WorldWideScience

Sample records for electron binding energies

  1. Experimental electron binding energies for thulium in different matrices

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent (Uzbekistan); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Perevoshchikov, L.L.; Yushkevich, Yu.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zbořil, M. [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)

    2015-07-15

    Highlights: • The thulium L, M, N, O, and P subshell electron binding energies determined. • Five different matrices of the radioactive {sup 169}Yb atoms used in the investigation. • The greatest difference of 4.5 ± 0.1 eV in the average observed between the matrices. • The published N{sub 1}, N{sub 3}, and O{sub 2,3} values found to be higher by about 3 eV. • Natural widths of the thulium K, L, M, N, and O subshells also determined. - Abstract: The L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, N{sub 1}, N{sub 3}, O{sub 1}, O{sub 2}, O{sub 3}, and P{sub 1} subshell electron binding energies (related to the Fermi level) in thulium generated by the electron capture decay of radioactive {sup 169}Yb atoms implanted at 30 keV into polycrystalline platinum and aluminum foils and deposited by vacuum evaporation on surfaces of polycrystalline platinum, carbon, and aluminum foils were determined by the internal conversion electron spectroscopy. The greatest differences in the electron binding energies (4.5 ± 0.1 eV in the average without the P{sub 1} shell and 7.0 ± 0.5 eV for the P{sub 1} shell alone) were found between the matrices of the evaporated ytterbium layer on the aluminum foil and the bulk of the high purity polycrystalline platinum. The thulium electron binding energies in the matrices of the evaporated ytterbium layers on both the platinum and carbon foils and in the aluminum bulk were observed to be the same within the experimental uncertainties. The N{sub 1}, N{sub 3}, and O{sub 2,3} electron binding energies most frequently presented in data compilations were found to be higher by about 3 eV. Natural widths of most of the K, L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, M{sub 3}, N{sub 1}, N{sub 3}, and O{sub 1} subshells in Tm in the investigated matrices were also determined. No significant differences in the natural widths were found among the matrices. The results obtained demonstrate that the physicochemical surrounding of the

  2. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    Science.gov (United States)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  3. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy

    NARCIS (Netherlands)

    Dorenbos, P.

    2013-01-01

    Models and methods to determine the absolute binding energy of 4f-shell electrons in lanthanide dopants will be combined with data on the energy of electron transfer from the valence band to a lanthanide dopant. This work will show that it provides a powerful tool to determine the absolute binding

  4. Effect of electron-phonon interaction on the impurity binding energy in a quantum wire

    OpenAIRE

    Chen, Yueh-Nan; Chuu, Der-San; Lin, Yuh-Kae

    2003-01-01

    The effect of electron-optical phonon interaction on the hydrogenic impurity binding energy in a cylindrical quantum wire is studied. By using Landau and Pekar variational method, the hamiltonian is separated into two parts which contain phonon variable and electron variable respectively. A perturbative-variational technique is then employed to construct the trial wavefunction for the electron part. The effect of confined electron-optical phonon interaction on the binding energies of the grou...

  5. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent, Republic of Uzbekistan (Uzbekistan); Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V.; Yushkevich, Yu.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Lee, B.Q.; Kibédi, T.; Stuchbery, A.E. [Department of Nuclear Physics, RSPE, The Australian National University, Canberra, ACT 0200 (Australia); Zhdanov, V.S. [Nuclear Physics Institute, Almaty (Kazakhstan)

    2014-12-15

    Highlights: • The K, L{sub 1–3}, M{sub 1–3} electron binding energies in Kr in the Pt bulk determined. • The K, L{sub 1–3}, M{sub 1–3} electron binding energies in Kr in an evaporated Rb layer obtained. • The krypton K, L{sub 1–3}, M{sub 1} atomic level widths determined for the both host matrices. • The Kr KL{sub 2}L{sub 3}({sup 1}D{sub 2}) Auger transition energies measured for the both host matrices. • The KL{sub 2}L{sub 3}({sup 1}D{sub 2}) energy difference between Rb and Kr in the Pt host measured. • Dirac–Fock calculations of the Kr KLL Auger transitions performed. - Abstract: The low-energy electron spectra emitted in the radioactive decay of the {sup 83}Rb and {sup 83}Sr isotopes were measured with a combined electrostatic electron spectrometer. Radioactive sources used were prepared by ion implantation of {sup 83}Sr into a high purity polycrystalline platinum foil at 30 keV and by vacuum-evaporation deposition of {sup 83}Rb on the same type of foil. From the measured conversion electron spectra, the electron binding energies (referenced to the Fermi level) for the K, L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, and M{sub 3} shell/subshells of krypton in the platinum host were determined to be 14316.4(12), 1914.3(9), 1720.3(9), 1667.6(9), 281.5(9), 209.6(13), and 201.2(15) eV, respectively, and those for the evaporated layer were observed to be lower by 0.7(1) eV. For both host matrices, values of 2.3(2), 4.6(2), 1.7(2), 1.3(2), and 3.2(3) eV were obtained for the krypton K, L{sub 1}, L{sub 2}, L{sub 3}, and M{sub 1} natural atomic level widths, respectively. The absolute energies of 10838.5(9) and 10839.5(10) eV were measured for the KL{sub 2}L{sub 3}({sup 1}D{sub 2}) Auger transition in krypton implanted in Pt and generated in the evaporated rubidium layer, respectively. A value of 601.0(8) eV was measured for the energy difference of the KL{sub 2}L{sub 3}({sup 1}D{sub 2}) transitions in Rb and Kr in the Pt host

  6. Binding energy between the magnetic impurity electron and the conduction electrons in the Anderson-Holstein model

    Science.gov (United States)

    Narasimha Raju, Ch.; Chatterjee, Ashok

    2013-12-01

    A single-level Anderson-Holstein model is investigated using the Lang-Firsov transformation followed by a zero-phonon averaging and the Kikuchi-Morita Cluster variation method as adopted by Bose and Tanaka in the case of Anderson model. The ground state energy of the system at zero temperature and the binding energy between the magnetic impurity and the conduction electrons are calculated for the symmetric case ɛ d = -( U/2). Subsequently, the effect of the electron-phonon interaction on the ground state energy and the binding energy is investigated.

  7. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water.

    Science.gov (United States)

    Siefermann, Katrin R; Liu, Yaxing; Lugovoy, Evgeny; Link, Oliver; Faubel, Manfred; Buck, Udo; Winter, Bernd; Abel, Bernd

    2010-04-01

    Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.

  8. Modeling the chemical shift of lanthanide 4f electron binding energies

    NARCIS (Netherlands)

    Dorenbos, P.

    2012-01-01

    Lanthanides in compounds can adopt the tetravalent [Xe]4fn?1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4f n+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical

  9. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy

    Science.gov (United States)

    Dorenbos, Pieter

    2013-01-01

    Models and methods to determine the absolute binding energy of 4f-shell electrons in lanthanide dopants will be combined with data on the energy of electron transfer from the valence band to a lanthanide dopant. This work will show that it provides a powerful tool to determine the absolute binding energy of valence band electrons throughout the entire family of insulator and semiconductor compounds. The tool will be applied to 28 fluoride, oxide, and nitride compounds providing the work function and electron affinity together with the location of the energy levels of all divalent and all trivalent lanthanide dopants with an accuracy that surpasses that of traditional methods like photoelectron spectroscopy. The 28 compounds were selected to demonstrate how work function and electron affinity change with composition and structure, and how electronic structure affects the optical properties of the lanthanide dopants. Data covering more than 1000 different halide (F, Cl, Br, I), chalcogenide (O, S, Se), and nitride compounds are available in the archival literature enabling us to routinely establish work function and electron affinity for this much wider collection of compounds.

  10. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods.

    Science.gov (United States)

    Jensen, Jan H

    2015-05-21

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal mol(-1) errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent.

  11. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    Science.gov (United States)

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  12. Dynamics, magnetic properties, and electron binding energies of H2O2 in water

    Science.gov (United States)

    C. Cabral, Benedito J.

    2017-06-01

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ ˜11.8 ppm) is in good agreement with experimental information (δ =11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7 ±0.5 and 11.2 ±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ˜1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  13. Effects of the atomic environment on the electron binding energies in samarium

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent, Republic of Uzbekistan (Uzbekistan); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M.; Vénos, D. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Yushkevich, Yu.V.; Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zhdanov, V.S. [Nuclear Physics Institute, Almaty, Republic of Kazakhstan (Kazakhstan)

    2016-02-15

    Highlights: • Eight different matrices (evaporated and implanted at 30 keV) used. • The greatest average difference in the binding energies amounted to 3.1 ± 0.1 eV. • The presence of trivalent and divalent Sm ions found in some implanted samples. • No significant differences in Sm natural atomic level widths were observed. - Abstract: Effects of the atomic environment on the L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, M{sub 3}, and N{sub 1} electron binding energies in samarium generated in the electron capture decay of radioactive {sup 149}Eu were investigated by means of the internal conversion electron spectroscopy using the conversion electron spectrum of the 22.5 keV M1 + E2 nuclear transition in the daughter {sup 149}Sm. In this investigation, four pairs of {sup 149}Eu sources prepared by vacuum evaporation deposition and by ion implantation at 30 keV with the use of four different source backing materials, namely polycrystalline carbon, aluminium, gadolinium and platinum foils, were employed. The greatest average difference of (3.1 ± 0.1) eV in the L{sub 1}, L{sub 2}, L{sub 3}, and M{sub 1} subshell electron binding energies was observed between the {sup 149}Eu sources prepared by ion implantation into the aluminium and platinum substrates. On the other hand, minimal differences in the electron binding energies were generally found between samarium generated in the evaporated layer and in the bulk for the individual investigated source backings with the exception of the gadolinium foil. A doublet structure of all investigated conversion electron lines with the average values of 8.1 ± 0.2 eV and 1.5 ± 0.1 for the separation energy and the intensity ratio of the low-energy to high-energy components, respectively, was observed for the {sup 149}Eu sources prepared by ion implantation into the aluminium and carbon foils. This structure was presumably caused by the presence of both the trivalent and divalent Sm ions in the sources. No

  14. Binding energy of excitons formed from spatially separated electrons and holes in insulating quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Pokutnyi, S. I., E-mail: pokutnyi-sergey@inbox.ru [National Academy of Sciences of Ukraine, Chuiko Institute of Surface Chemistry (Ukraine); Kulchin, Yu. N.; Dzyuba, V. P. [Russian Academy of Sciences, Institute of Automation and Control Processes, Far East Branch (Russian Federation)

    2015-10-15

    It is found that the binding energy of the ground state of an exciton formed from an electron and a hole spatially separated from each other (the hole is moving within a quantum dot, and the electron is localized above the spherical (quantum dot)–(insulating matrix) interface) in a nanosystem containing insulating Al{sub 2}O{sub 3} quantum dots is substantially increased (by nearly two orders of magnitude) compared to the exciton binding energy in an Al{sub 2}O{sub 3} single crystal. It is established that, in the band gap of an Al{sub 2}O{sub 3} nanoparticle, a band of exciton states (formed from spatially separated electrons and holes) appears. It is shown that there exists the possibility of experimentally detecting the ground and excited exciton states in the band gap of Al{sub 2}O{sub 3} nanoparticles at room temperature from the absorption spectrum of the nanosystem.

  15. Electron spectroscopy, molecular structures, and binding energies of Al- and Cu-imidazole.

    Science.gov (United States)

    Wang, Xu; Lee, Jung Sup; Yang, Dong-Sheng

    2006-11-30

    Al- and Cu-imidazole are produced in laser-vaporization supersonic molecular beams and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) spectroscopy and second-order Møller-Plesset (MP2) theory. The sigma and pi structures of these complexes are predicted by MP2 calculations, but only the sigma structures are identified by the experimental measurements. For these sigma structures, adiabatic ionization energies and several vibrational frequencies are measured from the ZEKE spectra, the ground electronic states of the neutral and ionized complexes are determined by comparing the observed and calculated spectra, and the metal-ligand bond dissociation energies of the neutral states are derived by using a thermochemical relation. The measured vibrational modes include the metal-ligand stretch and bend and ligand ring distortions. The metal-ligand stretch frequencies of these transient complexes are compared with those of coordinately saturated, stable metal compounds, and the ligand-based distortion frequencies are compared with those of the free ligand. Al-imidazole has a larger bond dissociation energy than Cu-imidazole, although the opposite order was previously found for the corresponding ions. The weaker bonding of the Cu complex is attributed to the antibonding interaction and the electron repulsion between the Cu 4s and N lone-pair electrons.

  16. Core level electron binding energies of realgar (As{sub 4}S{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, A.R.; Nesbitt, H.W.

    2000-04-01

    XPS broad scans and high-resolution narrow-region spectra were collected from fresh realgar (As{sub 4}S{sub 4}) surfaces to measure core level S and As binding energies. Reasonably accurate As and S concentrations were determined from XPS broad scans using peak areas and manufacturer supplied sensitivity factors. High resolution S(2p) and As(3d) narrow region spectra were comprised of photoelectron emissions indicative of As and S in intermediate oxidation states akin to binding energies of As and S polymeric species. S(2p) spectra were interpreted using only S contributions expected from the bulk mineral matrix and showed that S was not greatly affected by surface state phenomena. This was attributed to breakage of intermolecular van der Waals bonds rather than covalent interatomic bonds. As(3d) spectra were found to contain two contributions one from As atoms in As{sub 4}S{sub 4} molecules in the bulk mineral matrix and another possibly from As atoms in molecules situated at the surface.

  17. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  18. Estimation of individual binding energies in some dimers involving multiple hydrogen bonds using topological properties of electron charge density

    Science.gov (United States)

    Ebrahimi, A.; Habibi Khorassani, S. M.; Delarami, H.

    2009-11-01

    Individual hydrogen bond (HB) energies have been estimated in several systems involving multiple HBs such as adenine-thymine and guanine-cytosine using electron charge densities calculated at X⋯H hydrogen bond critical points (HBCPs) by atoms in molecules (AIM) method at B3LYP/6-311++G ∗∗ and MP2/6-311++G ∗∗ levels. A symmetrical system with two identical H bonds has been selected to search for simple relations between ρHBCP and individual EHB. Correlation coefficient between EHB and ρHBCP in the base of linear, quadratic, and exponential equations are acceptable and equal to 0.95. The estimated individual binding energies EHB are in good agreement with the results of atom-replacement approach and natural bond orbital analysis (NBO). The EHB values estimated from ρ values at H⋯X BCP are in satisfactory agreement with the main geometrical parameter H⋯X. With respect to the obtained individual binding energies, the strength of a HB depends on the substituent and the cooperative effects of other HBs.

  19. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.

    Science.gov (United States)

    Jacobson, Leif D; Herbert, John M

    2010-10-21

    Previously, we reported an electron-water pseudopotential designed to be used in conjunction with a polarizable water model, in order to describe the hydrated electron [L. D. Jacobson et al., J. Chem. Phys. 130, 124115 (2009)]. Subsequently, we found this model to be inadequate for the aqueous electron in bulk water, and here we report a reparametrization of the model. Unlike the previous model, the current version is not fit directly to any observables; rather, we use an ab initio exchange-correlation potential, along with a repulsive potential that is fit to reproduce the density maximum of the excess electron's wave function within the static-exchange approximation. The new parametrization performs at least as well as the previous model, as compared to ab initio benchmarks for (H(2)O)(n) (-) clusters, and also predicts reasonable values for the diffusion coefficient, radius of gyration, and absorption maximum of the bulk species. The new model predicts a vertical electron binding energy of 3.7 eV in bulk water, which is 1.4 eV smaller than the value obtained using nonpolarizable models; the difference represents the solvent's electronic reorganization energy following electron detachment. We find that the electron's first solvation shell is quite loose, which may be responsible for the electron's large, positive entropy of hydration. Many-body polarization alters the electronic absorption line shape in a qualitative way, giving rise to a high-energy tail that is observed experimentally but is absent in previous simulations. In our model, this feature arises from spatially diffuse excited states that are bound only by electronic reorganization (i.e., solvent polarization) following electronic excitation.

  20. K-shell core-electron binding energies for phosphorus- and sulfur-containing molecules calculated by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Segala, Maximiliano, E-mail: max-segala@uergs.edu.b [Universidade Estadual do Rio Grande do Sul, Rua Oscar Matzembacher 475, 96760-000 Tapes, RS (Brazil); Chong, Delano P. [Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, B.C., V6T 1Z1 (Canada)

    2010-12-15

    Research highlights: {yields} CEBEs(P1s) with AAD = 0.20 eV. {yields} CEBEs(S1s) with AAD = 0.22 eV. {yields} AAD changes slightly with the apparent orbital hybridization of the atom. {yields} Allometric approximation performs well for the CEBEs(1s) for P and S. -- Abstract: In this paper, 1s ionization energies for P- and S-containing molecules were calculated using energy-difference method by DFT. Using observed core-electron binding energies (CEBEs) as reference, we found that the Becke00x(xc) exchange-correlation functional (E{sub xc}) is the best choice for CEBEs(P1s), with an average absolute deviation (AAD) of 0.20 eV, and that the best choice for CEBEs(S1s) is E{sub xc} = BmTau1, with an average absolute deviation (AAD) of 0.22 eV. However, the best single functional for calculation of both P and S is E{sub xc} = VS98, resulting in the weighted AAD of 0.43 eV. Our results are also showing that the quality of AAD changes slightly with the apparent orbital hybridization of the atom.

  1. Vacuum Referred Binding Energy of the Single 3d, 4d, or 5d Electron in Transition Metal and Lanthanide Impurities in Compounds

    NARCIS (Netherlands)

    Rogers, E.G.; Dorenbos, P.

    2014-01-01

    The vacuum referred binding energy (VRBE) of the single electron in the lowest energy 3d level of Sc2 +, V4 +, Cr5 +, the lowest 4d level of Y2 +, Zr3 +, Nb4 +, Mo5 + and the lowest 5d level of Ta4 +, and W5 + in various compounds are determined by means of the chemical shift model. They will be

  2. Theoretical study on electronic structure of bathocuproine: Renormalization of the band gap in the crystalline state and the large exciton binding energy

    Science.gov (United States)

    Yanagisawa, Susumu; Hatada, Shin-No-Suke; Morikawa, Yoshitada

    Bathocuproine (BCP) is a promising organic material of a hole blocking layer in organic light-emitting diodes or an electron buffer layer in organic photovoltaic cells. The nature of the unoccupied electronic states is a key characteristic of the material, which play vital roles in the electron transport. To elucidate the electronic properties of the molecular or crystalline BCP, we use the GW approximation for calculation of the fundamental gap, and the long-range corrected density functional theory for the molecular optical absorption. It is found that the band gap of the BCP single crystal is 4.39 eV, and it is in agreement with the recent low-energy inverse photoemission spectroscopy measurement. The polarization energy is estimated to be larger than 1 eV, demonstrating the large polarization effects induced by the electronic clouds surrounding the injected charge. The theoretical optical absorption energy is 3.68 eV, and the exciton binding energy is estimated to be 0.71 eV, implying the large binding in the eletron-hole pair distributed around the small part of the molecular region. This work was supported by the Grants-in-Aid for Young Scientists (B) (No. 26810009), and for Scientific Research on Innovative Areas ``3D Active-Site Science'' (No. 26105011) from Japan Society for the Promotion of Science.

  3. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    KAUST Repository

    Li, Yang

    2015-04-28

    © 2015 AIP Publishing LLC. The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  4. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    Science.gov (United States)

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  5. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.

    Science.gov (United States)

    Elward, Jennifer M; Chakraborty, Arindam

    2015-02-10

    Presence of heterojunctions is important for generation of free charge carriers and the dissociation of bound electron-hole pairs in semiconductor nanoparticles. This work presents a theoretical investigation of the effect of core/shell heterojunction on electron-hole interaction in CdSe/ZnS quantum dots. The excitonic wave function in the CdSe/ZnS dots was calculated using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method and the effect of successive addition of the ZnS shell on exciton binding energy, electron-hole recombination probability, and the electron-hole separation distance was investigated. It was found that the scaling of all the three quantities as a function of dot diameter did not follow conventional volume scaling laws of core-only dots, and the scaling laws were significantly altered due to the presence of the heterojunction. The spatial localization of the quasiparticles in the core/shell quantum dot was analyzed by calculating the 1-particle reduced density from the eh-XCHF wave function and partitioning the density spatially into core and shell regions. It was found that in the 15 nm CdSe/ZnS dot, the relative probability of the electron localization in the shell region was higher than the hole by a factor of 3. The degree of spatial localization of the quasiparticles was found to depend strongly on the initial size of the CdSe core in the core/shell quantum dot. It was found that a reduction in the CdSe core diameter by a factor of 1.7 resulted in an enhancement of the preferential localization of the electron in the shell region by a factor of 11.3. The results demonstrate that large CdSe/ZnS quantum dots with a small CdSe core have the necessary characteristics for efficient exciton dissociation and generation of free charge carriers.

  6. Universal binding energy relations in metallic adhesion

    Science.gov (United States)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  7. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  8. Triazatriangulene as binding group for molecular electronics

    DEFF Research Database (Denmark)

    Wei, Zhongming; Wang, Xintai; Borges, Anders

    2014-01-01

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded ...... with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices. (Figure Presented)....

  9. Density functional theory calculation of 2p core-electron binding energies of Si, P, S, Cl, and Ar in gas-phase molecules

    Energy Technology Data Exchange (ETDEWEB)

    Segala, Maximiliano [Instituto de Quimica, Universidade Estadual de Campinas, Caixa Postal 6154, CEP 13083-970, Campinas, Sao Paulo (Brazil)]. E-mail: msegala@iqm.unicamp.br; Takahata, Yuji [Instituto de Quimica, Universidade Estadual de Campinas, Caixa Postal 6154, CEP 13083-970, Campinas, Sao Paulo (Brazil); Chong, Delano P. [Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2006-03-15

    Density functional theory (DFT) calculations have been performed on the gas-phase 2p core-electron binding energies (CEBEs) of Si, P, S, Cl, and Ar in 145 cases using the following procedure: {delta}E {sub KS} (scalar-ZORA + E {sub xc})/TZP//HF/6-31G(d). {delta}E {sub KS} is the difference in the total Kohn-Sham energies of the 2p-ionized cation and the neutral parent molecule calculated by DFT using different exchange-correlation functionals E {sub xc} with triple-zeta polarized basis set, at molecular geometry optimized by HF/6-31G(d), and relativistic effects have been estimated by scalar zeroth-order regular approximation. Among the 26 functionals tested, the form of E {sub xc} giving the best overall performance was found to be the combination of OPTX exchange and LYP correlation functionals. For that functional, the average absolute deviation (AAD) of the 145 calculated CEBEs from experiment is 0.26 eV. There are seven other exchange-correlation functionals that led to AADs of less than 0.30 eV. Some functionals give lower AADs than E {sub xc} = OPTX-LYP for some individual elements. In the case of Si, for example, the combination of either mPW91-PBE or Becke88-Perdew86 led to an AAD of only 0.10 eV for 56 silicon-containing molecules. Another example is the case of the argon atom, for which the choice of E {sub xc} = OPTX-Perdew86 yields a value for CEBE equal to the experimental value.

  10. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  11. Probing electronic binding potentials with attosecond photoelectron wavepackets

    Science.gov (United States)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  12. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  13. Binding energies of hypernuclei and hypernuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Argonne National Lab., IL (United States)]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Physics; Murali, S.; Usmani, Q.N. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  14. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....... mol(-1) errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well...

  15. Binding Energy and Equilibrium of Compact Objects

    Directory of Open Access Journals (Sweden)

    Germano M.

    2014-04-01

    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  16. Improved value for the silicon free exciton binding energy

    Directory of Open Access Journals (Sweden)

    Martin A. Green

    2013-11-01

    Full Text Available The free exciton binding energy is a key parameter in silicon material and device physics. In particular, it provides the necessary link between the energy threshold for valence to conduction band optical absorption and the bandgap determining electronic properties. The long accepted low temperature binding energy value of 14.7 ± 0.4 meV is reassessed taking advantage of developments subsequent to its original determination, leading to the conclusion that this value is definitely an underestimate. Using three largely independent experimental data sets, an improved low temperature value of 15.01 ± 0.06 meV is deduced, in good agreement with the most comprehensive theoretical calculations to date.

  17. K- nuclear states: Binding energies and widths

    Science.gov (United States)

    Hrtánková, J.; Mareš, J.

    2017-07-01

    K- optical potentials relevant to calculations of K- nuclear quasibound states were developed within several chiral meson-baryon coupled-channels interaction models. The applied models yield quite different K- binding energies and widths. Then the K- multinucleon interactions were incorporated by a phenomenological optical potential fitted recently to kaonic atom data. Though the applied K- interaction models differ significantly in the K-N subthreshold region, our self-consistent calculations of kaonic nuclei across the periodic table lead to conclusions valid quite generally. Due to K- multinucleon absorption in the nuclear medium, the calculated widths of K- nuclear states are sizable, ΓK-≥90 MeV, and exceed substantially their binding energies in all considered nuclei.

  18. Page 1 ASSESSMENT OF BINDING ENERGIES AND LIGAND ...

    African Journals Online (AJOL)

    The successive binding energies of up to six water ligands to ferric ion and the reduction in the gross binding energies by ligand-ligand repulsion are determined by electrostatic interaction. The gross binding energy is found to be both geometry and coordination nuitber dependent: whereas it increases with number of ...

