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  10. Planar channeled relativistic electrons and positrons in the field of resonant hypersonic wave

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.H.; Khachatryan, H.F.; Tonoyan, V.U.; Wagner, W.

    2003-01-01

    The wave function of a planar channeled relativistic particle (electron, positron) in a single crystal excited by longitudinal hypersonic vibrations (HVs) is determined. The obtained expression is valid for periodic (not necessarily harmonic) HV of desired profile and single crystals with an arbitrary periodic continuous potential. A revised formula for the wave number of HV that exert resonance influence on the state of a channeled particle was deduced to allow for non-linear effects due to the influence of HV

  11. FILTRES: a 128 channels VLSI mixed front-end readout electronic development for microstrip detectors

    International Nuclear Information System (INIS)

    Anstotz, F.; Hu, Y.; Michel, J.; Sohler, J.L.; Lachartre, D.

    1998-01-01

    We present a VLSI digital-analog readout electronic chain for silicon microstrip detectors. The characteristics of this circuit have been optimized for the high resolution tracker of the CERN CMS experiment. This chip consists of 128 channels at 50 μm pitch. Each channel is composed by a charge amplifier, a CR-RC shaper, an analog memory, an analog processor, an output FIFO read out serially by a multiplexer. This chip has been processed in the radiation hard technology DMILL. This paper describes the architecture of the circuit and presents test results of the 128 channel full chain chip. (orig.)

  12. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    Science.gov (United States)

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Channeling of electrons in a crossed laser field

    Directory of Open Access Journals (Sweden)

    S. B. Dabagov

    2015-06-01

    Full Text Available In this article a new analytical description of the effective interaction potential for a charged particle with the field of two interfering laser beams is presented. The potential dependence on the lasers intensities, orientation and parameters of the particle entering the considered system is analyzed. For the first time the phenomenon of effective potential inversion (or “relativistic reversal” is described for arbitrary lasers crossing angle. Threshold electron velocity values for the phenomenon are introduced and its extended illustration based on numerical simulations for two laser beams polarizations is presented. In addition the projectile radiation spectral distribution is given and general estimations on the expected beam radiation yield are outlined.

  14. Cyanated diazatetracene diimides with ultrahigh electron affinity for n-channel field effect transistors

    KAUST Repository

    Ye, Qun

    2013-03-15

    Several diazatetracene diimides with high electron affinity (up to 4.66 eV!) were prepared and well characterized. The LUMO energy level of these electron-deficient molecules was found to be closely related to their material stability. Compound 7 with ultrahigh electron affinity suffered from reduction and hydrolysis in the presence of silica gel or water. The stable compounds 3 and 6 showed n-channel FET behavior with an average electron mobility of 0.002 and 0.005 cm2 V-1 s-1, respectively, using a solution processing method. © 2013 American Chemical Society.

  15. GeV electron beams from centimeter-scale channel guided laser wakefield

    International Nuclear Information System (INIS)

    Gonsalves, A.; Nakamura, K.; Panasenko, D.; Toth, Cs.; Esarey, E.; Schroeder; Hooker, S.M.; Leemans, W.P.; Hooker, S.M.

    2007-01-01

    Results are presented on the generation of quasi-monoenergetic electron beams with energy up to 1 GeV using a 40TW laser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide. Electron beams were not observed without a plasma channel, indicating that self-focusing alone could not be relied upon for effective guiding of the laser pulse. Results are presented of the electron beam spectra, and the dependence of the reliability of producing electron beams as a function of laser and plasma parameters

  16. Utilization of a channel electron multiplier for counting-measurement on condensed molecular jet

    International Nuclear Information System (INIS)

    Le Bihan, A.M.; Bottiglioni, F.; Coutant, J.; Fois, M.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1974-01-01

    A channel electron multiplier has been used for counting ionized clusters containing up to a few thousands molecules; clusters are accelerated towards a negative (approximately-220V) copper target; a larger negative bias (approximately-3000V) is applied to the multiplier entrance so as to collect positive secondary ions and/or reflected cluster fragments; in the present application this gives better signal to noise ratio than detecting clusters directly or by secondary electron emission on the target [fr

  17. Laser-driven relativistic electron dynamics in a cylindrical plasma channel

    Science.gov (United States)

    Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui

    2018-03-01

    The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

  18. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy.

    Science.gov (United States)

    Lau, Carus; Hunter, Mark J; Stewart, Alastair; Perozo, Eduardo; Vandenberg, Jamie I

    2018-04-01

    The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  19. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  20. Lattice Location of Radioactive Probes in Semiconductors and Metals by Electron and Positron Channelling

    CERN Multimedia

    2002-01-01

    The channelling effect of decay-electrons and positrons is used for the localization of radioactive impurities implanted into single crystals. Because of the low implantation doses and the variety of different isotopes available at ISOLDE, this technique is especially suited for applications in semiconducting materials. \\\\ \\\\ Channelling measurements in Si, GaAs and GaP implanted with In-, Cd- and Xe-isotopes have demonstrated that impurity lattice sites can be studied directly after implantation without any annealing. The electron-channelling technique can be ideally combined with hyperfine interaction techniques like Moessbauer s This was shown for the formation of In-vacancy complexes in ion-implanted Ni. \\\\ \\\\ We intend to continue the lattice location measurements in semiconductors implanted with various radioactive impurities of Cd, In, Sn, Sb and Te.

  1. Quasi-phase-matched acceleration of electrons in a corrugated plasma channel

    Directory of Open Access Journals (Sweden)

    S. J. Yoon

    2012-08-01

    Full Text Available A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and linear energy gain over the interaction length. Here we examine the fully self-consistent interaction of the laser pulse and electron beam using particle-in-cell (PIC simulations. For low electron beam densities, we find that the ponderomotive force of the laser pulse pushes plasma channel electrons towards the propagation axis, which deflects the beam electrons. When the beam density is high, the space charge force of the beam drives the channel electrons off axis, providing collimation of the beam. In addition, we consider a ramped density profile for lowering the threshold energy for trapping in a subluminal spatial harmonic. By using a density ramp, the trapping energy for a normalized vector potential of a_{0}=0.1 is reduced from a relativistic factor γ_{0}=170 to γ_{0}=20.

  2. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  3. Analysis of strain field around. beta. -hydride in Nb-H by Electron Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Akune, K; Bulhoes, I A.M.

    1985-06-01

    The strain field in Nb-H system generated by the precipitation of ..beta..-hydride has been evaluated quantitatively by Electron Channeling experiment. The results were analyzed in terms of the effective deformation of the Levi-Mises solid by making use of an elasto-plastic model of the strain field around the misfitting cylindrical precipitate.

  4. Multi-GeV electron and positron channeling in bent silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Gennady B., E-mail: sushko@fias.uni-frankfurt.de [Goethe-Universitat Frankfurt am Main, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Korol, Andrei V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); St. Petersburg State Maritime University, Leninsky Ave. 101, 198262 St. Petersburg (Russian Federation); Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); A.F. Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    The planar channeling of 3…20 GeV electrons and positrons in bent Si(1 1 1) crystal was simulated by means of the MBN EXPLORER software package. The results of the simulations are analyzed in terms of dechanneling length characterization, angular distribution of outgoing projectiles and radiation spectrum. The results of calculations are compared with the recent experimental data.

  5. Analysis of strain field around β-hydride in Nb-H by electron channeling

    International Nuclear Information System (INIS)

    Akune, K.; Bulhoes, I.A.M.

    1985-01-01

    The strain field in Nb-H system generated by the precipitation of β-hydride has been evaluated quantitatively by Electron Channelling experiment. The results were analyzed in terms of the effective deformation of the Levi-Mises solid by making use of an elasto-plastic model of the strain fiedl around the misfitting cylindrical precipitate. (Author) [pt

  6. Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy

    International Nuclear Information System (INIS)

    Tromp, R.M.; Schramm, S.M.

    2013-01-01

    The Contrast Transfer Function (CTF) describes the manner in which the electron microscope modifies the object exit wave function as a result of objective lens aberrations. For optimum resolution in C 3 -corrected microscopes it is well established that a small negative value of C 3 , offset by positive values of C 5 and defocus C 1 results in the most optimal instrument resolution, and optimization of the CTF has been the subject of several studies. Here we describe a simple design procedure for the CTF that results in a most even transfer of information below the resolution limit. We address not only the resolution of the instrument, but also the stability of the CTF in the presence of small disturbances in C 1 and C 3 . We show that resolution can be traded for stability in a rational and transparent fashion. These topics are discussed quantitatively for both weak-phase and strong-phase (or amplitude) objects. The results apply equally to instruments at high electron energy (TEM) and at very low electron energy (LEEM), as the basic optical properties of the imaging lenses are essentially identical. - Highlights: ► An optimized Contrast Transfer Function for aberration corrected electron microscopes is proposed. ► Based on the properties of the CTF near optimum settings, we address its stability. ► Over some range of parameters resolution can be traded for stability. ► These issues are addressed for weak-phase objects, as well as strong-phase and amplitude object. ► We compare our results with CTF settings previously proposed

  7. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-01-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f_t/f_m_a_x of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f_t/f_m_a_x of 48/60 GHz.

  8. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Science.gov (United States)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  9. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J. [Naval Research Laboratory, Electronics Science and Technology Division, Washington, DC 20375 (United States)

    2016-08-08

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f{sub t}/f{sub max} of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f{sub t}/f{sub max} of 48/60 GHz.

  10. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  11. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sawada, H. [Univ. of California-San Diego, La Jolla, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chawla, S. R. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Univ. of California-San Diego, La Jolla, CA (United States); Flippo, K. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McLean, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beg, F. N. [Univ. of California-San Diego, La Jolla, CA (United States); Bartal, T. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, M. S. [General Atomics, San Diego, CA (United States)

    2015-12-31

    Optimization of electron coupling into small solid angles is of extreme importance to applications, such as Fast Ignition, that require maximum electron energy deposition within a small volume. To optimize this coupling, we use the ultra-high-contrast Trident laser, which remains below intensity of 1011 W/cm2 until < 0.1 ns before the main pulse, while still attaining high-energy, 75 J, and peak intensity of 5 x 1019 W/cm2. Using a cone-wire target, we find that the coupling into the 40 μm diameter wire is increased by a factor of 2.7x over the low-contrast Titan laser at similar peak intensity. Full-scale simulations are used to model the laser interaction and quantitatively reproduce the experimental results. These show that increase in coupling is due to both a closer interaction, as well as the reduction of laser filamentation and self-focusing.

  12. Overscreening-underscreening transition in the two-channel Kondo model induced by electron-electron repulsion

    International Nuclear Information System (INIS)

    Zhang Yumei; Chen Hong.

    1995-09-01

    The effects of the repulsion between the electrons on the two-channel Kondo problem are studied by use of the bosonization technique. Following Emery and Kivelson, we define a special case in the spin density wave sector, in which the impurity spin is actually detached from the dynamics of the electrons. The model is thus mapped to a local Sine-Gordon system. For weak repulsion, the basic features of the overscreening picture are maintained. However, at sufficient strong repulsion the system is driven into the weak coupling regime, hence an overscreening-underscreening transition emerges. (author). 22 refs

  13. Theoretical study of the electron stopping power in ion planar channeling

    International Nuclear Information System (INIS)

    Haymann, P.

    1974-01-01

    A theory recently developed by the authors for slow and fast electrons is shown to be also applicable to channeled ions and to explain the experimental results about electron loss phenomena as a whole. The theory is based on the fundamental hypothesis of the nonadiabaticity of the ion-target interactions. How essential an exponential form of the interaction pseudo-potential is in explaining the energy exchange mechanism at the walls may be deduced from a quasi-classical development of the quantum model. The theory also allows a number of new experiments to be envisaged in the field of surface electron states [fr

  14. Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    Science.gov (United States)

    Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.

    The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.

  15. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  16. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  17. Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au

    2016-01-15

    Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.

  18. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  19. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  20. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    Science.gov (United States)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  1. Automation of electron channeling investigations into crystals on the experimental stand

    International Nuclear Information System (INIS)

    Kolodin, L.G.; Kupchishin, A.A.; Bunegin, V.V.

    1995-01-01

    Automated control system of technological processes of the experimental stand is proposed for electron channeling investigation into crystals. The system is proposed for stand control automation and registration of corresponding radiations. There are four main parts in stand complex: Ehlu-6 type electron accelerator; forming and transporting system of electron beams; goniometer system; radiation detection system. Purposes of the automated system creation are following: - improvement of EhLU accelerator operating stability by of automation stabilization of its parameters; - quality improvement of electron beam monochromatization by of automation of monochromator electromagnet control; - simplification of crystal adjustment process relatively of primary electron beam and crystal transporting to the position by of goniometer automation control; - providing of automating collection and processing of data of physical experiments

  2. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  3. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Science.gov (United States)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  4. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    International Nuclear Information System (INIS)

    Bechstein, S; Petsche, F; Scheiner, M; Drung, D; Thiel, F; Schnabel, A; Schurig, Th

    2006-01-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-T c dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented

  5. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Bechstein, S [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Petsche, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Scheiner, M [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Drung, D [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Thiel, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schnabel, A [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schurig, Th [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/{radical}Hz was specially designed for a 304-channel low-T{sub c} dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  6. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    Directory of Open Access Journals (Sweden)

    M. Dayyani Kelisani

    2017-04-01

    Full Text Available For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  7. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    Science.gov (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  8. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  9. Kinetic description of a wiggler pumped ion-channel free electron laser

    International Nuclear Information System (INIS)

    Mehdian, H; Raghavi, A

    2006-01-01

    The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored

  10. Sausage instabilities in electron current channels and the problem of fast ignition

    International Nuclear Information System (INIS)

    Das, A.

    2002-01-01

    In the fast ignition concept of laser fusion, an intense picosecond laser pulse incident on an overdense pellet is absorbed by nonlinear mechanisms and gets converted into inward propagating fast electron currents. PIC simulations show that the return shielding currents due to cold plasma interact with the incoming currents and intense Weibel, tearing and coalescence instabilities take place, which organize the current into a few current channels. The stability of these current channels is thus a topic of great interest. We have carried out linear and nonlinear studies of 2 - dimensional sausage instabilities of a slab model of the current channels in the framework of electron magnetohydrodynamic fluid approximation. The analytic calculations and numerical simulations for some simple velocity profiles show the presence of linear instability driven by velocity shear. Nonlinear studies on the saturation of instabilities and their reaction back on the relaxation of the velocity profile have also been made. A discussion of the consequences of such EMHD turbulence induced relaxation and stopping of fast electrons, for the fast ignition concept will be presented. (author)

  11. High quality electron beams from a plasma channel guided laser wakefield accelerator

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2004-01-01

    Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10 9 electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources

  12. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.; Gutierrez, M.S.; Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S.

    2011-01-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  13. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P., E-mail: musumeci@physics.ucla.edu [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Moody, J.T.; Scoby, C.M.; Gutierrez, M.S. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, NM (United States)

    2011-05-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  14. Transport of long-pulse relativistic electron beams in preformed plasma channels in the ion focus regime

    International Nuclear Information System (INIS)

    Miller, J.D.

    1989-01-01

    Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport

  15. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  16. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Science.gov (United States)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  17. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Directory of Open Access Journals (Sweden)

    Yanling Ji

    2018-02-01

    Full Text Available An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  18. Increase in electron mobility of InGaAs/InP composite channel high electron mobility transistor structure due to SiN passivation

    International Nuclear Information System (INIS)

    Liu Yuwei; Wang Hong; Radhakrishnan, K.

    2007-01-01

    The influence of silicon nitride passivation on electron mobility of InGaAs/InP composite channel high electron mobility transistor structure has been studied. Different from the structures with single InGaAs channel, an increase in effective mobility μ e with a negligible change of sheet carrier density n s after SiN deposition is clearly observed in the composite channel structures. The enhancement of μ e could be explained under the framework of electrons transferring from the InP sub-channel into InGaAs channel region due to the energy band bending at the surface region caused by SiN passivation, which is further confirmed by low temperature photoluminescence measurements

  19. Electron temperature measurements during electron cyclotron heating on PDX using a ten channel grating polychromator

    International Nuclear Information System (INIS)

    Cavallo, A.; Hsuan, H.; Boyd, D.; Grek, B.; Johnson, D.; Kritz, A.; Mikkelsen, D.; LeBlanc, B.; Takahashi, H.

    1984-10-01

    During first harmonic electron cyclotron heating (ECH) on the Princeton Divertor Experiment (PDX) (R 0 = 137 cm, a = 40 cm), electron temperature was monitored using a grating polychromator which measured second harmonic electron cyclotron emission from the low field side of the tokamak. Interference from the high power heating pulse on the broadband detectors in the grating instrument was eliminated by using a waveguide filter in the transmission line which brought the emission signal to the grating instrument. Off-axis (approx. 4 cm) location of the resonance zone resulted in heating without sawtooth or m = 1 activity. However, heating with the resonance zone at the plasma center caused very large amplitude sawteeth accompanied by strong m = 1 activity: ΔT/T/sub MAX/ approx. = 0.41, sawtooth period approx. = 4 msec, m = 1 period approx. = 90 μ sec, (11 kHz). This is the first time such intense MHD activity driven by ECH has been observed. (For both cases there was no sawtooth activity in the ohmic phase of the discharge before ECH.) At very low densities there is a clear indication that a superthermal electron population is created during ECH

  20. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  1. Contrast of HOLZ lines in energy-filtered convergent-beam electron diffraction patterns from silicon

    International Nuclear Information System (INIS)

    Lehmpfuhl, G.; Krahl, D.; Uchida, Y.

    1995-01-01

    Higher-order Laue-zone (HOLZ) lines were investigated in convergent-beam electron diffraction patterns from silicon near the low-indexed zone axes [100], [110] and [111]. The visibility of these lines depends on the effective structure potentials of the reflections from the first Laue zone depending on their Debye-Waller factor. The contrast of the HOLZ lines is strongly reduced by inelastically scattered electrons. They can be excluded by an imaging Ω filter for energy losses above 2 eV. The diffraction patterns were compared with many-beam calculations. Without absorption, an excellent agreement could be achieved for the [111] and [100] zone axes, while the simulation of the [110] zone-axis pattern needed a calculation with absorption. The reason for this observation is explained in the Bloch-wave picture. Calculations with absorption, however, lead to artefacts in the intensity distribution of the [100] HOLZ pattern. In order to obtain agreement with the experiment, the Debye-Waller factor had to be modified in different ways for the different zone axes. This corresponds to a strong anisotropy of the Debye-Waller factor. To confirm this observation, the temperature dependence of the itensity distributions of the HOLZ patterns was investigated between 50 and 680 K. At room temperature, the parameter D in the Debye-Waller factor exp(-Ds 2 ) was determined as 0.13, 0.26 and 0.55 A 2 for the zone axes [100], [111] and [110], respectively. The reliability of the conclusions is discussed. (orig.)

  2. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  3. Analyses of electron runaway in front of the negative streamer channel

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  4. Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI

    Science.gov (United States)

    Backe, H.; Lauth, W.; Tran Thi, T. N.

    2018-04-01

    Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Preliminary results for diamond are presented. In addition, we reanalyzed dechanneling length measurements at silicon single crystals performed previously at the Mainz Microtron MAMI at beam energies between 195 and 855 MeV from which we conclude that the quality of our experimental data set is not sufficient to derive definite conclusions on the dechanneling length. Our experimental results are below the predictions of the Fokker-Planck equation and somewhat above the results of simulation calculations of A. V. Korol and A. V. Solov'yov et al. on the basis of the MBN Explorer simulation package. We somehow conservatively conclude that the prediction of the asymptotic dechanneling length on the basis of the Fokker-Planck equation represents an upper limit.

  5. A zerotime detector for nuclear fragments using channel electron multiplier plates

    International Nuclear Information System (INIS)

    Sundqvist, B.

    1975-01-01

    The literature on zerotime detectors which use the emission of secondary electrons from a thin foil is reviewed. The construction of a zerotime detector using multiplication of the secondary electrons with two Mullard channel electron multiplier plates (CEMP) in tandem is described. Results of tests of such a detector with α particles from a natural α source are given. Total time resolutions of about 200 ps (FWHM) with a Si(Sb) detector as the stop detector has been achieved. The contribution from the zerotime detector is estimated to be less than 150 ps (FWHM). The application of this detector technique to the construction of a heavy-ion spectrometer and a 8 Be detector is described. (Auth)

  6. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  7. Suprathermal Electron Generation and Channel Formation by an Ultrarelativistic Laser Pulse in an Underdense Preformed Plasma

    International Nuclear Information System (INIS)

    Malka, G.; Gaillard, R.; Miquel, J.L.; Rousseaux, C.; Bonnaud, G.; Busquet, M.; Lours, L.; Fuchs, J.; Pepin, H.; Fuchs, J.; Amiranoff, F.; Baton, S.D.

    1997-01-01

    Relativistic electrons are produced, with energies up to 20MeV, by the interaction of a high-intensity subpicosecond laser pulse (1 μm , 300 fs , 10 19 W/cm 2 ) with an underdense plasma. Two suprathermal electron populations appear with temperatures of 1 and 3MeV. In the same conditions, the laser beam transmission is increased up to 20% 30%. We observe both features along with the evidence of laser pulse channeling. A fluid model predicts a strong self-focusing of the pulse. Acceleration in the enhanced laser field seems the most likely mechanism leading to the second electron population. copyright 1997 The American Physical Society

  8. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.

    Science.gov (United States)

    Hirschi, Marscha; Herzik, Mark A; Wie, Jinhong; Suo, Yang; Borschel, William F; Ren, Dejian; Lander, Gabriel C; Lee, Seok-Yong

    2017-10-19

    The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca 2+ -permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca 2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P 2 ), whereas other phosphoinositides such as PtdIns(4,5)P 2 , which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P 2 and inhibition by PtdIns(4,5)P 2 . However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P 2 and increase their Ca 2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P 2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.

  9. Channeling and Radiation of Electrons in Silicon Single Crystals and Si1−xGex Crystalline Undulators

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    The phenomenon of channeling and the basic features of channeling radiation emission are introduced in a pedestrian way. Both, radiation spectra as well as dechanneling length measurements at electron beam energies between 195 and 855 MeV feature quantum state phenomena for the (110) planar...

  10. Understanding Contrasting Approaches to Nationwide Implementations of Electronic Health Record Systems: England, the USA and Australia

    Directory of Open Access Journals (Sweden)

    Zoe Morrison

    2011-01-01

    Full Text Available As governments commit to national electronic health record (EHR systems, there is increasing international interest in identifying effective implementation strategies. We draw on Coiera's typology of national programmes - ‘top-down’, ‘bottom-up’ and ‘middle-out’ - to review EHR implementation strategies in three exemplar countries: England, the USA and Australia. In comparing and contrasting three approaches, we show how different healthcare systems, national policy contexts and anticipated benefits have shaped initial strategies. We reflect on progress and likely developments in the face of continually changing circumstances. Our review shows that irrespective of the initial strategy, over time there is likely to be convergence on the negotiated, devolved middle-out approach, which aims to balance the interests and responsibilities of local healthcare constituencies and national government to achieve national connectivity. We conclude that, accepting the current lack of empirical evidence, the flexibility offered by the middle-out approach may make this the best initial national strategy.

  11. Contrastive experimental study on heat transfer and friction characteristics in steam cooled and air cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)

    2014-09-15

    The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.

  12. Flow visualization and velocity measurement in a small-scale open channel using an electron microscope

    International Nuclear Information System (INIS)

    Yasuda, K; Sogo, M; Iwamoto, Y

    2013-01-01

    The present note describes a method for use in conjunction with a scanning electron microscope (SEM) that has been developed to visualize a liquid flow under a high-level vacuum and to measure a velocity field in a small-scale flow through an open channel. In general, liquid cannot be observed via a SEM, because liquid evaporates under the high-vacuum environment of the SEM. As such, ionic liquid and room temperature molten salt having a vapor pressure of nearly zero is used in the present study. We use ionic liquid containing Au-coated tracer particles to visualize a small-scale flow under a SEM. Furthermore, the velocity distribution in the open channel is obtained by particle tracking velocimetry measurement and a parabolic profile is confirmed. (technical design note)

  13. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xing, E-mail: xmeng101@gmail.com

    2017-02-15

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages. - Highlights: • Cryo EM • Phase contrast • Extraction votage.