  19. Core level binding energies of functionalized and defective graphene.

    Science.gov (United States)

    Susi, Toma; Kaukonen, Markus; Havu, Paula; Ljungberg, Mathias P; Ayala, Paola; Kauppinen, Esko I

    2014-01-01

    X-ray photoelectron spectroscopy (XPS) is a widely used tool for studying the chemical composition of materials and it is a standard technique in surface science and technology. XPS is particularly useful for characterizing nanostructures such as carbon nanomaterials due to their reduced dimensionality. In order to assign the measured binding energies to specific bonding environments, reference energy values need to be known. Experimental measurements of the core level signals of the elements present in novel materials such as graphene have often been compared to values measured for molecules, or calculated for finite clusters. Here we have calculated core level binding energies for variously functionalized or defected graphene by delta Kohn-Sham total energy differences in the real-space grid-based projector-augmented wave density functional theory code (GPAW). To accurately model extended systems, we applied periodic boundary conditions in large unit cells to avoid computational artifacts. In select cases, we compared the results to all-electron calculations using an ab initio molecular simulations (FHI-aims) code. We calculated the carbon and oxygen 1s core level binding energies for oxygen and hydrogen functionalities such as graphane-like hydrogenation, and epoxide, hydroxide and carboxylic functional groups. In all cases, we considered binding energy contributions arising from carbon atoms up to the third nearest neighbor from the functional group, and plotted C 1s line shapes by using experimentally realistic broadenings. Furthermore, we simulated the simplest atomic defects, namely single and double vacancies and the Stone-Thrower-Wales defect. Finally, we studied modifications of a reactive single vacancy with O and H functionalities, and compared the calculated values to data found in the literature.

  20. Low-energy electron potentiometry.

    Science.gov (United States)

    Jobst, Johannes; Kautz, Jaap; Mytiliniou, Maria; Tromp, Rudolf M; van der Molen, Sense Jan

    2017-10-01

    In a lot of systems, charge transport is governed by local features rather than being a global property as suggested by extracting a single resistance value. Consequently, techniques that resolve local structure in the electronic potential are crucial for a detailed understanding of electronic transport in realistic devices. Recently, we have introduced a new potentiometry method based on low-energy electron microscopy (LEEM) that utilizes characteristic features in the reflectivity spectra of layered materials [1]. Performing potentiometry experiments in LEEM has the advantage of being fast, offering a large field of view and the option to zoom in and out easily, and of being non-invasive compared to scanning-probe methods. However, not all materials show clear features in their reflectivity spectra. Here we, therefore, focus on a different version of low-energy electron potentiometry (LEEP) that uses the mirror mode transition, i.e. the drop in electron reflectivity around zero electron landing energy when they start to interact with the sample rather than being reflected in front of it. This transition is universal and sensitive to the local electrostatic surface potential (either workfunction or applied potential). It can consequently be used to perform LEEP experiments on a broader range of material compared to the method described in Ref[1]. We provide a detailed description of the experimental setup and demonstrate LEEP on workfunction-related intrinsic potential variations on the Si(111) surface and for a metal-semiconductor-metal junction with external bias applied. In the latter, we visualize the Schottky effect at the metal-semiconductor interface. Finally, we compare how robust the two LEEP techniques discussed above are against image distortions due to sample inhomogeneities or contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  2. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  3. A Review of Electronic Band Structure of Graphene and Carbon Nanotubes Using Tight Binding

    Directory of Open Access Journals (Sweden)

    Davood Fathi

    2011-01-01

    Full Text Available The electronic band structure variations of single-walled carbon nanotubes (SWCNTs using Huckle/tight binding approximation theory are studied. According to the chirality indices, the related expressions for energy dispersion variations of these elements are derived and plotted for zigzag and chiral nanotubes.

  4. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure...

  5. Accurate calculation of the absolute free energy of binding for drug molecules† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02678d Click here for additional data file.

    Science.gov (United States)

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J.; Knapp, Stefan

    2016-01-01

    Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol–1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol–1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets. PMID:26798447

  6. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    Science.gov (United States)

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  7. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  8. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  9. Perturbation method for calculating impurity binding energy in an ...

    Indian Academy of Sciences (India)

    Nilanjan Sil

    2017-12-18

    Dec 18, 2017 ... Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa1−xAs. Perturbation method is used to calculate the binding energy within the framework of effective mass ...

  10. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  11. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In four......-wave mixing, the biexciton photon echo decays fast and nonexponentially. This behavior results from the inhomogeneous broadening of the biexciton binding energy, as we show by a comparison with an analytical model calculation. The fast decay is thus not related to a fast microscopic biexciton dephasing....

  12. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2017-12-22

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  14. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  15. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding.

    Science.gov (United States)

    Tong, Yan; Mei, Ye; Li, Yong L; Ji, Chang G; Zhang, John Z H

    2010-04-14

    Avidin-biotin is one of the strongest protein-ligand binding systems, with broad applications in biomedical science. Here we report a quantum-based computational study to help elucidate the mechanism of binding avidin to biotin (BTN1) and its close analogue, 2'-iminobiotin (BTN2). Our study reveals that electronic polarization of protein plays a critical role in stabilizing the beta sheet (Thr113-Arg122) at the binding site and makes a substantial contribution to the free energy of avidin-biotin binding. The current finding is in contradiction to the previous notion that electrostatic interaction has no effect on or makes an unfavorable contribution to the free energy of avidin-biotin binding. Our calculations also show that the difference in binding free energy of avidin to BTN1 and BTN2 is almost entirely due to the contribution of electrostatic interaction resulting from polarization-induced stabilization of a hydrogen bond between avidin and BTN1. The current result provides strong evidence that protein polarization accounts for the electrostatic contribution to binding free energy that was missing in previous studies of avidin-biotin binding.

  16. Calculation of the graphene C 1 s core level binding energy

    Science.gov (United States)

    Susi, Toma; Mowbray, Duncan J.; Ljungberg, Mathias P.; Ayala, Paola

    2015-02-01

    X-ray photoelectron spectroscopy combined with first-principles modeling is a powerful tool for determining the chemical composition and electronic structure of novel materials. Of these, graphene is an especially important model system for understanding the properties of other carbon nanomaterials. Here, we calculate the carbon 1 s core level binding energy of pristine graphene using two methods based on density functional theory total energy differences: a calculation with an explicit core-hole, and an all-electron extension of the delta self-consistent field (Δ SCF ) method. We study systematically their convergence and computational workload, and the dependence of the energies on the chosen exchange-correlation functional. The Δ SCF method is computationally more expensive, but gives consistently higher C 1 s energies. Although there is a significant functional dependence, the binding energy calculated using the PBE functional is found to be remarkably close to what has been measured for graphite.

  17. Progress toward high energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev

    2001-07-20

    All electron cooling systems in operation to date can be classified as low energy systems. The electron beam kinetic energy in such a system is limited to about 0.6-1 MeV by the use of a conventional commercial Cockcroft-Walton high-voltage power supply. This, in turn, bounds the maximum ion kinetic energy, accessible for cooling with today's standard technology, to about 2 GeV/nucleon (about a factor of 2-3 times higher than the electron systems in operation today). Electron cooling systems with kinetic energies above 1 MeV could provide economically justifiable improvements in the performance of many existing and proposed accelerator complexes, such as RHIC, Tevatron and HERA. This paper reviews the status of the development of the technology needed for high energy electron cooling.

  18. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  19. Electronic transport of molecular nanowires by considering of electron hopping energy between the second neighbors

    Directory of Open Access Journals (Sweden)

    H Rabani

    2015-07-01

    Full Text Available In this paper, we study the electronic conductance of molecular nanowires by considering the electron hopping between the first and second neighbors with the help Green’s function method at the tight-binding approach. We investigate three types of structures including linear uniform and periodic chains as well as poly(p-phenylene molecule which are embedded between two semi-infinite metallic leads. The results show that in the second neighbor approximation, the resonance, anti-resonance and Fano phenomena occur in the conductance spectra of these structures. Moreover, a new gap is observed at edge of the lead energy band wich its width depends on the value of the electron hopping energy between the second neighbors. In the systems including intrinsic gap, this hopping energy shifts the gap in the energy spectra.

  20. Binding energy and single–particle Energies in the 16 0 region ...

    African Journals Online (AJOL)

    In this paper we present the binding energy of 160 together with single-particle energies in the oxygen region by folding together a Hamiltonian in the rest-frame of the nucleus with two-body correlation functions based on the Njimegen potential. We have found that the binding energies are very sensitive to the core radius rc ...

  1. Enzyme activation through the utilization of intrinsic dianion binding energy.

    Science.gov (United States)

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  2. Energy Saving and Efficient Energy Use By Power Electronic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Wang, Huai; Davari, Pooya

    2017-01-01

    In the development of the modern society, one of the key factors is to save energy in order to become more independent of other energy resources. Two important approaches can be taken—one is to change behavior and thereby save energy—the second one is to develop new technology which is able to save...... energy in different applications. This chapter will give an overview of challenges and possibilities in terms of energy saving and also energy efficient use. This includes a discussion on high efficiency power electronics devices and the systems they are used for energy loss reduction. The key enabling...... technologies are power electronics, Information and Communication Technology (ICT) as well as systems to carry the electrical energy through power transmission, conversion and distribution. A couple of examples will be given to demonstrate the energy saving possibilities by power electronics systems...

  3. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  4. Atomic Mass and Nuclear Binding Energy for Pu-239 (Plutonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pu-239 (Plutonium, atomic number Z = 94, mass number A = 239).

  5. Atomic Mass and Nuclear Binding Energy for Hs-349 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-349 (Hassium, atomic number Z = 108, mass number A = 349).

  6. Atomic Mass and Nuclear Binding Energy for Hs-298 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-298 (Hassium, atomic number Z = 108, mass number A = 298).

  7. Atomic Mass and Nuclear Binding Energy for Hs-333 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-333 (Hassium, atomic number Z = 108, mass number A = 333).

  8. Atomic Mass and Nuclear Binding Energy for Hs-326 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-326 (Hassium, atomic number Z = 108, mass number A = 326).

  9. Atomic Mass and Nuclear Binding Energy for Hs-313 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-313 (Hassium, atomic number Z = 108, mass number A = 313).

  10. Atomic Mass and Nuclear Binding Energy for Hs-321 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-321 (Hassium, atomic number Z = 108, mass number A = 321).

  11. Atomic Mass and Nuclear Binding Energy for Hs-304 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-304 (Hassium, atomic number Z = 108, mass number A = 304).

  12. Atomic Mass and Nuclear Binding Energy for Hs-311 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-311 (Hassium, atomic number Z = 108, mass number A = 311).

  13. Atomic Mass and Nuclear Binding Energy for Hs-323 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-323 (Hassium, atomic number Z = 108, mass number A = 323).

  14. Atomic Mass and Nuclear Binding Energy for Hs-335 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-335 (Hassium, atomic number Z = 108, mass number A = 335).

  15. Atomic Mass and Nuclear Binding Energy for Hs-322 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-322 (Hassium, atomic number Z = 108, mass number A = 322).

  16. Atomic Mass and Nuclear Binding Energy for Hs-325 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-325 (Hassium, atomic number Z = 108, mass number A = 325).

  17. Atomic Mass and Nuclear Binding Energy for Hs-316 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-316 (Hassium, atomic number Z = 108, mass number A = 316).

  18. Atomic Mass and Nuclear Binding Energy for Hs-355 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-355 (Hassium, atomic number Z = 108, mass number A = 355).

  19. Atomic Mass and Nuclear Binding Energy for Hs-336 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-336 (Hassium, atomic number Z = 108, mass number A = 336).

  20. Atomic Mass and Nuclear Binding Energy for Hs-286 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-286 (Hassium, atomic number Z = 108, mass number A = 286).

  1. Atomic Mass and Nuclear Binding Energy for Hs-305 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-305 (Hassium, atomic number Z = 108, mass number A = 305).

  2. Atomic Mass and Nuclear Binding Energy for Hs-283 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-283 (Hassium, atomic number Z = 108, mass number A = 283).

  3. Atomic Mass and Nuclear Binding Energy for Hs-334 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-334 (Hassium, atomic number Z = 108, mass number A = 334).

  4. Atomic Mass and Nuclear Binding Energy for Hs-302 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-302 (Hassium, atomic number Z = 108, mass number A = 302).

  5. Atomic Mass and Nuclear Binding Energy for Hs-280 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-280 (Hassium, atomic number Z = 108, mass number A = 280).

  6. Atomic Mass and Nuclear Binding Energy for Hs-341 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-341 (Hassium, atomic number Z = 108, mass number A = 341).

  7. Atomic Mass and Nuclear Binding Energy for Hs-351 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-351 (Hassium, atomic number Z = 108, mass number A = 351).

  8. Atomic Mass and Nuclear Binding Energy for Hs-344 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-344 (Hassium, atomic number Z = 108, mass number A = 344).

  9. Atomic Mass and Nuclear Binding Energy for Hs-319 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-319 (Hassium, atomic number Z = 108, mass number A = 319).

  10. Atomic Mass and Nuclear Binding Energy for Hs-342 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-342 (Hassium, atomic number Z = 108, mass number A = 342).

  11. Atomic Mass and Nuclear Binding Energy for Hs-345 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-345 (Hassium, atomic number Z = 108, mass number A = 345).

  12. Atomic Mass and Nuclear Binding Energy for Hs-306 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-306 (Hassium, atomic number Z = 108, mass number A = 306).

  13. Atomic Mass and Nuclear Binding Energy for Hs-301 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-301 (Hassium, atomic number Z = 108, mass number A = 301).

  14. Atomic Mass and Nuclear Binding Energy for Hs-289 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-289 (Hassium, atomic number Z = 108, mass number A = 289).

  15. Atomic Mass and Nuclear Binding Energy for Hs-348 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-348 (Hassium, atomic number Z = 108, mass number A = 348).

  16. Atomic Mass and Nuclear Binding Energy for Hs-290 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-290 (Hassium, atomic number Z = 108, mass number A = 290).

  17. Atomic Mass and Nuclear Binding Energy for Hs-299 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-299 (Hassium, atomic number Z = 108, mass number A = 299).

  18. Atomic Mass and Nuclear Binding Energy for Hs-356 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-356 (Hassium, atomic number Z = 108, mass number A = 356).

  19. Atomic Mass and Nuclear Binding Energy for Hs-307 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-307 (Hassium, atomic number Z = 108, mass number A = 307).

  20. Atomic Mass and Nuclear Binding Energy for Hs-292 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-292 (Hassium, atomic number Z = 108, mass number A = 292).

  1. Atomic Mass and Nuclear Binding Energy for Hs-340 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-340 (Hassium, atomic number Z = 108, mass number A = 340).

  2. Atomic Mass and Nuclear Binding Energy for Hs-293 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-293 (Hassium, atomic number Z = 108, mass number A = 293).

  3. Atomic Mass and Nuclear Binding Energy for Hs-288 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-288 (Hassium, atomic number Z = 108, mass number A = 288).

  4. Atomic Mass and Nuclear Binding Energy for Hs-317 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-317 (Hassium, atomic number Z = 108, mass number A = 317).

  5. Atomic Mass and Nuclear Binding Energy for Hs-318 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-318 (Hassium, atomic number Z = 108, mass number A = 318).

  6. Atomic Mass and Nuclear Binding Energy for Hs-353 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-353 (Hassium, atomic number Z = 108, mass number A = 353).

  7. Atomic Mass and Nuclear Binding Energy for Hs-354 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-354 (Hassium, atomic number Z = 108, mass number A = 354).

  8. Atomic Mass and Nuclear Binding Energy for Hs-278 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-278 (Hassium, atomic number Z = 108, mass number A = 278).

  9. Atomic Mass and Nuclear Binding Energy for Hs-343 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-343 (Hassium, atomic number Z = 108, mass number A = 343).

  10. Atomic Mass and Nuclear Binding Energy for Hs-310 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-310 (Hassium, atomic number Z = 108, mass number A = 310).

  11. Atomic Mass and Nuclear Binding Energy for Hs-296 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-296 (Hassium, atomic number Z = 108, mass number A = 296).

  12. Atomic Mass and Nuclear Binding Energy for Hs-324 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-324 (Hassium, atomic number Z = 108, mass number A = 324).

  13. Atomic Mass and Nuclear Binding Energy for Hs-330 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-330 (Hassium, atomic number Z = 108, mass number A = 330).

  14. Atomic Mass and Nuclear Binding Energy for Hs-295 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-295 (Hassium, atomic number Z = 108, mass number A = 295).

  15. Atomic Mass and Nuclear Binding Energy for Hs-309 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-309 (Hassium, atomic number Z = 108, mass number A = 309).

  16. Atomic Mass and Nuclear Binding Energy for Hs-359 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-359 (Hassium, atomic number Z = 108, mass number A = 359).

  17. Atomic Mass and Nuclear Binding Energy for Hs-294 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-294 (Hassium, atomic number Z = 108, mass number A = 294).

  18. Atomic Mass and Nuclear Binding Energy for Hs-300 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-300 (Hassium, atomic number Z = 108, mass number A = 300).

  19. Atomic Mass and Nuclear Binding Energy for Hs-328 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-328 (Hassium, atomic number Z = 108, mass number A = 328).

  20. Atomic Mass and Nuclear Binding Energy for Hs-346 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-346 (Hassium, atomic number Z = 108, mass number A = 346).

  1. Atomic Mass and Nuclear Binding Energy for Hs-284 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-284 (Hassium, atomic number Z = 108, mass number A = 284).

  2. Atomic Mass and Nuclear Binding Energy for Hs-361 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-361 (Hassium, atomic number Z = 108, mass number A = 361).

  3. Atomic Mass and Nuclear Binding Energy for Hs-315 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-315 (Hassium, atomic number Z = 108, mass number A = 315).

  4. Atomic Mass and Nuclear Binding Energy for Hs-352 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-352 (Hassium, atomic number Z = 108, mass number A = 352).

  5. Atomic Mass and Nuclear Binding Energy for Hs-287 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-287 (Hassium, atomic number Z = 108, mass number A = 287).

  6. Atomic Mass and Nuclear Binding Energy for Hs-357 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-357 (Hassium, atomic number Z = 108, mass number A = 357).

  7. Atomic Mass and Nuclear Binding Energy for Hs-337 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-337 (Hassium, atomic number Z = 108, mass number A = 337).

  8. Atomic Mass and Nuclear Binding Energy for Hs-360 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-360 (Hassium, atomic number Z = 108, mass number A = 360).

  9. Atomic Mass and Nuclear Binding Energy for Hs-358 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-358 (Hassium, atomic number Z = 108, mass number A = 358).

  10. Atomic Mass and Nuclear Binding Energy for Hs-331 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-331 (Hassium, atomic number Z = 108, mass number A = 331).

  11. Atomic Mass and Nuclear Binding Energy for Hs-339 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-339 (Hassium, atomic number Z = 108, mass number A = 339).

  12. Atomic Mass and Nuclear Binding Energy for Hs-312 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-312 (Hassium, atomic number Z = 108, mass number A = 312).

  13. Atomic Mass and Nuclear Binding Energy for Hs-282 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-282 (Hassium, atomic number Z = 108, mass number A = 282).

  14. Atomic Mass and Nuclear Binding Energy for Hs-291 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-291 (Hassium, atomic number Z = 108, mass number A = 291).

  15. Atomic Mass and Nuclear Binding Energy for Hs-285 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-285 (Hassium, atomic number Z = 108, mass number A = 285).

  16. Atomic Mass and Nuclear Binding Energy for Hs-332 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-332 (Hassium, atomic number Z = 108, mass number A = 332).

  17. Atomic Mass and Nuclear Binding Energy for Hs-338 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-338 (Hassium, atomic number Z = 108, mass number A = 338).

  18. Atomic Mass and Nuclear Binding Energy for Hs-279 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-279 (Hassium, atomic number Z = 108, mass number A = 279).

  19. Atomic Mass and Nuclear Binding Energy for Hs-281 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-281 (Hassium, atomic number Z = 108, mass number A = 281).

  20. Atomic Mass and Nuclear Binding Energy for Hs-320 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-320 (Hassium, atomic number Z = 108, mass number A = 320).

  1. Atomic Mass and Nuclear Binding Energy for Hs-303 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-303 (Hassium, atomic number Z = 108, mass number A = 303).

  2. Atomic Mass and Nuclear Binding Energy for Hs-297 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-297 (Hassium, atomic number Z = 108, mass number A = 297).

  3. Atomic Mass and Nuclear Binding Energy for Hs-327 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-327 (Hassium, atomic number Z = 108, mass number A = 327).

  4. Atomic Mass and Nuclear Binding Energy for Hs-347 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-347 (Hassium, atomic number Z = 108, mass number A = 347).

  5. Atomic Mass and Nuclear Binding Energy for Hs-308 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-308 (Hassium, atomic number Z = 108, mass number A = 308).

  6. Atomic Mass and Nuclear Binding Energy for Hs-329 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-329 (Hassium, atomic number Z = 108, mass number A = 329).

  7. Atomic Mass and Nuclear Binding Energy for Hs-314 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-314 (Hassium, atomic number Z = 108, mass number A = 314).

  8. Atomic Mass and Nuclear Binding Energy for Hs-350 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-350 (Hassium, atomic number Z = 108, mass number A = 350).

  9. Quasielastic electron-deuteron scattering in the weak binding approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB

    2014-06-01

    We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.

  10. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  11. Low Energy Electronics Design for Mobile Platforms

    National Research Council Canada - National Science Library

    East, J

    2002-01-01

    In order to address the need for low-energy electronics design for mobile platforms in future Army communication systems a multidisciplinary effort is needed to investigate system and component design...

  12. Microdosimetry of low-energy electrons.

    Science.gov (United States)

    Liamsuwan, Thiansin; Emfietzoglou, Dimitris; Uehara, Shuzo; Nikjoo, Hooshang

    2012-12-01

    To investigate differences in energy depositions and microdosimetric parameters of low-energy electrons in liquid and gaseous water using Monte Carlo track structure simulations. KURBUC-liq (Kyushu University and Radiobiology Unit Code for liquid water) was used for simulating electron tracks in liquid water. The inelastic scattering cross sections of liquid water were obtained from the dielectric response model of Emfietzoglou et al. (Radiation Research 2005;164:202-211). Frequencies of energy deposited in nanometre-size cylindrical targets per unit absorbed dose and associated lineal energies were calculated for 100-5000 eV monoenergetic electrons and the electron spectrum of carbon K edge X-rays. The results for liquid water were compared with those for water vapour. Regardless of electron energy, there is a limit how much energy electron tracks can deposit in a target. Phase effects on the frequencies of energy depositions are largely visible for the targets with diameters and heights smaller than 30 nm. For the target of 2.3 nm by 2.3 nm (similar to dimension of DNA segments), the calculated frequency- and dose-mean lineal energies for liquid water are up to 40% smaller than those for water vapour. The corresponding difference is less than 12% for the targets with diameters ≥ 30 nm. Condensed-phase effects are non-negligible for microdosimetry of low-energy electrons for targets with sizes smaller than a few tens of nanometres, similar to dimensions of DNA molecular structures and nucleosomes.

  13. A Note on the Standard State's Binding Free Energy.

    Science.gov (United States)

    General, Ignacio J

    2010-08-10

    The relation between the equilibrium constant of a given chemical reaction and the associated free energy is an issue well studied in chemistry books, but when the reaction involves changes in the number of components in the system, as is the case in binding, things become a little more obscure since one needs to define the so-called standard state. This is reflected in the literature, especially in computational studies of binding, where contradicting approaches are followed when treating this problem. In this work, we present a detailed and unifying explanation of the concepts involved and derive the necessary relations to convert a binding free energy from an arbitrary state to some given standard state. This is done in three independent ways, from the point of view of (1) the dimensions of the quantities involved, (2) the energy and entropy of the molecules, and (3) their chemical potentials.

  14. Accurate electronic free energies of the 3

    NARCIS (Netherlands)

    Zhang, Xi; Grabowski, Blazej; Freysoldt, Christoph; Kormann, F.H.W.; Neugebauer, Jörg

    2017-01-01

    Free energies of bulk materials are nowadays routinely computed by density functional theory. In particular for metals, electronic excitations can significantly contribute to the free energy. For an ideal static lattice, this contribution can be obtained at low computational cost, e.g., from the

  15. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  16. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    Science.gov (United States)

    Bedford, Nicholas M.

    applications, fibers consisting of the commonly used organic photovoltaic electron donor/acceptor pair P3HT:PCBM were made by coaxial electrospinning. The inclusion of P3HT:PCBM fibers into an active layer of a organic photovoltaic device led to a ˜ 50% increase in power conversion efficiency over a thin film device of identical chemical composition and thickness. The inclusion of biological photosynthetic moieties into electrically relevant conjugated polymers was also explored for electrical applications. Polymeric fibers consisting largely of PEDOT:PSS were doped with thylakoid vesicles from spinach, and were found to act as photo-detectors. Native PEDOT:PSS does not exhibit such properties. For environmental applications, photocatalytic degradation membranes were also created by electrospinning cellulosic fibers which could be used as platforms to efficiently bind the photocatalyst TiO2. Employing different fiber-titania binding strategies, titania nanoparticles of various sizes and band gap configurations were successfully incorporated into mats of non-woven cellulosic nanofibers. These mats were found to successfully degrade dyes and relevant fresh water toxins such as microcystin-LR.

  17. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  18. Stability of electron energy in the Fermilab electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  19. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  20. Measuring the neutron star compactness and binding energy with supernova neutrinos

    Science.gov (United States)

    Gallo Rosso, Andrea; Vissani, Francesco; Volpe, Maria Cristina

    2017-11-01

    We investigate the precision with which a neutron star gravitational binding energy can be measured through the supernova neutrino signal, without assuming any prior such as the energy equipartition hypothesis, mean energies hierarchy or constraints on the pinching parameters that characterize the neutrino spectra. We consider water Cherenkov detectors and prove that combining inverse beta decay with elastic scattering on electrons is sufficient to reach 11% precision on the neutron star gravitational binding energy already with Super-Kamiokande. The inclusion of neutral current events on oxygen in the analysis does not improve the precision significantly, due to theoretical uncertainties. We examine the possible impact on the conclusion of further theoretical input and of higher statistics. We discuss the implications of our findings on the properties of the newly formed neutron star, in particular concerning the assessment of the compactness or mass-radius relation.

  1. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  2. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  3. Metal interfaces - Adhesive energies and electronic barriers

    Science.gov (United States)

    Ferrante, J.; Smith, J. R.

    1976-01-01

    We report a fully self-consistent calculation of the electron number density, barrier height and adhesive energy as a function of separation in an aluminum-aluminum (100) contact. The local density approximation is used for exchange and correlation. The electron number density and barrier heights are strong functions of the separation. The range of strong chemical bonding is about 0.2 nm.

  4. Nuclear cartography: patterns in binding energies and subatomic structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-11-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements around us were formed in stars. One way of visualising these nuclear properties is through the nuclide chart, which maps all nuclides as a function of their proton and neutron numbers. Here we use the nuclide chart to illustrate various aspects of nuclear physics, and present 3D visualisations of it produced as part of the binding blocks project.

  5. Powering the Digital: From Energy Ecologies to Electronic Environmentalism

    OpenAIRE

    Gabrys, Jennifer

    2014-01-01

    Electronics and all that they plug into are energy intensive. Energy is another form of waste, like electronic waste that contributes to the material footprint of electronic technologies. This chapter examines the particular ways in which electronics use energy, from manufacture to powering devices to running cloud servers. While electronics consume energy, they are also used to manage energy consumption with the hope of achieving greater sustainability. By developing the concept of “electron...

  6. Donor binding energies in a GaN/ZnGeN2 quantum well

    Science.gov (United States)

    Yıldırım, Hasan

    2017-11-01

    Binding energies of a donor atom within a GaN/ZnGeN2 quantum well structure have been investigated. Hydrogenic type wave functions are assumed and the Schrödinger and Poisson's equations are solved self-consistently. The binding energies of the donor states 1 s and 2p± associated with the first subband in the quantum well and the transition energies between them are represented as a function of the quantum well width, the donor position and the external magnetic field. The ground state 1 s and the excited states 2p± have maximum binding energies as much as 64 and 11 meV, occurring in quantum wells of widths 10 and 18 Å, respectively. The binding energies are found to be an asymmetric function of the donor position with respect to the quantum well center because of the asymmetry in the band profile introduced by the built-in electric field in the structure. An external magnetic field up to 10 T is included into the calculations and it is seen that the excited states show a small Zeeman splitting, very close to the bulk GaN value, because of the heavy effective mass of electron.

  7. Binding energy of a hydrogenic impurity in a coaxial quantum wire with an insulator layer

    Science.gov (United States)

    Kes, H.; Bilekkaya, A.; Aktas, S.; Okan, S. E.

    2017-11-01

    The electronic properties of a coaxial cylindrical quantum well-barrier system constituted about an central insulating wire were determined under an external electric field. The model wire, inside to outside, was considered to be layered as AlAs / GaAs / Alx1 Ga1 -x1 As / GaAs / Alx2 Ga1 -x2 As. Within the framework of the effective mass-approximation, the binding energy of a hydrogenic impurity is calculated by using the combination of the fourth-order Runge-Kutta method and variational approaches. The binding energy exhibits sharp changes depending on the impurity position and the geometrical parameters of the structure such as the well widths of the GaAs wires and the height and thickness of the barrier constituted by Alx1 Ga1 -x1 As . The binding energy of the electron was found to be independent from the impurity position for the specific widths of the well wires. Also, the barrier properties appeared as very effective parameters in controlling the probability distribution of the electron.

  8. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  9. Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations.

    Science.gov (United States)

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J; Knapp, Stefan; Biggin, Philip C

    2017-01-18

    Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment.

  10. Calculation of positron binding energies using the generalized any particle propagator theory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jonathan; Charry, Jorge A. [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Flores-Moreno, Roberto [Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara Jal., C. P. 44430 (Mexico); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil); Reyes, Andrés, E-mail: areyesv@unal.edu.co [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil)

    2014-09-21

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.

  11. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  12. Gas Electron multipliers for low energy beams

    CERN Document Server

    Arnold, F; Ropelewski, L; Spanggaard, J; Tranquille, G

    2010-01-01

    Gas Electron Multipliers (GEM) find their way to more and more applications in beam instrumentation. Gas Electron Multiplication uses a very similar physical phenomenon to that of Multi Wire Proportional Chambers (MWPC) but for small profile monitors they are much more cost efficient both to produce and to maintain. This paper presents the new GEM profile monitors intended to replace the MWPCs currently used at CERN’s low energy Antiproton Decelerator (AD). It will be shown how GEMs overcome the documented problems of profile measurements with MWPCs for low energy beams, where the interaction of the beam with the detector has a large influence on the measured profile. Results will be shown of profile measurements performed at 5 MeV using four different GEM prototypes, with discussion on the possible use of GEMs at even lower energies needed at the AD in 2013.

  13. Nuclear binding energy using semi empirical mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Ankita,, E-mail: ankitagoyal@gmail.com; Suthar, B. [Department of Physics, Govt. Engineering College, Bikaner-334004 Rajasthan (India)

    2016-05-06

    In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.

  14. Effect of valence nucleons on nuclear binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, I. (Kossuth Lajos Tudomanyegyetem, Debrecen (HU))

    1991-10-01

    The nucleonic promiscuity factor P = N{sub p}N{sub n}/(N{sub p} + N{sub n}), where N{sub p}(N{sub n}) is the number of valence protons (neutrons) or holes, is shown to be a useful parameter in the description of the mass number dependence of nuclear binding energies. This means that most of the deviation from a smooth mass number dependence is caused by the isoscalar interaction between valence protons and neutrons.

  15. Reprint of Low-energy electron potentiometry.

    Science.gov (United States)

    Jobst, Johannes; Kautz, Jaap; Mytiliniou, Maria; Tromp, Rudolf M; van der Molen, Sense Jan

    2017-12-01

    In a lot of systems, charge transport is governed by local features rather than being a global property as suggested by extracting a single resistance value. Consequently, techniques that resolve local structure in the electronic potential are crucial for a detailed understanding of electronic transport in realistic devices. Recently, we have introduced a new potentiometry method based on low-energy electron microscopy (LEEM) that utilizes characteristic features in the reflectivity spectra of layered materials [1]. Performing potentiometry experiments in LEEM has the advantage of being fast, offering a large field of view and the option to zoom in and out easily, and of being non-invasive compared to scanning-probe methods. However, not all materials show clear features in their reflectivity spectra. Here we, therefore, focus on a different version of low-energy electron potentiometry (LEEP) that uses the mirror mode transition, i.e. the drop in electron reflectivity around zero electron landing energy when they start to interact with the sample rather than being reflected in front of it. This transition is universal and sensitive to the local electrostatic surface potential (either workfunction or applied potential). It can consequently be used to perform LEEP experiments on a broader range of material compared to the method described in Ref[1]. We provide a detailed description of the experimental setup and demonstrate LEEP on workfunction-related intrinsic potential variations on the Si(111) surface and for a metal-semiconductor-metal junction with external bias applied. In the latter, we visualize the Schottky effect at the metal-semiconductor interface. Finally, we compare how robust the two LEEP techniques discussed above are against image distortions due to sample inhomogeneities or contamination. Copyright © 2017. Published by Elsevier B.V.

  16. Tight-binding analysis of the electronic states in AlAs with N isoelectronic impurities

    Energy Technology Data Exchange (ETDEWEB)

    Jo, M., E-mail: masafumi.jo@riken.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Mano, T.; Sakuma, Y.; Sakoda, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-03-28

    Incorporation of nitrogen (N) atoms into III–V semiconductors significantly changes their electronic structures. The aim of this study was to assess the electronic states in AlAs that contained N impurities. An sp{sup 3}s{sup *} tight-binding model along with valence-force-field strain calculations were used to obtain the energy levels in N-doped AlAs. The calculations showed that an isolated N atom formed a resonant state above the conduction band edge in AlAs. In contrast, NN{sub 1}[110] and NN{sub 4}[220] pairs formed bound states inside the band gap. The formation of two bound states was consistent with the photoluminescence spectrum of N δ-doped AlAs.

  17. Low energy electron transport in furfural

    Science.gov (United States)

    Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo

    2017-09-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.

  18. Low Energy Electron Scattering from Fuels

    Science.gov (United States)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  19. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  20. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  1. Effect of Magnetic Field and Shell Thickness on Binding Energies of a ZnSe/ZnS Core Shell Quantum Dot

    Science.gov (United States)

    Bhat, Bashir Mohi ud din; Parvaiz, Muhammad Shunaid; Sen, Pratima

    2017-02-01

    We investigated the effect of external magnetic field and shell thickness on the binding energies of a ZnSe/ZnS core shell quantum dot. The binding energies were calculated using the variational method within the effective mass approximation and confinement potential. The binding energy of the 2 s and 2 p + states was found to increase with magnetic field. However, the 2 p 0 state was found to be independent of the magnetic field at a shell thickness of 0.5 nm. Degeneracy of the lifted 2 p states was found to occur. The results also showed that the electron binding energy increases at the outset with the increasing shell thickness, and at larger shell thicknesses, the binding energy saturates. The binding energy was found to be decreasing with increasing core diameter and becomes appreciably smaller at core radius of 0.42 nm. The observed results were compared with the previously reported results.

  2. Sampling and energy evaluation challenges in ligand binding protein design

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr. Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L.

    2017-01-01

    Abstract The steroid hormone 17α‐hydroxylprogesterone (17‐OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17‐OHP containing an extended, nonpolar, shape‐complementary binding pocket for the four‐ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17‐OHP with micromolar affinity. A co‐crystal structure of one of the designs revealed that 17‐OHP is rotated 180° around a pseudo‐two‐fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same “flipped” orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two‐fold symmetry of the molecule. PMID:28980354

  3. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. Fundamentals of high energy electron beam generation

    Science.gov (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  5. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    Science.gov (United States)

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  6. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  7. Simulation of Reversible Protein–Protein Binding and Calculation of Binding Free Energies Using Perturbed Distance Restraints

    Science.gov (United States)

    2017-01-01

    Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077

  8. Rethinking chemisorption: New insights into the factors controlling the binding energy

    Science.gov (United States)

    Alcantara Ortigoza, Marisol; Stolbov, Sergey

    2015-03-01

    Chemisorption of atomic and molecular species on a substrate induces electronic charge redistribution upon which substrate nuclei respond by adjusting their positions. This lattice distortion has been linked to the binding energy EB of the adsorbed species and attached to the so-called surface relaxation energy, Erx. We have found, however, that for transition metals the energy associated with the mere charge redistribution Eelec is much larger than Erx and thus both contributions must be considered [1]. In this work, we quantify the electronic and structural perturbation energy EP brought by various adsorbates on surfaces to understand anomalous adsorbate binding energies, i.e., those in which EP strongly influences the magnitude of EB. For example, for O adsorption on Au(111), while Erx is only 0.25 eV, the overall perturbation energy EP affecting EB(O) is ~ 1 eV [1]. This indicates that EP cannot be ignored but also that local bonds may not be as weak as portrayed by EB, even though EB is significantly reduced. We expose cases in which EP is really dominated by the lattice distortion energy, as well as a rationale for its trends as a function of the substrate and adsorbate. We discuss the implications of the fact that EB is not always predominately controlled by the bond-strength on heterogeneous catalysis, as well as the applications of the same fact. M. Alcántara Ortigoza and S. Stolbov; ``The Perturbation Energy: The missing key to understand gold `nobleness.' '' Submitted in October 2014 This work was supported the NSF under Grant CBET-1249134.

  9. Spectroscopic Characterization of HOONO and its Binding Energy

    Science.gov (United States)

    Lester, Marsha

    2004-03-01

    The atmospheric conversion of OH and NO2 radicals into stable nitric acid (HONO_2) by a three-body association reaction is of fundamental importance because it terminates several significant catalytic cycles that destroy ozone in the stratosphere as well as chain reactions that produce smog in the troposphere. Several groups have suggested that peroxynitrous acid (HOONO), a less stable isomer of HONO_2, may be a significant secondary product of this reaction under atmospheric conditions. We have recently identified the trans-perp (tp) conformer of HOONO by infrared action spectroscopy in the OH overtone region after photolytically generating HOONO a pulsed supersonic expansion. Rotational structure associated with the OH overtone band of tp-HOONO has been observed at 6971.4(1) cm-1 (origin) and assigned by simulating its band structure using a transition dipole moment and rotational constants derived from ab initio theory. Additional weaker features have been observed in this spectral region, at least some of which involve torsional motion about the peroxide bond of tp-HOONO. Information about the dissociation dynamics of tp-HOONO (2ν_OH) is obtained from homogenous line broadening, which greatly exceeds the laser bandwidth (0.02 cm-1), and the nascent quantum state distribution of the OH (v=0) products. In particular, the highest observed OH product state, OH ^2Π_3/2 (v=0, J=17/2), sets a new upper limit for the tp-HOONO binding energy of 16.1 kcal/mol. When combined with the computed 3.4 kcal/mol increase in stability for the cis-cis (cc) conformer, we also obtain an upper limit for the cc-HOONO binding energy of 19.5 kcal/mol, confirming previous estimates for the O-O bond energy of HOONO.

  10. Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Specials Mathematics, CPGE Kénitra, Chakib Arsalane Street, Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)

    2013-07-15

    Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field.

  11. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  12. Controlling electron energy distributions for plasma technologies

    Science.gov (United States)

    Kushner, Mark

    2009-10-01

    The basic function of low temperature plasmas in society benefiting technologies is to channel power into specific modes of atoms and molecules to excite desired states or produce specified radicals. This functionality ultimately depends on the ability to craft an electron energy distribution (EED) to match cross sections. Given electric fields, frequencies, gas mixtures and pressures, predicting EEDs and excitation rates can in large part be reliably done. The inverse problem, specifying the conditions that produce a given EED, is less well understood. Early strategies to craft EEDs include adjusting gas mixtures, such as the rare gas-Hg mixtures in fluorescent lamps, and externally sustained discharges, such as electron-beam sustained plasmas for molecular lasers. More recent strategies include spiker-sustainer circuitry which produces desired EEDs in non-self-sustained plasmas; and adjusting frequency in capacitively coupled plasmas. In this talk, past strategies for customizing EEDs in low pressure plasmas will be reviewed and prospects for improved control of plasma kinetics will be discussed using results from 2-dimensional computer models.

  13. Molecularly Stretchable Electronics for Energy and Healthcare

    Science.gov (United States)

    Lipomi, Darren

    The term ``plastic electronics'' masks the wide range of mechanical behavior possessed by films of π-conjugated (semiconducting) small molecules and polymers. Such materials are promising for biosensors, large-area displays, low-energy lighting, and low-cost photovoltaic modules. There is also an apparent trade-off between electronic performance and mechanical compliance in films of some of the best-performing semiconducting polymers, which fracture at tensile strains not significantly greater than those at which conventional inorganic semiconductors fail. The design of intrinsically deformable electronic materials-i.e., imagine a semiconducting rubber band-would facilitate roll-to-roll production, mechanical robustness for potable applications, and conformal bonding to curved surfaces. This seminar describes my group's efforts to understand and control the structural parameters that influence the mechanical properties of π-conjugated polymers. The techniques we employ include synthetic chemistry, spectroscopy and microstructural characterization, computation from the molecular to continuum level, and electrical measurements of devices. A complex picture emerges for the interplay between molecular structure, the way the process of solidification influences the morphology, and how molecular structure and morphology combine to produce a film with a given modulus, elastic range, ductility, and toughness. We are also exploring ways to introduce other properties into organic semiconductors that are inspired by biological tissue. That is, not just elasticity and toughness, but also biodegradability and the capacity for self-repair. The seminar will also touch on our use of self-assembled metallic nanoislands on graphene for ultra-sensitive mechanical sensing using piezoresistive and ``piezoplasmonic'' mechanisms. The applications for these materials are in detecting human motion and measuring the mechanics of cardiac and musculoskeletal cells. My group is broadly

  14. Linear Correlation Between Binding Energy and Young’s Modulus in Graphene Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zeinalipour-Yazdi, Constantinos D.; Christofides, Constantinos

    2009-09-15

    Graphene nanoribbons (GNRs) have been suggested as a promising material for its use as nanoelectromechanical reasonators for highly sensitive force, mass, and charge detection. Therefore the accurate determination of the size-dependent elastic properties of GNRs is desirable for the design of graphene-based nanoelectromechanical devices. In this study we determine the size-dependent Young’s modulus and carbon-carbon binding energy in a homologous series of GNRs, C4n2+6n+2H6n+4 (n=2–12), with the use of all electron first principles computations. An unexpected linearity between the binding energy and Young’s modulus is observed, making possible the prediction of the size-dependent Young’s modulus of GNRs through a single point energy calculation of the GNR ground state. A quantitative-structure-property relationship is derived, which correlates Young’s modulus to the total energy and the number of carbon atoms within the ribbon. In the limit of extended graphene sheets we determine the value of Young’s modulus to be 1.09 TPa, in excellent agreement with experimental estimates derived for graphite and suspended grapheme sheets.

  15. Binding the Electronic Book: Design Features for Bibliophiles

    Science.gov (United States)

    Ruecker, Stan; Uszkalo, Kirsten C.

    2007-01-01

    This paper proposes a design for the electronic book based on discussions with frequent book readers. We adopted a conceptual framework for this project consisting of a spectrum of possible designs, with the conventional bound book at one difference pole, and the laptop computer at the other; the design activity then consisted of appropriately…

  16. Modified electron acoustic field and energy applied to observation data

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg [College of Science and Humanitarian Studies, Physics Department, Prince Sattam Bin Abdul Aziz University, Alkharj 11942 (Saudi Arabia); Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); El-Shewy, E. K. [Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2016-08-15

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  17. Energy and angular distributions of backscattered electrons from ...

    Indian Academy of Sciences (India)

    The energy and angular distributions of backscattered electrons produced under the impact of 5 keV electrons with thick Al, Ti, Ag, W and Pt targets are measured. The energy range of backscattered electrons is considered between B = 50 eV and 5000 eV. The angle of incidence α and take-off angle are chosen to have ...

  18. Electron energy loss spectroscopy (EELS) of organic molecules in ...

    Indian Academy of Sciences (India)

    India. Abstract. An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of - low-resolution electronic spectra of molecules in the vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra ...

  19. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  20. Energy and angular distributions of backscattered electrons from ...

    Indian Academy of Sciences (India)

    a new interest has grown in recent years as its properties have become important in electron beam lithography [8] and scanning electron microscopy (SEM) [9]. Ob- servable properties of backscattered electrons (BEs) consist of their absolute yield per incident electron (the BE coefficient η), their angular and energy ...

  1. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan

    2011-05-19

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  2. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 1: free energy of binding to a binding site.

    Science.gov (United States)

    Chunsrivirot, Surasak; Diao, Ying; Trout, Bernhardt L

    2011-10-18

    Crystallization is commonly used in a separation and purification process in the production of a wide range of materials in various industries. In industry, crystallization usually starts with heterogeneous nucleation on a foreign surface. The complicated mechanism of heterogeneous nucleation is not well understood; however, we hypothesize that there might be a possible correlation between binding affinity to a surface and enhancement of nucleation. Recent studies show that amorphous polymers can be used to control crystallization, selectively produce pharmaceutical polymorphs, and discover novel pharmaceutical polymorphs. To investigate the possible correlation between the binding affinity of one molecule to key binding sites (local binding) and heterogeneous nucleation activity as well as the possibility of using this binding affinity to help guide the selection of polymers that promote heterogeneous nucleation, we computed the free energy of binding of aspirin to four nonporous cross-linked polymers in an ethanol-water 38 v% mixture. These cross-linked polymers are poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS); all of them were cross-linked with divinylbenzene (DVB). These systems were used because their heterogeneous nucleation activities are available in literature, and the ranking is PAM > PCEA > PHBA ≈ PS. We generated three independent surfaces for each polymer and computed the free energy of binding of aspirin to the best binding site that we found on each surface. The average free energies of binding to the best sites of PAM, PCEA, PHBA, and PS are -20.4 ± 1.0, -16.7 ± 1.0, -14.4 ± 1.1, and -13.6 ± 1.1 kcal/mol, respectively. We found that the trend of the magnitudes of the average free energies of binding to the best sites is PAM > PCEA > PHBA ≈ PS. This trend is very similar to that of heterogeneous nucleation activity. Our results suggest the importance of the

  3. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    Science.gov (United States)

    2015-11-18

    AFRL-AFOSR-VA-TR-2015-0383 Determining energy distributions of HF -accelerated electrons at HAARP Christopher Fallen University of Alaska Fairbanks...2012 - 11/14/2015 4. TITLE AND SUBTITLE Determining energy distributions of HF -accelerated electrons at HAARP 5a. CONTRACT NUMBER FA9550-12-1-0424...The main project objective was to determine energy distribution of ionosphere electrons accelerated by powerful high-frequency ( HF ) radio waves

  4. Low-energy electron beams through ultra-thin foils, applications for electron microscopy

    NARCIS (Netherlands)

    Van Aken, R.H.

    2005-01-01

    This thesis has discussed two electron microscopy applications that make use of ultra-thin foils: the tunnel junction emitter and the low-energy foil corrector. Both applications have in common that the electron beam is sent through the thin foil at low energy. Part of the electrons will scatter in

  5. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  6. Electron energy recovery system for negative ion sources

    Science.gov (United States)

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at energy.

  7. Trajectories of high energy electrons in a plasma focus

    Science.gov (United States)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  8. Benchmarking ab initio binding energies of hydrogen-bonded molecular clusters based on FTIR spectroscopy

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Du, Lin; Reiman, Heidi

    2014-01-01

    of the Gibbs free binding energies in molecular complexes and clusters based on gas phase FTIR spectroscopy. The acetonitrile-HCl molecular complex is identified via its redshifted H-Cl stretching vibrational mode. We determine the Gibbs free binding energy, ΔG°295 K, to between 4.8 and 7.9 kJ mol(-1...

  9. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  10. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  11. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A

    Directory of Open Access Journals (Sweden)

    Manuela Maurer

    2016-04-01

    Full Text Available The periplasmic oligopeptide binding protein A (OppA represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK, but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  12. Perturbation method for calculating impurity binding energy in an inhomogeneous cylindrical quantum dot with dielectric mismatch

    Science.gov (United States)

    Sil, Nilanjan; Daripa, Nibedita; Kapoor, Achint; Dey, Sanjay Kumar

    2018-01-01

    In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa_{1-x}As. Perturbation method is used to calculate the binding energy within the framework of effective mass approximation and taking into account the effect of dielectric mismatch between the dot and the barrier material. The ground-state binding energy of the donor is computed as a function of dot size for finite confinement. The result shows that the ground-state binding energy decreases with the increase in dot size. The result is compared with infinite dielectric mismatch as a limiting case. The binding energy of the hydrogenic impurity is maximum for an on-axis donor impurity.

  13. Characteristic energy range of electron scattering due to plasmaspheric hiss

    Science.gov (United States)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  14. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    Science.gov (United States)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  15. Spectral shape variation of interstellar electrons at high energies

    Science.gov (United States)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  16. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  17. Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase.

    Science.gov (United States)

    Costeira-Paulo, Joana; Gault, Joseph; Popova, Gergana; Ladds, Marcus J G W; van Leeuwen, Ingeborg M M; Sarr, Médoune; Olsson, Anders; Lane, David P; Laín, Sonia; Marklund, Erik G; Landreh, Michael

    2018-01-17

    The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Low energy electron imaging using Medipix 2 detector

    NARCIS (Netherlands)

    Sikharulidze, I.; van Gastel, Raoul; Schramm, S.; Abrahams, J.P.; Poelsema, Bene; Tromp, R.M.; van der Molen, S.J.