  14. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  15. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Instituto de Plasmas e FuSao Nuclear - Laboratorio Associado, Association Euratom/IST, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [The Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  16. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    Science.gov (United States)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  17. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Sode, Olaseni; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA and Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  18. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    International Nuclear Information System (INIS)

    Sode, Olaseni; Voth, Gregory A.

    2014-01-01

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A 2− , a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A 2- by closing a cavity that could otherwise fill with water near the proximal Fe of the active site

  19. 0.56 GeV laser electron acceleration in ablative-capillary-discharge plasma channel

    International Nuclear Information System (INIS)

    Kameshima, Takashi; Kurokawa, Shin-ichi; Nakajima, Kazuhisa; Hong Wei; Wen Xianlun; Wu Yuchi; Tang Chuanming; Zhu Qihua; Gu Yuqiu; Zhang Baohan; Peng Hansheng; Sugiyama, Kiyohiro; Chen, Liming; Tajima, Toshiki; Kumita, Tetsuro

    2008-01-01

    A high-quality electron beam with a central energy of 0.56 GeV, an energy spread of 1.2% rms, and a divergence of 0.59 mrad rms was produced by means of a 4 cm ablative-capillary-discharge plasma channel driven by a 3.8 J27 fs laser pulse. This is the first demonstration of electron acceleration with an ablative capillary discharge wherein the capillary is stably operated in vacuum with a simple system triggered by a laser pulse. This result of the generation of a high-quality beam provides the prospects to realize a practical accelerator based on laser-plasma acceleration. (author)

  20. Ultra-short channel GaN high electron mobility transistor-like Gunn diode with composite contact

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Yang, Lin' an, E-mail: layang@xidian.edu.cn; Wang, Zhizhe; Chen, Qing; Huang, Yonghong; Dai, Yang; Chen, Haoran; Zhao, Hongliang; Hao, Yue [The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2014-09-07

    We present a numerical analysis on an ultra-short channel AlGaN/GaN HEMT-like planar Gunn diode based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In particular, we propose a Schottky-ohmic composite contact instead of traditional ohmic contact for the Gunn diode in order to significantly suppress the impact ionization at the anode side and shorten the “dead zone” at the cathode side, which is beneficial to the formation and propagation of dipole domain in the ultra-short 2-DEG channel and the promotion of conversion efficiency. The influence of the surface donor-like traps on the electron domain in the 2-DEG channel is also included in the simulation.

  1. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  2. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  3. Electronic Communication Channel Use and Health Information Source Preferences Among Latinos in Northern Manhattan.

    Science.gov (United States)

    Hillyer, Grace Clarke; Schmitt, Karen M; Lizardo, Maria; Reyes, Andria; Bazan, Mercedes; Alvarez, Maria C; Sandoval, Rossy; Abdul, Kazeem; Orjuela, Manuela A

    2017-04-01

    Understanding key health concepts is crucial to participation in Precision Medicine initiatives. In order to assess methods to develop and disseminate a curriculum to educate community members in Northern Manhattan about Precision Medicine, clients from a local community-based organization were interviewed during 2014-2015. Health literacy, acculturation, use of Internet, email, and text messaging, and health information sources were assessed. Associations between age and outcomes were evaluated; multivariable analysis used to examine the relationship between participant characteristics and sources of health information. Of 497 interviewed, 29.4 % had inadequate health literacy and 53.6 % had access to the Internet, 43.9 % to email, and 45.3 % to text messaging. Having adequate health literacy was associated with seeking information from a healthcare professional (OR 2.59, 95 % CI 1.54-4.35) and from the Internet (OR 3.15, 95 % CI 1.97-5.04); having ≤ grade school education (OR 2.61, 95 % CI 1.32-5.17) also preferred information from their provider; persons >45 years (OR 0.29, 95 % CI 0.18-0.47) were less likely to use the Internet for health information and preferred printed media (OR 1.64, 95 % CI 1.07-2.50). Overall, electronic communication channel use was low and varied significantly by age with those ≤45 years more likely to utilize electronic channels. Preferred sources of health information also varied by age as well as by health literacy and educational level. This study demonstrates that to effectively communicate key Precision Medicine concepts, curriculum development for Latino community members of Northern Manhattan will require attention to health literacy, language preference and acculturation and incorporate more traditional communication channels for older community members.

  4. New channeling effects in the radiative emission of 150 GeV electrons in a thin germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.; Sun, C.R.

    1986-01-01

    The orientation dependence of the radiative emission of 150 GeV electrons and positrons incident at small angles with respect to the axial direction of a thin (0.185 mm) Ge crystal has been observed. The processes are well understood, except for channeled electrons, which radiate unexpected high energy photons. (orig.)

  5. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Ercius, Peter [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ophus, Colin, E-mail: clophus@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. - Highlights: • This work demonstrates a phase contrast imaging method by combining a pre-specimen phase plate with ptychogrpahy. • This method is shown to have a high phase contrast transfer efficiency at both low and high spatial frequencies. • Unlike CTEM which uses a heavy defocus to gain contrast, the phase plate gives a linear phase contrast at zero defocus aberrations. • Image simulations of DNA suggest this method is highly attractive for imaging beam sensitive materials at a low dose.

  6. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  7. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  8. Preliminary study of 3.0 T contrast-enhanced whole heart coronary MR angiography using 32-channel coils with high acceleration factor

    International Nuclear Information System (INIS)

    Yang Qi; Li Kuncheng; Du Xiangying; Ma Heng; An Jing; Li Han; Xu Dong; Bi Xiaoming; Li Debiao

    2010-01-01

    Objective: To evaluate the diagnostic accuracy of 3.0 T contrast enhanced (CE) whole-heart coronary MRA (CE MRA) using 32-channel coils with high acceleration factor. Methods: Sixty patients with suspected coronary artery disease who were scheduled for coronary angiography (CAG) underwent CE CMRA at 3.0 T MRI scanner. A 32-channel receiver coil was used for data acquisition. For image acquisition, an ECG triggered,navigator-gated, inversion-recovery prepared, segmented gradient-echo sequence was used with an acceleration factor of three in the phase-encoding direction using GRAPPA reconstruction. Gd-BOPTA (0.15 mmol/kg body weight) was intravenously administered at a rate of 0.3 ml/s. The diagnostic accuracy in detecting significant stenoses (≥50% of vessel lumen) was evaluated using χ 2 test with X-ray angiography as the reference. Results: Whole-heart CE CMRA was successfully completed in 56 patients who were scheduled for CAG. The averaged imaging time was (6.0±1.3) min. 3.0 T CE CMRA using 32 channel coils correctly identified significant CAD in 28 patients and correctly ruled out CAD in 23 patients. The sensitivity and specificity were 93.3% and 88.5% respectively. Conclusion: Combined with dedicated 32-channel coils, 3.0 T CE CMRA allows significant reduction in imaging speed and reduced dose of the contrast agent. These improvements resulted in substantially improved overall accuracy of CE CMRA in detecting coronary artery disease. (authors)

  9. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  10. Effects of intraarticular contrast media on synovial membrane and cartilage: An electron microscopic evaluation in rabbit knees

    International Nuclear Information System (INIS)

    Kose, N.; Inan, U.; Omeroglu, H.; Seber, S.; Baycu, C.; Omeroglu, H.

    2007-01-01

    To evaluate the histological and ultrastructural alterations in rabbit knee joint cartilage and synovia induced by intraarticular injections of 2 water soluble contrast agents. The study was conducted at the Department of Orthopedics and Traumatology, Medical Faculty, Osmangazi University, Eskisehir, Turkey in January 2002. To examine the effect of contrast agents on articular cartilage and synovial membrane, rabbit model was used. Specimens from 62 knee joints were examined by light microscopy and transmission electron microscopy one hour, one day, one week and 2 weeks after intraarticular administration of gadolinium-diethylenetriamine pentaacetic acid, iopromide or saline. In the knees injected with saline, light microscopic changes of the synovium consisted of edema only. Edema and hyperemia were seen in contrast agent injected knees. Ultrastructurally, numerous and large pinocytotic vesicles in A cells of the synovial membrane were seen in contrast agent injected groups. In the knees injected with saline the cartilage were ultrastructurally normal but contrast agent injected knees showed increased activation of chondrocytes with increase of dense glycogen accumulation, large lipid vacuoles and matrix material. There were very rare pycnotic cells in these samples. The rating scale has been used and the means of the total scores were determined for the groups. The effects of contrast agents reduced gradually on the cartilage and synovium in general but did not become completely normal in the observation period. (author)

  11. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries

    International Nuclear Information System (INIS)

    Ferrasse, Stephane; Segal, V.M.; Alford, Frank; Kardokus, Janine; Strothers, Susan

    2008-01-01

    Two areas are critical to promote equal-channel angular extrusion beyond the stage of a laboratory curiosity: (i) tool/processing design and scale up; (ii) development of new submicrometer-grained products. Both goals are pursued at Honeywell. The first case is the successful commercialization of ECAE for the production of sputtering targets from single phase alloys in the electronic industry. Blank dimensions are significantly larger than those reported in the literature. Other described applications are targeted to the increase of tensile strength, high-cycle fatigue and toughness in medium-to-heavily alloyed Al materials used in aerospace. In these alloys, the optimal properties can be reached with better understanding of the interplay between plastic deformation and precipitation mechanisms

  12. Self-fields in free-electron lasers with planar wiggler and ion-channel guiding

    International Nuclear Information System (INIS)

    Farokhi, B; Jafary, F B; Maraghechi, B

    2006-01-01

    A theory of self-electric and self-magnetic fields of a relativistic electron beam passing through a one-dimensional planar wiggler and an ion-channel is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analysed. New unstable orbits, in the first part of the group I orbits, are found. It is shown that for a low energy and high density beam the self-fields can produce very large effects. Stabilities of quasi-steady-state orbits are investigated by analytical and numerical methods and perfect agreement was found. The theory of small signal gain is used to derive a formula for the gain with the self-field effects included. A numerical analysis is conducted to study the self-field effects on the quasi-steady-state orbits and the gain

  13. Development of a multi-channel front-end electronics module based on ASIC for silicon strip array detectors

    International Nuclear Information System (INIS)

    Zhao Xingwen; Yan Duo; Su Hong; Qian Yi; Kong Jie; Zhang Xueheng; Li Zhankui; Li Haixia

    2014-01-01

    The silicon strip array detector is one of external target facility subsystems in the Cooling Storage Ring on the Heavy Ion Research Facility at Lanzhou (HIRFL-CSR). Using the ASICs, the front-end electronics module has been developed for the silicon strip array detectors and can implement measurement of energy of 96 channels. The performance of the front-end electronics module has been tested. The energy linearity of the front-end electronics module is better than 0.3% for the dynamic range of 0.1∼0.7 V. The energy resolution is better than 0.45%. The maximum channel crosstalk is better than 10%. The channel consistency is better than 1.3%. After continuously working for 24 h at room temperature, the maximum drift of the zero-peak is 1.48 mV. (authors)

  14. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds

    Science.gov (United States)

    Bogdanov, S.; Shalaginov, M. Y.; Akimov, A.; Lagutchev, A. S.; Kapitanova, P.; Liu, J.; Woods, D.; Ferrera, M.; Belov, P.; Irudayaraj, J.; Boltasseva, A.; Shalaev, V. M.

    2017-07-01

    Nitrogen-vacancy centers in diamond allow for coherent spin-state manipulation at room temperature, which could bring dramatic advances to nanoscale sensing and quantum information technology. We introduce a method for the optical measurement of the spin contrast in dense nitrogen-vacancy (NV) ensembles. This method brings insight into the interplay between the spin contrast and fluorescence lifetime. We show that for improving the spin readout sensitivity in NV ensembles, one should aim at modifying the far-field radiation pattern rather than enhancing the emission rate.

  15. Generation of a pulsed low-energy electron beam using the channel spark device

    Energy Technology Data Exchange (ETDEWEB)

    Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.; ElSabbagh, M. M.; Saudy, A. H. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Soliman, H. M. [Plasma and Nuclear Fusion Department, Atomic Energy Authority, Enshas (Egypt)

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  16. Free-electron laser with a plasma wave wiggler propagating through a magnetized plasma channel

    International Nuclear Information System (INIS)

    Jafari, S; Jafarinia, F; Mehdian, H

    2013-01-01

    A plasma eigenmode has been employed as a wiggler in a magnetized plasma channel for the generation of laser radiation in a free-electron laser. The short wavelength of the plasma wave allows a higher radiation frequency to be obtained than from conventional wiggler free-electron lasers. The plasma can significantly slow down the radiation mode, thereby relaxing the beam energy requirement considerably. In addition, it allows a beam current in excess of the vacuum current limit via charge neutralization. This configuration has a higher tunability by controlling the plasma density in addition to the γ-tunability of the standard FEL. The laser gain has been calculated and numerical computations of the electron trajectories and gain are presented. Four groups (I–IV) of electron orbits have been found. It has been shown that by increasing the cyclotron frequency, the gain for orbits of group I and group III increases, while a decrease in gain has been obtained for orbits of group II and group IV. Similarly, the effect of plasma density on gain has been exhibited. The results indicate that with increasing plasma density, the orbits of all groups shift to higher cyclotron frequencies. The effects of beam self-fields on gain have also been demonstrated. It has been found that in the presence of beam self-fields the sensitivity of the gain increases substantially in the vicinity of gyroresonance. Here, the gain enhancement and reduction are due to the paramagnetic and diamagnetic effects of the self-magnetic field, respectively. (paper)

  17. Focusing peculiarities of ion-channel guiding on a relativistic electron beam in a free-electron laser with a three-dimensional wiggler

    International Nuclear Information System (INIS)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2014-01-01

    In a free-electron laser the ‘natural focusing’ effect of a three-dimensional wiggler is too weak to confine the transport of a relativistic electron beam when the beam has a high current and consequently an external focusing system is often needed. In this paper we study the focusing peculiarities of an ion-channel guide field on an electron beam. Nonlinear simulations of an electron beam transport show that, compared to an axial guide magnetic field, the ion-channel guide field results in smaller velocity–space and configuration–space spreads. The intrinsic mechanism of this physical phenomenon is that the ion-channel guide field confines the trajectory of the electron motion resulting in a smaller instantaneous curvature radius and a slighter curvature-center excursion than an axial guide magnetic field does. It is also found that, unlike with an axial guide magnetic field, over-focusing may occur if the ion-channel guide field is too strong. (paper)

  18. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Directory of Open Access Journals (Sweden)

    M. Ali Asgarian

    2018-04-01

    Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  19. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Science.gov (United States)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  20. Techniques for improving material fidelity and contrast consistency in secondary electron mode helium ion microscope (HIM) imaging

    Science.gov (United States)

    Thompson, William; Stern, Lewis; Ferranti, Dave; Huynh, Chuong; Scipioni, Larry; Notte, John; Sanford, Colin

    2010-06-01

    Recent helium ion microscope (HIM) imaging studies have shown the strong sensitivity of HIM induced secondary electron (SE) yields [1] to the sample physical and chemical properties and to its surface topography. This SE yield sensitivity is due to the low recoil energy of the HIM initiated electrons and their resulting short mean free path. Additionally, a material's SE escape probability is modulated by changes in the material's work function and surface potential. Due to the escape electrons' roughly 2eV mean energy and their nanometer range mean free path, HIM SE mode image contrast has significant material and surface sensitivity. The latest generation of HIM has a 0.35 nanometer resolution specification and is equipped with a plasma cleaning process to mitigate the effects of hydrocarbon contamination. However, for surfaces that may have native oxide chemistries influencing the secondary electron yield, a new process of low energy, shallow angle argon sputtering, was evaluated. The intent of this work was to study the effect of removing pre-existing native oxides and any in-situ deposited surface contaminants. We will introduce the sputter yield predictions of two established computer models and the sputter yield and sample modification forecasts of the molecular dynamics program, Kalypso. We will review the experimental technique applied to copper samples and show the copper grain contrast improvement that resulted when argon cleaned samples were imaged in HIM SE mode.

  1. An electronic channel switching-based aptasensor for ultrasensitive protein detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongbo; Wang Cui [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wu Zaisheng, E-mail: wuzaisheng@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Lu Limin; Qiu Liping; Zhou Hui; Shen Guoli [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yu Ruqin, E-mail: rqyu@hnu.edu.cn [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-01-03

    Highlights: Black-Right-Pointing-Pointer Target IgE is successfully designed to serve as a barrier to separate enzyme from its substrate. Black-Right-Pointing-Pointer This sensing platform of electronic channel switching-based aptasensor can be simply manipulated. Black-Right-Pointing-Pointer The stable hairpin structure of anti-IgE aptamer is utilized to detect target IgE. Black-Right-Pointing-Pointer The sensor is ultrasensitive sensitivity, excellent selectivity and small volume of sample. Black-Right-Pointing-Pointer It is a powerful platform to be further expanded to detect more kinds of proteins and even cells. - Abstract: Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 Multiplication-Sign 10{sup -6} {mu}g mL{sup -1} (22.7 fM, 220 zmol in 10-{mu}L sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 Multiplication-Sign 10{sup -6} to 4.44 Multiplication

  2. Differential phase-contrast dark-field electron holography for strain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Denneulin, Thibaud, E-mail: thibaud.denneulin@cemes.fr; Houdellier, Florent, E-mail: florent.houdellier@cemes.fr; Hÿtch, Martin, E-mail: martin.hytch@cemes.fr

    2016-01-15

    Strain mapping is an active area of research in transmission electron microscopy. Here we introduce a dark-field electron holographic technique that shares several aspects in common with both off-axis and in-line holography. Two incident and convergent plane waves are produced in front of the specimen thanks to an electrostatic biprism in the condenser system of a transmission electron microscope. The interference of electron beams diffracted by the illuminated crystal is then recorded in a defocused plane. The differential phase recovered from the hologram is directly proportional to the strain in the sample. The strain can be quantified if the separation of the images due to the defocus is precisely determined. The present technique has the advantage that the derivative of the phase is measured directly which allows us to avoid numerical differentiation. The distribution of the noise in the reconstructed strain maps is isotropic and more homogeneous. This technique was used to investigate different samples: a Si/SiGe superlattice, transistors with SiGe source/drain and epitaxial PZT thin films. - Highlights: • DPC dark-field electron holography is set up with a condenser biprism. • The DPC phase is directly proportional to the lattice deformation. • The technique is illustrated with epitaxial SiGe and Pb(Zr,Ti)O{sub 3} samples. • The defocus allows us to control the strain sensitivity and the spatial resolution. • A solution is proposed to setup this technique with a post-specimen biprism.

  3. Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization

    Science.gov (United States)

    Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.

    2018-05-01

    The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a

  4. Coherent bremsstrahlung and channeling radiation from electrons of one to three MeV in silicon and gold

    International Nuclear Information System (INIS)

    Watson, J.E.

    1981-01-01

    The observation of sharp peaks in the x-ray spectrum from 1 to 3 MeV electrons striking thin single crystals of silicon and gold is reported. These peaks were observed in the range 1 to 25 keV. The peaks are of two different origins, both direct results of the periodic nature of the target crystals. The first kind of radiation is caused by the interference of incoming and scattered electron wave functions. Because of the periodicity of the target material there is a coherence effect for certain bremsstrahlung wave vectors. This coherent bremsstrahlung, though well known at very high electron energies, has never been adequately studied at electron energies below several hundred MeV. Detailed agreement between theoretical prediction and observation in silicon is shown. The second kind of radiation is caused by electrons channeled along major crystal axes. The electrons enter certain quantized orbits as they channel and may emit photons as a consequence of transitions between the various orbits. Observations of channeling radiation for various crystal axes in silicon are presented. Both phenomena were observed in gold, the first such observation for any metallic target

  5. Transformational Electronics: Towards Flexible Low-Cost High Mobility Channel Materials

    KAUST Repository

    Nassar, Joanna M.

    2014-05-01

    For the last four decades, Si CMOS technology has been advancing with Moore’s law prediction, working itself down to the sub-20 nm regime. However, fundamental problems and limitations arise with the down-scaling of transistors and thus new innovations needed to be discovered in order to further improve device performance without compromising power consumption and size. Thus, a lot of studies have focused on the development of new CMOS compatible architectures as well as the discovery of new high mobility channel materials that will allow further miniaturization of CMOS transistors and improvement of device performance. Pushing the limits even further, flexible and foldable electronics seem to be the new attractive topic. By being able to make our devices flexible through a CMOS compatible process, one will be able to integrate hundreds of billions of more transistors in a small volumetric space, allowing to increase the performance and speed of our electronics all together with making things thinner, lighter, smaller and even interactive with the human skin. Thus, in this thesis, we introduce for the first time a cost-effective CMOS compatible approach to make high-k/metal gate devices on flexible Germanium (Ge) and Silicon-Germanium (SiGe) platforms. In the first part, we will look at the various approaches in the literature that has been developed to get flexible platforms, as well as we will give a brief overview about epitaxial growth of Si1-xGex films. We will also examine the electrical properties of the Si1-xGex alloys up to Ge (x=1) and discuss how strain affects the band structure diagram, and thus the mobility of the material. We will also review the material growth properties as well as the state-of-the-art results on high mobility metal-oxide semiconductor capacitors (MOSCAPs) using strained SiGe films. Then, we will introduce the flexible process that we have developed, based on a cost-effective “trench-protect-release-reuse” approach, utilizing

  6. Analysis of defect structures in recrystallized amorphous layers of self-ion irradiated silicon by channeling and transmission electron microscopy measurements

    International Nuclear Information System (INIS)

    Pronko, P.P.; Rechtin, M.D.; Foti, G.; Csepregi, L.; Kennedy, E.F.; Mayer, J.W.

    1976-01-01

    The dominant defect structures in these reordered layers have been identified as twins whose dimensions change in size going from the surface to the interface. A high density of clustered defects is observed near the interface and is manifested by the presence of a heavy strain contrast in the electron micrograph image. Some fine polycrystallinity is also observed in the region of the interface between the regrown layer and the substrate. The 2 MeV 4 He channeling results indicate that, in this kind of defect arrangement, the standard analysis for reducing the channeling data cannot be applied. A more direct way to examine the depth dependence of the defect distribution by channeling is to follow the change in the minimum yield as a function of layer removal. The results obtained in this way show that the number of scattering centers (N/sub D//N/sub O/) is approximately constant in the first 3000 A and increases very fast near the interface. No tail in the scattering distribution is observed to penetrate the substrate when using the stripping procedure. This agrees generally with the TEM results

  7. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    Science.gov (United States)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  8. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  9. Study of unexplained hard photon production by electrons channelled in a crystal

    CERN Multimedia

    2002-01-01

    Our preceding experiment (NA33) designed to study the pair creation process in the interaction of high energy $\\gamma$ with a crystal in alignment conditions had revealed the existence of an unexpected peak in the radiation of 150 GeV e$^{-}$ beam for E$_{\\gamma}$/E$_{e^{-}} \\simeq$ 0.85 incident along the axis of a 185 $\\mu$m. Ge crystal and the photon multiplicity for the peak events has been measured to be M $\\simeq$ 5.7.\\\\ In NA42, in a 76 $\\mu$m crystal of the same crystallographic quality, the peak nearly disappears, and the photon multiplicity at x = 0.85 is only M $\\simeq$ 2.0. \\\\ The thickness dependence of the effect shows that the extrapolated multiplicity in the peak in a very thin crystal tends to unity. The high energy radiation peak emitted by axially channeled electrons in a thick crystal is then interpreted by the radiation cooling mechanism. \\\\ The extrapolation to zero thickness of these results will allow us to extract from the data the single $\\gamma$ radiation spectrum. The comparison o...

  10. Electron channeling X-ray microanalysis for cation configuration in irradiate magnesium alimate spinel

    International Nuclear Information System (INIS)

    Matsumura, S.; Soeda, T.; Zaluzec, N. J.; Kinoshita, C.

    1999-01-01

    High angular resolution electron channeling X-ray spectroscopy (HARECXS) was examined as a practical tool to locate lattice-ions in spinel crystals. The orientation dependent intensity distribution of emitted X-rays obtained by HARECXS is so sensitive to lattice-ion configuration in the illuminated areas that the occupation probabilities on specific positions in the crystal lattice can be determined accurately through comparison with the theoretical rocking curves. HARECXS measurements have revealed partially disordered cation arrangement in MgO·nAl 2 O 3 with n = 1.0 and 2.4. Most Al 3+ lattice-ions occupy the octahedral (VIII) sites, while Mg 2 lattice-ions reside on both the tetrahedral (IV) and the octahedral (VIII) sites. The structural vacancies are enriched in the IV-sites. Further evacuation of cations from the IV-sites to the VIII-sites is recognized in a disordering process induced by irradiation with 1 MeV Ne + ions up to 8.9 dpa at 870 K

  11. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    International Nuclear Information System (INIS)

    Kinoshita, K.; Kishida, S.; Yoda, T.

    2011-01-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V accel ) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni 1+δ O (δ 1+δ O (δ≥ 0).

  12. ANUSANSKAR: a 16 channel frontend electronics (FEE) ASIC targeted for silicon pixel array detector based prototype Alice FOCAL

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sourav; Chandratre, V.B.; Sukhwani, Menka; Pithawa, C.K.; Singaraju, Ramnarayan; Muhuri, Sanjib; Nayak, T.; Khan, S.A.; Saini, Jogendra

    2013-01-01

    ANUSANSKAR is a 16 channel pulse processing ASIC with analog multiplexed output designed in 0.7 um standard CMOS technology with each channel consisting of CSA, Semi Gaussian pulse shaper, DC cancellation and pedestal control, track and hold, output buffer blocks. The ASIC's analog multiplexed output can be read serially in daisy-chain topology. Testing, characterization and validation of ANUSANSKAR ASIC as readout for prototype ALICE forward calorimeter (FOCAL) has been carried out in PS beam line at CERN with up to 6 GeV of pion and electron beam. This paper describes the ANUSANSKAR ASIC along with the experimental results. (author)

  13. Lane fuzzy collision in channel with potential deformation by photon-phonon-electron excitation and sub-atomic control

    International Nuclear Information System (INIS)

    Shen Jing

    1998-01-01

    Collision between μ + and the μ - beams in the crystal are forbidden due to the two beams having different ''lanes'' in a channel. A laser pulse of ps-fs shocks lattice kernel vibration and dilates lattice electron distribution. It deforms the Lindhard's potential which is then expressed in a quantized form as the Huang-Zhu's potential[1]. The dynamic lanes can be made to overlap in a channel to allow collision without ductile fracture. This raises a new technology of sub-atomic information and control, which has been raised by T. D. Lee

  14. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  15. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-01-01

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots

  16. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    Science.gov (United States)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at product but at a rate at 300 K that is below our detection threshold (k differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  17. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent.

    Science.gov (United States)

    Nael, Kambiz; Fenchel, Michael; Krishnam, Mayil; Finn, J Paul; Laub, Gerhard; Ruehm, Stefan G

    2007-06-01

    To evaluate the technical feasibility of high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with highly accelerated parallel acquisition at 3.0 T using a 32-channel phased array coil, and a high relaxivity contrast agent. Ten adult healthy volunteers (5 men, 5 women, aged 21-66 years) underwent high spatial resolution CE-MRA of the pulmonary circulation. Imaging was performed at 3 T using a 32-channel phase array coil. After intravenous injection of 1 mL of gadobenate dimeglumine (Gd-BOPTA) at 1.5 mL/s, a timing bolus was used to measure the transit time from the arm vein to the main pulmonary artery. Subsequently following intravenous injection of 0.1 mmol/kg of Gd-BOPTA at the same rate, isotropic high spatial resolution data sets (1 x 1 x 1 mm3) CE-MRA of the entire pulmonary circulation were acquired using a fast gradient-recalled echo sequence (TR/TE 3/1.2 milliseconds, FA 18 degrees) and highly accelerated parallel acquisition (GRAPPA x 6) during a 20-second breath hold. The presence of artifact, noise, and image quality of the pulmonary arterial segments were evaluated independently by 2 radiologists. Phantom measurements were performed to assess the signal-to-noise ratio (SNR). Statistical analysis of data was performed by using Wilcoxon rank sum test and 2-sample Student t test. The interobserver variability was tested by kappa coefficient. All studies were of diagnostic quality as determined by both observers. The pulmonary arteries were routinely identified up to fifth-order branches, with definition in the diagnostic range and excellent interobserver agreement (kappa = 0.84, 95% confidence interval 0.77-0.90). Phantom measurements showed significantly lower SNR (P < 0.01) using GRAPPA (17.3 +/- 18.8) compared with measurements without parallel acquisition (58 +/- 49.4). The described 3 T CE-MRA protocol in addition to high T1 relaxivity of Gd-BOPTA provides sufficient SNR to support highly accelerated parallel acquisition

  18. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lifeng; Leng Shuai; Chen Lingyun; Kofler, James M.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Carter, Rickey E. [Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2013-04-15

    Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting human observer performance on specific tasks at various scan and reconstruction settings. The goal of this work was to investigate how well a channelized Hotelling observer (CHO) can predict human observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative reconstruction (IR) method. Methods: A 35 Multiplication-Sign 26 cm{sup 2} torso-shaped phantom filled with water was used to simulate an average-sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm) were placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast relative to background was -15 HU at 120 kV. The phantom was scanned 100 times using automatic exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner. After removing the three rods, the water phantom was again scanned 100 times to provide signal-absent background images at the exact same locations. By extracting regions of interest around the three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-side in randomized order. In total, 2100 trials were presented to both the model and human observers. Four medical physicists acted as human observers. For the model observer, the authors used a CHO with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading to a total of 60 channels. The performance predicted by the CHO was compared with that obtained by four medical physicists at each 2AFC study. Results: The human and model observers were highly correlated at each dose level for each lesion size for both FBP and IR. The

  19. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms

    International Nuclear Information System (INIS)

    Yu Lifeng; Leng Shuai; Chen Lingyun; Kofler, James M.; McCollough, Cynthia H.; Carter, Rickey E.

    2013-01-01

    Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting human observer performance on specific tasks at various scan and reconstruction settings. The goal of this work was to investigate how well a channelized Hotelling observer (CHO) can predict human observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative reconstruction (IR) method. Methods: A 35 × 26 cm 2 torso-shaped phantom filled with water was used to simulate an average-sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm) were placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast relative to background was −15 HU at 120 kV. The phantom was scanned 100 times using automatic exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner. After removing the three rods, the water phantom was again scanned 100 times to provide signal-absent background images at the exact same locations. By extracting regions of interest around the three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-side in randomized order. In total, 2100 trials were presented to both the model and human observers. Four medical physicists acted as human observers. For the model observer, the authors used a CHO with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading to a total of 60 channels. The performance predicted by the CHO was compared with that obtained by four medical physicists at each 2AFC study. Results: The human and model observers were highly correlated at each dose level for each lesion size for both FBP and IR. The Pearson's product

  20. A study on the treatment of X-ray contrast media by electron beam irradiation

    International Nuclear Information System (INIS)

    Kwon, Min Hwan; Yoon, Yeo Joon; Jo, Yun Ha; Kang, Joon Wun; Lee, Byungchul

    2011-01-01

    The compounds themselves are not considered to represent a significant risk to human health. But if there are large amount of PCPs with in iopromide, the ecology toxicity can be increased. Electron beam is highly effective for degradation of ICBM. E-beam absorbed dose of 22 kGy was required to achieve the 95% removal of 100 μm ICBM. OH· Quenching test The removal of ICBM be increased by scavenging OH· Alkalinity has not the adverse influence to remove the ICBM. The e ap -is major reactant to remove the ICBM. Mineralization of ICBM Mineralization is major performed by OH·. E-beam is better than Mope-UV for the removal of TCA, approximately 13% of removal efficiency. Further Studies Biodegradability according to the E-beam irradiation. Degradation pathway of the ICBM with various conditions. Iopromide and iopamidol are kind of ICBM. In Germany, a total of about 500 ton of all approved ICBM compounds is used annually, with iopromide accounting for 103 ton

  1. A study on the treatment of X-ray contrast media by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Min Hwan; Yoon, Yeo Joon; Jo, Yun Ha; Kang, Joon Wun [Yonsei Univ., Wonju (Korea, Republic of); Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    The compounds themselves are not considered to represent a significant risk to human health. But if there are large amount of PCPs with in iopromide, the ecology toxicity can be increased. Electron beam is highly effective for degradation of ICBM. E-beam absorbed dose of 22 kGy was required to achieve the 95% removal of 100 {mu}m ICBM. OH{center_dot} Quenching test The removal of ICBM be increased by scavenging OH{center_dot} Alkalinity has not the adverse influence to remove the ICBM. The e{sub ap}-is major reactant to remove the ICBM. Mineralization of ICBM Mineralization is major performed by OH{center_dot}. E-beam is better than Mope-UV for the removal of TCA, approximately 13% of removal efficiency. Further Studies Biodegradability according to the E-beam irradiation. Degradation pathway of the ICBM with various conditions. Iopromide and iopamidol are kind of ICBM. In Germany, a total of about 500 ton of all approved ICBM compounds is used annually, with iopromide accounting for 103 ton.

  2. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    International Nuclear Information System (INIS)

    Kalmykov, S Y; Shadwick, B A; Davoine, X; Ghebregziabher, I; Lehe, R; Lifschitz, A F

    2016-01-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ∼10 −5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ∼10 7 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV. (paper)

  3. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  4. Multichannel marketing: an experiment on guiding citizens to the electronic channels

    NARCIS (Netherlands)

    Teerling, Marije L.; Pieterson, Willem Jan

    2010-01-01

    Governments have a variety of channels at their disposal to help them interact with their citizens. Having realized that citizens still prefer the traditional channels, governments are now focusing on ways to lead them to the web. Previously, we have shown that citizens prefer the use of soft

  5. Nonlinear State of Sausage-like Instability of Electron Current Channels in Fast Ignition Concept of Inertial Fusion

    International Nuclear Information System (INIS)

    Jain, Neeraj; Das, Amita; Kaw, Predhiman; Sengupta, Sudip

    2003-01-01

    This paper deals with a detailed fluid simulation study of linear and nonlinear aspects of the velocity shear modes in electron current channels in a two dimensional geometry. Simulation results clearly show the flattening of flow profile and the development of sausage like structures (kink structures, which are intrinsically three dimensional excitations, are ruled out in the present simulations) which grow linearly and eventually saturate by nonlinear effects. An analytic understanding of the nonlinear saturation mechanism is also provided

  6. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu

    1998-01-01

    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  7. A study of various types of electronics for drift chambers: development of a test bench and results for 1500 channels

    International Nuclear Information System (INIS)

    Kostarakis, Panayotis.

    1976-01-01

    An electronic chain to be connected with drift chambers is studied for use in High Energy Physics. Studies have been made to define the best components to be put into the elements (amplifiers, cables, TDC...). Measurements have been done to determine the characteristics of the chosen elements. A test apparatus has been built to control each channel (about 1550). Finally all chain elements have been tested [fr

  8. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  9. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.

    Science.gov (United States)

    Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki

    2011-01-01

    Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Photoionisation detection of single 87Rb-atoms using channel electron multipliers

    International Nuclear Information System (INIS)

    Henkel, Florian Alexander

    2011-01-01

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p ion =0.991 within an ionisation time of t ion =386 ns is achieved for a single 87 Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of η atom =0.991 within a detection time of t det =415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral 87 Rb-atoms via photoionisation detection with an estimated detection efficiency η=0.982 and a detection time of t tot = 802 ns. Although initially developed for single 87 Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any atomic or molecular species. As efficient

  11. Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Florian Alexander

    2011-09-02

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p{sub ion}=0.991 within an ionisation time of t{sub ion}=386 ns is achieved for a single {sup 87}Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of {eta}{sub atom}=0.991 within a detection time of t{sub det}=415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral {sup 87}Rb-atoms via photoionisation detection with an estimated detection efficiency {eta}=0.982 and a detection time of t{sub tot} = 802 ns. Although initially developed for single {sup 87}Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any

  12. Study of electron beams within ISTTOK tokamak by means of a multi-channel Cherenkov detector; their correlation with hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: Lech.Jakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Malinowski, K.; Sadowski, M.J.; Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2010-11-11

    The paper describes experimental studies of electron beams emitted from a plasma torus within the ISTTOK tokamak, which were performed by means of a new four-channel detector of the Cherenkov type. A range of electron energy was estimated. There were also measured hard X-rays, and their correlation with the fast run-away electron beams was investigated experimentally.

  13. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.

    Science.gov (United States)

    Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H

    2017-08-01

    Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence

  14. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    Science.gov (United States)

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0

  15. Effects of self-fields on electron trajectory and gain in two-stream electromagnetically pumped free-electron laser with ion channel guiding

    International Nuclear Information System (INIS)

    Saviz, S.; Ghorannevis, M.; Aghamir, Farzin M.; Mehdian, H.

    2011-01-01

    A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω-circumflex corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Simulation of channeling and radiation of 855 MeV electrons and positrons in a small-amplitude short-period bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrei V., E-mail: korol@mbnexplorer.com [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Bezchastnov, Victor G. [A.F. Ioffe Physical-Technical Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg (Russian Federation); Peter the Great St. Petersburg Polytechnic University, Politechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Sushko, Gennady B.; Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany)

    2016-11-15

    Channeling and radiation are studied for the relativistic electrons and positrons passing through a Si crystal periodically bent with a small amplitude and a short period. Comprehensive analysis of the channeling process for various bending amplitudes is presented on the grounds of numerical simulations. The features of the channeling are highlighted and elucidated within an analytically developed continuous potential approximation. The radiation spectra are computed and discussed.

  17. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    T. N. Wistisen

    2016-07-01

    Full Text Available We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111 plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  18. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    Science.gov (United States)

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  20. The Use of Celebrity Endorsement with the Help of Electronic Communication Channel (Instagram) : Case study of Magnum Ice Cream in Thailand

    OpenAIRE

    Kutthakaphan, Rangsima; Chokesamritpol, Wahloonluck

    2013-01-01

    TITLE The Use of Celebrity Endorsement with the Help of Electronic Communication Channel (Instagram): Case Study of Magnum Ice Cream Thailand RESEARCH QUESTION How does the use of celebrity endorsement with the help of electronic communication channel (Social media: Instagram) affect the buying behavior of generation Y consumers in Thailand? STRATEGIC QUESTION How can marketers use this marketing technique in an effective way to increase the number of consumers? PURPOSE OF THE STUDY The pu...

  1. Monolithic Chip System with a Microfluidic Channel for In Situ Electron Microscopy of Liquids

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew; Mølhave, Kristian

    2014-01-01

    sandwiched microchips with thin membranes. We report on a new microfabricated chip system based on a monolithic design that enables membrane geometry on the scale of a few micrometers. The design is intended to reduce membrane deflection when the system is under pressure, a micro fluidic channel for improved...

  2. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  3. Channelling phenomenon in the gamma irradiated Benzo-quinone and other compounds observed under the scanning electron microscope

    International Nuclear Information System (INIS)

    Suleiman, Y.M.

    1984-01-01

    Scanning Electron Microscope (S.E.M.), has been used to examine the gamma irradiated pure crystals of Benzo-quinone and other compounds in the polycrystaline form. After gamma irradiation, shallow lines (channels) were observed on the crystal's surfaces when the crystal layers arrangements are parallel to the photons beam direction. Holes were also observed when those layers of the crystals are in the nonparallel case. The phenomenon has been studied and analysed in connected with the H-atom bonds disruption, and H-atoms migration through the crystal's layers. (author)

  4. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  5. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  6. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NARCIS (Netherlands)

    Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-01-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons

  7. Optical emissions from an ionized channel produced by an electron beam

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1977-01-01

    Quantitative measurements of the visible light generated by the Astron beam (5 MeV, 400 A) in passing through 500 torr air and nitrogen are reported. Experiments show that in the presence of the beam, the light is from .01 to 0.1 percent sun's brightness. After the beam, the light decays extremely rapidly. The size and position of the beam in the gas can be determined from observations of the channel light

  8. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan; Khalidin, Zulkeflee

    2014-01-01

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J SC ) compared with their single cells. We found out that the key to achieving higher J SC in large area devices is optimized photoelectrode volume (V D ), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J SC and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V D (∼3.36 × 10 −4 cm 3 ) without using any metallic grid or a special interconnections

  9. Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Zhang Ya-Man; Chen Wei-Wei; Wang Xin-Hua; Yuan Ting-Ting; Pang Lei; Liu Xin-Yu

    2015-01-01

    In this paper, the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors (HEMTs), featuring a 50-nm and a 150-nm GaN thick channel layer, respectively, are compared. The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage (BV off ). Device simulation indicates that thickening the channel increases the drain-induced barrier lowering (DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate. The increase of BV off in the thick channel device is due to the reduction of the electric field. These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BV off in AlGaN/GaN HEMTs. (paper)

  10. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  11. The Influence of Non-Equilibrium Excitation on the Electron Density in One-Dimensional MFD Channel Flow

    Energy Technology Data Exchange (ETDEWEB)

    Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)

    1966-10-15

    In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)

  12. Towards the Rational Design of MRI Contrast Agents: Electron Spin Relaxation Is Largely Unaffected by the Coordination Geometry of Gadolinium(III)–DOTA-Type Complexes

    Science.gov (United States)

    Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean

    2009-01-01

    Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704

  13. Characterisation of radiation damage in perovskite using high angular resolution electron channeling x-ray spectroscopy (HARECXS)

    International Nuclear Information System (INIS)

    Smith, K.L.; Zaluzec, N.J.

    2002-01-01

    Full text: Predicting and/or modelling the occurrence of radiation damage induced defects and their effects on physical properties (eg. amorphisation induced swelling, electrical conductivity., optical response etc.) in ceramic phases requires knowledge of the displacement energies, E d , of cations and anions in those phases. In this study, High Angular Resolution Electron Channelling X-ray Spectroscopy (HARECXS) spectra were collected from perovskite (CaTiO 3 ) samples that had been exposed to high-energy electrons or high-energy heavy ions. Calculations based on experimental data were then used to indicate the E d of the cations in perovskite. The HARECXS measurements were conducted on a Philips EM 420T AEM (LaB6 source, operated at 120 kV) fitted with an EDAX ultra thin window Si(Li) detector. The specimen was first manually oriented to an appropriate zone axis. Then control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, Typical acquisition times for a complete two-dimensional scan were 18-24 hours, while one dimensional scans ranged from 1-5 hours. Our experiments established that: a) HARECXS can detect radiation damage in perovskite caused by either high energy heavy ions or high energy electrons, b) the HARECXS signature of perovskite shows a systematic change with ion dose, c) HARECXS detects damage in perovskite that has been irradiated with 900kV electrons and does not detect damage in perovskite that has been irradiated with 620kV electrons, indicating the existance of an electron irradiation damage threshold. Calculations based on the latter results indicate that the displacement energy, E d of calcium and titanium in perovskite lie between 50 and 85eV. Copyright (2002) Australian Society for Electron Microscopy Inc

  14. Progress on channel spark development and application of pulsed electron beam deposition (PED) in the field of medical coating work

    International Nuclear Information System (INIS)

    Schultheiss, Christoph; Buth, Lothar-H.-O.; Frey, Wolfgang; Bluhm, Hansjoachim; Mayer, Hanns-G.

    2002-01-01

    A promising source for Pulsed Electron Beam Deposition (PED) is the channel spark. Recent improvements helped to reduce beam instabilities which up to now have limited the life time of the system. The beam power could be increased and because of better beam quality the transport length of the beam is increased from 1 to several centimeters (up to 10 cm). Together with other improvements on the triggering system and beam transport in dielectric tubes, the channel spark approaches industrial standards. An overview of actual applications in research and industry will be presented. An attractive feature of the pulsed electron beam thin film deposition is the conservation of stoichiometry even during deposition of multi-component earth-alkali and alkali glasses. Specially developed glasses like BIOGLAS registered have the ability to anchor soft living tissue at the surface. In form of a bulk material bio active glasses are brittle limiting its applications. Contrary to brittle bulk material a thin layers on medical implants exhibits reliable bio-functionality. Coating of implants with this category of materials is subject of the European INCOMED project (Innovative Coating of Medical Implants with Soft Tissue Anchoring Ability) which just has started

  15. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    Science.gov (United States)

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  16. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  17. 2.5D direct laser engraving of silicone microfluidic channels for stretchable electronics

    OpenAIRE

    Nagels, Steven; Deferme, Wim

    2017-01-01

    Stretchable and bendable sensors have become increasingly relevant as the technology behind them matures rapidly from lab based to industrially applicable production principles. In a broader sense, stretchable electronics promises to increase the way we are surrounded by and interact with our devices. Electronic circuits will be deployed in environments where we require them to dynamically flex, bend, stretch, compress, twist and - quite possibly - even fold; where they have to demonstrate a ...

  18. Contrasts between channels and backwaters in a large, floodplain river: Testing our understanding of nutrient cycling, phytoplankton abundance, and suspended solids dynamics

    Science.gov (United States)

    Houser, Jeff N.

    2016-01-01

    In floodplain rivers, variability in hydraulic connectivity interacts with biogeochemistry to determine the distribution of suspended and dissolved substances. Nutrient, chlorophyll a, and suspended solids data spanning longitudinal (5 study reaches across 1300 river km), lateral (main channel and backwaters), and temporal (1994–2011) gradients in the Upper Mississippi River (UMR) were used to examine the extent to which observed differences between the main channel and backwaters were consistent with expectations based on current understanding of biogeochemical processes in large rivers. For N and P, the results largely conformed to expectations. N concentrations were greater in the main channel than in the backwaters in 82 to 96% of the observations across river reaches. Maximum TP concentrations generally occurred in backwaters during summer, when backwater TP often exceeded that of the main channel. Flux of P from sediments may be a substantial source of water-column P in UMR backwaters in summer. The data for suspended solids and chlorophyll a suggest that some refinements are needed of our understanding of ecosystem processes in large rivers. During low-discharge conditions, concentrations of inorganic suspended solids often were greater in backwaters than in the main channel, suggesting the importance of sediment resuspension. Chlorophyll a concentrations were usually greater in backwaters than in the main channel, but exceptions indicate that phytoplankton abundance in the main channel of the UMR can sometimes be greater than is typically expected for large rivers.

  19. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.V.; Hoppe, K.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.S.; Chandra, A.; Chemseddine, A.; Zrineh, A.; Biswas, A.; Faupel, F.; Chadderton, L.T.

    2004-01-01

    The impact of swift heavy ions onto silicon oxide and silicon oxynitride on silicon creates etchable tracks in these insulators. After their etching and filling-up with highly resistive matter, these nanometric pores can be used as charge extraction or injection paths towards the conducting channel in the underlying silicon. In this way, a novel family of electronic structures has been realized. The basic characteristics of these 'TEMPOS' (=tunable electronic material with pores in oxide on silicon) structures are summarized. Their functionality is determined by the type of insulator, the etch track diameters and lengths, their areal densities, the type of conducting matter embedded therein, and of course by the underlying semiconductor and the contact geometry. Depending on the TEMPOS preparation recipe and working point, the structures may resemble gatable resistors, condensors, diodes, transistors, photocells, or sensors, and they are therefore rather universally applicable in electronics. TEMPOS structures are often sensitive to temperature, light, humidity and organic gases. Also light-emitting TEMPOS structures have been produced. About 37 TEMPOS-based circuits such as thermosensors, photosensors, humidity and alcohol sensors, amplifiers, frequency multipliers, amplitude modulators, oscillators, flip-flops and many others have already been designed and successfully tested. Sometimes TEMPOS-based circuits are more compact than conventional electronics

  20. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  1. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    Science.gov (United States)

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  2. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  3. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    Astier, P.

    1987-09-01

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst) [fr

  4. Multi-channel electronics for secondary emission grid profile monitor of TTF linac

    International Nuclear Information System (INIS)

    Reingardt-Nikoulin, P.; Gaidash, V.; Mirzojan, A.; Kocharyan, V.; Noelle, D.