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10–20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2

  19. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  20. Specific Binding of Liposomal Nanoparticles through Inverse Electron-Demand Diels-Alder Click Chemistry

    NARCIS (Netherlands)

    Brand, Christian; Iacono, Pasquale; Pérez-Medina, Carlos; Mulder, Willem J. M.; Kircher, Moritz F.; Reiner, Thomas

    2017-01-01

    Here, we report a method to specifically bind liposomal radiopharmaceuticals to a CoCrMo alloy, which can be used in arterial stents, via an irreversible inverse electron-demand Diels-Alder reaction. Inspired by recent accomplishments in pre-targeted imaging using tetrazine-trans-cyclooctene click

  1. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  2. Exciton binding energies and absorption in intermixed GaAs-AlGaAs quantum wells

    Science.gov (United States)

    Meney, Alistair T.

    1992-12-01

    The optical properties of excitons in layer-intermixed GaAs-AlGaAs quantum wells are studied theoretically. The electronic dispersion is obtained using the 6×6 Luttinger-Kohn Hamiltonian for the valence bands, and an accurate expression for the conduction band dispersion which includes the effects of nonparabolicity and warping to fourth order in k. The HH1-CB1 (1s) and LH1-CB1(1s) exciton binding energies are calculated as a function of diffusion time. The absorption for both TE and TM polarization is obtained at several wavelengths, and is seen to decrease significantly with increased intermixing. The decrease in absorption is larger for narrow wells, where the effects of intermixing are more pronounced for a given diffusion time.

  3. Low energy electron attenuation lengths in core-shell nanoparticles.

    Science.gov (United States)

    Jacobs, Michael I; Kostko, Oleg; Ahmed, Musahid; Wilson, Kevin R

    2017-05-24

    A velocity map imaging spectrometer is used to measure photoemission from free core-shell nanoparticles, where a salt core is coated with a liquid hydrocarbon shell (i.e. squalane). By varying the radial thickness of the hydrocarbon shell, electron attenuation lengths (EALs) are determined by measuring the decay in photoemission intensity from the salt core. In squalane, electrons with kinetic energy (KE) above 2 eV are found to have EALs of 3-5 nm, whereas electrons with smaller KE (15 nm. These results (in the context of other energy-resolved EAL measurements) suggest that the energy dependent behavior of low energy electrons is similar in dielectrics when KE > 2 eV. At this energy the EALs do not appear to exhibit strong energy dependence. However, at very low KE (<2 eV), the EALs diverge and appear to be extremely material dependent.

  4. Electron cooling for low-energy RHIC program

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  5. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    discussed the radiation belt electron drop outs with respect to their local time, radial and particle-energy dependence. In this paper we present the energy dependence of REDs and REEs at geostationary orbit for electrons at energies 2 MeV, 0.9 MeV, 0.6 MeV with respect to the solar wind and Interplanetary Magnetic Field ...

  6. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  7. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...

  8. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  9. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  10. Study on electron beam in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  11. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  12. Very low energy electron microscopy of graphene flakes.

    Science.gov (United States)

    Mikmeková, E; Bouyanfif, H; Lejeune, M; Müllerová, I; Hovorka, M; Unčovský, M; Frank, L

    2013-08-01

    Commercially available graphene samples are examined by Raman spectroscopy and very low energy scanning transmission electron microscopy. Limited lateral resolution of Raman spectroscopy may produce a Raman spectrum corresponding to a single graphene layer even for flakes that can be identified by very low energy electron microscopy as an aggregate of smaller flakes of various thicknesses. In addition to diagnostics of graphene samples at larger dimensions, their electron transmittance can also be measured at very low energies. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  14. Normal and Dirac fermions in graphene multilayers: Tight-binding description of the electronic structure

    Science.gov (United States)

    Partoens, B.; Peeters, F. M.

    2007-05-01

    Within a tight-binding approach we show that around the K point of the energy spectrum Dirac fermions are present in AB stacked graphene multilayers if they have mirror plane symmetry. In other words, Dirac fermions are present in graphene stacks with an odd number of layers. For an even number of stacked graphene layers, only normal fermions with a parabolic energy dispersion are found near the K point.

  15. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Jeffrey A., E-mail: Jeffrey.Mertens@ars.usda.gov [Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604 (United States); Hector, Ronald E.; Bowman, Michael J. [Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604 (United States)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer Thermodynamics of (GalpA){sub n} oligomers binding to an exo-polygalacturonase. Black-Right-Pointing-Pointer Energetics of binding (GalpA){sub n} were determined by ITC. Black-Right-Pointing-Pointer Thermodynamic parameters attributable to individual subsites were determined. - Abstract: Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic process that is enthalpically driven and results in extremely tight binding of the substrate to RPG16. Binding energies in combination with prior biochemical data suggests that RPG16 has the potential for five subsites, -1 to +4, with the greatest contribution to binding energies arising from subsite -1/+1. While the enthalpic contribution to binding decreases substantially for subsites +2 to +4, beneficial entropic effects occur in subsites +3 and +4 leading to increased total free energy as the length of oligomer increases. This information will be useful for additional studies in determining the binding contributions of specific amino acids with mutant enzymes.

  16. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  17. How to shape a binding energy savings target for Europe that allows for effective evaluation

    NARCIS (Netherlands)

    Harmsen, R.; Wesselink, B.; Eichhammer, W.

    2012-01-01

    This paper considers which design of a binding energy savings target for the EU is the most feasible to both make it work and to ensure it can be evaluated in an efficient and transparent manner. We look at four possible design options. We conclude that a binding target at Member State level

  18. Enhanced production of low energy electrons by alpha particle impact

    Science.gov (United States)

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-01-01

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184

  19. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  20. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  1. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  2. Energy relations of positron-electron pairs emitted from surfaces.

    Science.gov (United States)

    Brandt, I S; Wei, Z; Schumann, F O; Kirschner, J

    2014-09-05

    The impact of a primary positron onto a surface may lead to the emission of a correlated positron-electron pair. By means of a lab-based positron beam we studied this pair emission from various surfaces. We analyzed the energy spectra in a symmetric emission geometry. We found that the available energy is shared in an unequal manner among the partners. On average the positron carries a larger fraction of the available energy. The unequal energy sharing is a consequence of positron and electron being distinguishable particles. We provide a model which explains the experimental findings.

  3. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  4. The Binding Energy of Diquark-Antidiquark System in Nanometer and Subnanometer Scales

    Directory of Open Access Journals (Sweden)

    P. Sadeghi-Alavijeh

    2012-03-01

    Full Text Available In this paper, using Monte Carlo Fortran code, we have obtained the binding energies for three different systems of diquark–antidiquark in distances from 0.01 to 15 nm. In [0.1 - 15] nm interval, we made use of Coulomb potential because in this interval, strong interaction is negligible. We have compared the binding energies of the systems with one another. The results of these comparisons were close to our anticipations. We also obtained the binding energy of one of the systems in the interval below 1 fm, where diquark-antidiquark systems comprise a tetraquark and the potential is of strong interaction type. Because of weak Coulomb interaction, strong interaction has been used as the basis of the calculations. The binding energy resulted is consistent with the existing references

  5. Influence of exciton-phonons coupling on the exciton binding energy in monolayer transition metal dichalcogenides

    Science.gov (United States)

    Wang, Zi-Wu; Li, Wei-Ping; Xiao, Yao; Li, Run-Ze; Li, Zhi-Qing

    2017-06-01

    We theoretically investigate the correction of exciton binding energy arising from the exciton-optical phonon coupling in monolayer transition metal dichalcogenides (TMDs) using the linear operator and Lee-Low-Pines unitary transformation methods. We take into account not only the exciton coupling with intrinsic longitudinal optical phonon modes but also the surface optical phonon modes induced by polar substrates supporting monolayer TMDs. We find that the exciton binding energies are corrected on a large scale due to these exciton-optical phonon couplings. We discuss the dependences of exciton binding energy on the cut-off wave vector of optical phonon modes, the polarization strength of substrate materials, and the distance between polar substrates and TMDs. These results provide potential explanations for the divergence of the exciton binding energy between the experiment and theory in TMDs.

  6. Treatment of foods with 'soft-electrons' (low-energy electrons)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan); Todoriki, Setsuko [National Food Research Institute (NFRI), Tsukuba, Ibaraki (Japan)

    2003-02-01

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  7. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  8. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    National Research Council Canada - National Science Library

    Filippini, Mattia; Molinas, Marta; Oregi, Eneko

    2015-01-01

    A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels...

  9. Very low energy electron microscopy of graphene flakes

    National Research Council Canada - National Science Library

    MIKMEKOVÁ, E; BOUYANFIF, H; LEJEUNE, M; MÜLLEROVÁ, I; HOVORKA, M; UNČOVSKÝ, M; FRANK, L

    2013-01-01

    .... Limited lateral resolution of Raman spectroscopy may produce a Raman spectrum corresponding to a single graphene layer even for flakes that can be identified by very low energy electron microscopy...

  10. The Shifts of Band Gap and Binding Energies of Titania/Hydroxyapatite Material

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Truc Linh

    2014-01-01

    Full Text Available The titania/hydroxyapatite (TiO2/HAp product was prepared by precipitating hydroxyapatite in the presence of TiO(OH2 gel in the hydrothermal system. The characteristics of the material were determined by using the measurements such as X-ray photoemission spectroscopy (XPS, X-ray diffraction (XRD, diffuse reflectance spectra (DRS, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and energy dispersive X-ray (EDX. The XPS analysis showed that the binding energy values of Ca (2p1/2, 2p3/2, P (2p1/2, 2p3/2, and O 1s levels related to hydroxyapatite phase whereas those of Ti (2p3/2, 2p1/2 levels corresponded with the characterization of titanium (IV in TiO2. The XRD result revealed that TiO2/HAp sample had hydroxyapatite phase, but anatase or rutile phases were not found out. TEM image of TiO2/HAp product showed that the surface of the plate-shaped HAp particles had a lot of smaller particles which were considered as the compound of Ti. The experimental band gap of TiO2/HAp material calculated by the DRS measurement was 3.6 eV, while that of HAp pure was 5.3 eV and that of TiO2 pure was around 3.2 eV. The shift of the band gap energy of TiO2 in the range of 3.2–3.6 eV may be related to the shifts of Ti signals of XPS spectrum.

  11. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  12. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  13. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    Science.gov (United States)

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  14. Characteristic energy losses of electrons in organic NTCDA-films

    CERN Document Server

    Komolov, S A; Sidorenko, A G; Alyaev, Y G; Novolodskij, V A

    2001-01-01

    The studies on the characteristic energy losses of slow electrons in the NTCDA thin film on the ZnO (0001) surface are presented. It is shown, that the spectrum of the energy losses (E sub p =4.0; 5.6; 12.5 and 14.5 eV) in the area of low energies (< 60 eV) reflects the structure of transitions between the valency zone and the conductivity zone. The energy losses on the plasma oscillations excitation the excitation of pi-plasmon with the energy of 6.5 eV and excitation of the pi-sigma plasmon with the energy of 25 eV become prevailing with the growth of the initial electrons energy

  15. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  16. Analysis of electron energy-loss spectra and images

    NARCIS (Netherlands)

    C.W.J. Sorber (Lianne)

    1993-01-01

    textabstractSeveral methods are proposed for the elemental analysis of biological material with the use of electron energy-loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) in a Zeiss EM902. For spectra, the Simplex-method was tested and compared to Egerton's 2- area method, the

  17. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low-energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.387, year: 2016

  18. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  19. Estimation of the characteristic energy of electron precipitation

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    2002-09-01

    Full Text Available Data from simultaneous observations (on 13 February 1996, 9 November 1998, and 12 February 1999 with the IRIS, DASI and EISCAT systems are employed in the study of the energy distribution of the electron precipitation during substorm activity. The estimation of the characteristic energy of the electron precipitation over the common field of view of IRIS and DASI is discussed. In particular, we look closely at the physical basis of the correspondence between the characteristic energy, the flux-averaged energy, as defined below, and the logarithm of the ratio of the green-light intensity to the square of absorption. This study expands and corrects results presented in the paper by Kosch et al. (2001. It is noticed, moreover, that acceleration associated with diffusion processes in the magnetosphere long before precipitation may be controlling the shape of the energy spectrum. We propose and test a "mixed" distribution for the energy-flux spectrum, exponential at the lower energies and Maxwellian or modified power-law at the higher energies, with a threshold energy separating these two regimes. The energy-flux spectrum at Tromsø, in the 1–320 keV range, is derived from EISCAT electron density profiles in the 70–140 km altitude range and is applied in the "calibration" of the optical intensity and absorption distributions, in order to extrapolate the flux and characteristic energy maps.Key words. Ionosphere (auroral ionosphere; particle precipitation; particle acceleration

  20. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  1. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-03-08

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calculated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies.

  2. Binding free-energy calculation of an ion-peptide complex by constrained dynamics.

    Science.gov (United States)

    Chen, Changjun; Huang, Yanzhao; Jiang, Xuewei; Xiao, Yi

    2013-06-01

    Binding free energy is the most important physical parameter that describes the binding affinity of a receptor-ligand complex. Conventionally, it was obtained based on the thermodynamic cycle or alchemical reaction. These strategies have been widely used, but they would be problematic if the receptors and/or ligands have large conformational changes during the binding processes. In this paper, we present a way to calculate the binding free energy: constrained dynamics along a fragmental and high-dimensional transition path. This method directly considers unbound states in the simulation. The application to the calmodulin loop-calcium complexes shows that it is practical and the calculated relative binding affinities are in good agreement with experimental results.

  3. Toward Defect Engineering Strategies to Optimize Energy and Electronic Materials

    Directory of Open Access Journals (Sweden)

    Efstratia N. Sgourou

    2017-06-01

    Full Text Available The technological requirement to optimize materials for energy and electronic materials has led to the use of defect engineering strategies. These strategies take advantage of the impact of composition, disorder, structure, and mechanical strain on the material properties. In the present review, we highlight key strategies presently employed or considered to tune the properties of energy and electronic materials. We consider examples from electronic materials (silicon and germanium, photocatalysis (titanium oxide, solid oxide fuel cells (cerium oxide, and nuclear materials (nanocomposites.

  4. FNAL R and D in medium energy electron cooling

    CERN Document Server

    Nagaitsev, S; Crawford, A C; Kroc, T; MacLachlan, J; Saewert, G; Schmidt, C W; Shemyakin, A; Warner, A

    2000-01-01

    The first stage of the Fermilab Electron Cooling R and D program is now complete: a technology necessary to generate hundreds of milliamps of electron beam current at MeV energies has been demonstrated. Conceptual design studies show that with an electron beam current of 200 mA and with a cooling section of 20 m electron cooling in the 8.9 GeV/c Fermilab Recycler ring can provide antiproton stacking rates suitable for the Tevatron upgrades beyond Run II luminosity goals. A novel electron beam transport scheme with a weak magnetic field at the cathode and in the cooling section, and with discrete focusing elements in between will be used. A prototype of such an electron cooling system is now being built at Fermilab as part of the continuing R and D program. This paper describes the status of the electron cooling R and D program at Fermilab.

  5. Interlayer-coupling energy of magnetic trilayers in a one-band tight-binding model

    Science.gov (United States)

    Li, Lie-Ming; Pu, Fu-Cho

    1995-02-01

    The general formula of exchange coupling between transition-metal ferromagnetic layers spaced by a nonferromagnetic transition-metal layer with flat interfaces is given within a one-band tight-binding model for a simple cubic lattice, which determines self-consistently the Fermi level so as to take account of the dependence of the Fermi level on the magnetic configuration and thicknesses of layers, for thin magnetic trilayers. For large exchange splitting and thickness of ferromagnetic layers, assuming the minority-spin energy bands in the ferromagnets matches that of the spacer, we made detailed calculations to obtain both the analytic expression of interlayer exchange coupling energies and its simple asymptotic expression for large spacer thickness, which is accurate enough even for spacer thickness N=6. In some reasonable range of parameter, for smaller spacer thickness, intrinsic biquadratic coupling given by our theory is strong enough to be a dominant mechanism of noncolinear aligning of magnetization direction of two ferromagnetic layers, which plays a similar role as that of the magnetostatic interaction induced by interfacial roughness. The situation still holds even for large exchange splitting, different from existing theoretical works based on the free-electron model. Our results imply that intrinsic biquadratic coupling is more sensitive to the models chosen than bilinear coupling.

  6. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and ...

  7. Femtosecond MeV Electron Energy-Loss Spectroscopy

    Science.gov (United States)

    Li, R. K.; Wang, X. J.

    2017-11-01

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.

  8. Low-energy electronic recoil in xenon detectors by solar neutrinos

    Science.gov (United States)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Liu, C.-P.; Wu, Chih-Pan

    2017-11-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar pp and 7Be neutrinos at the precision level of current standard solar model predictions. In this work we perform ab initio many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about 23%. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV to 30 keV with the standard per ton per year normalization for xenon detectors, and discuss its implication for low energy solar neutrino detection as the signal and WIMP search as a source of background.

  9. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  10. GEANT4 simulation of electron energy deposition in extended media

    CERN Document Server

    Kadri, O; Gharbi, F; Trabelsi, A

    2007-01-01

    The present work demonstrates that GEANT4 yields a consistent description of electron transport processes in semi-infinite homogeneous and heterogeneous extended media. This comparison covers the e− energy deposition profiles in a range of elements from aluminum to tantalum through molybdenum at source energies from 0.3 to 1.0 MeV and at incident angles from 0° to 60°. The good agreement between simulation results and data confirms that the Monte Carlo used code is capable of accurate electron beam energy deposition calculation even under such conditions.

  11. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  12. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    Manzoni, Stefano; The ATLAS collaboration

    2016-01-01

    An accurate calibration of the energy measurement of electron and photon is paramount for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. The results obtained with the pp collisions data recorded in 2015 and 2016 at sqrt(s)= 13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 and 2.7 fb-1 respectively , as well as the corresponding uncertainties on the electron and photon energy scales, are presented.

  13. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436885; The ATLAS collaboration

    2016-01-01

    An accurate calibration of the energy measurement of electrons and photons is paramount for many ATLAS physics analyses. The calibration of the energy measurement is performed $in$-$situ$ using a large statistics of $Z \\rightarrow ee$ events. The results obtained with the $pp$ collisions data recorded in 2015 and 2016 at $\\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 3.2 fb$^{-1}$ and 2.7 fb$^{-1}$ respectively, as well as the corresponding uncertainties on the electron and photon energy scales, are presented

  14. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  15. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  16. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  17. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    Science.gov (United States)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD

  18. Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Science.gov (United States)

    Penteado, E. M.; Walsh, C.; Cuppen, H. M.

    2017-07-01

    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas-grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation.

  19. Calculation of Electron Beam Potential Energy from RF Photocathode Gun

    CERN Document Server

    Liu Wan Ming; Power, John G; Wang, Haitao

    2005-01-01

    In this paper, we consider the contribution of potential energy to beam dynamics as simulated by PARMELA at low energies (10 - 30MeV). We have developed a routine to calculate the potential energy of the relativistic electron beam using the static coulomb potential in the rest frame (first order approximation as in PARMELA). We found that the potential energy contribution to the beam dynamics could be very significant, particularly with high charge beams generated by an RF photocathode gun. Our results show that when the potential energy is counted correctly and added to the kinetic energy from PARMELA, the total energy is conserved. Simulation results of potential and kinetic energies for short beams (~1 mm) at various charges (1 - 100 nC) generated by a high current RF photocathode gun are presented.

  20. Coincident two-electron emission from surfaces by low-energy electrons

    Science.gov (United States)

    Gollisch, H.; Meinert, D.; Yi, Xiao; Feder, R.

    1997-04-01

    The simultaneous ejection of two electrons from non-magnetic surfaces due to the collision of incident low-energy electrons with valence electrons is treated in a relativistic distorted-wave Born approximation including exchange. The primary electron and the two emitted electrons are described by quasi-particle multiple scattering states. The valence electron is represented by linear combinations of Bloch waves matched at the surface. Screened Coulomb interaction matrix elements between these four states are evaluated. Numerical results for W(0 0 1) are presented and compared with one-dimensional bulk densities of states. Energy-integrated spectra and general features of the 2 e-distribution are in good agreement with recent experimental data.

  1. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  2. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  3. The positive binding energy envelopes of low-mass helium stars

    Science.gov (United States)

    Hall, Philip D.; Jeffery, C. Simon

    2018-01-01

    It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 {M}_{⊙} evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.

  4. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state.

    Science.gov (United States)

    Yang, Liu; Fang, Weihai; Zhang, Yong

    2012-04-21

    HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. This journal is © The Royal Society of Chemistry 2012

  5. From Molecular Electronics to Solar Thermal Energy Storage

    DEFF Research Database (Denmark)

    Olsen, Stine Tetzschner

    The Sun's signicant resource potential provides a solution for the world's increasing energy demand in a sustainable and responsible manner. However, the intrinsic property of the on-o cycles of the solar irradiation, i.e. daynight, sunny-cloudy, and summer-winter, constitutes a signicant challenge...... for the utilization of solar energy. An eective technology for storing the solar energy is required. This thesis focuses on solar thermal energy storage in molecules, since it oers a very compact and eective storage method. The rst chapter after the introduction of the thesis, chapter two, introduces the fundamental...... properties of the molecule, i.e. the electronic behaviour of the molecule in dierent environments, which is a key property for investigations of solar energy storage. The main focus of the research is on the electron transport in the Coulomb blockade regime. The third chapter goes into the challenge...

  6. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  7. O2 Binding to Heme is Strongly Facilitated by Near‐Degeneracy of Electronic States

    DEFF Research Database (Denmark)

    Kepp, Kasper P.

    2013-01-01

    electronic singlet and heptet states for bound and dissociated O2. The experimental activation enthalpy of dissociation (∼82 kJ mol−1) was also accurately computed (∼75 kJ mol−1) with an actual barrier height of ∼60 kJ mol−1 plus a vibrational component of ∼10 and ∼5 kJ mol−1 due to the spin‐forbidden nature......This paper reports the computed O2 binding to heme, which for the first time explains experimental enthalpies for this process of central importance to bioinorganic chemistry. All four spin states along the relaxed FeO2‐binding curves were optimized using the full heme system with dispersion...... of the process, explaining the experimentally observed difference of ∼20 kJ mol−1 in enthalpies of binding and activation. Most importantly, the work shows how the nearly degenerate singlet and triplet states increase crossover probability up to ∼0.5 and accelerate binding by ∼100 times, explaining why the spin...

  8. Low Energy Electrons in the Mars Plasma Environment

    Science.gov (United States)

    Link, Richard

    2001-05-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  9. Low Energy Electrons in the Mars Plasma Environment

    Science.gov (United States)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  10. Binding energy of semirelativistic N-boson systems

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Richard L [Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8 (Canada); Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2007-06-08

    General analytic energy bounds are derived for N-boson systems governed by semirelativistic Hamiltonians of the form H = {sigma}{sub i=1}{sup N}(p{sub i}{sup 2}+m{sup 2}){sup 1/2} + {sigma}{sub 1=i=} (H{sub c}) generally, and we prove this for N = 3, and for N = 4 when m = 0. The conjecture is also valid generally for the harmonic oscillator and in the nonrelativistic large-m limit. This formulation allows reductions to scaled 3- or 4-body problems, whose spectral bottoms provide energy lower bounds. The example of the ultrarelativistic linear potential is studied in detail and explicit upper- and lower-bound formulae are derived and compared with earlier bounds.

  11. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    Science.gov (United States)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  12. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    Science.gov (United States)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  13. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  14. Energy spectra of electrons and positrons produced in supernova remnants

    Science.gov (United States)

    Berezhko, E. G.; Ksenofontov, L. T.

    2013-02-01

    We study the production of cosmic rays (CRs) in supernova remnants (SNRs), including the production of electron and positron CR components. This combines for the first time nuclear collisions inside CR sources and in the diffuse interstellar medium leading to the creation of electrons and positrons, as well as their reacceleration, with the injection and subsequent acceleration of suprathermal protons and electrons from the postshock thermal pool. Selfconsistent CR spectra are calculated on the basis of the nonlinear kinetic model. It is shown that reacceleration of positrons created in SNR and ISM produces a considerable effect at energies above 10 GeV, making its energy spectrum substantially flatter than the spectrum created in ISM. Calculated electron and positron spectra are in the satisfactory agreement with the existing measurements.

  15. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  16. Low-energy electronic recoil in xenon detectors by solar neutrinos

    CERN Document Server

    Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Pan

    2016-01-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}\\textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $\\textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25\\%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalizatio...

  17. Designed azurins show lower reorganization free energies for intraprotein electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Marshall, Nicholas M; Wherland, Scot

    2013-01-01

    and to enable potential applications in different energy conversion systems. Herein we report studies of the intramolecular ET from pulse radiolytically produced disulfide radicals to Cu(II) in rationally designed azurin mutants. In these mutants, the copper coordination sphere has been fine-tuned to span......Low reorganization free energies are necessary for fast electron transfer (ET) reactions. Hence, rational design of redox proteins with lower reorganization free energies has been a long-standing challenge, promising to yield a deeper understanding of the underlying principles of ET reactivity...... a wide range of reduction potentials while leaving the metal binding site effectively undisrupted. We find that the reorganization free energies of ET within the mutants are indeed lower than that of WT azurin, increasing the intramolecular ET rate constants almost 10-fold: changes that are correlated...

  18. Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

    Directory of Open Access Journals (Sweden)

    Mi-Young Park

    2013-12-01

    Full Text Available It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

  19. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  20. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    Science.gov (United States)

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  1. Structure of X-ray photoelectron spectra of low-energy and core electrons of Ln(C6H4OCH3COO-3

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2005-01-01

    Full Text Available This paper deals with the results of an X-ray photo electron spectroscopy of lanthanide ortho-metoxybenzoates Ln(C6H4OCH3COO-3, where Ln represents lanthanides La through Lu except for Pm and C6H4OCH3COO- - residuum of ortho-metoxybenzoic acid. The core and outer electron X-ray photo electron spectroscopy spectra in the binding energy range of 0-1250 eV were shown to exhibit a complex, fine structure. The said structure was established due to the outer (0-15 eV binding energy and inner (15-50 eV binding energy valence molecular orbital from the filled Ln5p and O2s atomic shells multiple splitting, many-body perturbation, dynamic effect, etc. The mechanisms of such a fine structure formation were shown to manifest different probabilities in the spectrum of a certain electronic shell. There fore, the fine X-ray photo electron spectroscopy spectral structure resulting from a certain mechanism can be interpreted and its quantitative parameters related to the physical and chemical properties of the studied com pounds (degree of delocalization and participation of Ln4f electrons in the chemical bond, electronic configuration and oxidation states, density of uncoupled electrons on paramagnetic ions, degree of participation of the low binding energy filled electronic shells of lanthanide and ligands information of the outer and in nervalence molecular orbitals, lanthanide close environment structure in amorphous materials, etc.

  2. Computation of electron energy loss spectra by an iterative method

    Energy Technology Data Exchange (ETDEWEB)

    Koval, Peter [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Ljungberg, Mathias Per [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Foerster, Dietrich [LOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); Sánchez-Portal, Daniel [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2015-07-01

    A method is presented to compute the dielectric function for extended systems using linear response time-dependent density functional theory. Localized basis functions with finite support are used to expand both eigenstates and response functions. The electron-energy loss function is directly obtained by an iterative Krylov-subspace method. We apply our method to graphene and silicon and compare it to plane-wave based approaches. Finally, we compute electron-energy loss spectrum of C{sub 60} crystal to demonstrate the merits of the method for molecular crystals, where it will be most competitive.

  3. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  4. Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips

    Science.gov (United States)

    Mizuno, Seigi; Rahman, F.; Iwanaga, Masayuki

    2006-02-01

    We have observed low-energy electron diffraction patterns of Cu(001) clean surface using field-emitted electrons from tungsten tips. Only elastically scattered electrons contribute to diffraction patterns. Tip-sample distance, bias voltage, electron beam opening angle and tip apex structure determine the probing diameter and symmetry of diffraction patterns. The emission current, bias voltage and estimated probing diameter for the observed diffraction patterns were 0.15 nA, 75-82 V, and 4-40 μm, respectively.

  5. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  6. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  7. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    , magnetics, electrical machines, power systems, analogue and digital control, materials, power converters, electronics, materials, thermal design and EMC. However, those fields may not be enough in order to give the students enough skills. It is also necessary to learn about systems and for the moment one...... of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...

  8. Electron and photon energy calibration with the ATLAS detector

    CERN Document Server

    Falke, Saskia; The ATLAS collaboration

    2017-01-01

    An accurate calibration of the energy measurement of electron and photon is needed for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. A pre-requisite of this calibration is a good understanding of the material in front of the calorimeter and of the inter-calibration of the different calorimeter layers. The Z->ee sample is also used to measure the energy resolution. The results obtained with the pp collisions data at sqrt(s)=13 TeV in 2016 (2015) corresponding to an integrated luminosity of 33.9 (3.1)fb-1 of sqrt(s)=13 TeV are presented as well as the corresponding uncertainties on the electron and photon energy scales.

  9. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  10. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  11. Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces.

    Science.gov (United States)

    Lapoux, V; Somà, V; Barbieri, C; Hergert, H; Holt, J D; Stroberg, S R

    2016-07-29

    We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

  12. Binding energies: New values and impact on the efficiency of chemical desorption

    Science.gov (United States)

    Wakelam, V.; Loison, J.-C.; Mereau, R.; Ruaud, M.

    2017-03-01

    Recent laboratory measurements have confirmed that chemical desorption (desorption of products due to exothermic surface reactions) can be an efficient process. The impact of including this process into gas-grain chemical models entirely depends on the formalism used and the associated parameters. Among these parameters, binding energies are probably the most uncertain ones for the moment. We propose a new model to compute binding energy of species to water ice surfaces. We have also compared the model results using either the new chemical desorption model proposed by Minissale et al. (2016) or the one of Garrod et al. (2007). The new binding energies have a strong impact on the formation of complex organic molecules. In addition, the new chemical desorption model from Minissale produces a much smaller desorption of these species and also of methanol. Combining the two effects, the abundances of CH3OH and COMs observed in cold cores cannot be reproduced by astrochemical models anymore.

  13. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  14. Electronic properties, low-energy Hamiltonian, and superconducting instabilities in CaKFe4As4

    Science.gov (United States)

    Lochner, Felix; Ahn, Felix; Hickel, Tilmann; Eremin, Ilya

    2017-09-01

    We analyze the electronic properties of the recently discovered stoichiometric superconductor CaKFe4As4 by combining an ab initio approach and a projection of the band structure to a low-energy tight-binding Hamiltonian, based on the maximally localized Wannier orbitals of the 3 d Fe states. We identify the key symmetries as well as differences and similarities in the electronic structure between CaKFe4As4 and the parent systems CaFe2As2 and KFe2As2 . In particular, we find CaKFe4As4 to have a significantly more quasi-two-dimensional electronic structure than the latter systems. Finally, we study the superconducting instabilities in CaKFe4As4 by employing the leading angular harmonics approximation and find two potential A1 g-symmetry representations of the superconducting gap to be the dominant instabilities in this system.

  15. Effect of magnetic field and soft potential barrier on off-axis donor binding energy in a nanotube with two quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jesus D. [Grupo en Teoria de la Materia Condensada, Universidad del Magdalena, Santa Marta (Colombia); Grupo de Fisica Mesoscopica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Rondano, F.J. [Grupo en Teoria de la Materia Condensada, Universidad del Magdalena, Santa Marta (Colombia); Barba-Ortega, J., E-mail: jjbarbao@unal.edu.co [Grupo de Fisica Mesoscopica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2012-12-15

    We analyze the effect of the magnetic field parallel to the axis and different potential shape on the ground-state binding energy of the off-axis donors in cylindrical nanotubes containing two GaAs/GaAlAs quantum wells (QWs) in a section of the tube layer. We express the wave function as a product of combinations of s and p subband wave functions and an envelope function that depends only on the electron-ion separation. By using the variational principle we derive a differential equation for the envelope function, which we solve numerically. Two peaks in the curves for the dependence of the ground-state binding energies on the donor distance from the axis are presented and it is shown that the increasing the magnetic field increasing the binding energy while the impurity is located in the QW1, whereas the opposite occurs when the impurity is located in the QW2.

  16. Low energy electron beam processing of YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chromik, Š., E-mail: stefan.chromik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Camerlingo, C. [CNR-SPIN, Istituto Superconduttori, Materiali Innovativi e Dispositivi, via Campi Flegrei 34, 80078 Pozzuoli (Italy); Sojková, M.; Štrbík, V.; Talacko, M. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Malka, I.; Bar, I.; Bareli, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Jung, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-02-15

    Highlights: • Improvement of superconducting properties of irradiated bridges under certain conditions. • 30 keV irradiation influence CuO{sub 2} planes as well as oxygen chains. • Direct confirmation of changes in oxygen chains using micro-Raman spectroscopy. • Possibility of electron writing. - Abstract: Effects of low energy 30 keV electron irradiation of superconducting YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films have been investigated by means of transport and micro-Raman spectroscopy measurements. The critical temperature and the critical current of 200 nm thick films initially increase with increasing fluency of the electron irradiation, reach the maximum at fluency 3 − 4 × 10{sup 20} electrons/cm{sup 2}, and then decrease with further fluency increase. In much thinner films (75 nm), the critical temperature increases while the critical current decreases after low energy electron irradiation with fluencies below 10{sup 20} electrons/cm{sup 2}. The Raman investigations suggest that critical temperature increase in irradiated films is due to healing of broken Cu−O chains that results in increased carrier’s concentration in superconducting CuO{sub 2} planes. Changes in the critical current are controlled by changes in the density of oxygen vacancies acting as effective pinning centers for flux vortices. The effects of low energy electron irradiation of YBCO turned out to result from a subtle balance of many processes involving oxygen removal, both by thermal activation and kick-off processes, and ordering of chains environment by incident electrons.

  17. Pressure-dependent shallow donor binding energy in InGaN/GaN square QWWs

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Haddou El, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P. 1796 Atlas Fez (Morocco); Specials Mathematics, CPGE Kenitra, Street Chakib Arsalane, Kenitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P. 1796 Atlas Fez (Morocco)

    2013-02-01

    Using a variational approach, we perform a theoretical study of hydrostatic pressure effect on the ground-state of axial hydrogenic shallow-donor impurity binding energy in InGaN/GaN square quantum well wire (SQWWs) as a function of the side length within the effective-mass scheme and finite potential barrier. The pressure dependence of wire length, effective mass, dielectric constant and potential barrier are taken into account. Numerical results show that: (i) the binding energy is strongly affected by the wire length and the external applied pressure and (ii) its maximum moves to the narrow wire in particular for height pressure.

  18. Biexciton binding energy in ZnSe quantum wells and quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    2002-01-01

    The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...

  19. Electron-induced dissociation of doubly protonated betaine clusters: controlling fragmentation chemistry through electron energy.

    Science.gov (United States)

    Feketeová, Linda; O'Hair, Richard A J

    2009-10-30

    The [M21+2H]2+ cluster of the zwitterion betaine, M = (CH3)3NCH2CO2, formed via electrospray ionisation (ESI), has been allowed to interact with electrons with energies ranging from >0 to 50 eV in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The types of gas-phase electron-induced dissociation (EID) reactions observed are dependent on the energy of the electrons. In the low-energy region up to 10 eV, electrons are mainly captured, forming the charge-reduced species, {[M21+2H]+*}*, in an excited state, which stabilises via the ejection of an H atom and one or more neutral betaines. In the higher energy region, above 12 eV, a Coulomb explosion of the multiply charged clusters is observed in highly asymmetric fission with singly charged fragments carrying away more than 70% of the parent mass. Neutral betaine evaporation is also observed in this energy region. In addition, a series of singly charged fragments appears which arise from C-X bond cleavage reactions, including decarboxylation and CH3 group transfer. These latter reactions may arise from access of electronic excited states of the precursor ions. Copyright 2009 John Wiley & Sons, Ltd.

  20. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    Science.gov (United States)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  1. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  2. Low energy electron attachment to cyanamide (NH2CN)

    Science.gov (United States)

    Tanzer, Katrin; Pelc, Andrzej; Huber, Stefan E.; Czupyt, Z.; Denifl, Stephan

    2015-01-01

    Cyanamide (NH2CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH2CN has been studied in a crossed electron-molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN-, NCN-, CN-, NH2-, NH-, and CH2-. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH2CN—carbodiimide.

  3. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  4. External electric field effect on exciton binding energy in InGaAsP/InP cylindrical quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong, E-mail: hlwang@mail.qfnu.edu.cn [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Wang, Wenjuan [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Gong, Qian; Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-12-15

    Exciton binding energies in InGaAsP/InP cylindrical quantum wires are calculated through variational method under the framework of effective-mass envelope-function approximation. It is shown that the variation of exciton binding energy is highly dependent on radius of the wire, material composition and external electric field. Exciton binding energy is a non-monotonic function of wire radius. It increases until it reaches a maximum, and then decreases as the wire radius decreases. With the increase of In composition, the wire radius need increase to reach the maximum value of exciton binding energy. It is also found that the external electric field has little effect on exciton binding energy. However, the excitonic effect will be destroyed when external electric field is large enough. In addition, the Stark shift of exciton binding energy is also calculated.

  5. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  6. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  7. Low energy electron impact vibrational excitation of acetylene

    Science.gov (United States)

    Patra, Sigma; Hargreaves, Leigh; Khakoo, Murtadha

    2016-05-01

    Experimental differential cross sections for the vibration excitation of the four fundamental modes of acetylene at low incident electron energies from 1 eV to 20 eV and scattering angles of 10o to 130o will be presented. The results will be compared to results available in the literature. Funded by NSF-AMOP-RUI Grant.

  8. Zero-slope points and electronic energy bandmapping

    Science.gov (United States)

    Wöhlecke, M.; Baalmann, A.; Neumann, M.

    1984-01-01

    Angle resolved photoemission spectra of Au (111) have been measured as a function of polar angle. The wavevector components of the electrons have been determined by symmetry arguments only. The method applied is based on zero-slope points and extrema in the bindung energy caused by symmetry. Results obtained from a predominantly nonreconstructed Au surface are presented for the ∑ direction.

  9. Electronic structure analysis and vertical ionization energies of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Results from different decouplings of the electron propagator theory using MP2/6-311g (2df,. 2p) and MP2/6-311++g (2df, 2p) optimized geometries have been performed to investigate first eight ver- tical ionization energies and the corresponding Dyson orbitals. The results computed are in good agree- ment with ...

  10. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic ...

  11. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Melhus, Christopher S.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain) and IFIC, CSIC-University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Department of Radiation Physics, ERESA, Hospital General Universitario, Avenida Tres Cruces, 2, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2009-09-15

    Purpose: The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides ({sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source {beta}{sup -}, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the {sup 192}Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Results: Electronic equilibrium within 1% is reached for {sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for {sup 60}Co and {sup 192}Ir, respectively. Electron emissions become important (i.e., >0.5%) within 3.3 mm of {sup 60}Co and 1.7 mm of {sup 192}Ir sources, yet are negligible over all distances for {sup 137}Cs and {sup 169}Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Conclusions: Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  12. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  13. Secondary Electrons as an Energy Source for Life

    Science.gov (United States)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  14. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.

    Science.gov (United States)

    Erni, Rolf; Browning, Nigel D

    2005-10-01

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of approximately 0.15 eV energy resolution with an electron probe size of approximately 1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y(1)Ba(2)Cu(3)O(7-)(delta) high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS.

  15. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  16. Reversible binding of molecular oxygen to catecholate and amidophenolate complexes of SbV: electronic and steric factors.

    Science.gov (United States)

    Fukin, Georgy K; Baranov, Evgenii V; Poddel'sky, Andrey I; Cherkasov, Vladimir K; Abakumov, Gleb A

    2012-12-07

    Edge of reactivity: The reactions of reversible binding of molecular oxygen to catecholate and amidophenolate complexes of Sb(V) are investigated by analyzing the position of electronic (E(HOMO)) and steric (G-parameter) factors. The optimal electronic and steric parameters for such type reactions are found. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... and use of the energy to be as technological efficient as possible, and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly and effectively, power conversion systems will continue to play an essential role. Using highly efficient power...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....

  18. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  19. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  20. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  1. Resonances in low-energy electron elastic scattering from Fullerenes C60 through C92

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    The electron affinity (EA) provides a stringent test of theory when the calculated and measured EAs are compared. A strong motivation for the fundamental investigations of low-energy electron elastic scattering from the selected fullerenes C60, C70, C74, C80, C82, C84 and C92 is the availability of high quality measured EAs. The Regge pole calculated electron elastic total cross sections for these fullerenes are found to be characterized generally by Ramsauer-Townsend (R-T) minima, shape resonances and dramatically sharp resonances manifesting stable negative ion formation. The extracted binding energies for the resultant anions agree excellently with the measured EAs of the fullerenes listed above, giving great credence to the Regge pole method and confirming that fullerenes behave like ``big atoms''. Common among all these fullerenes is the appearance of their ground state negative ions at their second R-T minima, similarly to the atomic Au case. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  2. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations

    Science.gov (United States)

    Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho

    2017-05-01

    The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.

  3. Simulation of electron beam dynamics in a high-energy electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.V. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation)]. E-mail: a.v.ivanov@inp.nsk.su; Panasyuk, V.M. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Parkhomchuk, V.V. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Reva, V.B. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Tiunov, M.A. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation)

    2006-03-01

    Electron cooling is now a standard tool for improvement of ion beam parameters in storage rings. In BINP, after successful development of several low-energy electron cooling devices, a project involving a high-energy electron cooler for GSI has been proposed. This cooler has a classical electrostatic scheme with electron energy of up to 8 MeV. Here we present results of numerical simulations of electron beam formation, acceleration and collection for this project. Special attention is paid to a description of the new codes developed in BINP. The electron gun and collector are simulated by the 2D USAM code. This code is modified to calculate collector performance with consideration of secondary emission. The BEAM code is used for simulation of dynamics in the accelerating section. A new 3D electrostatic code, ELEC3D, developed for the simulation of beam dynamics in bends with electrostatic compensation of the centrifugal drift, is described. This code is combined with the existing MAG3D magnetostatic code to provide a universal tool for 3D static calculations.

  4. Accurate calculation of the absolute free energy of binding for drug molecules.

    Science.gov (United States)

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J; Knapp, Stefan; Biggin, Philip C

    2016-01-14

    Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol-1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol-1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets.

  5. Energy transfer from lower energy to higher-energy electrons mediated by whistler waves in the radiation belts

    Science.gov (United States)

    Shklyar, D. R.

    2017-01-01

    We study the problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.

  6. Contribution of CSB interactions in binding energy difference of mirror nuclei

    Directory of Open Access Journals (Sweden)

    M. Asghari

    2006-03-01

    Full Text Available   Nolen-Schiffer Anomaly in mirror nuclei due to the NN interactions with isospin mixing between T=0 and T=1 mesons of the same spin and parity are investigated. With the computation of coulomb energy along with the charge symmetry breaking (CSB effects provide a reasonably accurate description of binding energy differences between  39ca- 39k- , 41cs- 41ca mirror nuclei. 

  7. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  8. On the many-body Van der Waals binding energy of a dense fluid

    NARCIS (Netherlands)

    Nijboer, B.R.A.

    1975-01-01

    We consider a dense system of neutral atoms. When the atoms are represented by isotropic oscillators (Drude-Lorentz model) interacting with nonretarded dipole-dipole forces, the binding energy of the system is given exactly by a well-known expression which is written as a sum of two-bond,

  9. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    Science.gov (United States)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  10. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    Science.gov (United States)

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  11. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  12. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    Science.gov (United States)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  13. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  14. Low energy electron beams for industrial and environmental applications

    CERN Document Server

    Skarda, Vlad

    2017-01-01

    EuCARD-2 Workshop, 8-9 December 2016, Warsaw, Poland. Organizers: Science and Technology Facilities Council, UK CERN - The European Organization for Nuclear Research, Switzerland, Institute of Nuclear Chemistry and Technology, Poland, Fraunhofer Institute for Electron Beam and Plasma Technology, Germany, Warsaw University of Technology, Poland. An article presents short information about EuCARD-2 Workshop “Low energy electron beams for industrial and environmental applications”, which was held in December 2016 in Warsaw. Objectives, main topics and expected output of meeting are described. List of organizers is included.

  15. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    Science.gov (United States)

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  16. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    technical report 3. DATES COVERED {From - To) Apri 1 1, 2012 - September 30, 2015 4. TITLE AND SUBTITLE Energy-Filtered Tunnel Transistor : A...occurring at room temperature as well as its applications to practical devices such as room-temperature single-electron transistors and ultralow...energy consumption transistors . We have experimentally demonstrated, for the first time, that a quantum well energy level can filter out energetic

  17. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy...... are changing and challenging the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus in the paper is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have the potential...

  18. Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene

    Science.gov (United States)

    Ghosh, Barun; Kumar, Piyush; Thakur, Anmol; Chauhan, Yogesh Singh; Bhowmick, Somnath; Agarwal, Amit

    2017-07-01

    In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene based on ab initio time-dependent density-functional-theory calculations. Similarly to black phosphorus, the EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in the vicinity of the band gap and by interband plasmon peaks for higher energies. On doping, an additional intraband plasmon peak also appears for energies within the band gap. Similarly to other two-dimensional systems, the intraband plasmon peak disperses as ωpl∝√{q } in both the zigzag and armchair directions in the long-wavelength limit and deviates for larger wave vectors. The anisotropy of the long-wavelength plasmon intraband dispersion is found to be inversely proportional to the square root of the ratio of the effective masses: ωpl(q y ̂) /ωpl(q x ̂) =√{mx/my } .

  19. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I. B.; Azarenkov, N. A. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61022 Kharkiv (Ukraine); Kersten, H. [Institut für Experimentelle und Angewandte Physik, Leibnizstr. 19, Kiel D-24098 (Germany)

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  20. Theoretical analysis of the time-resolved binary (e, 2e) binding energy spectra on three-body photodissociation of acetone at 195 nm

    Science.gov (United States)

    Yamazaki, M.; Nakayama, S.; Zhu, C. Y.; Takahashi, M.

    2017-11-01

    We report on theoretical progress in time-resolved (e, 2e) electron momentum spectroscopy of photodissociation dynamics of the deuterated acetone molecule at 195 nm. We have examined the predicted minimum energy reaction path to investigate whether associated (e, 2e) calculations meet the experimental results. A noticeable difference between the experiment and calculations has been found at around binding energy of 10 eV, suggesting that the observed difference may originate, at least partly, in ever-unconsidered non-minimum energy paths.

  1. Blinded predictions of host-guest standard free energies of binding in the SAMPL5 challenge

    Science.gov (United States)

    Bosisio, Stefano; Mey, Antonia S. J. S.; Michel, Julien

    2017-01-01

    In the context of the SAMPL5 blinded challenge standard free energies of binding were predicted for a dataset of 22 small guest molecules and three different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC). Three sets of predictions were submitted, each based on different variations of classical molecular dynamics alchemical free energy calculation protocols based on the double annihilation method. The first model ( model A) yields a free energy of binding based on computed free energy changes in solvated and host-guest complex phases; the second ( model B) adds long range dispersion corrections to the previous result; the third ( model C) uses an additional standard state correction term to account for the use of distance restraints during the molecular dynamics simulations. Model C performs the best in terms of mean unsigned error for all guests (MUE 3.2 < 3.4 < 3.6 {kcal} {mol}^{-1}—95 % confidence interval) for the whole data set and in particular for the octa-acid systems (MUE 1.7 < 1.9 < 2.1 {kcal} {mol}^{-1}). The overall correlation with experimental data for all models is encouraging (R^2 0.65 < 0.70<0.75). The correlation between experimental and computational free energy of binding ranks as one of the highest with respect to other entries in the challenge. Nonetheless the large MUE for the best performing model highlights systematic errors, and submissions from other groups fared better with respect to this metric.

  2. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  3. National energy use of consumer electronics in 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Karen; Meier, Alan; Zandelin, Stefan

    2000-02-15

    The major consumer electronics in U.S. homes accounted for nearly 7 percent of U.S. residential electricity consumption in 1999. We attribute more than half of this figure (3.6 percent) to televisions, videocassette recorders, and DVD players, and nearly one-third (1.8 percent) to audio products. Set-top boxes currently account for a relatively small fraction of residential electricity use (0.7 percent), but we expect this end-use to grow quickly with the proliferation of digital set-top boxes, which currently use 40 percent more energy per unit than the average TV set. In all, these consumer electronics plus telephone products consumed 75 TWh in the U.S. in 1999, half of which was consumed while the products were not in use. This energy use is expected to grow as products with new or advanced functionality hit the market.

  4. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins.

    Science.gov (United States)

    Zoghbi, Maria E; Altenberg, Guillermo A

    2018-04-01

    The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  6. Nanobiotechnology in energy, environment and electronics methods and applications

    CERN Document Server

    Nicolini, Claudio

    2015-01-01

    Introduction: Present Challenges and Future Solutions via Nanotechnology for Electronics, Environment and Energy; Claudio NicoliniPart A: MethodsInfluence of Chromosome Translocation on Yeast Life Span: Implications for Long-Term Industrial Biofermentation; Jason Sims, Dmitri Nikitin, and Carlo V. BruschiPulsed Power Nanotechnologies for Disintegration and Breaking Up of Refractory Precious Metals Ores; Valentin A. Chanturiya and Igor Zh. BuninModeling of Software Sensors in Bioprocess; Luca Belmonte and Claudio NicoliniN

  7. Parity nonconservation in polarized electron scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) ..-->.. e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references. (JFP)

  8. Effect of electron disruption in the energy recovery linac based electron ion collider

    Directory of Open Access Journals (Sweden)

    Y. Hao

    2010-07-01

    Full Text Available Beam-beam effects present one of the major factors limiting the luminosity of colliders. In the energy recovery linac (ERL based eRHIC design, the electron beam, accelerated in a superconducting ERL, collides with the proton beam circulating in the RHIC ring. During such collisions the electron beam undergoes a very strong beam-beam interaction with the protons, which warrants careful examination. We evaluated transverse disruption and linear mismatch effects in the electron beam caused by collisions and considered several countermeasures to mitigate the emittance growth from these interactions. The minimum required aperture of transport lines is calculated that should allow the transport of the electron beam during the deceleration process.