    2004-01-01

    According to the TTF beam experimental program, a measurement f the time dependence of the energy spread within the bunch train should be done by means of a standard device for profile measurements, that is Secondary Emission Grid (SEMG). SEMG on the high-energy TTF beam is placed in the focal plane of the magnet spectrometer. It should measure the total energy spread in the range from 0.1% up to a few percents for any single or any group of electron bunches in the bunch train of TTF Linac. SEMG profile measurements with new high sensitive electronics are described. Beam results of SEMG Monitor test are given for two modifications of an electronic preamplifier

  5. Influence of carrier density on the electronic cooling channels of bilayer graphene

    Science.gov (United States)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  6. Development of a six channel Fabry-Perot interferometer for continuous measurement of electron temperature of Tokamak plasma. Application to current diffusion study

    International Nuclear Information System (INIS)

    Talvard, M.

    1984-10-01

    It is shown how the properties of the electron cyclotron emission of a tokamak plasma can be used to measure the electron temperature. The design of a six channel Fabry-Perot interferometer is then described. This interferometer allows the measurement of the time evolution of the electron temperature profile of the plasma in the TFR tokamak. Using this technique interesting results have been obtained concerning the current penetration during the start up phase of a tokamak discharge [fr

  7. Analyses of electron runaway in front of the negative streamer channel

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2017-01-01

    X-and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper...

  8. Electron-molecular cation reactive collisions: from channel mixing to competitive processes

    International Nuclear Information System (INIS)

    Motapon, O; Tamo, F O Waffeu; Backodissa, D; Chakrabarti, K; Mezei, J. Zs; Lique, F; Schneider, I F; Tudorache, D; Bultel, A; Tchang-Brillet, L; Dulieu, O; Tennyson, J; Wolf, A; Urbain, X

    2011-01-01

    The competition between dissociative recombination, vibrational excitation, and dissociative excitation of molecular cations in electron-impact collisions is discussed within the formalism of the Multichannel Quantum Defect Theory. Illustrative results are given for the HD + /HD and CO + /CO systems.

  9. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    International Nuclear Information System (INIS)

    Vagin, E S; Grigoriev, V P

    2015-01-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed. (paper)

  10. Non-channel magnetron gun as the electron source for resonance linear accelerator

    International Nuclear Information System (INIS)

    Ivanov, G.M.; Makhnenko, L.A.; Cherenshchikov, S.A.

    1999-01-01

    Studies on the magnetron gun with a cold cathode being part of linear accelerator on the travelling wave are described. Two modes of the gun operation differing by presence of UHF field of the pre-buncher near the gun are observed. In the mode without UHF field the short (about 2 ns) pulses of accelerated electrons with amplitude up to 0.5 A at the gun current up to 20 A were obtained. The presence of UHF field near the gun makes it possible to obtain the beam of higher duration (up to 1.0 μs), but with current up to 20 mA at the accelerator outlet and up to 1 A at the gun outlet. The mechanism of the gun operation is concerned with the secondary-electron current increase and setting self-sustaining secondary emission. Gun characteristics under study are acceptable for the purposes of injection into accelerator [ru

  11. Photoionization and Electron Transfer of Biphenyl within the Channels of Al-ZSM-5 Zeolites.

    Science.gov (United States)

    Gener, Isabelle; Buntinx, Guy; Brémard, Claude

    1999-06-14

    Evidence of the photogenerated long-lived biphenyl radical and a trapped electron in the void space of aluminated nonacidic ZSM-5 zeolites has been obtained from the time-resolved UV/Vis absorption, Raman scattering, and EPR spectra. The restoration of the ground states implicates the existence of long-lived positive holes in the framework. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  12. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel.

    Science.gov (United States)

    Cieslak, John A; Focia, Pamela J; Gross, Adrian

    2010-02-23

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

  13. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  14. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    Science.gov (United States)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  15. The detection of hard x-rays (10-140 KeV) by channel plate electron multipliers

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1976-12-01

    Results are presented indicating that hard X-rays in the energy range 10 to 50 keV can be detected with good efficiency (5 to 10%) in channel plate electron multipliers (CPEM). From 50 keV to 140 keV the detection efficiency lies in the range 1 to 2%. A simple physical model is developed which indicates that not only can good detection efficiency be obtained but that very good X-ray imaging is possible. The model predicts that with further development, a wideband, hard X-ray detector can be realised with a detection efficiency in the range 5 to 20% and spatial response better than 10 lp/mm in the energy range 10 to 140 keV. (author)

  16. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Asubar, Joel T., E-mail: joel@rciqe.hokudai.ac.jp; Yatabe, Zenji; Hashizume, Tamotsu [Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan); Japan Science and Technology Agency (JST), CREST, 102-0075 Tokyo (Japan)

    2014-08-04

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8 K-mm/W at ambient temperature of ∼350 K and power dissipation of ∼9 W/mm. This value compares well to 4.1 K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  17. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  18. Detector system for particle or quantum radiation with a multitude of channel secondary electron multipliers arranged in the form of a laminar matrix

    Energy Technology Data Exchange (ETDEWEB)

    Manley, B W; Burgess, H

    1979-01-11

    The detector system may be used in diagnostic X-ray or gamma radiography. It essentially consists of a great number of channel secondary electron multipliers assigned to which are two electrodes consisting of parallel electrode strips each. The strips in one electrode are some distance away from those of the other electrode and are shifted by 90/sup 0/ with respect to them. Each electrode strip has got a connection joined to a charge detection circuit. This charge detection circuit contains a logic circuit by which a reliable assessment of the surface distribution of the particles resp. quanta hitting the channel secondary electron multipliers is made possible.

  19. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  20. Analysis of Z boson production in the electron channel with the CMS detector at the LHC

    CERN Document Server

    Marchica, Carmelo

    2010-01-01

    A Monte Carlo (MC) analysis of Z bosons, based on the selection of electrons and positrons which will be produced at the LHC, is presented. In doing so, a full simulation based on the CMS detector was taken into account. Owing to a lack of data, a small dataset, so called pseudo data, with an integrated luminosity of 10 pb 1 , at a center-of-mass energy of 10 TeV, was used. A simple and robust electron/positron selection procedure for the central part of the detector was devised. It was shown that this selection leads to practically background free sample of Z bosons. Based on the Z boson counting, with a statistical uncertainty of 3%, an eciency correction of 3% and the uncertainty on the integrated luminosity of about 11%, the Z boson cross-section could be calculated and compared to its theoretical value. In addition, the same counting method was used to calculate the integrated luminosity to 6%, which is mainly due to a theoretical uncertainty of about 5%. Various distributions, such as rapidity and trans...

  1. The effects of drain scatterings on the electron transport properties of strained-Si diodes with ballistic and non-ballistic channels

    International Nuclear Information System (INIS)

    Yasenjan Ghupur; Mamtimin Geni; Mamatrishat Mamat; Abudukelimu Abudureheman

    2015-01-01

    The effects of multiple scattering on the electron transport properties in drain regions are numerically investigated for the cases of strained-Si diodes with or without scattering in the channel. The performance of non-ballistic (with scattering) channel Si-diodes is compared with that of ballistic (without scattering) channel Si-diodes, using the strain and scattering model. Our results show that the values of the electron velocity and the current in the strain model are higher than the respective values in the unstrained model, and the values of the velocity and the current in the ballistic channel model are higher than the respective values in the non-ballistic channel model. In the strain and scattering models, the effect of each carrier scattering mechanism on the performance of the Si-diodes is analyzed in the drain region. For the ballistic channel model, our results show that inter-valley optical phonon scattering improves device performance, whereas intra-valley acoustic phonon scattering degrades device performance. For the strain model, our results imply that the larger energy splitting of the strained Si could suppress the inter-valley phonon scattering rate. In conclusion, for the drain region, investigation of the strained-Si and scattering mechanisms are necessary, in order to improve the performance of nanoscale ballistic regime devices. (paper)

  2. Coupled-channel optical calculation of electron-hydrogen scattering: elastic scattering from 0.5 to 30 eV

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1991-01-01

    A coupled-channel optical method for electron-atomic hydrogen scattering is presented in a form that treats both the projectile and the target electrons symmetrically. Elastic differential cross sections are calculated at a range of energies from 0.5 to 30 eV and are found to be in complete agreement with the absolute measurements, previously reported. Total and total ionization cross sections are also presented. 13 refs., 2 tabs., 2 figs

  3. Search for electroweak top quark production in the electron + jets channel in the D0 experiment at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Busato, Emmanuel [Paris Univ. (France)

    2005-04-01

    The top quark, whose mass approaches the electroweak symmetry breaking scale, is by far the heaviest known elementary particle. New physics is therefore expected to have its most important effect in the top sector. The Tevatron is, currently, the only collider able to produce the top quark. Among all possible production processes in the standard model, the top-antitop pair production via strong interaction, first observed in 1995, is the one with the largest cross section. The production via electroweak interaction (known as single top production), more difficult to extract from the background because of a lower cross section and of a lower signal to background ratio, has never been observed. In this thesis, we have searched for these processes by studying proton-antiproton collisions at $\\sqrt{s}$ =1.96 TeV produced by the Tevatron and detected with the DØ detector. The experimental study of the top quark is very sensitive to the quality of the data taken by the calorimeter. This detector showed, at the beginning of the Run II, rather important noise problems. Having identified the origin of the noise, new treatments at the offline level were implemented and their effects studied. It has been shown that these treatments reduce very significantly the effect of the noise in the reconstruction of physical quantities without notable degradation of the signal. Within the standard model, the top quark decays into W b with a branching ratio close to 100%. Leptonic decays of the into electron + neutrino have been used to identify the from the top decay. The main backgrounds to the single top signal ( +jets and QCD) are made essentially of light quark jets in the final state. Two ..-tagging algorithms have therefore been applied in order to improve the signal to background ratio. No evidence for electroweak top quark production has been found. Upper limits at the 95 % confidence level on the observed (expected) cross sections have be computed. They are found to be 14

  4. The structure of dodecagonal (Ta,V){sub 1.6}Te imaged by phase-contrast scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Mueller, E.; Wepf, R.A. [Electron Microscopy ETH Zurich (EMEZ), Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Conrad, M.; Reich, C.; Harbrecht, B. [Department of Chemistry and Centre of Materials Science, Philipps-Universitaet, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Nesper, R. [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2012-10-15

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principle of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.

  5. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    Science.gov (United States)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  6. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    Directory of Open Access Journals (Sweden)

    Abdullah Alzahrani

    2015-10-01

    Full Text Available This study presents the use of a multi-channel opto-electronic sensor (OEPS to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA, and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05; a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001; the bias of BAA 0.85 bpm, the standard deviation (SD 9.20 bpm, and the limits of agreement (LOA from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001; the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  7. Emittance growth of an electron beam in a periodic channel due to transfer of longitudinal energy to transverse energy

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    Most discussions about emittance growth and halo production for an intense electron beam in a periodic focusing channel assume that the total transverse energy is constant (or, in other words, that the transverse and longitudinal Hamiltonians are separable). Previous analyses that include variations in the total transverse energy are typically based on a transverse-longitudinal coupling that is either from two-dimensional space-charge modes or particle-particle Coulomb collisions. With the space-charge modes, the energy exchange between the transverse and longitudinal directions is periodic, and of constant magnitude. The total energy transfer for the case of the Coulomb collisions is negligible. This limited increase of energy in the transverse direction from these other effects will limit the amount of transverse emittance growth possible. In this paper, the authors investigate a mechanism in which there is a continual transfer of energy from the longitudinal direction to the transverse direction, leading to essentially unlimited potential transverse emittance growth. This mechanism is caused by an asymmetry of the beam's betatron motion within the periodic focusing elements. This analysis is based on thermodynamic principles. This mechanism exists for both solenoids and quadrupole focusing, although only solenoid focusing is studied here

  8. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  9. Design and features of the target tracker of the Opera's target: study of the electron channel events

    International Nuclear Information System (INIS)

    Chon-Sen, N.

    2009-01-01

    Neutrino oscillations are now well acknowledged, the purpose of the Opera experiment is to show how ν τ appear in a ν μ beam. The ν μ beam is produced at CERN and crosses the earth crust on a distance of 732 km before being detected in the Gran-Sasso underground laboratory. The Opera experiment uses the technique of the photographic emulsion. The detector target is a series of walls of lead bricks, each brick being made of photographic emulsions intercalated with lead sheets. A target tracker enables the localization of the brick in which the neutrino interaction has happened. As soon as the brick is found, the brick is removed from the detector and the emulsion is developed and analysed. the target tracker is made up of plastic scintillator bars on which optic fibers are stuck to collect photons and send them to photomultipliers. The main purpose of this work is the calibration of the target tracker. The first chapter introduces the standard model, the neutrino and the neutrino oscillation phenomenon. The second chapter reviews the neutrino experiments worldwide. The third chapter describes the Opera experiment while chapter 4 and 5 are dedicated to the design and operation of the target tracker. The last chapter studies through simulation the behaviour of the target tracker when submitted to an electron beam in order to use it as a complementary tool for the identification of the τ → e channel. (A.C.)

  10. Dissociative electron attachment to DNA-diamine thin films: Impact of the DNA close environment on the OH{sup −} and O{sup −} decay channels

    Energy Technology Data Exchange (ETDEWEB)

    Boulanouar, Omar; Fromm, Michel; Mavon, Christophe [UMR CNRS 6249 Chrono-Environnement, Laboratoire de Chimie Physique et Rayonnements – Alain Chambaudet, LRC CEA, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex (France); Cloutier, Pierre; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4 (Canada)

    2013-08-07

    We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H{sup −}, O{sup −}, and OH{sup −} yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O{sup −} channel and in counter-part increases considerably the desorption of OH{sup −}. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons.

  11. Morfologia do Mycobacterium leprae hominis e do M. leprae muris: estudo baseado na microscopia electrônica e de contraste de fases Morphology of Mycobacterium leprae hominis and M. leprae muris based on electron and phases contrast microscopy

    Directory of Open Access Journals (Sweden)

    H. C. de Souza-Araújo

    1955-12-01

    Full Text Available Hansen's Bacillus: By electron microscopy this bacillus shows membrane and halo, this being more visible when sorrounding the globi or bundles of bacilli; shows, also, free granules of various sizes which were before considered as dust of the dyes; shows external granules bound with the membrane and some times branching. By phases contrast microscopy examining leproma suspensions and subcataneous lymph at 400 x we saw many free granules with intense rotatory movement; granulated bacilli with screw, skip or stroke motion, producing slow progressive motion. All such elementes are surrounded by a halo, corresponding to the classical gloea. By a patient and delayed examination we were able to see that the internal granules are motile and help the progression of the bacilli, giving the impression that the cytoplasm is liquid. By a lasting observation we could see the larger granules form prolapse, like a pseudopode and abandon the bacilli and going in very rapid rotatory movement. There are branched bacilli; there are pedunculated fred granules like comets. The addition of a drop of formol at the preparation stops all movements. Stefansky's Bacillus: Repeated examination by RCA electron microscope, type EMU-25 of fresh suspensions of rat lepromas, led us to confirm the close relationship between human and murine leprosy agents. We examined also material from carabo (Lepra bubalorum from Java, but due to fixation, the material was unsuitable for comparative studies. The Stefansky's bacilli showed also emmbranes and halos, internal or external granules (smaller than those of Hansen's bacillus. The bacilli shaded by chromium look thicker and shorter than those of Hansen. Due to electron bombardment both, Hansen's and Stefansky's baccilli suffer considerable alterations in their structure, showing black barrs of chromatin condensation at their extremities as also in their centers. By phase microscopy the Stefansky's bacilli showed elements with 1, 2

  12. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  13. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    Science.gov (United States)

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  14. A study of mini-channel thermal module design for achieving high stability and high capability in electronic cooling

    International Nuclear Information System (INIS)

    Wang, Hsiang-Li; Wu, Huang-Ching; Kong Wang, S.; Hung, Tzu-Chen; Yang, Ruey-Jen

    2013-01-01

    In this study, pressure drop and heat transfer characteristics of multiple-mini-channel thermal modules were investigated quantitatively. The flow channels, which were mounted on one side of a copper test section, were designed in three types: (1) the first module consists of fourteen straight and parallel channels with a rectangular cross section of 1 mm × 3 mm, (2) the second module consists of fourteen gradually widening channels with a U-shaped cross section starting from an inlet section of 0.5 mm × 3 mm and increasing to an outlet section of 1 mm × 3 mm, and (3) the third module is similar to the second module except for the rectangular cross section. Visual observations and the measured boiling curves show that, in the straight channels, some bubbles cannot be flushed out of the channels fast enough, so they tend to flow back and accumulate at the entrance. This results in a rather dry channel condition for CHF (critical heat flux) to occur for the cases with low flow rates. For the widening channel modules, no occurrence of CHF was observed under an even lower operating pressure in an attempt to induce the incipient of CHF. Under a similar temperature rise at the channel exit, the maximum heat removal rate of the widening channels reaches 27 W/cm 2 which is at least twice as high as that of the straight channels. -- Highlights: ► Three mini-channel modules were designed, and experiments were carried out on pressure drop and heat transfer characteristics. ► Comparisons were made between one regular straight-channel module and two widening-channel modules with rectangular and U-shaped cross sections. ► It was found that the widening channels yield a stable two-phase heat transfer mode with no occurrence of CHF due to a better movement of the bubbles and the absence of backflow which causes accumulation of bubbles commonly occur at the entrance of the straight-shaped parallel channels. ► The maximum heat removal rate of the widening channels reaches

  15. Burgers vector analysis of large area misfit dislocation arrays from bend contour contrast in transmission electron microscope images

    CERN Document Server

    Spiecker, E

    2002-01-01

    A transmission electron microscopy method is described which allows us to determine the Burgers vectors (BVs) of a large number of interfacial misfit dislocations (MDs) in mismatched heterostructures. The method combines large-area plan-view thinning of the sample for creating a strongly bent electron transparent foil with the analysis of the splitting and displacement of bend contours at their crossings with the MDs. The BV analysis is demonstrated for 60 deg. MDs in a low-mismatched SiGe/Si(001) heterostructure. Crossings of various bend contours with the MDs are analysed with respect to their information content for the BV analysis. In future applications the method may be used for analysing such a large number of MDs that a quantitative comparison with x-ray diffraction experiments, especially with data on diffusely scattered x-rays originating from the strain fields around the dislocations, becomes possible.

  16. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    Science.gov (United States)

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  18. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples

  19. Schizophrenia spectrum participants have reduced visual contrast sensitivity to chromatic (red/green and luminance (light/dark stimuli: new insights into information processing, visual channel function and antipsychotic effects

    Directory of Open Access Journals (Sweden)

    Kristin Suzanne Cadenhead

    2013-08-01

    Full Text Available Background: Individuals with schizophrenia spectrum diagnoses have deficient visual information processing as assessed by a variety of paradigms including visual backward masking, motion perception and visual contrast sensitivity (VCS. In the present study, the VCS paradigm was used to investigate potential differences in magnocellular (M versus parvocellular (P channel function that might account for the observed information processing deficits of schizophrenia spectrum patients. Specifically, VCS for near threshold luminance (black/white stimuli is known to be governed primarily by the M channel, while VCS for near threshold chromatic (red/green stimuli is governed by the P channel. Methods: VCS for luminance and chromatic stimuli (counterphase-reversing sinusoidal gratings, 1.22 c/deg, 8.3 Hz was assessed in 53 patients with schizophrenia (including 5 off antipsychotic medication, 22 individuals diagnosed with schizotypal personality disorder and 53 healthy comparison subjects. Results: Schizophrenia spectrum groups demonstrated reduced VCS in both conditions relative to normals, and there was no significant group by condition interaction effect. Post-hoc analyses suggest that it was the patients with schizophrenia on antipsychotic medication as well as SPD participants who accounted for the deficits in the luminance condition. Conclusions: These results demonstrate visual information processing deficits in schizophrenia spectrum populations but do not support the notion of selective abnormalities in the function of subcortical channels as suggested by previous studies. Further work is needed in a longitudinal design to further assess VCS as a vulnerability marker for psychosis as well as the effect of antipsychotic agents on performance in schizophrenia spectrum populations.

  20. Problems of noise modeling in the presence of total current branching in high electron mobility transistor and field-effect transistor channels

    International Nuclear Information System (INIS)

    Shiktorov, P; Starikov, E; Gružinskis, V; Varani, L; Sabatini, G; Marinchio, H; Reggiani, L

    2009-01-01

    In the framework of analytical and hydrodynamic models for the description of carrier transport and noise in high electron mobility transistor/field-effect transistor channels the main features of the intrinsic noise of transistors are investigated under continuous branching of the current between channel and gate. It is shown that the current-noise and voltage-noise spectra at the transistor terminals contain an excess noise related to thermal excitation of plasma wave modes in the dielectric layer between the channel and gate. It is found that the set of modes of excited plasma waves can be governed by the external embedding circuits, thus violating a universal description of noise in terms of Norton and Thevenin noise generators

  1. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons

    International Nuclear Information System (INIS)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. -- Highlights: ► Scanning electron (SE) images contain many kind of information on material surfaces. ► We investigate energy-filtered SE images for practical materials. ► The brightness of the images is divided into two parts by the bias voltage. ► Topographic and material contrasts are extracted by subtracting the filtered images.

  2. Spatial distribution of ion energy related on electron density in a plasma channel generated in gas clusters by a femtosecond laser

    International Nuclear Information System (INIS)

    Nam, S. M.; Han, J. M.; Cha, Y. H.; Lee, Y. W.; Rhee, Y. J.; Cha, H. K.

    2008-01-01

    Neutron generation through Coulomb explosion of deuterium contained gas clusters is known as one of the very effective methods to produce fusion neutrons using a table top terawatt laser. The energy of ions produced through Coulomb explosions is very important factor to generate neutrons efficiently. Until the ion energy reaches around∼MeV level, the D D fusion reaction probability increases exponentially. The understanding of laser beam propagation and laser energy deposition in clusters is very important to improve neutron yields. As the laser beam propagates through clusters medium, laser energy is absorbed in clusters by ionization of molecules consisting clusters. When the backing pressure of gas increases, the average size of clusters increases and which results in higher energy absorption and earlier termination of laser propagation. We first installed a Michelson interferometer to view laser beam traces in a cluster plume and to measure spatial electron density profiles of a plasma channel which was produced by a laser beam. And then we measured the energy of ions distributed along the plasma channel with a translating slit to select ions from narrow parts of a plasma channel. In our experiments, methane gas was used to produce gas clusters at a room temperature and the energy distribution of proton ions for different gas backing pressure were measured by the time of flight method using dual micro channel plates. By comparing the distribution of ion energies and electron densities, we could understand the condition for effective laser energy delivery to clusters

  3. The Effects of Channel Curvature and Protrusion Height on Nucleate Boiling and the Critical Heat Flux of a Simulated Electronic Chip

    Science.gov (United States)

    1994-05-01

    parameters and geometry factor. 57 3.2 Laminar sublayer and buffer layer thicknesses for geometry of Mudawar and Maddox.ŝ 68 3.3 Correlation constants...transfer from simulated electronic chip heat sources that are flush with the flow channel wall. Mudawar and Maddox2" have studied enhanced surfaces...bias error was not estimated; however, the percentage of heat loss measured compares with that previously reported by Mudawar and Maddox19 for a

  4. Experimental and numerical investigation of flow field and heat transfer from electronic components in a rectangular channel with an impinging jet

    Directory of Open Access Journals (Sweden)

    Calisir Tamer

    2015-01-01

    Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.

  5. Design and characterization of a 64 channels ASIC front-end electronics for high-flux particle beam detectors

    Science.gov (United States)

    Fausti, F.; Mazza, G.; Attili, A.; Mazinani, M. Fadavi; Giordanengo, S.; Lavagno, M.; Manganaro, L.; Marchetto, F.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.

    2017-09-01

    A new wide-input range 64-channels current-to-frequency converter ASIC has been developed and characterized for applications in beam monitoring of therapeutic particle beams. This chip, named TERA09, has been designed to extend the input current range, compared to the previous versions of the chip, for dealing with high-flux pulsed beams. A particular care was devoted in achieving a good conversion linearity over a wide bipolar input current range. Using a charge quantum of 200 fC, a linearity within ±2% for an input current range between 3 nA and 12 μA is obtained for individual channels, with a gain spread among the channels of about 3%. By connecting all the 64 channels of the chip to a common input, the current range can be increased 64 times preserving a linearity within ±3% in the range between and 20 μA and 750 μA.

  6. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  7. Analyzing post-fire topography at the hillslope-channel interface with terrestrial LiDAR: contrasting geomorphic responses from the 2012 Waldo Canyon Fire of Colorado and the 2013 Springs Fire of California

    Science.gov (United States)

    Storesund, R.; Chin, A.; Florsheim, J. L.; O'Hirok, L.; Williams, K.; Austin, K. E.

    2014-12-01

    Mountains areas are increasingly susceptible to wildfires because of warming climates. Although knowledge of the hydro-geomorphological impacts of wildfire has advanced in recent years, much is still unknown regarding how environmental fluxes move through burned watersheds. Because of the loss of vegetation and hydrophobic soils, flash floods often accompany elevated runoff events from burned watersheds, making direct process measurements challenging. Direct measurements are also only partly successful at capturing the spatial variations of post-fire effects. Coupled with short temporal windows for observing such responses, opportunities are often missed for collecting data needed for developing predictive models. Terrestrial LiDAR scanning (TLS) of burned areas allows detailed documentation of the post-fire topography to cm-level accuracy, providing pictures of geomorphic responses not previously possible. This paper reports a comparative study of hillslope-channel interactions, using repeat TLS, in two contrasting environments. Burned by the 2012 Waldo Canyon Fire and 2013 Springs Fire, in Colorado and California respectively, the study sites share many similarities including steep erosive slopes, small drainage areas, and step-pool channel morphologies. TLS provided a tool to test the central hypothesis that, dry ravel, distinct in the California Mediterranean environment, would prompt a greater sedimentological response from the Springs Fire compared to the Waldo Canyon Fire. At selected sites in each area, TLS documented baseline conditions immediately following the fire. Repeat scanning after major storms allowed detection of changes in the landscape. Results show a tendency for sedimentation in river channels in the study sites interacting with dry ravel on hillslopes, whereas erosion dominated the response from the Waldo Canyon Fire with an absence of dry ravel. These data provide clues to developing generalizations for post-fire effects at regional scales

  8. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  9. Electrofluidic systems for contrast management

    Science.gov (United States)

    Rebello, Keith J.; Maranchi, Jeffrey P.; Tiffany, Jason E.; Brown, Christopher Y.; Maisano, Adam J.; Hagedon, Matthew A.; Heikenfeld, Jason C.

    2012-06-01

    Operating in dynamic lighting conditions and in greatly varying backgrounds is challenging. Current paints and state-ofthe- art passive adaptive coatings (e.g. photochromics) are not suitable for multi- environment situations. A semi-active, low power, skin is needed that can adapt its reflective properties based on the background environment to minimize contrast through the development and incorporation of suitable pigment materials. Electrofluidic skins are a reflective display technology for electronic ink and paper applications. The technology is similar to that in E Ink but makes use of MEMS based microfluidic structures, instead of simple black and white ink microcapsules dispersed in clear oil. Electrofluidic skin's low power operation and fast switching speeds (~20 ms) are an improvement over current state-ofthe- art contrast management technologies. We report on a microfluidic display which utilizes diffuse pigment dispersion inks to change the contrast of the underlying substrate from 5.8% to 100%. Voltage is applied and an electromechanical pressure is used to pull a pigment dispersion based ink from a hydrophobic coated reservoir into a hydrophobic coated surface channel. When no voltage is applied, the Young-Laplace pressure pushes the pigment dispersion ink back down into the reservoir. This allows the pixel to switch from the on and off state by balancing the two pressures. Taking a systems engineering approach from the beginning of development has enabled the technology to be integrated into larger systems.

  10. Contrast Materials

    Science.gov (United States)

    ... is mixed with water before administration liquid paste tablet When iodine-based and barium-sulfate contrast materials ... for patients with kidney failure or allergies to MRI and/or computed tomography (CT) contrast material. Microbubble ...

  11. A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuppambatti, J. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Ban, J. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Andeen, T., E-mail: tandeen@utexas.edu [Columbia University, Nevis Laboratories, Irvington, NY (United States); Brown, R.; Carbone, R. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Kinget, P. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Brooijmans, G.; Sippach, W. [Columbia University, Nevis Laboratories, Irvington, NY (United States)

    2017-05-21

    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements.

  12. Decrease in effective electron mobility in the channel of a metal-oxide-semiconductor transistor as the gate length is decreased

    International Nuclear Information System (INIS)

    Frantsuzov, A. A.; Boyarkina, N. I.; Popov, V. P.

    2008-01-01

    Effective electron mobility μ eff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μ eff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μ eff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μ eff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ 0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.

  13. Towards a measurement of the W-boson inclusive production cross section in the electron-neutrino channel in the Atlas experiment at LHC

    International Nuclear Information System (INIS)

    Guillemin, Th.

    2009-06-01

    The charged W-boson will be abundantly produced at the Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 14 TeV: its frequency production is about 1 Hz at low luminosity. Its decay in the electron channel will have a clear signature in the ATLAS detector, defined by a high transverse momentum electron and a high missing transverse energy. The ATLAS detector is a multi-purposes detector made up of a tracker, an electromagnetic calorimeter, a hadronic calorimeter and a muon spectrometer. It is fully installed in its cavern and recorded data with the first LHC beam in September 2008. A first part of the thesis presents a full analysis strategy for the W-boson inclusive production cross section with the first ATLAS data, maximizing the inputs from real data with respect to simulated ones. The main contributions to the systematical uncertainty are identified and estimated: a measurement precision better than 10% will be reachable from the first phase of the experiment. A second part is dedicated to the time alignment of the liquid argon calorimeters readout channels, a required step to reach the nominal performances. Timing constants are computed from the data recorded in September 2008: they will allow a time alignment of all channels at a 2-3 ns level for the start-up. (author)

  14. Measurement of the Z boson differential cross-section in transverse momentum in the electron-positron channel with the ATLAS detector at LHC

    International Nuclear Information System (INIS)

    Martinez, Homero

    2013-01-01

    This work presents the measurement of the Z boson differential cross section in transverse momentum (p T Z ), in the electron-positron decay channel, using the ATLAS detector at the LHC. The measurement is done using 4.64 fb -1 of proton-proton collision data, collected in 2011 at a center-of-mass energy of 7 TeV. The result is combined with an independent measurement done in the muon-anti-muon decay channel. The measurement is done up to p T Z = 800 GeV, and has a typical uncertainty of 0.5 % for transverse momentum below 60 GeV, rising up to 5 % towards the end of the spectrum. The measurement is compared to theoretical models and Monte Carlo generators predictions. (author) [fr

  15. Single-top production t-channel cross section measurement in the electron+jets final state at ATLAS with 35 pb{sup -1}of data

    Energy Technology Data Exchange (ETDEWEB)

    Khoriauli, Gia

    2012-07-15

    The cross section of the Standard Model electroweak production of a single top quark in the t-channel has been measured using the LHC proton-proton collision data at {radical}(s)=7 TeV, 35 pb{sup -1} of integrated luminosity, recorded by the ATLAS detector during the year 2010. The measurement has been based on a selection of the collision events with an electron and one b-tagged hadronic jet in the central region of the detector and one extra jet in the forward region of the detector. These requirements are dictated by the topology of the final state particles in the t-channel process. They helped to optimize an expected fraction of the t-channel process, according to a study based on Monte-Carlo simulation, in the selected events and suppress the contribution of the background processes. The main background processes such as production of hadronic jets via the strong interaction and production of a single W boson with associated hadronic jets are measured by means of data driven methods developed in this work. The measured cross section of single top quark production in the t-channel process is 59{sup +44}{sub -39}(stat.){sup +63}{sub -39}(syst.) pb. The measured upper limit on the cross section is 226 pb at the 95% confidence level. The results are in agreement with the latest theoretical prediction of the t-channel cross section of the Standard Model production of a single top quark calculated at NNLO, 64.6{sup +3.3}{sub -2.6} pb, considering m {sub t-quark}=172.5 GeV.

  16. Single-top production t-channel cross section measurement in the electron+jets final state at ATLAS with 35 pb-1of data

    International Nuclear Information System (INIS)

    Khoriauli, Gia

    2012-07-01

    The cross section of the Standard Model electroweak production of a single top quark in the t-channel has been measured using the LHC proton-proton collision data at √(s)=7 TeV, 35 pb -1 of integrated luminosity, recorded by the ATLAS detector during the year 2010. The measurement has been based on a selection of the collision events with an electron and one b-tagged hadronic jet in the central region of the detector and one extra jet in the forward region of the detector. These requirements are dictated by the topology of the final state particles in the t-channel process. They helped to optimize an expected fraction of the t-channel process, according to a study based on Monte-Carlo simulation, in the selected events and suppress the contribution of the background processes. The main background processes such as production of hadronic jets via the strong interaction and production of a single W boson with associated hadronic jets are measured by means of data driven methods developed in this work. The measured cross section of single top quark production in the t-channel process is 59 +44 -39 (stat.) +63 -39 (syst.) pb. The measured upper limit on the cross section is 226 pb at the 95% confidence level. The results are in agreement with the latest theoretical prediction of the t-channel cross section of the Standard Model production of a single top quark calculated at NNLO, 64.6 +3.3 -2.6 pb, considering m t-quark =172.5 GeV.

  17. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...

  18. Orientation-Dependent Electronic Structures and Charge Transport Mechanisms in Ultrathin Polymeric n-Channel Field-Effect Transistors

    NARCIS (Netherlands)

    Fabiano, Simone; Yoshida, Hiroyuki; Chen, Zhihua; Facchetti, Antonio; Loi, Maria Antonietta

    2013-01-01

    We investigated the role of metal/organic semiconductor interface morphology on the charge transport mechanisms and energy level alignment of the n-channel semiconductor poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P-(NDI2ODT2)).

  19. Radiation emission at channeling of electrons in a strained layer Si1-xGex undulator crystal

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    ML source. Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation...

  20. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    Science.gov (United States)

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer

  1. TU-EF-204-11: Impact of Using Multi-Slice Training Sets On the Performance of a Channelized Hotelling Observer in a Low-Contrast Detection Task in CT

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, C; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2015-06-15

    Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include: 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project

  2. TU-EF-204-11: Impact of Using Multi-Slice Training Sets On the Performance of a Channelized Hotelling Observer in a Low-Contrast Detection Task in CT

    International Nuclear Information System (INIS)

    Favazza, C; Yu, L; Leng, S; McCollough, C

    2015-01-01

    Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include: 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project

  3. COINCIDENCES BETWEEN ELECTRONS AND TARGET IONS TO IDENTIFY CAPTURE CHANNELS IN COLLISIONS OF MULTIPLY CHARGED IONS ON GAS TARGETS

    NARCIS (Netherlands)

    POSTHUMUS, JH; MORGENSTERN, R

    1992-01-01

    We have investigated multielectron capture processes in collisions of Ar9+ on Ar by measuring the resulting Auger electrons in coincidence with charge-state-analyzed target ions. In this way it was possible to reconstruct partial electron energy spectra, each corresponding to a particular number of

  4. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels

    NARCIS (Netherlands)

    Heinen, André; Aldakkak, Mohammed; Stowe, David F.; Rhodes, Samhita S.; Riess, Matthias L.; Varadarajan, Srinivasan G.; Camara, Amadou K. S.

    2007-01-01

    Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain

  5. Kinetic description of self-field effects on laser and betatron emission in wiggler-pumped ion-channel free electron lasers

    International Nuclear Information System (INIS)

    Alimohamadi, M; Mehdian, H; Hasanbeigi, A

    2011-01-01

    The effects of self-fields on the free electron lasers (FELs) with a helical wiggler and ion-channel guiding are considered. The steady-state orbits for a single electron in this configuration are obtained. The rate of change of axial velocity with energy, the characteristic function Φ, is derived and studied numerically. A kinetic approach has been used to get the effects of self-field on the FEL and betatron gain formula in the low-gain-pre-pass limit. It is shown that betatron gain is smaller than FEL gain. We also found a gain decrement (enhancement), arising from diamagnetism (paramagnetism) generated by the self-magnetic field for group I (group II) orbits. It is interesting that the gain enhancement is found for the non-relativistic part of group II orbits. The FEL gain and betatron gain have also been investigated for different relativistic factors γ.

  6. A convergent-beam electron diffraction study of strain homogeneity in severely strained aluminum processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Alhajeri, Saleh N. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Manufacturing Engineering, College of Technological Studies, PAAET, PO Box 42325, Shuwaikh 70654 (Kuwait); Fox, Alan G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mechanical Engineering Department, Asian University, 89 Moo 12, Highway 331, Banglamung, Chon Buri 20260 (Thailand); Langdon, Terence G., E-mail: langdon@usc.edu [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2011-11-15

    Aluminum of commercial purity was processed by equal-channel angular pressing (ECAP) through two, four and eight passes at room temperature. A series of [1 1 4] convergent-beam electron diffraction (CBED) zone axis patterns were obtained using an electron probe with a diameter of 20 nm. Observations were recorded both immediately adjacent to the grain boundaries and in the grain interiors. Symmetry breaking of the higher-order Laue zone (HOLZ) lines was observed adjacent to the boundaries after two and four passes but not in the grain interiors. Pattern simulation of the CBED patterns taken from the two- and four-pass samples adjacent to the boundaries revealed a homogeneous strain with compressive and shear components. The presence of these homogeneous strains demonstrates that the internal stresses associated with the deformation of aluminum at room temperature are localized in the close vicinity, to within {approx}20 nm, of the grain boundaries.

  7. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.

    2007-01-01

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 μm thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick

  8. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azadegan, B.

    2007-11-15

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 {mu}m. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 {mu}m thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 {mu}m thick

  9. Study of CP violation in the channel Bd0 → J/ψ(ee)KS0, identification and reconstruction of electrons in the LHCb experiment

    International Nuclear Information System (INIS)

    Terrier, H.

    2005-04-01

    LHCb experiment has been designed in order to do precise measurements of CP violation and rare decays with B mesons. In 2000, the collaboration decided to modify the spectrometer in order to minimize the amount of matter seen by particles and to optimize the trigger. This thesis was done in this context and is divided into 3 parts. The first part is relative to the electron identification and to the recovery of Bremsstrahlung photons emitted by electrons when they pass through matter. Electron identification is mainly based on information provided by calorimeter system but also uses RICH and muon system. A method based on reference histograms had been developed which combine information provided by these detectors. Electron identification efficiency, for electrons in ECAL acceptance is 95% and the pion mis-identification rates 0.8% with a 65% purity of electron sample. Bremsstrahlung recovery allows the selection of J/φ decaying in e + e - pair and of B d 0 → J/φ(ee)K S 0 channel which are described in the second part. The selection of this channel was developed in order to get an acceptable selection efficiency with a good rejection of background. A set of kinematic and topological cuts were designed and total selection efficiency is 0.176%, corresponding to 28000 untagged events reconstructed by year, with a ratio B/S belonging to [0.017;0.069] (at 90% of confidence level) for inclusive bb-bar background. In the third part, B meson flavour tagging is presented. The addition of information provided by the vertex locator allows to reject electron coming from conversion and to improve slightly the performances. The LHCb sensibility to sin(2β) from B 0 → J/ψK S 0 decay is also determined. The statistical error, expected after one year of data collecting, corresponding to an integrated luminosity of 2 fb -1 and bb-bar pair cross section of 0.5 mb, varies from 0.015 to 0.020 according to the values of sin(2β), |λ f | and B/S. (author)

  10. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  11. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  12. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO2 scattering

    International Nuclear Information System (INIS)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO 2 collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO 2 scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to Σ/sub g/ symmetry. Comparison with static and static-exchange approximations are made

  13. Computer aided design (CAD) for electronics improvement of the nuclear channels of TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.; Rivero G, T.; Aguilar H, F.

    2007-01-01

    The 4 neutron measurement channels of the digital control console (CCD) of the TRIGA Mark III reactor (RTMIII) of the ININ, its were designed and built with the corresponding Quality Guarantee program, being achieved the one licensing to replace the old console. With the time they were carried out some changes to improve and to not solve some problems detected in the tests, verification and validation, requiring to modify the circuits originally designed. In this work the corrective actions carried out to eliminate the Non Conformity generated by these problems, being mentioned the advantages of using modern tools, as the software applied to the Attended Engineering by Computer, and those obtained results are presented. (Author)

  14. Electron measurements and search for Higgs bosons in multi-lepton channels with the CMS experiment at LHC

    International Nuclear Information System (INIS)

    Broutin, C.

    2011-07-01

    This thesis presents three years of work with the CMS experiment, in the context of the first LHC collisions. Electron objects were studied in particular, as major tools for multi-lepton analyses, in particular the H → ZZ(*) → 4l analysis. During the first months of collisions, we took part in the validation of data registered by the electromagnetic calorimeter. We also measured the efficiency of the level-1 electron and photon trigger during the whole 2010 year. The plateau efficiency is of 99.6% (resp. 98.5 %) on electrons in the barrel part (resp. in the end cap part) of the calorimeter. In order to optimize the discovery potential, we built a new electron charge measurement algorithm. In CMS, this measurement is affected by the large amount of material present in the inner tracker. The performance of this algorithm was measured on 2010 data, for electrons from Z boson decay passing a standard selection. The probability of charge mis-identification is of 1.06% (0.19% with a specific selection), in agreement with the simulation. The physics analysis that was built during this PhD searches doubly charged Higgs bosons decaying into lepton pairs. For the amount of data registered in 2010, one background event is expected to pass the selection, while the amount of signal events depends on the mass hypothesis and on the model. One event was found on data, in agreement with the background expectation, hence the signal was excluded on larger mass ranges than previous experiments: a mass limit was set between 122 GeV/c 2 and 176 GeV/c 2 , depending on the model. (author)

  15. Assessment of occupational exposure to asbestos fibers: Contribution of analytical transmission electron microscopy analysis and comparison with phase-contrast microscopy.

    Science.gov (United States)

    Eypert-Blaison, Céline; Romero-Hariot, Anita; Clerc, Frédéric; Vincent, Raymond

    2018-03-01

    From November 2009 to October 2010, the French general directorate for labor organized a large field-study using analytical transmission electron microscopy (ATEM) to characterize occupational exposure to asbestos fibers during work on asbestos containing materials (ACM). The primary objective of this study was to establish a method and to validate the feasibility of using ATEM for the analysis of airborne asbestos of individual filters sampled in various occupational environments. For each sampling event, ATEM data were compared to those obtained by phase-contrast optical microscopy (PCOM), the WHO-recommended reference technique. A total of 265 results were obtained from 29 construction sites where workers were in contact with ACM. Data were sorted depending on the combination of the ACM type and the removal technique. For each "ACM-removal technique" combination, ATEM data were used to compute statistical indicators on short, fine and WHO asbestos fibers. Moreover, exposure was assessed taking into account the use of respiratory protective devices (RPD). As in previous studies, no simple relationship was found between results by PCOM and ATEM counting methods. Some ACM, such as asbestos-containing plasters, generated very high dust levels, and some techniques generated considerable levels of dust whatever the ACM treated. On the basis of these observations, recommendations were made to measure and control the occupational exposure limit. General prevention measures to be taken during work with ACM are also suggested. Finally, it is necessary to continue acquiring knowledge, in particular regarding RPD and the dust levels measured by ATEM for the activities not evaluated during this study.

  16. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures

    International Nuclear Information System (INIS)

    Dabiran, A. M.; Wowchak, A. M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Chow, P. P.; Look, D. C.

    2008-01-01

    Low defect AlN/GaN high electron mobility transistor (HEMT) structures, with very high values of electron mobility (>1800 cm 2 /V s) and sheet charge density (>3x10 13 cm -2 ), were grown by rf plasma-assisted molecular beam epitaxy (MBE) on sapphire and SiC, resulting in sheet resistivity values down to ∼100 Ω/□ at room temperature. Fabricated 1.2 μm gate devices showed excellent current-voltage characteristics, including a zero gate saturation current density of ∼1.3 A/mm and a peak transconductance of ∼260 mS/mm. Here, an all MBE growth of optimized AlN/GaN HEMT structures plus the results of thin-film characterizations and device measurements are presented

  17. Electron spin echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel

    OpenAIRE

    Cieslak, John A.; Focia, Pamela J.; Gross, Adrian

    2010-01-01

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential ...

  18. High electron mobility recovery in AlGaN/GaN 2DEG channels regrown on etched surfaces

    International Nuclear Information System (INIS)

    Chan, Silvia H; DenBaars, Steven P; Keller, Stacia; Tahhan, Maher; Li, Haoran; Romanczyk, Brian; Mishra, Umesh K

    2016-01-01

    This paper reports high two-dimensional electron gas mobility attained from the regrowth of the AlGaN gating layer on ex situ GaN surfaces. To repair etch-damaged GaN surfaces, various pretreatments were conducted via metalorganic chemical vapor deposition, followed by a regrown AlGaN/GaN mobility test structure to evaluate the extent of recovery. The developed treatment process that was shown to significantly improve the electron mobility consisted of a N 2  + NH 3 pre-anneal plus an insertion of a 4 nm or thicker GaN interlayer prior to deposition of the AlGaN gating layer. Using the optimized process, a high electron mobility transistor (HEMT) device was fabricated which exhibited a high mobility of 1450 cm 2 V −1 s −1 (R sh  = 574 ohm/sq) and low dispersion characteristics. The additional inclusion of an in situ Al 2 O 3 dielectric into the regrowth process for MOS-HEMTs still preserved the transport properties near etch-impacted areas. (paper)

  19. Contrast media

    International Nuclear Information System (INIS)

    Decazes, Ph.

    2004-01-01

    The Guerbet firm, which holds 69% of the capital on the contrast media for medical imagery, could sale about 20% of this capital in order to accelerate its development in the United States, one of its next market with the Japan. (O.M.)

  20. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion

    International Nuclear Information System (INIS)

    Jin Li; Lin Dongliang; Mao Dali; Zeng Xiaoqin; Ding Wenjiang

    2006-01-01

    Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion (ECAE) was investigated by electron back-scattered diffraction (EBSD). The grains of AZ31 Mg alloy were refined significantly after ECAE 1-8 passes at 498 K and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into high angle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAE 8 passes. Preferred misorientation angle with frequency peak near 30 deg. and 90 deg. were observed. The frequency peaks were weak after ECAE 1 pass but became stronger with the increase of pass numbers. Micro-textures were formed in AZ31 microstructure during ECAE and were stronger with the pass number increasing

  1. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  2. Investigation of enhancement-mode AlGaN/GaN nanowire channel high-electron-mobility transistor with oxygen-containing plasma treatment

    Science.gov (United States)

    He, Yunlong; Wang, Chong; Mi, Minhan; Zhang, Meng; Zhu, Qing; Zhang, Peng; Wu, Ji; Zhang, Hengshuang; Zheng, Xuefeng; Yang, Ling; Duan, Xiaoling; Ma, Xiaohua; Hao, Yue

    2017-05-01

    A novel enhancement-mode (E-mode) AlGaN/GaN high-electron-mobility transistor (HEMT) has been fabricated, by combining nanowire channel (NC) structure fabrication and N2O (or O2) plasma treatment. A comparison of two NC-HEMTs with different plasma treatments has been made. The NC-HEMT with N2O plasma treatment shows an output current of 610 mA/mm and a peak transconductance of 450 mS/mm. The DIBL of the NC-HEMT with N2O plasma treatment is as low as 2 mV/V, and an SS of 70 mV/decade is achieved. The device exhibits an intrinsic current gain cutoff frequency f T of 19 GHz and a maximum oscillation frequency f max of 58 GHz.