  9. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    Science.gov (United States)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also

  10. Electron energy distributions in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Heon, E-mail: ssongs@umich.edu, E-mail: Sang-Heon.Song@us.tel.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Yang, Yang, E-mail: yang-yang@amat.com [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States); Chabert, Pascal, E-mail: pascal.chabert@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2014-09-15

    Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

  11. Low energy electron bombardment induced surface contamination of Ru mirrors

    Science.gov (United States)

    Al-Ajlony, A.; Kanjilal, A.; Catalfano, M.; Harilal, S. S.; Hassanein, A.; Rice, B.

    2012-03-01

    The impact of secondary electrons induced contamination of the Ru surface was investigated. Mirror-like Ru sample was bombarded with low energy (100 eV) electrons and the change in surface chemistry was investigated using X-ray photoelectron spectroscopy (XPS).Along with XPS studies the corresponding effect on in-situ EUV reflectivity was examined by exposing the Ru surface to photons at a wavelength of 13.5 nm in an ultrahigh vacuum chamber. Detailed XPS analyses showed a sudden increase in carbon concentrations on the Ru surface in the first 60 min, followed by a slow but linear growth in carbon concentration. In parallel, a noticeable decrease in water content was observed during the time of electrons irradiation along with slight oxidation of pure Ru surface. All chemical changes were discussed in terms of the electrons bombardment mediated dissociation of water and hydrocarbon molecules. A time dependent EUV reflectivity measurements show insignificant change in reflectivity up to 510 min of electrons bombardment. The impact of water molecules on the Ru surface and the accumulation of carbon through dissociation of residual hydrocarbons is discussed in details.

  12. Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms.

    Science.gov (United States)

    McDonagh, James L; Silva, Arnaldo F; Vincent, Mark A; Popelier, Paul L A

    2017-12-06

    We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.

  13. The Exploitation of Low-Energy Electrons in Cancer Treatment.

    Science.gov (United States)

    Rezaee, Mohammad; Hill, Richard P; Jaffray, David A

    2017-08-01

    Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.

  14. Reduced density matrix hybrid approach: Application to electronic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

    2012-02-28

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  15. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  16. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  17. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy.

    Science.gov (United States)

    Vuckovic, Stefan; Gori-Giorgi, Paola

    2017-07-06

    From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.

  18. Atomic and electronic structures of a-SiC:H from tight-binding molecular dynamics

    CERN Document Server

    Ivashchenko, V I; Shevchenko, V I; Ivashchenko, L A; Rusakov, G V

    2003-01-01

    The atomic and electronic properties of amorphous unhydrogenated (a-SiC) and hydrogenated (a-SiC:H) silicon carbides are studied using an sp sup 3 s sup * tight-binding force model with molecular dynamics simulations. The parameters of a repulsive pairwise potential are determined from ab initio pseudopotential calculations. Both carbides are generated from dilute vapours condensed from high temperature, with post-annealing at low temperature for a-SiC:H. A plausible model for the inter-atomic correlations and electronic states in a-SiC:H is suggested. According to this model, the formation of the amorphous network is weakly sensitive to the presence of hydrogen. Hydrogen passivates effectively only the weak bonds of threefold-coordinated atoms. Chemical ordering is very much affected by the cooling rate and the structure of the high-temperature vapour. The as-computed characteristics are in rather good agreement with the results for a-SiC and a-Si:H from ab initio calculations.

  19. Competitive binding assay using fluorescence resonance energy transfer for the identification of calmodulin antagonists.

    Science.gov (United States)

    Sharma, Bethel; Deo, Sapna K; Bachas, Leonidas G; Daunert, Sylvia

    2005-01-01

    The ubiquitous calcium regulating protein calmodulin (CaM) has been utilized as a model drug target in the design of a competitive binding fluorescence resonance energy transfer assay for pharmacological screening. The protein was labeled by covalently attaching the thiol-reactive fluorophore, N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC) to an engineered C-terminal cysteine residue. Binding of the environmentally sensitive hydrophobic probe 2,6-anilinonaphthalene sulfonate (2,6-ANS) to CaM could be monitored by an increase in the fluorescence emission intensity of the 2,6-ANS. Evidence of fluorescence resonance energy transfer (FRET) from 2,6-ANS (acting as a donor) to MDCC (the acceptor in this system) was also observed; fluorescence emission representative of MDCC could be seen after samples were excited at a wavelength specific for 2,6-ANS. The FRET signal was monitored as a function of the concentration of calmodulin antagonists in solution. Calibration curves for both a selection of small molecules and a series of peptides based upon known CaM-binding domains were obtained using this system. The assay demonstrated dose-dependent antagonism by analytes known to hinder the biological activity of CaM. These data indicate that the presence of molecules known to bind CaM interfere with the ability of FRET to occur, thus leading to a concentration-dependent decrease of the ratio of acceptor:donor fluorescence emission. This assay can serve as a general model for the development of other protein binding assays intended to screen for molecules with preferred binding activity.

  20. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  1. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    Science.gov (United States)

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major autoantigen source and provides a new understanding of the origin of

  2. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    Science.gov (United States)

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental KM values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-01-01

    Full Text Available DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc., which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.

  4. Absolute Binding Energies of Core Levels in Solids from First Principles

    Science.gov (United States)

    Ozaki, Taisuke; Lee, Chi-Cheng

    2017-01-01

    A general method is presented to calculate absolute binding energies of core levels in metals and insulators, based on a penalty functional and an exact Coulomb cutoff method in the framework of density functional theory. The spurious interaction of core holes between supercells is avoided by the exact Coulomb cutoff method, while the variational penalty functional enables us to treat multiple splittings due to chemical shift, spin-orbit coupling, and exchange interaction on equal footing, both of which are not accessible by previous methods. It is demonstrated that the absolute binding energies of core levels for both metals and insulators are calculated by the proposed method in a mean absolute (relative) error of 0.4 eV (0.16%) for eight cases compared to experimental values measured with x-ray photoemission spectroscopy within a generalized gradient approximation to the exchange-correlation functional.

  5. Electron Flux Models for Different Energies at Geostationary Orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-01-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  6. Energy, Systems and Connectors; or Why Electrons Don't Carry Energy from Batteries to Bulbs

    Science.gov (United States)

    Scaife, Jon

    2012-01-01

    A common approach when teaching about energy in circuits in secondary schools is to treat flowing electrons as carriers of energy from a source to a sink. The paper argues that although this may seem to be a useful model for teaching, it is unscientific and may ultimately be confusing to students who continue to adopt it at key stage 4 and above.…

  7. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

    Science.gov (United States)

    Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.

    2012-05-01

    Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

  8. Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution.

    Science.gov (United States)

    Ondarse-Alvarez, D; Kömürlü, S; Roitberg, A E; Pierdominici-Sottile, G; Tretiak, S; Fernandez-Alberti, S; Kleiman, V D

    2016-09-14

    Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.

  9. Energy Dissipation in Monolayer MoS2 Electronics.

    Science.gov (United States)

    Yalon, Eilam; McClellan, Connor J; Smithe, Kirby K H; Muñoz Rojo, Miguel; Xu, Runjie Lily; Suryavanshi, Saurabh V; Gabourie, Alex J; Neumann, Christopher M; Xiong, Feng; Farimani, Amir Barati; Pop, Eric

    2017-06-14

    The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multilayered processors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS2 transistors. Using Raman thermometry, we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance of the MoS2 interface with SiO2 (14 ± 4 MW m-2 K-1) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into nonuniformities of the MoS2 transistors (small bilayer regions) which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.

  10. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  11. The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors.

    Science.gov (United States)

    Araki, Mitsugu; Kamiya, Narutoshi; Sato, Miwa; Nakatsui, Masahiko; Hirokawa, Takatsugu; Okuno, Yasushi

    2016-12-27

    Accurate prediction of binding affinities of drug candidates to their targets remains challenging because of protein flexibility in solution. Conformational flexibility of the ATP-binding site in the CDK2 and ERK2 kinases was identified using molecular dynamics simulations. The binding free energy (ΔG) of twenty-four ATP-competitive inhibitors toward these kinases was assessed using an alchemical free energy perturbation method, MP-CAFEE. However, large calculation errors of 2-3 kcal/mol were observed using this method, where the free energy simulation starts from a single equilibrated conformation. Here, we developed a new ΔG computation method, where the starting structure was set to multiconformations to cover flexibility. The calculation accuracy was successfully improved, especially for larger molecular size compounds, leading to reliable prediction of a broader range of drug candidates. The present study demonstrates that conformational flexibility of interactions between a compound and the glycine-rich loop in the kinases is a key factor in ΔG estimation.

  12. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  13. Phonon-mediated path-interference in electronic energy transfer.

    Science.gov (United States)

    Hossein-Nejad, Hoda; Olaya-Castro, Alexandra; Scholes, Gregory D

    2012-01-14

    We present a formalism to quantify the contribution of path-interference in phonon-mediated electronic energy transfer. The transfer rate between two molecules is computed by considering the quantum mechanical amplitudes associated with pathways connecting the initial and final sites. This includes contributions from classical pathways, but also terms arising from interference of different pathways. We treat the vibrational modes coupled to the molecules as a non-Markovian harmonic oscillator bath, and investigate the correction to transfer rates due to the lowest-order interference contribution. We show that depending on the structure of the harmonic bath, the correction due to path-interference may have a dominant vibrational or electronic character, and can make a notable contribution to the transfer rate in the steady state.

  14. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ruben, Gary [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Bosman, Michel [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); D' Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Okunishi, Eiji; Kondo, Yukihito [JEOL Ltd., 1-2, Musashino 3-chome Akishima, Tokyo 196-8558 (Japan); Allen, Leslie J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-11-15

    We study atomic-resolution annular electron energy-loss spectroscopy (AEELS) in scanning transmission electron microscopy (STEM) imaging with experiments and numerical simulations. In this technique the central part of the bright field disk is blocked by a beam stop, forming an annular entry aperture to the spectrometer. The EELS signal thus arises only from electrons scattered inelastically to angles defined by the aperture. It will be shown that this method is more robust than conventional EELS imaging to variations in specimen thickness and can also provide higher spatial resolution. This raises the possibility of lattice resolution imaging of lighter elements or ionization edges previously considered unsuitable for EELS imaging. -- Highlights: Black-Right-Pointing-Pointer We study annular electron energy-loss spectroscopy (AEELS) in STEM. Black-Right-Pointing-Pointer This is more robust to changes in specimen thickness than conventional EELS. Black-Right-Pointing-Pointer AEELS provides higher spatial resolution than conventional EELS. Black-Right-Pointing-Pointer This raises the possibility of lattice resolution imaging of lighter elements.

  15. Measurement of the Electron Structure Function at LEP energies

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W-D; Arnoud, Y; Ask, S; Asman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K-H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Berat, C; Berggren, M; Bertrand, D; Besancon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Bruckman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, Ph; Checchia, P; Chierici, R; Chliapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D; Cuevas, J; D'Hondt, J; da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; De Boer, W; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; de Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelof, T; Ellert, M; Elsing, M; Espirito Santo, M C; Fanourakis, G; Fassouliotis, D; Feindt, M; Fernandez, J; Ferrer, A; Ferro, F; Flagmeyer, U; Foeth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; Garcia, C; Gavillet, Ph; Gazis, E; Gokieli, R; Golob, B; Gomez-Ceballos, G; Goncalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hoffman, J; Holmgren, S-O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kouznetsov, O; Krumstein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Lopez, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Marechal, B; Margoni, M; Marin, J-C; Mariotti, C; Markou, A; Martinez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; Mc Nulty, R; Meroni, C; Migliore, E; Mitaroff, W; Mjoernmark, U; Moa, T; Moch, M; Moenig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mueller, U; Muenich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, F; Nawrocki, K; Nemecek, S; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V; Olshevski, A; Onofre, A; Orava, R; Osterberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, Th D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdniakov, V; Pukhaeva, N; Pullia, A; Radojicic, D; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P; Richard, F; Ridky, J; Rivero, M; Rodriguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovsky, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Slominski, W; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassov, T; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Szwed, J; Tabarelli, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tome, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Dam, P; Van Eldik, J; van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2010-01-01

    The hadronic part of the Electron Structure Function (ESF) has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies sqrt(s) = 91.2-209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The ESF data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the quasi-real photon virtuality contribution is significant. The presented data can serve as a cross-check of the photon structure function analyses and help in refining existing parametrizations.

  16. Electronic Band Structure of Transition Metal Dichalcogenides from Ab Initio and Slater–Koster Tight-Binding Model

    Directory of Open Access Journals (Sweden)

    Jose Ángel Silva-Guillén

    2016-10-01

    Full Text Available Semiconducting transition metal dichalcogenides present a complex electronic band structure with a rich orbital contribution to their valence and conduction bands. The possibility to consider the electronic states from a tight-binding model is highly useful for the calculation of many physical properties, for which first principle calculations are more demanding in computational terms when having a large number of atoms. Here, we present a set of Slater–Koster parameters for a tight-binding model that accurately reproduce the structure and the orbital character of the valence and conduction bands of single layer MX 2 , where M = Mo, W and X = S, Se. The fit of the analytical tight-binding Hamiltonian is done based on band structure from ab initio calculations. The model is used to calculate the optical conductivity of the different compounds from the Kubo formula.

  17. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  18. Electronic and Magnetic Properties of Transition-Metal Oxide Nanocomposites: A Tight-Binding Modeling at Mesoscale

    Science.gov (United States)

    Tai, Yuan-Yen; Zhu, Jian-Xin

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. In this talk, I will present an overview on our recent efforts in theoretical understanding of the electronic and magnetic properties TMO nanocomposites. In particular, I will introduce our recently developed tight-binding modeling of these properties arising from the interplay of competing interactions at the interfaces of planar and pillar nanocomposites. Our theoretical tool package will provide a unique capability to address the emergent phenomena in TMO nanocomposites and their mesoscale response to such effects like strain and microstructures at the interfaces, and ultimately help establish design principles of new multifunctionality with TMOs. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL LDRD Program.

  19. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Seuli [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kang, Hyun-Ju; Kim, Yu-Sin; Chang, Yoon-Min; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kwon, Deuk-Chul [Plasma Technology Research Center, National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2016-06-15

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As a result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.

  20. Beam Profile Diagnostics for the Fermilab Medium Energy Electron Cooler

    Science.gov (United States)

    Warner, A.; Kazakevich, G.; Nagaitsev, S.; Tassotto, G.; Gai, W.; Konecny, R.

    2005-10-01

    The Fermilab Recycler ring will employ an electron cooler to store and cool 8.9 GeV antiprotons. The cooler will be based on a Pelletron electrostatic accelerator working in an energy-recovery regime. Several techniques for determining the characteristics of the beam dynamics are being investigated. Beam profiles have been measured as a function of the beam line optics at the energy of 3.5 MeV in the current range of 10/sup -4/-1 A, with a pulse duration of 2 /spl mu/s. The profiles were measured using optical transition radiation produced at the interface of a 250-/spl mu/m aluminum foil and also from YAG crystal luminescence. In addition, beam profiles measured using multiwire detectors were investigated. These three diagnostics will be used together to determine the profile dynamics of the beam. In this paper we report the results so far obtained using these techniques.

  1. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  2. Tuning the binding energy of on-center donor in CdSe/ZnTe core/shell quantum dot by spatial parameters and magnetic field strength

    Science.gov (United States)

    Chafai, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Ahuja, R.

    2017-10-01

    The behavior of the electron ground state and of the ground state binding energy of an on-center donor confined in a CdSe/ZnTe core/shell spherical nanodot was examined theoretically within the framework of the effective-mass approximation and using a variational calculation. The radial dependence of the dielectric constant and of the electron effective mass as well as the effect of the polarization charge were considered. Our results highlight the large impact of the magnetic field strength and the spatial parameters on the energy behavior for both the electron and the donor. Our study points out also the fact that the magnetic confinement may be eclipsed by the spatial confinement in heteronanostructures with small size and expected to be dominant in the opposite case.

  3. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  4. Spectroscopic determination of electron energies in a discharge of atomic H produced by a monoenergetic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Fitzgerald, M; Khachan, J [Applied and Plasma Physics Group, School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2007-09-07

    We construct a collisional-radiative model for atomic H produced in H{sub 2} gas at units and tens of mTorr pressures by a monoenergetic electron beam at units of keV energies. Unlike similar work in regimes of higher pressure and lower electron energies, we calculate the electron energy dependence of the two strongest Balmer lines (H{sub {alpha}} and H{sub {beta}}). A key result is that the intensity ratios do not uniquely specify the electron energy, and so we propose a new method for measurement of the spatial energy profile using the absolute and relative intensities in tandem. The model shows qualitative agreement with semi-empirical distributions of absolute and relative intensities versus electron energy for beams emerging from a biconical hollow cathode.

  5. Protein unfolding from free-energy calculations: Integration of the Gaussian network model with bond binding energies

    Science.gov (United States)

    Srivastava, Amit; Granek, Rony

    2015-02-01

    Motivated by single molecule experiments, we study thermal unfolding pathways of four proteins, chymotrypsin inhibitor, barnase, ubiquitin, and adenylate kinase, using bond network models that combine bond energies and elasticity. The protein elasticity is described by the Gaussian network model (GNM), to which we add prescribed bond binding energies that are assigned to all (nonbackbone) connecting bonds in the GNM of native state and assumed identical for simplicity. Using exact calculation of the Helmholtz free energy for this model, we consider bond rupture single events. The bond designated for rupture is chosen by minimizing the free-energy difference for the process, over all (nonbackbone) bonds in the network. Plotting the free-energy profile along this pathway at different temperatures, we observe a few major partial unfolding, metastable or stable, states, that are separated by free-energy barriers and change role as the temperature is raised. In particular, for adenylate kinase we find three major partial unfolding states, which is consistent with single molecule FRET experiments [Pirchi et al., Nat. Commun. 2, 493 (2011), 10.1038/ncomms1504] for which hidden Markov analysis reveals between three and five such states. Such states can play a major role in enzymatic activity.

  6. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  7. Electron Attachment to POCl3: Measurement and Theoretical Analysis of Rate Constants and Branching Ratios as a Function of Gas Pressure and Temperature, Electron Temperature, and Electron Energy

    National Research Council Canada - National Science Library

    Van Doren, Jane M; Friedman, Jeffrey F; Miller, Thomas M; Viggiano, A. A; Denifl, S; Scheier, P; Mark, T. D; Troe, J

    2006-01-01

    ... of the resonant POCl3 state and collisional stabilization of the parent anion. In the electron beam experiment at zero electron energy, the fragment ion POCl2- is the dominant ion product of attachment (96...

  8. Collisions of low-energy electrons with cyclohexane.

    Science.gov (United States)

    Barbosa, Alessandra Souza; Bettega, Márcio H F

    2014-12-28

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C6H12). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  9. Low-energy-electron scattering by CH3CN

    Science.gov (United States)

    Maioli, Leticia S.; Bettega, Márcio H. F.

    2017-12-01

    We report integral and differential cross sections for the elastic scattering of low-energy electrons by methyl cyanide (CH3CN), also known as acetonitrile. The cross sections were computed using the Schwinger multichannel method implemented with pseudopotentials. The fixed-nuclei scattering calculations were performed in the static-exchange and static-exchange plus polarization approximations for energies up to 15 eV. In our calculations with polarization effects, we found a π * shape resonance at around 2.22 eV and a broad structure associated to a σ * shape resonance at around 7 eV. The low-lying resonance was assigned to the electron capture by the two-fold degenerate π * orbital of the E symmetry of C 3 v group; the second was assigned to a σ * shape resonance in the A 1 symmetry. We compared our cross sections with theoretical results and experimental data available in the literature, and in general we found good agreement for the positions of the two resonances.

  10. Collisions of low-energy electrons with cyclohexane

    Science.gov (United States)

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2014-12-01

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C6H12). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  11. Impact of ion binding on poly-L-lysine (un)folding energy landscape and kinetics.

    Science.gov (United States)

    Xiong, Kan; Asher, Sanford A

    2012-06-21

    We utilize T-jump UV resonance Raman spectroscopy (UVRR) to study the impact of ion binding on the equilibrium energy landscape and on (un)folding kinetics of poly-L-lysine (PLL). We observe that the relaxation rates of the folded conformations (including π-helix (bulge), pure α-helix, and turns) of PLL are slower than those of short alanine-based peptides. The PLL pure α-helix folding time is similar to that of short alanine-based peptides. We for the first time have directly observed that turn conformations are α-helix and π-helix (bulge) unfolding intermediates. ClO(4)(-) binding to the Lys side chain -NH(3)(+) groups and the peptide backbone slows the α-helix unfolding rate compared to that in pure water, but little impacts the folding rate, resulting in an increased α-helix stability. ClO(4)(-) binding significantly increases the PLL unfolding activation barrier but little impacts the folding barrier. Thus, the PLL folding coordinate(s) differs from the unfolding coordinate(s). The-π helix (bulge) unfolding and folding coordinates do not directly go through the α-helix energy well. Our results clearly demonstrate that PLL (un)folding is not a two-state process.

  12. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    Science.gov (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  13. Hyperon binding energy in Λ6He and Λ7He

    Directory of Open Access Journals (Sweden)

    Filikhin Igor

    2016-01-01

    Full Text Available The three-body approach based on the configuration space Faddeev equations for systems of non-identical particles is proposed to describe light hypernuclei (A=6,7, S=-1 with α particle clustering. We focus on the model (α +Λ + n + n for Λ7He hypernucleus for which the first experimental data have been recently reported. New evaluation for hyperon binding energy in Λ7He is done by using a relation between energies of the spin doublet (1−,2− of Λ6He and the Λ7He ground state. Energies of low-lying levels of Λ6He hypernucleus are calculated within the cluster α + Λ + n model.

  14. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    Energy Technology Data Exchange (ETDEWEB)

    Todoriki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-09-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 {mu}m to 70 {mu}m. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 {mu}m in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 {mu}m in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  15. Investigation of the free energy profiles of amantadine and rimantadine in the AM2 binding pocket.

    Science.gov (United States)

    Van Nguyen, Hung; Nguyen, Hieu Thanh; Le, Ly Thi

    2016-01-01

    The purpose of this work was to study the mechanism of drug resistance of M2 channel proteins by analyzing the interactions between the drugs amantadine and rimantadine and M2 channel proteins (including the wild type and the three mutants V27A, S31N, and G34A) and the drug binding pathways, by use of a computational approach. Our results showed that multiple drug-binding sites were present in the M2 channel, and the trajectory of the drugs through the M2 channel was determined. A novel method was developed to investigate of free energy profiles of the ligand-protein complexes. Our work provides a new explanation of the large amount of experimental data on drug efficacy.

  16. Fundamental Efficiency Limitations for Low Electron Energy Cathololuminescence

    Energy Technology Data Exchange (ETDEWEB)

    SEAGER,CARLETON H.; TALLANT,DAVID R.

    2000-08-01

    The design of field emission displays is severely constrained by the universally poor cathodoluminescence (CL) efficiency of most phosphors at low excitation energies. As part of the effort to understand this phenomenon, the authors have measured the time decay of spectrally-resolved, pulsed CL and photoluminescence (PL) in several phosphors activated by rare earth and transition metal impurities, including Y{sub 2}O{sub 3}:Eu, Y{sub 2}SiO{sub 5}:Tb, and Zn{sub 2}SiO{sub 4}:Mn. Activator concentrations ranged from {approximately}0.25 to 10%. The CL decay curves are always non-linear on a log(CL)-linear(time) plot--i.e. they deviate from first order decay kinetics. These deviations are always more pronounced at short times and larger activator concentrations and are largest at low beam energies where the decay rates are noticeably faster. PL decay is always slower than that seen for CL, but these differences disappear after most of the excited species have decayed. They have also measured the dependence of steady state CL efficiency on beam energy. They find that larger activator concentrations accelerate the drop in CL efficiency seen at low beam energies. These effects are largest for the activators which interact more strongly with the host lattice. While activator-activator interactions are known to limit PL and CL efficiency in most phosphors, the present data suggest that a more insidious version of this mechanism is partly responsible for poor CL efficiency at low beam energies. This enhanced concentration quenching is due to the interaction of nearby excited activators. These interactions can lead to non-radiative activator decay, hence lower steady state CL efficiency. Excited state clustering, which may be caused by the large energy loss rate of low energy primary electrons, appears to enhance these interactions. In support of this idea, they find that PL decays obtained at high laser pulse energies resemble the non-linear decays seen in the CL data.

  17. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Friedrich [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Herzig, Melanie; Knupfer, Martin [FW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Lupulescu, Cosmin [Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany); Darlatt, Erik; Gottwald, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin (Germany); Eberhardt, Wolfgang [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany)

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.

  18. Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV) : Total cross section as a function of incident electron energy

    NARCIS (Netherlands)

    Van Dorp, W.F.; Wnuk, J.D.; Gorham, J.M.; Fairbrother, D.H.; Madey, T.E.; Hagen, C.W.