  3. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  4. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  5. Validation of tracker alignment using electrons, and search for long-lived particles in the electron-muon channel, in the CMS experiment at LHC

    International Nuclear Information System (INIS)

    Goetzmann, Christophe

    2014-01-01

    The first part of my work concerns the development of an algorithm using CMS data to automatically detect the presence of particular deformations than can occur in the CMS tracker. The method takes advantage of the bias that such deformations induce in the measurement of electron impulsion. The reliability of the method has been proved using Monte-Carlo simulation. The algorithm was then used to certify that none of the considered deformations affected the data recorded in 2012. The second part of my work consists of a statistical analysis of the data recorded by CMS, in order to look for evidence of the presence of exotic long-lived particles. The latter could manifest themselves through their decay to an electron and a muon. Such an observation would provide a strong clue of the existence of new physics. In the absence of any observation statistically significant, a Bayesian method is used to interpret this result in term of constraints on a supersymmetric model (MSSM). (author)

  6. Performances of the electromagnetic calorimeter and search for new gauge bosons in the di-electron channel at the LHC

    International Nuclear Information System (INIS)

    Laisne, E.

    2012-10-01

    The Standard Model of particle physics has known a tremendous rise during the twentieth century. Built up, from the early thirties to the seventies, this theory describing elementary particles and their interactions (electromagnetic, weak, strong) has now been intensively tested by LEP and Tevatron colliders. Besides its success, some problems remain and have lead to new theories attempting to go beyond the standard model. Many of them are predicting the existence of a new gauge boson Z', which is supposed to be observed at the TeV scale. Data recorded by the LHC since autumn 2008 are a new opportunity to check the consistency of the Standard Model and to search for new physics evidence. The work that has been done by the ATLAS collaboration during the last four years has focused on understanding detector's behaviour and analysing the very first collected collisions. This thesis is reflecting these two aspects. Therefore, the first part of this thesis describes the characterisation of a pathology of ATLAS liquid argon calorimeter electronics and of coherent noise bursts that have both been observed since the beginning of ATLAS operation. The policy deployed to preserve data quality is also detailed. The second part is focusing on the search for new Z' gauge boson. In case this particle was to exist, its decay into an electron and a positron would lead to a new massive resonance in the dielectron invariant mass spectrum. Therefore electron reconstruction and identification performances are closely looked at, especially at high transverse momentum. Analysis made on the 4.9 fb -1 of collected data is reported. As no significant excess with respect to Standard Model predictions is observed, the dielectron invariant mass spectrum is interpreted to derive mass limits concerning the existence of new Z' gauge bosons appearing in grand unification theories (E6) and effective sequential standard model (SSM). These limits and those derived by the CMS collaboration are the

  7. Control of short-channel effects in InAlN/GaN high-electron mobility transistors using graded AlGaN buffer

    Science.gov (United States)

    Han, Tiecheng; Zhao, Hongdong; Peng, Xiaocan; Li, Yuhai

    2018-04-01

    A graded AlGaN buffer is designed to realize the p-type buffer by inducing polarization-doping holes. Based on the two-dimensional device simulator, the effect of the graded AlGaN buffer on the direct-current (DC) and radio-frequency (RF) performance of short-gate InAlN/GaN high-electron mobility transistors (HEMTs) are investigated, theoretically. Compared to standard HEMT, an enhancement of electron confinement and a good control of short-channel effect (SCEs) are demonstrated in the graded AlGaN buffer HEMT. Accordingly, the pinched-off behavior and the ability of gate modulation are significantly improved. And, no serious SCEs are observed in the graded AlGaN buffer HEMT with an aspect ratio (LG/tch) of about 6.7, much lower than that of the standard HEMT (LG/tch = 13). In addition, for a 70-nm gate length, a peak current gain cutoff frequency (fT) of 171 GHz and power gain cutoff frequency (fmax) of 191 GHz are obtained in the grade buffer HEMT, which are higher than those of the standard one with the same gate length.

  8. Measurement of the production cross section for W + γ in the electron channel in √s = 1.8 TeV bar pp collisions

    International Nuclear Information System (INIS)

    Benjamin, D.P.

    1993-11-01

    The production cross section times decay branching ratio for W +γ in the electron decay channel in √s = 1.8 TeV bar p-p collisions has been measured using W → eγ data sample obtained from the CDF 1988--1989 Tevatron collider run. For photons in the central region (|η γ | T γ 5.0 GeV and lepton-photon angular separation ΔR ell γ > 0.7, eight electron W γ candidates were observed. From these events, the production cross section times decay branching ratio for the electron sample was measured to be a σ · B(W γ ) exp = 17.0 -13.4 +13.6 (stat. + syst.)pb. The W γ cross section is sensitive to the anomalous couplings of the W boson. Using the W γ cross section measurement, the absence of an excess of large E T photons accompanying the production of a W boson enables one to obtain direct limits on anomalous WW γ couplings. The experimental limits on the anomalous couplings was measured to be -7.2 W ≥ 1 TeV for saturation of unitarity, corresponding to probing a distance scale of order L W ≤ 2.0 x 10 -4 fm. The experimental limits on anomalous WW γ couplings place bounds on the higher-order electromagnetic moments of the W boson -- the magnetic dipole and electric quadrupole moments and the W boson mean-squared charge radius. The experimental results presented in this thesis are in good agreement with Standard Model expectations

  9. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  10. Studies on electron reconstruction and top quark pair production cross-section measurement in di-leptonic channels in the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Theveneaux-Pelzer, Timothee

    2012-01-01

    The LHC produced proton-proton collision data with 7 TeV of center of mass energy corresponding to an integrated luminosity of 40 pb -1 in 2010 and of 5 fb -1 in 2011. The data collected by ATLAS have led to the validation the understanding of the detector, to the evaluation of its performance and to many measurements of physical quantities. In this context the top quark is a privileged field of study for TeV scale physics as well as for performance studies. After a reminder of the phenomenology of the standard model the first part of this thesis is devoted to the description of the detector and in particular of the liquid argon calorimeters for which the influence of the variations of the high voltage values is detailed. The second part is focused on studies about the reconstruction and the identification of electrons conducted on simulated data, but also on 2010 collision data thanks to J/ψ → e + e - events with the tag-and-probe method. The last part is devoted to top quark studies. A description of the signal and background simulated data for tt-bar events is given, as are the reconstruction and identification procedures of the objects present in the final state. The estimation of the contribution of events with a mis-identified lepton thanks to the matrix-method is then presented before the measurement of the tt-bar cross-section in dilepton channels made on 2011 data: the value of 178.8 ±2.3 (stat) +8. 9 -8. 4 (sys) +8.0 -7.4 (lumi) pb obtained by combining the three channels is compatible with theoretical predictions. (author) [fr

  11. Studies on electron reconstruction and top quark pair production cross-section measurement in dileptonic channels in the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Theveneaux-Pelzer, T.

    2012-01-01

    The LHC produced proton-proton collision data with 7 TeV of center of mass energy corresponding to an integrated luminosity of 40 pb -1 in 2010 and of 5 fb -1 in 2011. The data collected by ATLAS have led to the validation of the understanding of the detector, to the evaluation of its performance and to many measurements of physical quantities. In this context the top quark is a privileged field of study for TeV scale physics as well as for performance studies. After a reminder of the phenomenology of the standard model the first part of this thesis is devoted to the description of the detector and in particular of the liquid argon calorimeters for which the influence of the variations of the high voltage values is detailed. The second part is focused on studies about the reconstruction and the identification of electrons conducted on simulated data, but also on 2010 collision data thanks to J/ψ → e + e - events with the tag-and-probe method. The last part is devoted to top quark studies. A description of the signal and background simulated data for tt-bar events is given, as are the reconstruction and identification procedures of the objects present in the final state. The estimation of the contribution of events with a mis-identified lepton thanks to the matrix-method is then presented before the measurement of the tt-bar cross-section in dilepton channels made on 2011 data: the value of [178.8 ± 2.3 (stat) +8.9-8.4 (syst) +8.0-7.4 (lumi)] pb obtained by combining the three channels is compatible with theoretical predictions. (author)

  12. Channeled-ion implantation of group-III and group-V ions into silicon

    International Nuclear Information System (INIS)

    Furuya, T.; Nishi, H.; Inada, T.; Sakurai, T.

    1978-01-01

    Implantation of group-III and group-V ions along [111] and [110] axes of silicon have been performed using a backscattering technique, and the depth profiles of implanted ions have been measured by the C-V method. The range of channeled Ga ions is the largest among the present data, and a p-type layer of about 6 μm is obtained by implantation at only 150 keV. The carrier profiles of channeled Al and Ga ions with deep ranges do not show any distinguishable channeled peak contrasting with the B, P, and As channeling which gives a well-defined peak. The electronic stopping cross section (S/sub e/) of channeled P ions agree well with the results of Eisen and Reddi, but in B channeling, the discrepancies of 10--20% are observed among S/sub e/ values obtained experimentally by three different groups

  13. Improvement in the cloud mask for Terra MODIS mitigated by electronic crosstalk correction in the 6.7 μm and 8.5 μm channels

    Science.gov (United States)

    Sun, Junqiang; Madhavan, S.; Wang, M.

    2016-09-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a remarkable heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms which tracks the Earth in the morning and afternoon orbits. T-MODIS has continued to operate over 15 years easily surpassing the 6 year design life time on orbit. Of the several science products derived from MODIS, one of the primary derivatives is the MODIS Cloud Mask (MOD035). The cloud mask algorithm incorporates several of the MODIS channels in both reflective and thermal infrared wavelengths to identify cloud pixels from clear sky. Two of the thermal infrared channels used in detecting clouds are the 6.7 μm and 8.5 μm. Based on a difference threshold with the 11 μm channel, the 6.7 μm channel helps in identifying thick high clouds while the 8.5 μm channel being useful for identifying thin clouds. Starting 2010, it had been observed in the cloud mask products that several pixels have been misclassified due to the change in the thermal band radiometry. The long-term radiometric changes in these thermal channels have been attributed to the electronic crosstalk contamination. In this paper, the improvement in cloud detection using the 6.7 μm and 8.5 μm channels are demonstrated using the electronic crosstalk correction. The electronic crosstalk phenomena analysis and characterization were developed using the regular moon observation of MODIS and reported in several works. The results presented in this paper should significantly help in improving the MOD035 product, maintaining the long term dataset from T-MODIS which is important for global change monitoring.

  14. Performance enhancement in p-channel charge-trapping flash memory devices with Si/Ge super-lattice channel and band-to-band tunneling induced hot-electron injection

    International Nuclear Information System (INIS)

    Liu, Li-Jung; Chang-Liao, Kuei-Shu; Jian, Yi-Chuen; Wang, Tien-Ko; Tsai, Ming-Jinn

    2013-01-01

    P-channel charge-trapping flash memory devices with Si, SiGe, and Si/Ge super-lattice channel are investigated in this work. A Si/Ge super-lattice structure with extremely low roughness and good crystal structure is obtained by precisely controlling the epitaxy thickness of Ge layer. Both programming and erasing (P/E) speeds are significantly improved by employing this Si/Ge super-lattice channel. Moreover, satisfactory retention and excellent endurance characteristics up to 10 6 P/E cycles with 3.8 V memory window show that the degradation on reliability properties is negligible when super-lattice channel is introduced. - Highlights: ► A super-lattice structure is proposed to introduce more Ge content into channel. ► Super-lattice structure possesses low roughness and good crystal structure. ► P-channel flash devices with Si, SiGe, and super-lattice channel are investigated. ► Programming/erasing speeds are significantly improved. ► Reliability properties can be kept for device with super-lattice channel

  15. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy.

    Science.gov (United States)

    Peckys, Diana B; Stoerger, Christof; Latta, Lorenz; Wissenbach, Ulrich; Flockerzi, Veit; de Jonge, Niels

    2017-08-01

    TMEM16A is a membrane protein forming a calcium-activated chloride channel. A homodimeric stoichiometry of the TMEM16 family of proteins has been reported but an important question is whether the protein resides always in a dimeric configuration in the plasma membrane or whether monomers of the protein are also present in its native state within in the intact plasma membrane. We have determined the stoichiometry of the human (h)TMEM16A within whole COS-7 cells in liquid. For the purpose of detecting TMEM16A subunits, single proteins were tagged by the streptavidin-binding peptide within extracellular loops accessible by streptavidin coated quantum dot (QD) nanoparticles. The labeled proteins were then imaged using correlative light microscopy and environmental scanning electron microscopy (ESEM) using scanning transmission electron microscopy (STEM) detection. The locations of 19,583 individual proteins were determined of which a statistical analysis using the pair correlation function revealed the presence of a dimeric conformation of the protein. The amounts of detected label pairs and single labels were compared between experiments in which the TMEM16A SBP-tag position was varied, and experiments in which tagged and non-tagged TMEM16A proteins were present. It followed that hTMEM16A resides in the plasma membrane as dimer only and is not present as monomer. This strategy may help to elucidate the stoichiometry of other membrane protein species within the context of the intact plasma membrane in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise

    Science.gov (United States)

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-03-01

    This study presents an effective engineering approach for human vital signs monitoring as increasingly demanded by personal healthcare. The aim of this work is to study how to capture critical physiological parameters efficiently through a well-constructed electronic system and a robust multi-channel opto-electronic patch sensor (OEPS), together with a wireless communication. A unique design comprising multi-wavelength illumination sources and a rapid response photo sensor with a 3-axis accelerometer enables to recover pulsatile features, compensate motion and increase signal-to-noise ratio. An approved protocol with designated tests was implemented at Loughborough University a UK leader in sport and exercise assessment. The results of sport physiological effects were extracted from the datasets of physical movements, i.e. sitting, standing, waking, running and cycling. t-test, Bland-Altman and correlation analysis were applied to evaluate the performance of the OEPS system against Acti-Graph and Mio-Alpha.There was no difference in heart rate measured using OEPS and both Acti-Graph and Mio-Alpha (both p<0.05). Strong correlations were observed between HR measured from the OEPS and both the Acti-graph and Mio-Alpha (r = 0.96, p<0.001). Bland-Altman analysis for the Acti-Graph and OEPS found the bias 0.85 bpm, the standard deviation 9.20 bpm, and the limits of agreement (LOA) -17.18 bpm to +18.88 bpm for lower and upper limits of agreement respectively, for the Mio-Alpha and OEPS the bias is 1.63 bpm, standard deviation SD8.62 bpm, lower and upper limits of agreement, - 15.27 bpm and +18.58 bpm respectively. The OEPS demonstrates a real time, robust and remote monitoring of cardiovascular function.

  17. Design and the construction of some functional electronics modular for (n,2γ) spectrometer at a horizontal channel in the Dalat research reactor

    International Nuclear Information System (INIS)

    Dang Lanh; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Son and others

    2004-01-01

    As the nuclear disintegration is characteristic for a given isotope, specific measurements can be performed by means of coincidence techniques, whereby correlated phenomena must be simultaneously detected in order to be counted. As well bete-gamma as gamma-gamma cascades of the disintegration, which occur within very short time intervals, are suitable for these purposes. Also both annihilation gamma rays can be measured in coincidence. The pulses coming from the components of the cascades can be selected in energy by means of a pulse height analyser, and are fed into the coincidence circuit. In order to be counted, two pulses must arrive within the resolving time τ of the coincidence unit. Typical values of τ are of the order of the as for 'slow' coincidence and down to the ns for 'fast' coincidence. Actually, Coincidence and Linear amplifier units are two important pieces of the measuring system. The main task of the interbal sub-project is to study on and to design these NIM-standard blocks those are able to combine with other needed electronics modulars for the performance of a gamma-gamma coincidence system with the sake of nuclear structure research at a horizontal channel in the research reactor Dalat. (author)

  18. Top quark mass measurement in the dilepton electron-muon channel with the matrix element method in the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Demilly, A.

    2014-01-01

    The LHC produced proton-proton collisions data at 7 TeV of center of mass energy in 2011 and 8 TeV in 2012, corresponding to an integrated luminosity of, respectively, 5 fb"-"1 and 23 fb"-"1. Data acquired by ATLAS have led to a better understanding of the detector and its performance, to many measurements of physical quantities and the discovery of the Higgs boson. Top quark is involved in many processes beyond the Standard Model. Its mass is an important parameter for the Standard Model and any New Physics theory, thus measuring its mass accurately is necessary. After a description of the Standard Model of Particle Physics, and the role of the top quark in it, the first half of this thesis describes the ATLAS detector and its electromagnetic calorimeter, for which a study of the calibration constant patching is detailed. The second half details top quark physics events detected in ATLAS and their selection. Theoretical aspects of the matrix element method and its implementation for the top quark mass measurement in the dilepton electron-muon channel in the experimental framework of ATLAS are discussed. The measurement calibration and optimisation studies for the analysis are presented. Finally, systematic uncertainties are described and estimated. This measurement yields a top quark mass of (173.65 ± 0.70 ± 2.36) GeV ; showing no discrepancy with current worldwide measurements. (author)

  19. Channeling and dynamic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F

    1986-01-01

    It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.

  20. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    Science.gov (United States)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  2. A Crash Course in Calcium Channels.

    Science.gov (United States)

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  3. Differential Effects of TRPA and TRPV Channels on Behaviors of

    Directory of Open Access Journals (Sweden)

    Jennifer Thies

    2016-01-01

    Full Text Available TRPA and TRPV ion channels are members of the transient receptor potential (TRP cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans , the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation.

  4. Channeling in helium ion microscopy: Mapping of crystal orientation

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2012-07-01

    Full Text Available Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.

  5. Measurement of the top quark pair production cross section in the muon-electron decay channel at {radical}(s)=7 TeV with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, Markus

    2011-07-15

    The start of proton-proton collisions at the LHC inaugurates a new era in high-energy physics. It enables the possibility of discoveries at the high-energy frontier and also allows for studies of known Standard Model processes with unrivalled precision. Top quark pairs are produced at high rates and allow for precision measurements of the properties of the top quark with high statistics. The measurement of the top quark pair production cross section in proton-proton collisions at {radical}(s)=7 TeV is presented using the dileptonic decay channel with a muon-electron pair in the final state. The data sample, which is used in this analysis, corresponds the complete 2010 data taking period with an integrated luminosity of 35.9 pb{sup -1}. Top quark pair candidate events are selected in a cut-based event selection. Based on 59 observed muon-electron events in the final state event sample, the top quark pair production cross section is measured to be {sigma}{sub t} {sub anti} {sub t}=(156{+-}25(stat.){+-}14(sys.)) pb. Furthermore, a kinematic event reconstruction is applied, which is complementary to the use of b-tagging techniques, and validates the top quark-like topology of the selected events. First results from the measurement of differential cross sections based on the data from the complete 2010 data taking period are presented. For the first time in the CMS collaboration, the cross section of the production of top quark pairs is measured differentially as a function of the kinematic observables of the final state objects, such as the transverse momentum p{sub T} of the leptons and the invariant mass of the lepton pair. Based on the solution of the kinematic event reconstruction, the cross section is also calculated differentially as a function of the kinematic properties of the reconstructed top-antitop quark pair. First results from the measurement of differential cross sections as a function of the kinematics of the final state leptons are presented, using the

  6. Measurement of the top quark pair production cross section in the muon-electron decay channel at √(s)=7 TeV with the CMS experiment

    International Nuclear Information System (INIS)

    Marienfeld, Markus

    2011-07-01

    The start of proton-proton collisions at the LHC inaugurates a new era in high-energy physics. It enables the possibility of discoveries at the high-energy frontier and also allows for studies of known Standard Model processes with unrivalled precision. Top quark pairs are produced at high rates and allow for precision measurements of the properties of the top quark with high statistics. The measurement of the top quark pair production cross section in proton-proton collisions at √(s)=7 TeV is presented using the dileptonic decay channel with a muon-electron pair in the final state. The data sample, which is used in this analysis, corresponds the complete 2010 data taking period with an integrated luminosity of 35.9 pb -1 . Top quark pair candidate events are selected in a cut-based event selection. Based on 59 observed muon-electron events in the final state event sample, the top quark pair production cross section is measured to be σ t anti t =(156±25(stat.)±14(sys.)) pb. Furthermore, a kinematic event reconstruction is applied, which is complementary to the use of b-tagging techniques, and validates the top quark-like topology of the selected events. First results from the measurement of differential cross sections based on the data from the complete 2010 data taking period are presented. For the first time in the CMS collaboration, the cross section of the production of top quark pairs is measured differentially as a function of the kinematic observables of the final state objects, such as the transverse momentum p T of the leptons and the invariant mass of the lepton pair. Based on the solution of the kinematic event reconstruction, the cross section is also calculated differentially as a function of the kinematic properties of the reconstructed top-antitop quark pair. First results from the measurement of differential cross sections as a function of the kinematics of the final state leptons are presented, using the data recorded in the first part of the

  7. A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua

    2014-01-01

    In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  9. Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Teo, K. L.; Ng, G. I.; Shoron, O. F.; Rajan, S.; Bin Dolmanan, S.; Tripathy, S.

    2015-01-01

    A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In 0.17 Al 0.83 N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (W eff ) exhibited a very high I Dmax of 3940 mA/mm and a highest g m of 1417 mS/mm. This dramatic increase of I D and g m in the 3D TT-gate In 0.17 Al 0.83 N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (v e ) of 6.0 × 10 7  cm/s, which is ∼1.89× higher than that of the conventional In 0.17 Al 0.83 N/GaN HEMT (3.17 × 10 7  cm/s). The v e in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high v e at 300 K in the 3D TT-gate In 0.17 Al 0.83 N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the v e  = 6 × 10 7  cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In 0.17 Al 0.83 N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications

  10. Electron velocity of 6 × 10{sup 7 }cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Arulkumaran, S., E-mail: SArulkumaran@pmail.ntu.edu.sg; Manoj Kumar, C. M.; Ranjan, K.; Teo, K. L. [Temasek Laboratories@NTU, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); Ng, G. I., E-mail: eging@ntu.edu.sg [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Shoron, O. F.; Rajan, S. [Electrical and Computer Engineering Department, The Ohio State University, Columbus, Ohio 43210 (United States); Bin Dolmanan, S.; Tripathy, S. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-02-02

    A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In{sub 0.17}Al{sub 0.83}N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (W{sub eff}) exhibited a very high I{sub Dmax} of 3940 mA/mm and a highest g{sub m} of 1417 mS/mm. This dramatic increase of I{sub D} and g{sub m} in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (v{sub e}) of 6.0 × 10{sup 7 }cm/s, which is ∼1.89× higher than that of the conventional In{sub 0.17}Al{sub 0.83}N/GaN HEMT (3.17 × 10{sup 7 }cm/s). The v{sub e} in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high v{sub e} at 300 K in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the v{sub e} = 6 × 10{sup 7 }cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.

  11. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  12. Barrier reduction via implementation of InGaN interlayer in wafer-bonded current aperture vertical electron transistors consisting of InGaAs channel and N-polar GaN drain

    International Nuclear Information System (INIS)

    Kim, Jeonghee; Laurent, Matthew A.; Li, Haoran; Lal, Shalini; Mishra, Umesh K.

    2015-01-01

    This letter reports the influence of the added InGaN interlayer on reducing the inherent interfacial barrier and hence improving the electrical characteristics of wafer-bonded current aperture vertical electron transistors consisting of an InGaAs channel and N-polar GaN drain. The current-voltage characteristics of the transistors show that the implementation of N-polar InGaN interlayer effectively reduces the barrier to electron transport across the wafer-bonded interface most likely due to its polarization induced downward band bending, which increases the electron tunneling probability. Fully functional wafer-bonded transistors with nearly 600 mA/mm of drain current at V GS  = 0 V and L go  = 2 μm have been achieved, and thus demonstrate the feasibility of using wafer-bonded heterostructures for applications that require active carrier transport through both materials

  13. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wistisen, T. N. [Aarhus Univ. (Denmark); Uggerhoj, U. I. [Aarhus Univ. (Denmark); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Markiewicz, T. W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Noble, R. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Benson, B. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Smith, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bagli, E. [Univ. of Ferrara (Italy); Bandiera, L. [Univ. of Ferrara (Italy); Germogli, G. [Univ. of Ferrara (Italy); Guidi, V. [Univ. of Ferrara (Italy); Mazzolari, A. [Univ. of Ferrara (Italy); Holtzapple, R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Tucker, S. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  14. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  15. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  16. Ti-catalyzed HfSiO4 formation in HfTiO4 films on SiO2 studied by Z-contrast scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ellen Hoppe

    2013-08-01

    Full Text Available Hafnon (HfSiO4 as it is initially formed in a partially demixed film of hafnium titanate (HfTiO4 on fused SiO2 is studied by atomic number (Z contrast high resolution scanning electron microscopy, x-ray diffraction, and Raman spectroscopy and microscopy. The results show exsoluted Ti is the catalyst for hafnon formation by a two-step reaction. Ti first reacts with SiO2 to produce a glassy Ti-silicate. Ti is then replaced by Hf in the silicate to produce HfSiO4. The results suggest this behavior is prototypical of other Ti-bearing ternary or higher order oxide films on SiO2 when film thermal instability involves Ti exsolution.