    2009-01-01

    The total cross section has been measured for the electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV) [MeCpPt(IV)Me3], a Pt precursor often used in focused electron beam induced processing (FEBIP), for incident electron energies ranging between 3–3 keV. Measurements

  19. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  20. The role of electron correlations in the binding properties of Ca, Sr, and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Belger, Dennis; Huesges, Zita; Voloshina, Elena; Paulus, Beate, E-mail: velena@chemie.fu-berlin.d [Institut fuer Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2010-07-14

    In order to apply wavefunction-based correlation methods to solids it is necessary to have reliable Hartree-Fock (HF) results for the infinite system of interest. We performed Hartree-Fock calculations for the group 2 heavy alkali-earth metals Ca, Sr, and Ba. For that, basis sets of valence-double-{zeta} quality have been optimized for the periodic systems. In all cases small-core pseudopotentials were used to deal with the scalar-relativistic effects. We determine the cohesive energies, the equilibrium volumes and the bulk moduli of the systems at the Hartree-Fock level and compare them with experimental data as well as the results of density functional theory calculations. Relativistic effects in the case of Ba are estimated by using a non-relativistic pseudopotential. The comparative HF versus the density functional theory (DFT) study of the electronic structures of Ca, Sr, and Ba has been performed.

  1. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  2. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    DEFF Research Database (Denmark)

    Wu, J.; Kunitski, M.; Pitzer, M.

    2013-01-01

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple...... diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles....

  3. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    Science.gov (United States)

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles.

  4. Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite.

    Science.gov (United States)

    Yang, Zhuo; Surrente, Alessandro; Galkowski, Krzysztof; Bruyant, Nicolas; Maude, Duncan K; Haghighirad, Amir Abbas; Snaith, Henry J; Plochocka, Paulina; Nicholas, Robin J

    2017-04-20

    We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead triiodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of ∼3 meV for the excitonic transitions and a 2s transition that is clearly visible even at zero magnetic field. The exciton binding energy of 16 ± 2 meV in the low-temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room-temperature tetragonal phase, an upper limit for the exciton binding energy of 12 ± 4 meV is estimated from the evolution of 1s-2s splitting at high magnetic field.

  5. Binding energy of (Lambda)He-7 and test of charge symmetry breaking in the Lambda N interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, O; Honda, D; Kaneta, M; Kato, F; Kawama, D; Maruyama, N; Matsumura, A; Nakamura, S N; Nomura, H; Nonaka, K; Ohtani, A; Okayasu, Y; Osaka, M; Oyamada, M; Sumihama, M; Tamura, H; Baker, O K; Cole, L; Christy, M; Gueye, P; Keppel, C; Tang, L; Yuan, L; Acha, A; Baturin, P; Boeglin, W; Kramer, L; Markowitz, P; Pamela, P; Perez, N; Raue, B; Reinhold, J; Rivera, R; Kato, S; Sato, Y; Takahashi, T; Daniel, A; Hungerford, Ed V; Ispiryan, M; Kalantarians, N; Lan, K J; Li, Y; Miyoshi, T; Randeniya, S; Rodriguez, V M; Bosted, P; Carlini, R; Ent, R; Fenker, H; Gaskell, D; Jones, M; Mack, D; Roche, J; Smith, G; Tvaskis, V; Vulcan, W; Wood, S; Yan, C; Asaturyan, A; Asaturyan, R; Egiyan, K; Mkrtchyan, H; Margaryan, A; Navasardyan, T; Tadevosyan, V; Zamkochian, S; Hu, B; Song, Y; Luo, W; Androic, D; Furic, M; Petkovic, T; Seva, T; Ahmidouch, A; Danagoulian, S; Gasparian, A; Halkyard, R; Johnson, K; Simicevic, N; Wells, S; Niculescu, G; Niculescu, M I; Gan, L; Benmokhtar, F; Horn, T; Elassar, M

    2011-09-01

    The binding energy of 7LambdaHe has been obtained for the first time with reaction spectroscopy using the (e, e'K+) reaction at Jefferson Lab's Hall C. A comparison among the binding energies of the A = 7 T = l iso-triplet hypernuclei, 7LambdaHe, 7LambdaLi*and 7LambdaBe, is made and possible charge symmetry breaking (CSB) in the LambdaN potential is discussed. For 7LambdaHe and 7LambdaBe, the shifts in binding energies are opposite to those predicted by a recent cluster model calculation, which assumes that the unexplained part of the binding energy difference between 4LambdaH and 4LambdaHe, is due to the CSB of the LambdaN potential. Further examination of CSB in light hypernuclear systems is required both experimentally and theoretically.

  6. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    Science.gov (United States)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  7. On the Role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles

    Science.gov (United States)

    Xiao, Fangxing; Zheng, Yi; Cloutier, Pierre; He, Yunhui; Hunting, Darel; Sanche, Léon

    2013-01-01

    Four different gold nanoparticle (GNP) preparations, including nude GNP and GNP coated either with thiolated undecane (S-C11H23), or with dithiolated diethylenetriaminepentaacetic (DTDTPA) or gadolinium (Gd) DTDTPA chelating agents were synthesized. The average diameters, for each type of nanoparticle are 5 nm, 10 and 13 nm, respectively. Dry films of plasmid DNA pGEM-3Zf(-), DNA with bound GNP and DNA with coated GNP were bombarded with 60 keV electrons. The yields of single and double strand breaks were measured as a function of exposure by electrophoresis. The binding of only one GNP without coating to DNA containing 3197 base pairs increases single and double strand breaks by a factor of 2.3 while for GNP coated with S-C11H23 this factor is reduced to 1.6. GNP coated with the DTDTPA and DTDTPA:Gd in same ratio with DNA, produce essentially no increment in damage. These results could be explained by the attenuation by the coatings of the intensity of low energy photoelectrons emitted from GNP. Thus, coatings of GNP may considerably attenuate short-range low energy electrons emitted from gold, leading to a considerable decrease of radiosensitization. According to our results, the highest radiosensitization should be obtained with GNP having the shortest possible ligand, directed to the DNA of cancer cells. PMID:22024607

  8. Improved calculation of the electron self-energy due to electron-phonon coupling in solids

    CERN Document Server

    Fortini, A

    1998-01-01

    An improved method for solving time-dependent problems in quantum mechanics, in the customary cases of constant or harmonic perturbation, is applied to the calculation of the self-energy of electrons interacting with phonons in solids. The mixing of unperturbed Bloch states, resulting from the actual coupling, is self-consistently taken into account, and the related quantum probability amplitudes are determined through direct integration over the quasiparticle spectrum. Laplace transform and elementary mathematics are used, thereby enhancing the physical transparency, and bringing out approximations in every stage. Explicit illustrative results are worked out in the simple case of slowly varying self-energy parameters. The method is critically compared with the standard Green function approach, and further encourages more detailed applications. (author)

  9. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    Science.gov (United States)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  10. Determination of the Exciton Binding Energy in CdSe Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, R; Lee, J; Wolcott, A; Zhang, J; Terminello, L; van Buuren, T

    2009-10-27

    The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using x-ray spectroscopy. Using x-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e. without and exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

  11. Fabrication of CuCl quantum dots and the size dependence of the biexciton binding energy

    CERN Document Server

    Park, S T; Kim, H Y; Kim, I G

    2000-01-01

    We fabricated CuCl quantum dots (QDs) in an aluminoborosilicate glass matrix. The photoluminescence of the CuCl QDs was surveyed by using the band-to-band excitation and the site selective luminescence methods. The excitation density dependence of the exciton and the biexciton luminescence was measured, and the saturation effects of the luminescence intensities were observed. The biexciton binding energies measured using the site selective luminescence method increased with decreasing QD size. The data were well fitted by a function resulting from the numerical matrix-diagonalization method.

  12. Free energy calculations on Transthyretin dissociation and ligand binding from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew

    experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated......Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known to form amyloids is Transthyretine (TTR), the secondary transporter of thyroxine and transporter of retinol-binding-protein. Several...

  13. Low energy electron-impact study of AlO using the R-matrix method

    Science.gov (United States)

    Kaur, Savinder; Baluja, Kasturi L.; Bassi, Monika

    2017-11-01

    This comprehensive study reports the electron-impact on the open shell AlO molecule at low energy (less than 10 eV) using the R-matrix method. We present the elastic (integrated and differential), momentum-transfer, electronic excitation and ionisation cross sections; along with effective collision frequency over a wide electron temperature range (1000-100 000 K). Correlations via a configuration interaction technique are used to represent the target states. Calculations are performed in the static-exchange and 24-target states close-coupling approximation at the experimental bond length of 1.6178 Å. We have used different basis sets 6-311G*, double zeta, polarization (DZP), cc-pCVTZ to represent our target states. We have chosen the Gaussian Type Orbitals (GTOs) basis set DZP to represent the atomic orbitals which gave the best one-electron properties of the molecule. The calculated dipole moment (1.713 au), rotational constant (0.641399 cm-1) and the vertical excitation energies are in concurrence with the best available data. The continuum electron is also represented by GTOs and is placed at the center of mass of the molecule. Resonance analysis is carried out to assign the resonance parameters and the parentage of detected resonances by fitting the eigenphase sums to the Breit-Wigner profile. Our study has detected three core-excited shape resonances in the 24-state model. We detect a stable bound state of AlO- of 1 A 1 symmetry having configuration 1 σ 2 … 7 σ 21 π 42 π 4 with a vertical electronic affinity value of 2.59 eV which is in good accord with the experimental value of 2.6 ± (0.01) eV. The ionisation cross sections are calculated using the Binary-Encounter-Bethe Model in which Hartree-Fock molecular orbitals at self-consistent level are used to calculate kinetic and binding energies of the occupied molecular orbitals. We include partial waves up to g-wave beyond which Born closure method is employed to obtain converged cross sections.

  14. Trend of Energy Saving in Electronic Devices for Research and Development

    OpenAIRE

    Rahmayanti R.; Utomo S.; Rijanto E.

    2016-01-01

    In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D) activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend ...

  15. Pairwise additivity of energy components in protein-ligand binding: The HIV II protease-Indinavir case

    Science.gov (United States)

    Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.

    2011-08-01

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.

  16. Binding energies of hydrated cobalt hydroxide ion complexes: A guided ion beam and theoretical investigation

    Science.gov (United States)

    Coates, Rebecca A.; Armentrout, P. B.

    2017-08-01

    The sequential bond energies of CoOH+(H2O)x complexes, where x = 1-4, are measured by threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer. The primary dissociation pathway for all reactants consists of loss of a single water molecule. This is followed by the sequential loss of additional water molecules at higher collision energies for the x = 2-4 complexes, whereas the x = 1 reactant loses the OH ligand competitively with the H2O ligand. The kinetic energy dependent cross sections for dissociation of CoOH+(H2O)x complexes are modeled to obtain 0 and 298 K binding energies. Our experimental results agree well with theoretically determined bond dissociation energies (BDEs) at the B3LYP, B3LYP-GD3BJ, B3P86, and MP2(full) levels of theory with a 6-311+G(2d,2p) basis set using geometries and vibrational frequencies determined at the B3LYP/6-311+G(d,p) level. Thermochemical information for the loss of OH from CoOH+(H2O)x where x = 0-4 is also derived by combining the present experimental HO-Co+(H2O) and water loss BDEs from CoOH+(H2O)x with those for Co+(H2O)y from the literature. These BDEs are also compared to theory with mixed results.

  17. Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn.

    Science.gov (United States)

    Wolf, R N; Beck, D; Blaum, K; Böhm, Ch; Borgmann, Ch; Breitenfeldt, M; Chamel, N; Goriely, S; Herfurth, F; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Minaya Ramirez, E; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Wienholtz, F; Zuber, K

    2013-01-25

    Modeling the composition of neutron-star crusts depends strongly on binding energies of neutron-rich nuclides near the N = 50 and N = 82 shell closures. Using a recent development of time-of-flight mass spectrometry for on-line purification of radioactive ion beams to access more exotic species, we have determined for the first time the mass of (82)Zn with the ISOLTRAP setup at the ISOLDE-CERN facility. With a robust neutron-star model based on nuclear energy-density-functional theory, we solve the general relativistic Tolman-Oppenheimer-Volkoff equations and calculate the neutron-star crust composition based on the new experimental mass. The composition profile is not only altered but now constrained by experimental data deeper into the crust than before.

  18. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    Science.gov (United States)

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  19. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  20. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  1. A SCANNING AND TRANSMISSION ELECTRON MICROSCOPE STUDY OF ANTIGEN-BINDING SITES ON ROSETTE-FORMING CELLS

    Science.gov (United States)

    Gudat, Fred G.; Villiger, W.

    1973-01-01

    The ultrastructure of binding sites in rosette-forming cells of mice after immunization with sheep red cells was studied by means of scanning and transmission electron microscopy. It was found that the red cells were bound to the lymphocyte surface in circumscribed, immunoglobulin-containing areas, consistent with a spotlike or patchy distribution of antigen-binding immunoglobulin receptors. In these contact areas the cell membranes formed a gap of 80 Å (range 75–90 Å) which exhibited electron-opaque bridges at high magnification. These results are discussed in the light of the recent recognition of the formation of immunoglobulin spots on the lymphocyte surface after antigen contact. Morphological details suggest that the same mechanism is operating in rosette formation, possibly including the movement of the contact areas on the lymphocyte membrane. PMID:4685705

  2. CaFE: a tool for binding affinity prediction using end-point free energy methods.

    Science.gov (United States)

    Liu, Hui; Hou, Tingjun

    2016-07-15

    Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Radiosensitivity of chlorella after medium energy accelerated electron irradiation; Radiosensibilite des chlorelles aux electrons acceleres de moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Roux, J.C. [commissariat a L' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-06-01

    The survival curves (capability of multiplication) of chlorella pyrenoidosa after irradiations can be used for soft electrons (0.65 and 1 MeV), hence penetrating into only 2 to 4 millimeters of water: the algae are laying on porous membranes and the doses are calculated from the power of the electron beam measured by the electric current on a metallic target or by Fricke's dosimetry. With these techniques, it is showed and discussed the part of anoxia in the radioprotection (magnitude or reduction of the dose calculated from the slope of survival curves: 2.5 ) that is more important than the restoration studied by the fractionation of the dose. The 0.65 and 1 MeV electrons have a biologic effect lesser than 180 keV X-rays (RBE - relative biological efficiency - calculated on the slope of survival curves is 0.92 in aerated irradiation, 0.56 in the deoxygenated irradiation). (author) [French] Les courbes de survie clonale (capacite de multiplication) de chlorella pyrenoidosa apres irradiation sont realisables meme avec des electrons peu energetiques (0.65 et 1 MeV), donc peu penetrants, par l'irradiation d'algues deposees sur membrane filtrante et grace au calcul de la dose a partir de l'energie du faisceau mesure par le courant que celui-ci cree dans une cible metallique ou par dosimetrie de Fricke. Par ces techniques, on a montre et discute le role de l'anoxie dans la radioprotection des chlorelles (facteur de reduction de la dose calcule sur la pente des courbes de survie de 2.5) qui est plus important que le pouvoir de restauration etudie par le fractionnement de la dose. Les electrons utilises ont un effet biologique moins grand que les rayons X de 180 keV (l'efficacite biologique relative - EBR - calculee sur la pente des courbes de survie est de 0.9 en presence d'air, 0.6 en presence d'azote)

  4. Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers.

    Science.gov (United States)

    Mozer, F S; Agapitov, O; Krasnoselskikh, V; Lejosne, S; Reeves, G D; Roth, I

    2014-07-18

    The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth's outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of ∼ 0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

  5. Introduction to electronics and applications in high energy physics

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Electronics in HEP experiments: specificities and evolution The Art of Electronics: is there something beyond Ohm's law? Basic building blocks of Analog electronics: quickly understanding a schematic Charge preamps, current preamps and future preamps, shaping and the rest Electronics noise: fundamental and practical Evolution of technology: ASICs, FPGAs...

  6. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (reactions and the free energy surface are not well-known. We present a force matching approach to improve the chemical accuracy of DFTB. Accelerated sampling techniques are combined with path collective variables to generate the reference DFT data set and validate fitted DFTB potentials. Accuracy of force-matched DFTB free energy surfaces is assessed for slow peptide-forming reactions by direct comparison to DFT for particular paths. Extensions to model prebiotic chemistry under shock conditions are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  8. Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

    CERN Document Server

    Accardi, A.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.K.; Burton, T.; Chang, N.B.; Deng, W.T.; Deshpande, A.; Diehl, M.; Dumitru, A.; Dupré, R.; Ent, R.; Fazio, S.; Gao, H.; Guzey, V.; Hakobyan, H.; Hao, Y.; Hasch, D.; Holt, R.; Horn, T.; Huang, M.; Hutton, A.; Hyde, C.; Jalilian-Marian, J.; Klein, S.; Kopeliovich, B.; Kovchegov, Y.; Kumar, K.; Kumerički, K.; Lamont, M.A.C.; Lappi, T.; Lee, J.H.; Lee, Y.; Levin, E.M.; Lin, F.L.; Litvinenko, V.; Ludlam, T.W.; Marquet, C.; Meziani, Z.E.; McKeown, R.; Metz, A.; Milner, R.; Morozov, V.S.; Mueller, A.H.; Müller, B.; Müller, Dieter; Nadel-Turonski, P.; Paukkunen, H.; Prokudin, A.; Ptitsyn, V.; Qian, X.; Qiu, J.W.; Ramsey-Musolf, M.; Roser, T.; Sabatié, F.; Sassot, R.; Schnell, G.; Schweitzer, P.; Sichtermann, E.; Stratmann, M.; Strikman, M.; Sullivan, M.; Taneja, S.; Toll, T.; Trbojevic, D.; Ullrich, T.; Venugopalan, R.; Vigdor, S.; Vogelsang, W.; Weiss, C.; Xiao, B.W.; Yuan, F.; Zhang, Y.H.; Zheng, L.

    2016-01-01

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them, and it benefited from inputs from the users' communities of BNL and JLab. This White Paper offers the promise to prope...

  9. Electron-Ion Collider: The next QCD frontier. Understanding the glue that binds us all

    Energy Technology Data Exchange (ETDEWEB)

    Accardi, A. [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Albacete, J.L. [Universite Paris-Sud 11, CNRS/IN2P3, IPNO, Orsay (France); Anselmino, M. [Torino University (Italy); INFN, Torino (Italy); Armesto, N. [University of Santiago de Campostela, Santiago de Compostela (Spain); Aschenauer, E.C.; Burton, T.; Fazio, S.; Hao, Y.; Lamont, M.A.C.; Lee, J.H.; Lee, Y.; Litvinenko, V.; Ludlam, T.W.; Ptitsyn, V.; Qiu, J.W.; Roser, T.; Toll, T.; Trbojevic, D.; Ullrich, T.; Venugopalan, R.; Vigdor, S. [Brookhaven National Laboratory, Upton, NY (United States); Bacchetta, A. [University of Pavia, Pavia (Italy); Boer, D. [University of Groningen, Groningen (Netherlands); Brooks, W.K.; Hakobyan, H.; Kopeliovich, B. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Chang, N.B.; Huang, M. [Shandong University, Shandong (China); Deng, W.T. [Frankfurt University, FIAS, Frankfurt (Germany); Shandong University, Shandong (China); Deshpande, A.; Kumar, K. [Stony Brook University, Stony Brook, NY (United States); Diehl, M. [DESY, Hamburg (Germany); Dumitru, A.; Jalilian-Marian, J. [Baruch College, CUNY, New York, NY (United States); Dupre, R.; Sabatie, F. [Centre de Saclay, CEA, Gif-sur-Yvette (France); Ent, R.; Guzey, V.; Hutton, A.; Lin, F.L.; McKeown, R.; Morozov, V.S.; Nadel-Turonski, P.; Prokudin, A.; Weiss, C.; Zhang, Y.H. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gao, H. [Duke University, Durham, NC (United States); Hasch, D. [INFN, LNF, Frascati (Italy); Holt, R. [Argonne National Laboratory, Argonne, IL (United States); Horn, T. [The Catholic University of America, N.E. Washington, DC (United States); Hyde, C. [Old Dominion University, Norfolk, VA (United States); Klein, S.; Sichtermann, E.; Yuan, F. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kovchegov, Y. [The Ohio State University, Columbus, OH (United States); Kumericki, K. [University of Zagreb, Zagreb (Croatia); Lappi, T.; Paukkunen, H. [University of Jyvaskyla, Jyvaskyla (Finland); Levin, E.M. [Tel Aviv University, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Marquet, C. [CERN, Geneva (Switzerland); Meziani, Z.E.; Metz, A. [Temple University, Philadelphia, PA (United States); Milner, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Mueller, A.H. [Columbia University, New York, NY (US); Mueller, B. [Brookhaven National Laboratory, Upton, NY (US); Duke University, Durham, NC (US); Mueller, D. [Ruhr-University Bochum, Bochum (DE); Qian, X. [California Institute of Technology, Pasadena, CA (US); Ramsey-Musolf, M. [University of Massachusetts at Amherst, Amherst, MA (US); Sassot, R. [University of Buenos Aires, Buenos Aires (AR); Schnell, G. [University of Basque Country, Bilbao (ES); Schweitzer, P. [University of Connecticut, Storrs, CT (US); Stratmann, M.; Vogelsang, W. [University of Tuebingen, Tuebingen (DE); Strikman, M. [Pennsylvania State University, Philadelphia, PA (US); Sullivan, M. [Stanford Linear Accelerator Center, Menlo Park, CA (US); Taneja, S. [Dalhousie University, Halifax, Nova Scotia (CA); Stony Brook University, Stony Brook, NY (US); Xiao, B.W. [Central China Normal University, Wuhan, Hubei (CN); Zheng, L. [Brookhaven National Laboratory, Upton, NY (US); Central China Normal University, Wuhan, Hubei (CN)

    2016-09-15

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on ''Gluons and quark sea at high energies'' at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier. (orig.)

  10. High energy density plasma science with an ultrarelativistic electron beam

    Science.gov (United States)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.

    2002-05-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  11. Electric manipulation of the Mn-acceptor binding energy and the Mn-Mn exchange interaction on the GaAs (110) surface by nearby As vacancies

    Science.gov (United States)

    Mahani, M. R.; MacDonald, A. H.; Canali, C. M.

    2015-07-01

    We investigate theoretically the effect of nearby As (arsenic) vacancies on the magnetic properties of substitutional Mn (manganese) impurities on the GaAs (110) surface, using a microscopic tight-binding model which captures the salient features of the electronic structure of both types of defects in GaAs. The calculations show that the binding energy of the Mn acceptor is essentially unaffected by the presence of a neutral As vacancy, even at the shortest possible VAs-Mn separation. On the other hand, in contrast to a simple tip-induced-band-bending theory and in agreement with experiment, for a positively charged As vacancy the Mn-acceptor binding energy is significantly reduced as the As vacancy is brought closer to the Mn impurity. For two Mn impurities aligned ferromagnetically, we find that nearby charged As vacancies enhance the energy level splitting of the associated coupled acceptor levels, leading to an increase of the effective exchange interaction. Neutral vacancies leave the exchange splitting unchanged. Since it is experimentally possible to switch reversibly between the two charge states of the vacancy, such a local electric manipulation of the magnetic dopants could result in an efficient real-time control of their exchange interaction.

  12. Binding Energy and Lifetime of Excitons in InxGa1-xAs/GaAs Quantum Wells

    DEFF Research Database (Denmark)

    Orani, D.; Polimeni, A.; Patane, A.

    1997-01-01

    We report a systematic study of exciton binding energies and lifetimes in InGaAs/GaAs quantum wells. The experimental binding energies have been deduced from photoluminescence excitation measurements taking into account the contribution of the 2s state of the exciton and the line broadening....... The experimental results have been compared with accurate calculations in a four-band model, where exciton energies take into account the polaron correction. The theory accounts for all the experimental observations and provides a good quantitative agreement with the experimental values....

  13. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  14. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...... appears to influence significantly only the intensity of the elastic transmission. The present results suggest a more complex nature of low-energy electron transport through insulating nanocapillaries than proposed for positive ions....... with respect to the capillary axis. On the other hand, the intensity of elastically transmitted electrons significantly varies with the alteration of electron energy and tilt angle. In addition, we measured an energy distribution of electrons transmitted both in the straightforward direction and at large tilt...

  15. Low energy cross sections for electron scattering from tetrafluoroallene

    Science.gov (United States)

    Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Chakrabarti, Kalyan; Yoon, Jung-Sik

    2017-08-01

    We report elastic, total, excitation, differential and momentum-transfer cross sections for scattering of low-energy electrons by tetrafluoroallene (C3F4) using the close-coupling (CC) approximation in the R-matrix method with Quantemol-N. We have tested various target models initially to check for the convergence of the result and the final results are provided with the best target model. We have detected shape resonances of symmetry 2 E(2B1,2B2) at 3.08 eV and 3.71 eV with a close-coupling and static exchange models which is seen as a sharp feature in the elastic and momentum transfer cross sections. We also detected other resonances of symmetry 2 E at 11.26 eV and of symmetry 2A2 at 11.12 eV below the ionization threshold of the target respectively. The present elastic and total cross sections are compared with the elastic and total cross sections of allene (C3H4), propene (C3H6) and hexafluoropropene (C3F6) as there were no results available for C3F4. The effect of fluorination is clearly seen with the shape resonance for C3F4 getting slightly shifted to higher energies compared to allene. Finally, we also report the ionization cross section calculated using the Binary-Encounter Bethe (BEB) method. The present calculation is a maiden attempt to find cross sections for C3F4 molecule which could be useful for fluorocarbon plasma modeling.