  17. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs

    KAUST Repository

    Chen, Min Cheng

    2014-12-01

    Stackable 3DFETs such as FinFET using hybrid Si/MoS2 channels were developed using a fully CMOS-compatible process. Adding several molecular layers (3-16 layers) of the transition-metal dichalcogenide (TMD), MoS2 to Si fin and nanowire resulted in improved (+25%) Ion,n of the FinFET and nanowire FET (NWFET). The PFETs also operated effectively and the N/P device Vth are low and matched perfectly. The proposed heterogeneous Si/TMD 3DFETs can be useful in future electronics. © 2014 IEEE.

  18. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs

    KAUST Repository

    Chen, Min Cheng; Lin, Chia Yi; Li, Kai Hsin; Li, Lain-Jong; Chen, Chang Hsiao; Chuang, Cheng Hao; Lee, Ming Dao; Chen, Yi Ju; Hou, Yun Fang; Lin, Chang Hsien; Chen, Chun Chi; Wu, Bo Wei; Wu, Cheng San; Yang, Ivy; Lee, Yao Jen; Yeh, Wen Kuan; Wang, Tahui; Yang, Fu Liang; Hu, Chenming

    2014-01-01

    Stackable 3DFETs such as FinFET using hybrid Si/MoS2 channels were developed using a fully CMOS-compatible process. Adding several molecular layers (3-16 layers) of the transition-metal dichalcogenide (TMD), MoS2 to Si fin and nanowire resulted in improved (+25%) Ion,n of the FinFET and nanowire FET (NWFET). The PFETs also operated effectively and the N/P device Vth are low and matched perfectly. The proposed heterogeneous Si/TMD 3DFETs can be useful in future electronics. © 2014 IEEE.

  19. Development of contrast media

    International Nuclear Information System (INIS)

    Krause, W.

    1993-01-01

    Description of all contrast media (ionic and nonionic monomers, ionic and nonionic dimers) was presented. Chemotoxicity, osmolality and viscosity of some contrast agents were analyzed. The main adverse reactions to ionic and nonionic contrast media were described

  20. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  1. The search for new physics in the diphoton decay channel and the upgrade of the Tile-Calorimeter electronics of the ATLAS detector.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00508435

    The discovery of the Higgs boson at the Large Hadron Collider in Switzerland marks the beginning of a new era: Physics beyond the Standard Model (SM). A model is proposed to describe numerous Run I features observed with both the ATLAS and CMS experiments. The model introduces a heavy scalar estimated to be around 270 GeV and an intermediate scalar which can decay into both dark matter and SM particles. Three different final state searches, linked by the new hypothesis, are presented. These are the $hh\\rightarrow\\gamma\\gamma b\\overline{b}, \\gamma\\gamma + E^{miss}_{T}$ and high mass diphoton channels. No significant excesses were observed in any channel using the available datasets and limits were set on the relevant cross sections times branching ratios. The lack of statistics in the $\\gamma\\gamma b\\overline{b}$ analysis prevents any conclusive statement in regard to the excess observed with Run I data. Observing no excess in the $\\gamma\\gamma + E^{miss}_{T}$ channel with the current amount of data is also c...

  2. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  3. Probing channel temperature profiles in Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistors on 200 mm diameter Si(111) by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, L. M., E-mail: a0048661@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), Singapore 117602 (Singapore); Bera, L. K.; Dolmanan, S. B.; Tan, H. R.; Bhat, T. N.; Tripathy, S., E-mail: tripathy-sudhiranjan@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), Singapore 117602 (Singapore); Liu, Y.; Bera, M. K.; Singh, S. P.; Chor, E. F. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-08-18

    Using micro-Raman and photoluminescence (PL) techniques, the channel temperature profile is probed in Al{sub x}Ga{sub 1-x}N/GaN high electron mobility transistors (HEMTs) fabricated on a 200 mm diameter Si(111) substrate. In particular, RuO{sub x}-based gate is used due to the semitransparent nature to the optical excitation wavelengths, thus allowing much accurate thermal investigations underneath the gate. To determine the channel temperature profile in devices subjected to different electrical bias voltages, the GaN band-edge PL peak shift calibration with respect to temperature is used. PL analyses show a maximum channel temperature up to 435 K underneath the gate edge between gate and drain, where the estimated thermal resistance in such a HEMT structure is about 13.7 KmmW{sup −1} at a power dissipation of ∼10 W/mm. The temperature profiles from micro-Raman measurements are also addressed from the E{sub 2}-high optical phonon peak shift of GaN, and this method also probes the temperature-induced peak shifts of optical phonon from Si thus showing the nature of thermal characteristics at the AlN/Si substrate interface.

  4. High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Da; Peng, Yuan; Wang, Qi; Pan, Nanyan; Guo, Zhongnan; Yuan, Wenxia, E-mail: wxyuanwz@163.com [Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-18

    Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by two orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.

  5. 2.5-dimensional numerical modeling of the formation of a plasma channel due to ion redistribution during the propagation of a finite sequence of relativistic electron bunches through high-density and low-density plasmas

    International Nuclear Information System (INIS)

    Karas, V.I.; Karas, I.V.; Levchenko, V.D.; Sigov, Yu.S.; Fainberg, Ya.B.

    1997-01-01

    Results of numerical simulations of the excitation of wake fields in high- and low-density plasmas are presented. The propagation of relativistic electron bunches in a plasma is described by a closed set of relativistic Vlasov equations for two spatial coordinates and three velocity coordinates for each plasma component and the nonlinear Maxwell equations for self-consistent electromagnetic fields. Numerical modeling shows that, under ordinary experimental conditions (when the length and radius of the bunch are much less than the skin depth), the radius of the bunches propagating in a plasma varies over a wide range. In this case, the dynamics of both the plasma and the bunches is nonlinear. The radial redistribution of the plasma ions in self-consistent fields leads to the formation of a plasma channel. Incorporating this phenomenon is important for studying the propagation of relativistic electron bunches in a plasma

  6. Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs

    International Nuclear Information System (INIS)

    Akiyama, Y.; Kawazu, T.; Noda, T.; Sakaki, H.

    2010-01-01

    We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G para (V g ) parallel to the steps and G perp (V g ) perpendicular to them were measured at 80 K as functions of gate voltage V g . At sufficiently high V g , G para at 80 K is several times as high as G perp , which manifests the anisotropic two-dimensional transport of electrons. When V g is reduced to -0.7 V, G perp almost vanishes, while Gpara stays sizable unless V g is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers.

  7. Study of martensitic transformation in stainless steel by CEMS and RBS channeling

    International Nuclear Information System (INIS)

    Hayashi, N.; Sakamoto, I.; Tanoue, H.

    1993-01-01

    The effect of Xe ion irradiation in a single crystal of 17/13 stainless steel has been studied, using RBS channeling techniques and conversion electron Moessbauer spectroscopy (CEMS). 300 keV Xe ions were used to induce martensitic transformation in the austentic steel. A dynamic behavior of the transformation was observed as functions of the fluence and depth dependence. The martensite appears abruptly at a critical fluence, in contrast with polycrystalline 17/7 stainless steel. (orig.)

  8. Radiographic contrast media

    International Nuclear Information System (INIS)

    Golman, K.; Holtz, E.; Almen, T.

    1987-01-01

    Contrast media are used in diagnostic radiology to enhance the X-ray attenuation between a body structure of interest and the surrounding tissue. A detail becomes perceptible on a roentgenogram only when its contrast exceeds a minimum value in relation to the background. Small areas of interest must have higher contrast than the background. The contrast effect depends on concentration of the contrast media with the body. A high contrast media concentration difference thus gives rise to more morphological details in the radiographs. Contrast media can be divided into negative contrast media such as air and gas which attenuate X-rays less than the body tissues, and positive contrast materials which attenuate X-rays more than the body tissues. The positive contrast media all contain either iodine (atomic number 53) or barium (atomic number 56) and can be divided into water-insoluble and water-soluble contrast media

  9. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  10. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao; Han, Yu; Zhao, Lan; Huang, Shiliang; Zheng, Qiyu; Lin, Shuangzheng; Cõ rdova, Armando C.; Zou, Xiaodong; Sun, Junliang

    2012-01-01

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single

  11. Color contrasting in radioscopy systems

    International Nuclear Information System (INIS)

    Lopaev, V.P.; Pavlov, S.V.; Nazarenko, V.G.

    1979-01-01

    Transformation principles for achromatic radioscopy control systems to color ones have been considered. Described is the developed ''Gamma 1'' roentgen-TV facility with color contrasting, which is based on the principle of analog conversion of brightness signal to a hue. By means of color channels amplifiers realized are the special amplitude characteristics, permitting in comparison with the common method of analogous transformation to obtain the greater number of hues within the identical range of brightnesses of image under investigation due to introducing purple colors. The investigation of amplitude resolution capability of color contrasting device has shown, that in the case of color contrasting of image the amplitude resolution is 1.7-1.8 time higher than in the case of achromatic one. Defectoscopic sensitivity during the testing of 5-20 mm thick steel products in the process of experimental-production tests turned out to be 1.1-1.3 time higher when using color contrasting of radioscopic image. Realization simplicity, high resolution, noise stability and wide functional possibilities of the facility show the prospects for its using during the quality control of welded joints in products of power engineering

  12. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    Science.gov (United States)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  13. Electrochemical behavior of two and one electron redox systems adsorbed on to micro- and mesoporous silicate materials: Influence of the channels and the cationic environment of the host materials

    International Nuclear Information System (INIS)

    Senthil Kumar, K.; Natarajan, P.

    2009-01-01

    Electrochemical behavior of two electron redox system, phenosafranine (PS + ) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.

  14. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  15. The role of dissociation channels of excited electronic states in quantum optimal control of ozone isomerization: A three-state dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp [Quantum Beam Science Directorate, Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ho, Tak-San, E-mail: tsho@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-01

    The prospect of performing the open → cyclic ozone isomerization has attracted much research attention. Here we explore this consideration theoretically by performing quantum optimal control calculations to demonstrate the important role that excited-state dissociation channels could play in the isomerization transformation. In the calculations we use a three-state, one-dimensional dynamical model constructed from the lowest five {sup 1}A′ potential energy curves obtained with high-level ab initio calculations. Besides the laser field-dipole couplings between all three states, this model also includes the diabatic coupling between the two excited states at an avoided crossing leading to competing dissociation channels that can further hinder the isomerization process. The present three-state optimal control simulations examine two possible control pathways previously considered in a two-state model, and reveal that only one of the pathways is viable, achieving a robust ∼95% yield to the cyclic target in the three-state model. This work represents a step towards an ultimate model for the open → cyclic ozone transformation capable of giving adequate guidance about the necessary experimental control field resources as well as an estimate of the ro-vibronic spectral character of cyclic ozone as a basis for an appropriate probe of its formation.

  16. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  17. Search for excited and exotic electrons i the eγ decay channel in ppbar collisions at √ s = 1.96 Tev

    International Nuclear Information System (INIS)

    Acosta, D.; The CDF Collaboration

    2005-01-01

    We present a search for excited and exotic electrons (e*) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb -1 of data collected in p(bar p) collisions at √s = 1.96 TeV with the CDF II detector. No signal above standard model expectation is seen for associated ee* production. We discuss the e* sensitivity in the parameter space of the excited electron mass M e* and the compositeness energy scale Λ. In the contact interaction model, we exclude 132 GeV/c 2 e* 2 for Λ = M e* at 95% confidence level (C.L.). In the gauge-mediated model, we exclude 126 GeV/c 2 e* 2 at 95% C.L. for the phenomenological coupling f/Λ ∼ 10 -2 GeV -1

  18. Search for excited and exotic electrons in the eγ decay channel in p anti-p collisions at √s = 1.96 Tev

    International Nuclear Information System (INIS)

    Acosta, D.; CDF Collaboration

    2005-01-01

    We present a search for excited and exotic electrons (e*) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb -1 of data collected in p(bar p) collisions at √s = 1.96 TeV with the CDF II detector. No signal above standard model expectation is seen for associated ee* production. We discuss the e* sensitivity in the parameter space of the excited electron mass M e* and the compositeness energy scale Λ. In the contact interaction model, we exclude 132 GeV/c 2 e* 2 for Λ = M e* at 95% confidence level (C.L.). In the gauge-mediated model, we exclude 126 GeV/c 2 e* 2 at 95% C.L. for the phenomenological coupling f/Λ ∼ 10 -2 GeV -1

  19. Contrast in atomically resolved EF-SCEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); D’Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Morgan, Andrew J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Takeguchi, Masaki [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548 (Japan); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored.

  20. Contrast in atomically resolved EF-SCEM imaging

    International Nuclear Information System (INIS)

    Wang, Peng; D’Alfonso, Adrian J.; Hashimoto, Ayako; Morgan, Andrew J.; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki; Kirkland, Angus I.; Allen, Leslie J.; Nellist, Peter D.

    2013-01-01

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored

  1. Exit channels of autoionization resonances in atoms

    International Nuclear Information System (INIS)

    Krause, M.O.

    1985-01-01

    In many-electron atoms with open shells strong autoionization resonances occur when an electron from an inner, weakly bound subshell is excited. Usually, the resonance state lies above several ionization thresholds and, hence, will decay into more than one exit or continuum channel. Several cases are discussed in which the resonance state is induced by synchrotron radiation, and the exit channels are differentiated and characterized by the analysis of the ejected electrons

  2. Response to the comment by C. Kisielowski, H.A. Calderon, F.R. Chen, S. Helveg, J.R. Jinschek, P. Specht, D. Van Dyck on the article "On the influence of the electron dose-rate on the HRTEM image contrast" by J. Barthel, M. Lentzen, A. Thust, Ultramicroscopy 176 (2017) 37-45.

    Science.gov (United States)

    Barthel, Juri; Lentzen, Markus; Thust, Andreas

    2017-08-01

    In a recent article [1] we examined the influence of the applied electron dose rate on the magnitude of the image contrast in high-resolution transmission electron microscopy (HRTEM). We concluded that the magnitude of the image contrast is not substantially affected by the applied electron dose rate. This result is in obvious contradiction to numerous earlier publications by Kisielowski and coworkers [2-7], who commented our recent article due to this contradiction. The present short communication is a response to the comment of Kisielowski and coworkers on our recent article, where we provide additional arguments supporting our initial findings and conclusions on the magnitude of the image contrast in HRTEM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of wavefront distortions by the method of aperture sounding with spatially separated channels

    Science.gov (United States)

    Prilepskiy, Boris V.; Alikhanov, Alexey N.; Berchenko, Evgeniy A.; Kiselev, Vladimir Yu; Narusbek, Ernest A.; Filatov, Aleksander S.

    2005-08-01

    Features of the formation of signals in wavefront sensors with the single-frequency light wave phase modulation and spatial separation of control channels are considered. Analysis is performed for sensors in which phase modulation is governed by a controlled element located in the pupil of the optical system of a sensor or in the focal plane of the objective of this system. Peculiarities of the signal formation for a tilted wavefront are considered separately for internal points of the exit pupil in the case of light wave phase modulation in the pupil. It is shown that a signal at the modulation frequency in these wavefront sensors for points located far from the pupil boundaries is determined by the wavefront curvature.

  4. Comparison between the 30- to 80-keV electron channels at ATS 6 and 1976-059A during conjunction and application to spacecraft charging prediction

    International Nuclear Information System (INIS)

    Garrett, H.B.; Schwank, D.C.; Higbie, P.R.; Baker, D.N.

    1980-01-01

    The ATS 6 satellite, during an orbital maneuver in September 1976, passed within a few hundred kilometers of the geosynchronous satellite 1976-059A. Analysis of the 30- to 80-keV electron data from the University of California at San Diego (UCSD) electrostatic analyzers on ATS 6 and the 30- to 300-keV electron data from the Los Alamos Scientific Laboratory instrument on 1976-059A during this period reveals good agreement between the two instruments even when the separation is +- 7 0 . The low-energy UCSD ion data from ATS 6 allow a simultaneous determination of the potential difference between ATS 6 and th ambient medium. Use of the 1976-059A electron data to approximate the ambient plasma electron density and temperature during these charging periods indicates sufficient information exists in order to estimate the maximum potentials to which ATS 6 charges in sunlight an eclipse. As data from 1976-059A and similar satellites are potentially available in real time, the information therefore exists to create a satellite charging index for the geosynchronous regime that would be valid within at least +- 7 0 longitude of the position of each measurement

  5. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  6. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me...

  7. Generalized phase contrast:

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast...

  8. The influence of gate length on the electron injection of velocity in an AlGaN/AlN/GaN HEMT channel

    Science.gov (United States)

    Mikhailovich, S. V.; Galiev, R. R.; Zuev, A. V.; Pavlov, A. Yu.; Ponomarev, D. S.; Khabibullin, R. A.

    2017-08-01

    Field-effect high-electron-mobility transistors (HEMTs) based on AlGaN/AlN/GaN heterostructures with various gate lengths L g have been studied. The maximum values of current and power gaincutoff frequencies ( f T and f max, respectively) amounted to 88 and 155 GHz for HEMTs with L g = 125 nm, while those for the transistors with L g = 360 nm were 26 and 82 GHz, respectively. Based on the measured S-parameters, the values of elements in small-signal equivalent schemes of AlGaN/AlN/GaN HEMTs were extracted and the dependence of electron-injection velocity vinj on the gate-drain voltage was determined. The influence of L g and the drain-source voltage on vinj has been studied.

  9. Perforations during contrast enema

    International Nuclear Information System (INIS)

    Vogel, H.; Steinkamp, U.; Grabbe, E.; Allgemeines Krankenhaus Ochsenzoll, Hamburg

    1983-01-01

    During contrast enema, perforation into the retroperitoneal space can be differentiated from perforation into the peritoneum and perforation into the intestinal wall associated with formation of barium granulomas or submucosal spreading of the contrast medium. Other special forms are perforation with contrast medium embolism of diverticula; of the processus vermiformis; penetration of contrast medium into fistulous systems and from the operated areas. Risk factors are: balloon catheter, intestinal tubes with a hard tip, preternatural anus, excessive enema pressure, contrast medium additions, preceding manipulations, intestinal diseases, advanced age and delegation of manipulations to assistants and unskilled staff. Children are particularly at risk. (orig.) [de

  10. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me....../min/1.73 m (2) is CIN risk threshold for intravenous contrast medium. • Hydration with either saline or sodium bicarbonate reduces CIN incidence. • Patients with eGFR = 60 ml/min/1.73 m (2) receiving contrast medium can continue metformin normally....

  11. Recent applications of scanning electron microscopy; Neueste Anwendungen der Rasterelektronenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sten; Moverare, Johan; Peng, Ru [Linkoeping Univ. (Sweden). Dept. of Management and Engineering

    2013-07-01

    A few examples were shown of how to use SEM to study phenomena that are not normally visible and possible to identify by introducing a known phenomenon called Electron Channeling. The channeling is best utilized in a FEG SEM not because of the in lens detection system but due to the fact that the highly coherent high electron density probe is creating a high contrast image with a resolution that is high enough to image crystal defects on a dislocation level. The fact that diffraction phenomena are involved in channeling is also of great importance for the contrast formation. The technique allows the user to choose to either just take a picture or decide if the image should be based on careful determination of the Bragg condition. The biggest advantage with channeling in addition the good contrast produced is the possibility to literally combine it with other techniques like EBSD. In fact, it is also possible to use thin foils to combine ECCI, EBSD, EDS and STEM in a modern FEG SEM. The development of a eucentric specimen stage of the same class as a TEM stage would allow even more advanced microscopy in SEM. (orig.)

  12. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  13. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers.

    Science.gov (United States)

    Wang, Yang; Hasegawa, Tsukasa; Matsumoto, Hidetoshi; Mori, Takehiko; Michinobu, Tsuyoshi

    2018-03-01

    While high-performance p-type semiconducting polymers are widely reported, their n-type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high-quality n-type polymers with number-average molecular weight up to 10 5 g mol -1 . Furthermore, by sp 2 -nitrogen atoms (sp 2 -N) substitution, three new n-type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp 2 -N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp 2 -N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine-tailed self-assembled monolayer (SAM) is smoothly formed on a Si/SiO 2 substrate by a simple spin-coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n-type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm 2 V -1 s -1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈10 7 is demonstrated for the pSNT-based devices, which are among the highest values for unipolar n-type semiconducting polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electron transfer in keV Li+-Na(3s, 3p) collisions: I. Atomic basis coupled-channel calculations

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dubois, A.

    1995-01-01

    Integral cross sections for electron capture from the ground state Na(3s) and excited states Na(3p) to Li(nlm), n = 2, 3, are calculated by the semiclassical impact-parameter method, using a two-centre atomic basis expansion. In the impact energy range 1-50 keV, results are analysed with particular emphasis on the alignment and orientation of initial and final p-states. At intermediate velocities opposite initial alignment effects are found for capture to n = 2 and n = 3 states, respectively. Orientation effects in state-to-state capture cross sections are predicted from oriented and tilted aligned initial states. (Author)

  15. Expression of calcium channel CaV1.3 in cat spinal cord: light and electron microscopic immunohistochemical study

    DEFF Research Database (Denmark)

    Zhang, Mengliang; Møller, Morten; Broman, Jonas

    2008-01-01

    in the cat spinal cord by light and electron microscopic immunohistochemistry. The results show that Ca(V)1.3-like immunoreactivity is widely distributed in all segments of the spinal cord but that the distribution in the different laminae of the spinal gray matter varies, with the highest density of labeled...... enlargements and the phrenic nucleus in cervical, Clarke's nucleus in lower thoracic and upper lumbar, and Onuf's nucleus in upper sacral segments. At the ultrastructural level, Ca(V)1.3-immunoreactive products were found in neuronal somata and dendrites of different sizes. In the soma, they were predominantly...

  16. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian

  17. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  18. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  19. Channel Modeling

    Science.gov (United States)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  20. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  1. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.

    2017-01-01

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  2. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  3. Analytical admittance characterization of high mobility channel

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, A. M.; Mahi, F. Z., E-mail: fati-zo-mahi2002@yahoo.fr [Institute of Science and Technology, University of Bechar (Algeria); Varani, L. [Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier (France)

    2015-03-30

    In this contribution, we investigate the small-signal admittance of the high electron mobility transistors field-effect channels under a continuation branching of the current between channel and gate by using an analytical model. The analytical approach takes into account the linearization of the 2D Poisson equation and the drift current along the channel. The analytical equations discuss the frequency dependence of the admittance at source and drain terminals on the geometrical transistor parameters.

  4. The alpha channeling effect

    Science.gov (United States)

    Fisch, N. J.

    2015-12-01

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  5. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  6. Dialysis and contrast media

    International Nuclear Information System (INIS)

    Morcos, Sameh K.; Thomsen, Henrik S.; Webb, Judith A.W.

    2002-01-01

    In a previous survey we revealed uncertainty among responders about (a) whether or not to perform hemodialysis in patients with severely reduced renal function who had received contrast medium; and (b) when to perform hemodialysis in patients on regular treatment with hemodialysis or continuous ambulatory dialysis who received contrast medium. Therefore, the Contrast Media Safety Committee of The European Society of Urogenital Radiology decided to review the literature and to issue guidelines. The committee performed a Medline search. Based on this, a report and guidelines were prepared. The report was discussed at the Ninth European Symposium on Urogenital Radiology in Genoa, Italy. Hemodialysis and peritoneal dialysis safely remove both iodinated and gadolinium-based contrast media. The effectiveness of hemodialysis depends on many factors including blood and dialysate flow rate, permeability of dialysis membrane, duration of hemodialysis and molecular size, protein binding, hydrophilicity, and electrical charge of the contrast medium. Generally, several hemodialysis sessions are needed to removal all contrast medium, whereas it takes 3 weeks for continuous ambulatory dialysis to remove the agent completely. There is no need to schedule the dialysis in relation to the injection of iodinated or MR contrast media or the injection of contrast agent in relation to the dialysis program. Hemodialysis does not protect poorly functioning kidneys against contrast-medium-induced nephrotoxicity. Simple guidelines are given. (orig.)