  16. Applications of CCTO supercapacitor in energy storage and electronics

    Directory of Open Access Journals (Sweden)

    R. K. Pandey

    2013-06-01

    Full Text Available Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS. We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  17. Slow electron energy balance for hybrid models of direct-current glow discharges

    Science.gov (United States)

    Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2017-09-01

    In this paper, we present the formulation of slow electron energy balance for hybrid models of direct current (DC) glow discharge. Electrons originating from non-local ionization (secondary) contribute significantly to the energy balance of slow electrons. An approach towards calculating effective energy brought by a secondary electron to the group of slow electrons by means of Coulomb collisions is suggested. The value of effective energy shows a considerable dependence on external parameters of a discharge, such as gas pressure, type, and geometric parameters. The slow electron energy balance was implemented into a simple hybrid model that uses analytical formulation for the description of non-local ionization by fast electrons. Simulations of short (without positive column) DC glow discharge in argon are carried out for a range of gas pressures. Comparison with experimental data showed generally good agreement in terms of current-voltage characteristics, electron density, and electron temperature. Simulations also capture the trend of increasing electron density with decreasing pressure observed in the experiment. Analysis shows that for considered conditions, the product of maximum electron density ne and electron temperature Te in negative glow is independent of gas pressure and depends on the gas type, cathode material, and discharge current. Decreasing gas pressure reduces the heating rate of slow electrons during Coulomb collisions with secondary electrons, which leads to lower values of Te and, in turn, higher maximum ne.

  18. The electron energy distribution during HF pumping, a picture painted with all colors

    OpenAIRE

    B. Gustavsson; T. Sergienko; M. J. Kosch; M. T. Rietveld; Brändström, B. U. E.; Leyser,T. B.; Isham, B.; Gallop, P.; Aso, T; Ejiri, M.; Grydeland, T.; Steen, Å; LaHoz, C.; Kaila, K.; Jussila, J.

    2005-01-01

    The shape of the electron energy distribution has long been a central question in the field of high-frequency radio-induced optical emission experiments. This report presents estimates of the electron energy distribution function, fe(E), from 0 to 60 eV, based on optical multi-wavelength (6300, 5577, 8446, 4278Å) data and 930-MHz incoherent scatter radar measurements of ion temperature, electron temperature and electron concentration. According...

  19. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  20. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    CERN Document Server

    Abramovich, A; Efimov, S; Gover, A; Pinhasi, Y; Yahalom, A

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E...

  1. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung

    2018-01-03

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  2. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.

    Science.gov (United States)

    Bucci, Enrico; Pucciarelli, Stefania; Angeletti, Mauro

    2013-06-18

    Hill's plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely, the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energy changes of the two affinities (Δ G(L)) is the free energy of binding cooperativity. Notably, Δ G(L) is positive in favor of the T form, which moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyhemoglobin, with a positive Δ G(W) also in favor of the T form. An increasing protein concentration shifts the isotherms to the right, indicating the formation of intermediate polymeric forms. The enthalpy of the intermediates shows a strong absorption of heat at the third oxygenation step because of polymer formation with quinary, and higher-order, structures. The disassembly of intermediate polymers releases energy with a negative Δ G that compensates and allows the positive values of Δ G(L). High-energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity.

  3. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.#

    Science.gov (United States)

    Bucci, Enrico

    2013-01-01

    Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673

  4. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  5. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  6. Glucose Sensors Based on Microcapsules Containing an Orange/Red Competitive Binding Resonance Energy Transfer Assay

    Science.gov (United States)

    CHINNAYELKA, SWETHA; McSHANE, and MICHAEL J.

    2015-01-01

    Fluorescent sensing systems offer the potential for noninvasive monitoring with implantable devices, but they require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility while maintaining adequate response characteristics. A recent development towards this goal is a highly specific and sensitive competitive binding assay for glucose using apo-glucose oxidase (apo-GOx) as the recognition element and dextran as the competing ligand; this has been demonstrated as a glucose sensor system by encapsulating the competitive binding assay in semipermeable microcapsule carriers. This paper describes the extension of this sensor design to longer wavelengths in an attempt to increase the applicability to in vivo monitoring. The glucose sensitivity of the tetramethylrhodamine isothiocyanate-dextran (TD) and cyanine Cy5-apo-GOx (CAG) complexes showed five to 10 times greater specificity for β-D-glucose over other sugars. Microcapsules loaded with TD/CAG complexes exhibited a linear, totally reversible response in the range of 0–720 mg/dL, with a sensitivity (percent change in intensity ratio) of 0.06%/(mg/dL). The decrease in sensitivity observed with the use of longer-wavelength dyes is most likely to be compensated with the deeper penetration of light and reduced tissue scattering. These findings imply that the encapsulation of sensing assay elements in microcapsules is a simple and translatable method for the fabrication of stable biosensors, and optimization of resonance energy transfer pairs and assay component preparation will further improve the response to approach clinically relevant performance. PMID:16800748

  7. Improving the Volume Dependence of Two-Body Binding Energies Calculated with Lattice QCD

    CERN Document Server

    Davoudi, Zohreh

    2011-01-01

    Volume modifications to the binding of two-body systems in large cubic volumes of extent L depend upon the total momentum and exponentially upon the ratio of L to the size of the boosted system. Recent work by Bour et al determined the momentum dependence of the leading volume modifications to nonrelativistic systems with periodic boundary conditions imposed on the single-particle wavefunctions, enabling them to numerically determine the scattering of such bound states using a low-energy effective field theory and Luschers finite-volume method. The calculation of bound nuclear systems directly from QCD using Lattice QCD has begun, and it is important to reduce the systematic uncertainty introduced into such calculations by the finite spatial extent of the gauge-field configurations. We extend the work of Bour et al from nonrelativistic quantum mechanics to quantum field theory by generalizing the work of Luscher and of Gottlieb and Rummukainen to boosted two-body bound states. The volume modifications to bind...

  8. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases.

    Science.gov (United States)

    Kim, J Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I; Falkowski, Paul G

    2013-07-19

    Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this 'composome' analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.

  9. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  10. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  11. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.

    Science.gov (United States)

    Reif, Maria M; Oostenbrink, Chris

    2014-01-30

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © The Authors Journal of Computational Chemistry

  12. Influence of Grid Spacing in Poisson-Boltzmann Equation Binding Energy Estimation.

    Science.gov (United States)

    Harris, Robert C; Boschitsch, Alexander H; Fenley, Marcia O

    2013-08-13

    Grid-based solvers of the Poisson-Boltzmann, PB, equation are routinely used to estimate electrostatic binding, ΔΔGel, and solvation, ΔGel, free energies. The accuracies of such estimates are subject to grid discretization errors from the finite difference approximation to the PB equation. Here, we show that the grid discretization errors in ΔΔGel are more significant than those in ΔGel, and can be divided into two parts: (i) errors associated with the relative positioning of the grid and (ii) systematic errors associated with grid spacing. The systematic error in particular is significant for methods, such as the molecular mechanics PB surface area, MM-PBSA, approach that predict electrostatic binding free energies by averaging over an ensemble of molecular conformations. Although averaging over multiple conformations can control for the error associated with grid placement, it will not eliminate the systematic error, which can only be controlled by reducing grid spacing. The present study indicates that the widely-used grid spacing of 0.5 Å produces unacceptable errors in ΔΔGel, even though its predictions of ΔGel are adequate for the cases considered here. Although both grid discretization errors generally increase with grid spacing, the relative sizes of these errors differ according to the solute-solvent dielectric boundary definition. The grid discretization errors are generally smaller on the Gaussian surface used in the present study than on either the solvent-excluded or van der Waals surfaces, which both contain more surface discontinuities (e.g., sharp edges and cusps). Additionally, all three molecular surfaces converge to very different estimates of ΔΔGel.

  13. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-π interactions for graphene-based receptors.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Marek, Radek

    2014-02-14

    Measuring the binding energy or scanning the potential energy surface (PES) of the charged molecular systems in the presence of an external electric field (EEF) requires a careful evaluation of the origin-dependency of the energy of the system and references. Scanning the PES for charged or purely ionic systems for obtaining the intrinsic energy barriers needs careful analysis of the electric work applied on ions by the EEF. The binding energy in the presence of an EEF is different from that in the absence of an electric field as the binding energy is an anisotropic characteristic which depends on the orientation of molecules with respect to the EEF. In this contribution we discuss various aspects of the PES and the concept of binding energy in the presence of an EEF. In addition, we demonstrate that the anion-π bonding properties can be modulated by applying a uniform EEF, which has a more pronounced effect on the larger, more polarizable π-systems. An analogous behavior is presumed for cation-π systems. We predict that understanding the phenomenon introduced in the present account has enormous potential, for example, for separating charged species on the surface of polarizable two-dimensional materials such as graphene or the surface of carbon nanotubes, in desalination of water.

  14. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.#

    OpenAIRE

    Bucci, Enrico

    2013-01-01

    Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free ...

  15. Evaluation of potential induced radioactivity in medical products as a function of electron energy in electron beam sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A., E-mail: msmith@sterigenics.com [Sterigenics International, 10811 Withers Cove Park Drive, Charlotte, NC 28211 (United States); Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, TX (United States)

    2012-01-15

    Commercial sterilization of medical devices may be performed using electron beam irradiators at various electron energies. The potential for activating components of the devices has been discussed, with current standards stating that electron energy greater than 10 MeV requires assessment of potential induced radioactivity. This paper evaluates the potential for induced activity in medical products sterilized in electron beam as a function of the electron maximum energy. Monte Carlo simulation of a surrogate medical device was used to calculate photon and neutron fields resulting from electron irradiation, which were used to calculate concentrations for several radionuclides. The experiments confirmed that 10 MeV is a conservative assumption for limiting induced radioactivity. However, under the conditions as evaluated, which is a limited total quantity of metal in the material being irradiated and absent a limited number of elements; the amount of induced activity at 12 MeV could also be considered insignificant. The comparison of the sum-of-fractions to the US Nuclear Regulatory Commission exempt concentration limits is less than unity for all energies below 12.1 MeV, which suggests that there is minimal probability of significant induced activity at energies above the 10 MeV upper energy limit. - Highlights: > This study estimates induced radioactivity for electron irradiation as a function of energy. > MCNPX was used to model systems from 8 MeV up to 13 MeV. > Under conditions given, energies up to 12 MeV may create insignificant activation. > Measured concentrations were within a factor of two of those calculated. > Depth dose profiles show good agreement with the model.

  16. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework.

    Science.gov (United States)

    Giovannelli, Edoardo; Procacci, Piero; Cardini, Gianni; Pagliai, Marco; Volkov, Victor; Chelli, Riccardo

    2017-12-12

    The fast-switching decoupling method is a powerful nonequilibrium technique to compute absolute binding free energies of ligand-receptor complexes (Sandberg et al., J. Chem. Theory Comput. 2014, 11, 423-435). Inspired by the theory of noncovalent binding association of Gilson and co-workers (Biophys. J. 1997, 72, 1047-1069), we develop two approaches, termed binded-domain and single-point alchemical-path schemes (BiD-AP and SiP-AP), based on the possibility of performing alchemical trajectories during which the ligand is constrained to fixed positions relative to the receptor. The BiD-AP scheme exploits a recent generalization of nonequilibrium work theorems to estimate the free energy difference between the coupled and uncoupled states of the ligand-receptor complex. With respect to the fast-switching decoupling method without constraints, BiD-AP prevents the ligand from leaving the binding site, but still requires an estimate of the positional binding-site volume, which may not be a simple task. On the other side, the SiP-AP scheme allows avoidance of the calculation of the binding-site volume by introducing an additional equilibrium simulation of ligand and receptor in the bound state. In the companion article (DOI: 10.1021/acs.jctc.7b00595), we show that the extra computational effort required by SiP-AP leads to a significant improvement of accuracy in the free energy estimates.

  17. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  18. Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons

    CERN Document Server

    Klein, R; Thornagel, R; Brandt, G; Görgen, R; Ulm, G

    2002-01-01

    Accurate knowledge of all storage ring parameters is essential for the Physikalisch-Technische Bundesanstalt (PTB) to operate the electron storage ring BESSY II as a primary source standard. One parameter entering the Schwinger equation for the calculation of the spectral photon flux of bending magnet radiation is the electron beam energy. So at BESSY II the electron beam energy is measured by two independent techniques one of which is described in this paper: the photons from a CO sub 2 -laser are scattered in a head-on collision with the stored electrons. From the spectrum of the backscattered photons that are detected by an energy-calibrated HPGe detector the electron beam energy can be determined. The experimental set-up at the BESSY II electron storage ring as well as the current experimental status are described for operation of the storage ring at the energies of 900 and 1700 MeV.

  19. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  20. Differential cross sections for the electron impact ionization of Ar (3 p) atoms for equal energy final state electrons

    Science.gov (United States)

    Purohit, Ghanshyam; Singh, Prithvi

    2017-06-01

    The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.

  1. Low energy electron generator design and depth dose prediction for micro-superficies tumors treatment purposes

    Science.gov (United States)

    Khorshidi, Abdollah; Rajaee, Azimeh; Ahmadinejad, Marjan; Ghoranneviss, Mahmood; Ettelaee, Mehdi

    2014-09-01

    We investigate deposited energy and linear energy transfer (LET) of low energy ejection electrons in air and water layers of a generator design via a plasma source. A structured model of a concave cold cathode electron generator was designed and simulated by using Monte Carlo n-particle version X 2.7.0 (MCNPX) code. A negative dc high voltage was applied to a concave cathode up to -12 kV to determine electron energy activity. Results determined that the geometric dimensions of field size toward the anode increased in relation to the angle of the conic beam, widening the accumulated bulks. The increased field size increased the anode current, which also resulted in an increase of electron energy, a reduction in LET, a stretched build-up area and a dose curve that shifted to a higher depth. The biological effect of low energy electron radiation can be increased with an increase of LET; as the depth dose decreased, the electron energy increased at the same time. The study of electron irradiation as a conic beam from an electron generator may provide an accurate investigation of the indirect effect of low energy electrons on bystander cells.

  2. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  3. Elucidating energy and electron transfer dynamics within molecular assemblies for solar energy conversion

    Science.gov (United States)

    Morseth, Zachary Aaron

    The use of sunlight to make chemical fuels (i.e. solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on timescales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span nine orders of magnitude to follow the excited-state evolution within single-site and polymer-based molecular assemblies. We complement experimental observations with electronic structure calculations, molecular dynamics simulations, and kinetic modeling to develop a microscopic view of these dynamics. This thesis provides an overview of work on single-site molecular assemblies and polymers decorated with pendant chromophores, both in solution and on surfaces. This work was made possible through extensive collaboration with Dr. Kirk Schanze's and Dr. John Reynolds' research groups who

  4. High energy gain of trapped electrons in a tapered, diffraction-dominated inverse-free-electron laser.

    Science.gov (United States)

    Musumeci, P; Tochitsky, S Ya; Boucher, S; Clayton, C E; Doyuran, A; England, R J; Joshi, C; Pellegrini, C; Ralph, J E; Rosenzweig, J B; Sung, C; Tolmachev, S; Travish, G; Varfolomeev, A A; Varfolomeev, A A; Yarovoi, T; Yoder, R B

    2005-04-22

    Energy gain of trapped electrons in excess of 20 MeV has been demonstrated in an inverse-free-electron-laser (IFEL) accelerator experiment. A 14.5 MeV electron beam is copropagated with a 400 GW CO2 laser beam in a 50 cm long undulator strongly tapered in period and field amplitude. The Rayleigh range of the laser, approximately 1.8 cm, is much shorter than the undulator length yielding a diffraction-dominated interaction. Experimental results on the dependence of the acceleration on injection energy, laser focus position, and laser power are discussed. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.

  5. High Energy Gain of Trapped Electrons in a Tapered, Diffraction-Dominated Inverse-Free-Electron Laser

    Science.gov (United States)

    Musumeci, P.; Tochitsky, S. Ya.; Boucher, S.; Clayton, C. E.; Doyuran, A.; England, R. J.; Joshi, C.; Pellegrini, C.; Ralph, J. E.; Rosenzweig, J. B.; Sung, C.; Tolmachev, S.; Travish, G.; Varfolomeev, A. A.; Varfolomeev, A. A.; Yarovoi, T.; Yoder, R. B.

    2005-04-01

    Energy gain of trapped electrons in excess of 20 MeV has been demonstrated in an inverse-free-electron-laser (IFEL) accelerator experiment. A 14.5 MeV electron beam is copropagated with a 400 GW CO2 laser beam in a 50 cm long undulator strongly tapered in period and field amplitude. The Rayleigh range of the laser, ˜1.8 cm, is much shorter than the undulator length yielding a diffraction-dominated interaction. Experimental results on the dependence of the acceleration on injection energy, laser focus position, and laser power are discussed. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.

  6. Technical Training: ELEC-2005 - Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    Learning for the LHC! ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms that will run throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays an...

  7. Energetics of protein fluctuations: Ligand binding to myoglobin and electron transfer in reaction center

    Science.gov (United States)

    McMahon, Benjamin Hamilton

    We have measured the temperature dependent kinetics of two different protein reactions: Psp+Qsbsp{A}{-}-> PQsb{A} electron transfer (ET) in the photosynthetic reaction (RC), and recombination of carbonmonoxide (CO) to myoglobin (Mb) after flash photolysis. The ET reaction allows determination of the temperature dependence of energy dissipation as RC adapts to charge transfer on the 100 ms, 10sp3 and 10sp4 s time scales at temperatures from 5 to 300 K. The adaptation, or conformational relaxation, of RC is observed in four distinct tiers of conformational substrates, with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and pre-exponential factors of 10sp{13},\\ 10sp{15},\\ 10sp{21}, and 10sp{25}\\ ssp{-1}, respectively. This parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms; at lower temperatures the distribution of relaxation times broaden. We extend this study to samples of different pH, viscosity, and salt composition. We observe kinetics of CO recombination to horse heart myoglobin between 10 ns and 100 s at temperatures from 80 to 320 K. Essentially all recombination is visible in this time window, allowing the effect of relaxations to be observed on the nanosecond time scale at high temperatures, as well as microsecond to second time scales at lower temperatures. Variation of the solvent pH from 5.1 to 8.0 changes the average low temperature enthalpy barrier to recombination from 6 to 13 kJ/mol, shifting the time scale probed by the recombination reaction by an order of magnitude. Addition of 500 mM KCl, KSCN, or (NHsb4)sb2SOsb4 significantly changes the probability of geminate recombination without affecting either the enthalpy barrier to recombination or the energetics of CO entry to and exit from the heme pocket of the protein. We present a model of recombination which emphasizes the role of protein fluctuations in

  8. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    Science.gov (United States)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  9. A detailed binding free energy study of 2:1 ligand-DNA complex formation by experiment and simulation.

    Science.gov (United States)

    Treesuwan, Witcha; Wittayanarakul, Kitiyaporn; Anthony, Nahoum G; Huchet, Guillaume; Alniss, Hasan; Hannongbua, Supa; Khalaf, Abedawn I; Suckling, Colin J; Parkinson, John A; Mackay, Simon P

    2009-12-07

    In 2004, we used NMR to solve the structure of the minor groove binder thiazotropsin A bound in a 2:1 complex to the DNA duplex, d(CGACTAGTCG)2. In this current work, we have combined theory and experiment to confirm the binding thermodynamics of this system. Molecular dynamics simulations that use polarizable or non-polarizable force fields with single and separate trajectory approaches have been used to explore complexation at the molecular level. We have shown that the binding process invokes large conformational changes in both the receptor and ligand, which is reflected by large adaptation energies. This is compensated for by the net binding free energy, which is enthalpy driven and entropically opposed. Such a conformational change upon binding directly impacts on how the process must be simulated in order to yield accurate results. Our MM-PBSA binding calculations from snapshots obtained from MD simulations of the polarizable force field using separate trajectories yield an absolute binding free energy (-15.4 kcal mol(-1)) very close to that determined by isothermal titration calorimetry (-10.2 kcal mol(-1)). Analysis of the major energy components reveals that favorable non-bonded van der Waals and electrostatic interactions contribute predominantly to the enthalpy term, whilst the unfavorable entropy appears to be driven by stabilization of the complex and the associated loss of conformational freedom. Our results have led to a deeper understanding of the nature of side-by-side minor groove ligand binding, which has significant implications for structure-based ligand development.

  10. Energy dispersive X-ray analysis in the electron microscope

    CERN Document Server

    Bell, DC

    2003-01-01

    This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical me

  11. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, Daniël, E-mail: geelen@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Thete, Aniket [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Schaff, Oliver; Kaiser, Alexander [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany); Molen, Sense Jan van der [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Tromp, Rudolf [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2015-12-15

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0–40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. - Highlights: • We present a new way of performing low energy transmission electron microscopy in an aberration corrected LEEM/PEEM instrument. • We show a proof of principle where we measure transmitted electrons through a suspended graphene monolayer with a preliminary setup. • We present an improved setup design that provides better control of the incident electron beam.

  12. The electron energy distribution during HF pumping, a picture painted with all colors

    Directory of Open Access Journals (Sweden)

    B. Gustavsson

    2005-07-01

    Full Text Available The shape of the electron energy distribution has long been a central question in the field of high-frequency radio-induced optical emission experiments. This report presents estimates of the electron energy distribution function, fe(E, from 0 to 60 eV, based on optical multi-wavelength (6300, 5577, 8446, 4278Å data and 930-MHz incoherent scatter radar measurements of ion temperature, electron temperature and electron concentration. According to our estimate, the electron energy distribution has a depression at around 2 eV, probably caused by electron excitation of vibrational states in N2, and a high energy tail that is clearly supra-thermal. The temporal evolution of the emissions indicates that the electron temperature still plays an important role in providing electrons with energies close to 2 eV. At the higher energies the electron energy distribution has a non-thermal tail.

    Keywords. Active experiments; Ionosphere atmosphere interaction; Ionospheric physics

  13. The electron energy distribution during HF pumping, a picture painted with all colors

    Directory of Open Access Journals (Sweden)

    B. Gustavsson

    2005-07-01

    Full Text Available The shape of the electron energy distribution has long been a central question in the field of high-frequency radio-induced optical emission experiments. This report presents estimates of the electron energy distribution function, fe(E, from 0 to 60 eV, based on optical multi-wavelength (6300, 5577, 8446, 4278Å data and 930-MHz incoherent scatter radar measurements of ion temperature, electron temperature and electron concentration. According to our estimate, the electron energy distribution has a depression at around 2 eV, probably caused by electron excitation of vibrational states in N2, and a high energy tail that is clearly supra-thermal. The temporal evolution of the emissions indicates that the electron temperature still plays an important role in providing electrons with energies close to 2 eV. At the higher energies the electron energy distribution has a non-thermal tail. Keywords. Active experiments; Ionosphere atmosphere interaction; Ionospheric physics

  14. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  15. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.

    Science.gov (United States)

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T; Nelayah, Jaysen; Srot, Vesna; van Aken, Peter A

    2009-08-01

    The advent of electron monochromators has opened new perspectives on electron energy-loss spectroscopy at low energy losses, including phenomena such as surface plasmon resonances or electron transitions from the valence to the conduction band. In this paper, we report first results making use of the combination of an energy filter and a post-filter annular dark-field detector. This instrumental design allows us to obtain energy-filtered (i.e. inelastic) annular dark-field images in scanning transmission electron microscopy of the 2-dimensional semiconductor band-gap distribution of a GaN/Al(45)Ga(55)N structure and of surface plasmon resonances of silver nanoprisms. In comparison to other approaches, the technique is less prone to inelastic delocalization and relativistic artefacts. The mixed contribution of elastic and inelastic contrast is discussed.

  16. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.

    Science.gov (United States)

    Tan, Zhenyu; Liu, Wei

    2014-05-01

    The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

  17. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    Science.gov (United States)

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  18. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis

    DEFF Research Database (Denmark)

    Nielsen, C T; Østergaard, O; Rekvig, O P

    2015-01-01

    OBJECTIVE: A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls......, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. METHODS: Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow...... cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined...

  19. Spectrum and angular distribution of low energy electrons from 152Eu deca

    Directory of Open Access Journals (Sweden)

    L. P. Sydorenko

    2015-04-01

    Full Text Available Angular distribution of low energy electrons from 152Eu decay was measured. Measurements were carried out in cylindrical geometry, which permits minimum distortions of data. These data confirm existence of angular distribution dependence on the energy of emitted electrons but this dependence somewhat differs from theory predicted. It is noted that the theory predicts too low intensity of near-zero energy electrons e0 (Ee ~ 1 - 2 eV emission; also, the static screening of charge used in theory should not influence the emission of e0-electrons.

  20. Solar energy absorption in norbornadiene-quadricyclane system through electron donating or withdrawing substituents1

    Science.gov (United States)

    Edjlali, L.; Vessally, E.; Abbasian, M.

    2011-05-01

    An attempt is made to maximize the solar energy absorption in norbornadiene ( 1)-quadricyclane ( 2) system, through direct attachment of substituents at C1, C2, or C7 atoms of 1; calculating the corresponding energies at B3LYP/6-311++G** level of theory. The electron donating and electron withdrawing substituents of 1 n-X, attached at C2, were suitable for both solar absorption bands and solar energy storage. DFT calculations indicate that the solar absorption bands of 12-X were shifted to the visible spectrum region through the electron withdrawing substituents more than through electron donating substituents.