  7. Contrast medium-induced nephropathy: Aspects on incidence ...

    African Journals Online (AJOL)

    Contrast media-induced nephropathy (CIN) is a well-known complication of radiological examinations employing iodine contrast media (I-CM). The rapid development and frequent use of coronary interventions and multi-channel detector computed tomography with concomitant administration of relatively large doses of ...

  8. Contrast analysis : A tutorial

    NARCIS (Netherlands)

    Haans, A.

    2018-01-01

    Contrast analysis is a relatively simple but effective statistical method for testing theoretical predictions about differences between group means against the empirical data. Despite its advantages, contrast analysis is hardly used to date, perhaps because it is not implemented in a convenient

  9. Research for the boson of Higgs and for couplings of capacity quartic abnormal in the channel WW in electrons in the experiment D0 in Tevatron

    International Nuclear Information System (INIS)

    Chapon, Emilien

    2013-01-01

    Two physics analyzes are presented in this thesis, both probing the electroweak sector of the Standard Model using events with two oppositely charged electrons and missing transverse energy. The events are selected from the full Run II data sample of 9.7 fb -1 of proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96 TeV. The first analysis is a search for the Higgs boson in H → WW → evev decays. To validate the search methodology, the non-resonant WW production cross section is measured. In the Higgs boson search, no significant excess above the background expectation is observed. Upper limits on the Higgs boson production cross section are therefore derived, within the Standard Model, but also within a theoretical framework with a fourth generation of fermions, and in the context of fermiophobic Higgs boson couplings. A search for anomalous quartic gauge couplings between the photon and the W boson is then presented, using exclusive W boson pair production, allowing to probe new physics effects. The selection of the events and the analysis techniques used are mostly identical to those used in the first analysis, the search for the Higgs boson. The limits set on this type of anomalous couplings are the first ones from the Tevatron and the most stringent ones at the time of the publication. (author) [fr

  10. Sentinel node detection in melanomas using contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Nielsen, K. Rue; Klyver, H.; Chakera, A. Hougaard

    2009-01-01

    in humans. PURPOSE: To investigate the possible use of CEUS in detecting SN in patients with malignant melanomas (MM), and to improve the method by using different concentrations of contrast agent and various positions of the extremity. MATERIAL AND METHODS: Ten patients with MM on an extremity and one...... healthy volunteer were included. One milliliter of a contrast agent (Sonovue; Bracco, Milan, Italy) was injected subcutaneously on both sides of the scar from the excised tumor. Contrast-enhanced lymph channels and lymph nodes (LNs) were searched for using low-mechanical-index CEUS and by stimulated...... tissue damage, as the contrast agent was not registered for subcutaneous administration. RESULTS: In one patient, two contrast-enhanced inguinal LNs were visualized by CEUS, corresponding to two inguinal SNs found by scintigraphic imaging. No contrast-enhanced lymph channels or LNs were visualized in any...

  11. Experimental search of the electroweak symmetry breaking in the H→γγ channel and of a solution to the hierarchy problem in ATLAS. Participation to the preparation of the electronics of the electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Escalier, Marc

    2005-01-01

    This thesis deals with the understanding of the spontaneous electroweak symmetry breaking mechanism in the ATLAS experiment at LHC collider, by studying two complementary topics: the search for the Higgs boson in the H→γγ channel, and a search for extra dimensions in the gluon sector. Tests of the electronic of the electromagnetic calorimeter allowed to validate various cards that were under the responsibility of the LPNHE. Using full simulation data of the detector allowed us to precisely compute mass resolution of the di-photon system. Due to recent theoretical improvements, signal and background have been studied at the next order of the perturbative development, which increases cross-sections. With regards to the jet background, a study has been done using discriminating variables in order to obtain, for a 80 % photons efficiency, a rejection factor of 7000. The discovery potential benefits from this change of cross-sections and increases by 50 % in comparison with the same analysis done at the leading order. In addition to this, a new analysis using a maximum likelihood method allowed us to increase by 40 % the discovery potential in comparison with our classical analysis. In conclusion, the Higgs boson of 120 GeV/c 2 can be now discovered in this channel with an integrated luminosity of 10 fb -1 . Furthermore, naturality problem of the Higgs boson mass can be solved by introducing extra dimensions in which gluons can propagate. We have shown that it was possible to discover extra-dimensions up to a compactification scale of 15 TeV. (author)

  12. Experiment search of the electroweak symmetry breaking in the H → γγ channel and of a solution of the hierarchy problem in the Atlas experiment: participation to the tests of the electronics of the electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Escalier, M.

    2005-04-01

    This thesis deals with the understanding of the spontaneous electroweak symmetry breaking mechanism in the ATLAS experiment at LHC collider, by studying two complementary topics: the search for the Higgs boson in the H → γγ channel, and a search for extra dimensions in the gluon sector. Tests of the electronic of the electromagnetic calorimeter allowed us to validate various cards that were under the responsibility of the LPNHE. Using full simulation data of the detector allowed us to precisely compute mass resolution of the di-photon system. Due to recent theoretical improvements, signal and background have been studied at the next order of the perturbative development, which increases cross-sections. With regards to the jet background, a study has been done using discriminating variables in order to obtain, for a 80 % photons efficiency, a rejection factor of 7000. The discovery potential benefits from this change of cross-sections and increases by 50 % in comparison with the same analysis done at the leading order. In addition to this, a new analysis using a maximum likelihood method allowed us to increase by 40 % the discovery potential in comparison with our classical analysis. In conclusion, the Higgs boson of 120 GeV/c 2 can be now discovered in this channel with an integrated luminosity of 10 fb -1 . Furthermore, the consistency of the problem of the Higgs boson mass can be solved by introducing extra dimensions in which gluons can propagate. We have shown that it was possible to discover extra-dimensions up to a compactification scale of 15 TeV. (author)

  13. Contrast agents for MRI

    International Nuclear Information System (INIS)

    Bonnemain, B.

    1994-01-01

    Contrast agents MRI (Magnetic Resonance Imaging) have been developed to improve the diagnostic information obtained by this technic. They mainly interact on T1 and T2 parameters and increase consequently normal to abnormal tissues contrast. The paramagnetic agents which mainly act on longitudinal relaxation rate (T1) are gadolinium complexes for which stability is the main parameter to avoid any release of free gadolinium. The superparamagnetic agents that decrease signal intensity by an effect on transversal relaxation rate (T2) are developed for liver, digestive and lymph node imaging. Many area of research are now opened for optimal use of present and future contrast agents in MRI. (author). 28 refs., 4 tabs

  14. Compressive Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  15. The ion-channel laser

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Dawson, J.M.

    1990-01-01

    A relativistic electron beam propagating through a plasma in the ion-focused regime exhibits an electromagnetic instability at a resonant frequency ω ∼ 2γ 2 ω β . Growth is enhanced by optical guiding in the ion channel, which acts as dielectric waveguide, with fiber parameter V ∼ 2 (I/I A ) 1/2 . A 1-D theory for such an ''ion-channel laser'' is formulated, scaling laws are derived and numerical examples are given. Possible experimental evidence is noted. 23 refs., 1 fig., 1 tab

  16. Generalized Phase Contrast

    CERN Document Server

    Glückstad, Jesper

    2009-01-01

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, ...

  17. Mamografia Espectral de Contraste

    OpenAIRE

    Martins, Inês Santiago; Pereira, Inês; Pacheco, Hugo Pisco; Moutinho, Leonor

    2014-01-01

    A mamografia de contraste é uma aplicação recente possível com a mamografia digital directa, que utiliza contraste iodado endovenoso tendo como princípio a neovascularização induzida no cancro da mama, permitindo obter informação morfológica e funcional. Na mamografia espectral de contraste realiza-se uma aquisição simultânea com alta e baixa energia para cada incidência após administração de contraste iodado endovenoso. É depois feita uma imagem recombinada em que são realçadas as áreas que ...

  18. Aspiration of Barium Contrast

    OpenAIRE

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical fil...

  19. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Fukada, Hiroshi

    1979-01-01

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  20. Structure of conducting channel of lightning

    International Nuclear Information System (INIS)

    Alanakyan, Yu. R.

    2013-01-01

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior

  1. Bywalled plasma formation in vacuum prolonged channels

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.

    1982-01-01

    To produce homogeneous along the channel length plasma the application of incomplete rate-in surface dielectric discharge for generating the bywalled plasma in prolonged cylindrical channels at a pressure of the residual gas of P approximately 10 -5 Torr is proposed. Experimental set-up consisted of a pulse voltage generator and a plasma channel. The plasma channel was a coaxial system of three tubes inserted into each other. The first outer tube is made of a stainless steel, the second - of a dielectric material, the third - of smallsized stainless steel greed. It is demonstrated that the plasma being formed in the process is sufficiently homogeneous by concentration of the components, by the channel length and azimuth. The length of the experimental channel under investigation was 1.6 m, its diameter amounted 0.05 m. The maximum concentration of electron component was 10 17 m -3

  2. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  3. Top quark mass measurement in the electron-muon channel with the matrix element method applied to the 8 TeV data of the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Pires, S.

    2015-01-01

    The work presented in this thesis lies within the scope of the measurement of the top quark mass in the decay channel electron-muon. This experimental measurement is achieved by the use of the matrix element method with collisions produced at LHC at a centre of mass energy of 8 TeV and collected by the ATLAS detector in 2012. After introducing the theoretical context of the Standard Model and the physics of the top quark, a detailed description of the ATLAS detector design and of both the event simulation and reconstruction is given. The first analysis presented was done during the beginning of the thesis and focuses on the impact of the insertion of an innermost new pixel layer in the ATLAS detector on the b-tagging performance during the data taking starting in 2015 with a centre of mass energy of 13 TeV. The second part of the thesis is dedicated to the top quark mass measurement. After reviewing the selection procedure to which the analysis is linked, the calibration of the matrix element method is presented. The top quark mass is measured as : m(top) = [172.40 ± 0.35 (stat.) ± 1.12 (syst.)] GeV. This measurement is obtained with a precision of 0.64% and is compatible with both the World combination of the top quark mass and with recent measurements published by the ATLAS collaboration. (author)

  4. Applications of energy loss contrast STIM

    International Nuclear Information System (INIS)

    Bench, G.; Saint, A.; Legge, G.J.F.; Cholewa, M.

    1992-01-01

    Scanning Transmission Ion Microscopy (STIM) with energy loss contrast is a quantitative imaging technique. A focussed MeV ion microbeam is scanned over the sample and measured energy losses of residual ions at each beam location are used to provide the contrast in the image. The technique is highly efficient as almost every ion carries useful information from which quantitative data can be obtained. The high efficiency of data collection at present necessitates the use of small beam currents. Therefore small apertures can be used and fine spatial resolution can be achieved. High efficiency also makes it possible to collect large data sets for high definition imaging with a small radiation dose. Owing to the simple relationship between energy loss and areal density, STIM with energy loss contrast can provide a quantitative image that can be used to obtain areal density information on the sample. These areal density maps can be used not only to provide a high resolution image of the sample but also to normalise Particle Induced Xray Emission (PIXE) data. The small radiation dose required to form these areal density maps also allows one to use STIM with energy loss contrast to quantitatively monitor ion beam induced specimen changes caused by higher doses and dose rates used in other microanalytical techniques. STIM with energy loss contrast also provides the possibility of stereo imaging and ion microtomography. STIM has also been used in conjunction with channeling to explore transmission channeling in thin crystals. This paper will discuss these applications of STIM with energy loss contrast and look at further developments from them

  5. Aspiration of Barium Contrast

    Directory of Open Access Journals (Sweden)

    Cristina Fuentes Santos

    2014-01-01

    Full Text Available The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test.

  6. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-01-01

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  7. Phase contrast STEM for thin samples: Integrated differential phase contrast.

    Science.gov (United States)

    Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin

    2016-01-01

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electron-electron interaction and transfer ionization in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2008-01-01

    Recently it was pointed out that electron capture occurring in fast ion-atom collisions can proceed via a mechanism which earlier was not considered. In the present paper we study this mechanism in more detail. Similarly as in radiative capture, where the electron transfer occurs due to the interaction with the radiation field and proceeds via emission of a photon, within this mechanism the electron capture is caused by the interaction with another atomic electron leading mainly to the emission of the latter. In contrast to the electron-electron Thomas capture, this electron-electron (E-E) mechanism is basically a first-order one having similarities to the kinematic and radiative capture channels. It also possesses important differences with the latter two. Leading to transfer ionization, this first-order capture mechanism results in the electron emission mainly in the direction opposite to the motion of the projectile ion. The same, although less pronounced, feature is also characteristic for the momenta of the target recoil ions produced via this mechanism. It is also shown that the action of the E-E mechanism is clearly seen in recent experimental data on the transfer ionization in fast proton-helium collisions.

  9. Contrast media: future aspects

    International Nuclear Information System (INIS)

    Weinmann, H.J.; Platzek, J.; Schirmer, H.; Pietsch, H.; Carretero, J.; Harto, J.; Medina, J.; Riefke, B.; Martin, J.

    2005-01-01

    In spite of the dramatic development in CT, there was no major breakthrough in the iodinated contrast media development. New agents based on hybrid between MRI and CT compounds may be a new innovative alternative. This new approach may also open new indications such as radiotherapy. (orig.)

  10. Roentgen contrast medium

    International Nuclear Information System (INIS)

    Tamborski, C.

    1989-01-01

    The patent deals with a roentgen contrast medium containing a perfluorinebrominealkylether of the formula C m F 2m+1 OC n F 2n Br dispersed in water, preferentially in the presence of a non-ionic dispersing agent such as a fluorinated amidoaminoxide. 2 tabs

  11. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  12. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, Takuya; Noda, Takeshi; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, Hiroyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2015-01-12

    We observe lateral currents induced in an n-AlGaAs/GaAs heterojunction channel of Hall bar geometry, when an asymmetric position of the Schottky metal gate is locally irradiated by a near-infrared laser beam. When the left side of the Schottky gate is illuminated with the laser, the lateral current flows from left to right in the two dimensional electron gas (2DEG) channel. In contrast, the right side illumination leads to the current from right to left. The magnitude of the lateral current is almost linearly dependent on the beam position, the current reaching its maximum for the beam at the edge of the Schottky gate. The experimental findings are well explained by a theory based on the current-continuity equation, where the lateral current in the 2DEG channel is driven by the photocurrent which vertically flows from the 2DEG to the Schottky gate.

  13. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  14. Iodinated contrast media nephrotoxicity

    International Nuclear Information System (INIS)

    Meyrier, A.

    1994-01-01

    In the late seventies, iodinated contrast agents (ICA) were considered to be a major cause of acute iatrogenic renal failure. Over the last decade new contrast agents have been synthesized, nonionic and less hyperosmolar. The incidence of acute renal failure due to ICAs, varies from 3.7 to 70% of cases according to the series, with an average figure of 10.2%. The pathophysiology of ICA nephrotoxicity was mainly studied in laboratory animal models. Three main factors are involved in an inducing ICA-mediated decrease in glomerular filtration rate: reduction of the renal plasma flow, a direct cytotoxic effect on renal tubular cells and erythrocyte alteration leading to intra-renal sludge. Excluding dysglobulinemias with urinary excretion of immunoglobulin light chains, which represent a special case of maximum nephrotoxicity, 4 main risk factors of renal toxicity have been identified in nondiabetic subjects: previous renal failure with serum creatinine levels greater than 140 μmol per liter, extracellular dehydration, age over 60 and use of high doses of ICA and/or repeated ICA injections before serum creatinine levels return to baseline. Preventive measures for avoiding ICA nephrotoxicity are threefold: maintain or restore adequate hydration with saline infusion, stop NSAID treatment several days before ICA administration, and allow a 5 day interval before repeating contrast media injections. New, nonionic and moderately hyperosmolar contrast agents appear to be much less nephrotoxic than conventional ICAs in laboratory animals and in high-risk patients. It is advisable to select such contrast media for investigating high-risk patients. This approach was recently substantiated in well designed, randomized clinical studies which included more than 2 000 patients. (author)

  15. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    Science.gov (United States)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  16. Proton channeling in Au at low energies

    International Nuclear Information System (INIS)

    Valdes, J.E.; Vargas, P.

    1996-01-01

    The electronic energy loss for low velocity protons channeled in the direction single crystal Au is calculated. The spatial distribution of valence electronic density in Au is calculated using Tight Binding Linear Muffin Tin Method. The proton trajectories are determined by numerical integration of the classical motion equation, and the energy loss is evaluated using the calculated valence electronic density in the friction term. The results allow to describe qualitatively the non linear behavior of energy loss with ion velocity observed experimentally. (author)

  17. Mamografia com contraste

    OpenAIRE

    Baptista, Rita; Silva, Carina; Reis, Cláudia

    2016-01-01

    O estudo pretendeu apresentar as indicações clínicas, vantagens e princípios da mamografia com contraste, identificar as evoluyções tecnológicas para a mamografia com contraste e caracterizar as práticas e os desafios dos técnicos de radiologia do Hospital de Santarém (único no país a utilizar esta técnica). O cancro da mama é uma das principais causas de morte nas mulheres, em todo o mundo, mas principalmente nos Estados Unidos da América, Canadá, Europa Ocidental e Austrália. Em Portugal, e...

  18. Current iodinated contrast media

    International Nuclear Information System (INIS)

    Stacul, F.

    2001-01-01

    The number of scientific papers on iodinated contrast media is declining. Indeed, comparative trials between high-osmolality and low-osmolality agents largely showed the higher safety and tolerability of the latter, and this is no longer a matter of discussion. Only financial constraints could prevent a total conversion to low-osmolality agents. Research comparing low-osmolality (nonionic monomers, ionic dimer) and iso-osmolality contrast media (nonionic dimers) are still ongoing. Both classes of nonionic compounds proved safer than the ionic dimer. The relative merits of nonionic monomers and nonionic dimers are a matter for debate, and criteria for a selective use of different agents for different procedures could be discussed. (orig.)

  19. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  20. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  1. Channels of distribution on tourist market

    Directory of Open Access Journals (Sweden)

    Đelić Tanja A.

    2005-01-01

    Full Text Available Changes in distribution channels in tourist industry, made as a result of introducing online CRS and Internet, enabled tourist companies offer their products in electronic way to end-users without using agents. In that way technology improvement results in change of the structure of sale channels in the whole tourist market and online orders are growing, as well as the use of agencies are diminishing.

  2. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  3. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  4. Contrast Gain Control Model Fits Masking Data

    Science.gov (United States)

    Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.

  5. Contrast Invariant SNR

    DEFF Research Database (Denmark)

    Weiss, Pierre; Escande, Paul; Dong, Yiqiu

    We design an image quality measure independent of local contrast changes, which constitute simple models of illumination changes. Given two images, the algorithm provides the image closest to the first one with the component tree of the second. This problem can be cast as a specific convex progra...... algorithms based on interior point methods. The algorithm has potential applications in change detection, color image processing or image fusion. A Matlab implementation is available at http://www.math.univ-toulouse.fr/_weiss/PageCodes.html....

  6. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  7. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  8. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  9. Terrestrial gamma ray flash production by active lightning leader channels

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    The production of terrestrial gamma ray flashes (TGFs) requires a seed energetic electron source and a strong electric field. Lightning leaders naturally provide seed electrons by cold runaway and strong electric fields by charge accumulation on the channel. We model possible TGF production in such fields by simulating the charges and currents on the channel. The resulting electric fields then drive simulations of runaway relativistic electron avalanche and photon emission. Photon spectra and...

  10. Phase contrast STEM for thin samples: Integrated differential phase contrast

    International Nuclear Information System (INIS)

    Lazić, Ivan; Bosch, Eric G.T.; Lazar, Sorin

    2016-01-01

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). - Highlights: • First DPC-based atomic resolution images of potential and charge density are obtained. • This is enabled by integration and differentiation of 2D DPC signals, respectively. • Integrated DPC (iDPC) based on 4 quadrant imaging is compared to iCOM imaging. • Noise analysis and comparison with standard STEM imaging modes is provided. • iDPC allows direct imaging of light (C, N, O …) and heavy (Ga, Au …) atoms together.

  11. Phase contrast STEM for thin samples: Integrated differential phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Lazić, Ivan, E-mail: ivan.lazic@fei.com; Bosch, Eric G.T.; Lazar, Sorin

    2016-01-15

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). - Highlights: • First DPC-based atomic resolution images of potential and charge density are obtained. • This is enabled by integration and differentiation of 2D DPC signals, respectively. • Integrated DPC (iDPC) based on 4 quadrant imaging is compared to iCOM imaging. • Noise analysis and comparison with standard STEM imaging modes is provided. • iDPC allows direct imaging of light (C, N, O …) and heavy (Ga, Au …) atoms together.

  12. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  13. Thermoelectricity in Heterogeneous Nanofluidic Channels.

    Science.gov (United States)

    Li, Long; Wang, Qinggong

    2018-05-01

    Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  15. Quantum and Private Capacities of Low-Noise Channels

    Science.gov (United States)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  16. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  17. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  18. AlGaN/GaN double-channel HEMT

    International Nuclear Information System (INIS)

    Quan Si; Hao Yue; Ma Xiaohua; Zheng Pengtian; Xie Yuanbin

    2010-01-01

    The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported. Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure. The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region. The buffer trap is suggested to be related to the wide region of high transconductance. The RF characteristics are also studied. (semiconductor devices)

  19. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  20. Paramagnetic contrast material

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Paramagnetic contrast materials have certainly demonstrated clinical utility in a variety of organ systems for improved detection of various neoplastic, inflammatory, infectious, and physiologic abnormalities. Although the more commonly employed extracellular agents, such as Gd-DTPA, have been quite safe and useful, particularly in the CNS, it is almost certain that other substances will achieve more success in various other organs, such as iron oxides in the reticuloendothelial system and persisting extracellular agents in the cardiovascular system. Finally, as MRI technology continues to evolve, producing such exciting new sequences as gradient-echo fast scans, the roles of currently existing and newly discovered paramagnetic pharmaceuticals must be continuously reevaluated both to obtain maximum clinical benefit and to guide the search for newer agents that may further optimize the diagnostic efficacy of MRI

  1. New MR contrast agent

    International Nuclear Information System (INIS)

    Grossman, C.D.; Subramanian, G.; Schneider, R.; Szeverenyi, N.E.; Rosenbaum, A.M.; Gagne, G.; Tillapaugh-Fay, G.; Berlin, R.; Ritter-Hrncirik, C.; Yu, S.

    1990-01-01

    This paper evaluates an MR contrast agent-meglumine tris-(2,6-dicarboxypyridine) gadolinium (III) or gadolinium dipicolinate (Gd-DPC)-produced in-house. Rats were anesthetized with pentobarbital. For renal imaging, bowel motion artifact was minimized with glucagon (0.014 mg/kg, intravenous (IV)). Enhanced images were generated on a 2-T chemical shift imaging system with a 31-cm horizontal bore magnet after IV injection of Gd-DPC (100 μM/kg). Coronal sections of the kidneys and sagittal sections of the brain, 2 mm thick, were made. Six to eight excitations and 128 or 356 phase-encoding steps were used for each image. Control animals were injected with equivalent doses of gadopentetate dimeglumine

  2. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  3. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  4. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  5. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  6. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  7. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  8. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  9. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J. An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m.Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.

  10. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  11. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  12. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  13. Nonlocal Boltzmann theory of plasma channels

    International Nuclear Information System (INIS)

    Yu, S.S.; Melendez, R.E.

    1983-01-01

    The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents

  14. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  15. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  16. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  17. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  18. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  19. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  20. Coherent Electron Focussing in a Two-Dimensional Electron Gas.

    NARCIS (Netherlands)

    Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.

    1988-01-01

    The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At