WorldWideScience

Sample records for electron beam melted

  1. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  2. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  3. Melting and purification methods in electron beam furnaces. Pt. 1

    International Nuclear Information System (INIS)

    Stephan, H.

    1975-01-01

    After a general review on the market of electron beam furnaces, the melting methods and their variations are discussed in detail. The purification effects shown in a table allow a view on the main application. The losses of volatile alloy elements and the chances of compensation are specially discussed. (orig.) [de

  4. Experimental study of intensive electron beam scattering in melting channel

    International Nuclear Information System (INIS)

    Balagura, V.S.; Kurilko, V.I.; Safronov, B.G.

    1988-01-01

    Multiple scattering of an intensive electron beam at 28 keV energy passing through a melting channel in iron targets is experimentally studied. The dependence of scattering on the melting current value is established. The material density in the channel on the basis of the binary collision method is evaluated. It is shown that these density values are of three orders less than the estimations made on the basis of the data on energy losses of electrons in the channel. 6 refs.; 4 figs

  5. Investigation of Tantalum Recycling by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Katia Vutova

    2016-11-01

    Full Text Available Investigations are carried out and obtained experimental and theoretical data for tantalum scrap recycling by electron beam melting (EBM is presented in this paper. Different thermal treatment process conditions are realized and results are discussed. A chemical analysis is performed and refining mechanisms for electron beam (EB refining of Ta are discussed. For the performed experiments the best purification of Ta (99.96 is obtained at 21.6 kW beam power for a melting time of 3 min. A statistical approach is applied for estimation of the material losses and the liquid pool characteristics based on experimentally-obtained data. The aim is to improve the EBM and choosing optimal process conditions, depending on the concrete characteristic requirements. Model-based quality optimization of electron beam melting and refining (EBMR processes of Ta is considered related to the optimization of the molten pool parameters, connected to the occurring refining processes, and to minimal material losses. Optimization of the process of EBM of Ta is based on overall criteria, giving compromised solutions, depending on the requirements concerning the quality of the performed products. The accumulated data, the obtained results, and the optimization statistical approach allow us to formulate requirements on the process parameters.

  6. Optimization method for electron beam melting and refining of metals

    Science.gov (United States)

    Donchev, Veliko; Vutova, Katia

    2014-03-01

    Pure metals and special alloys obtained by electron beam melting and refining (EBMR) in vacuum, using electron beams as a heating source, have a lot of applications in nuclear and airspace industries, electronics, medicine, etc. An analytical optimization problem for the EBMR process based on mathematical heat model is proposed. The used criterion is integral functional minimization of a partial derivative of the temperature in the metal sample. The investigated technological parameters are the electron beam power, beam radius, the metal casting velocity, etc. The optimization problem is discretized using a non-stationary heat model and corresponding adapted Pismen-Rekford numerical scheme, developed by us and multidimensional trapezional rule. Thus a discrete optimization problem is built where the criterion is a function of technological process parameters. The discrete optimization problem is heuristically solved by cluster optimization method. Corresponding software for the optimization task is developed. The proposed optimization scheme can be applied for quality improvement of the pure metals (Ta, Ti, Cu, etc.) produced by the modern and ecological-friendly EBMR process.

  7. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  8. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  9. Selective Electron Beam Melting Manufacturing of Electrically Small Antennas

    Directory of Open Access Journals (Sweden)

    Saad Mufti

    2017-11-01

    Full Text Available Real estate pressures in modern electronics have resulted in the need for electrically small antennas, which have subsequently garnered interest amongst researchers and industry alike. These antennas are characterized by their largest dimensions translating to a fraction of the operating wavelength; such a diminutive size comes at the expense of reduced gain and efficiency, and a worse overall match to a corresponding power source. In order to compensate for this deterioration in performance, antenna designers must turn towards increasingly complex and voluminous geometries, well beyond the capabilities of traditional manufacturing techniques. We present voluminous metal antennas, based on a novel inverted-F design, and fabricated using the emergent selective electron beam melting manufacturing technique, a type of powder bed fusion process. As predicted by small antenna theory, simulation results presented show in increase in the antenna’s efficiency as it is voluminously expanded into the third dimension. Measurement results illustrate that key trends observed from simulations are upheld; however, further understanding of the electromagnetic properties of raw materials, in particular how these change during the printing process, is needed. Nevertheless, this type of additive manufacturing technique is suitable for rapid prototyping of novel and complex antenna geometries, and is a promising avenue for further research and maturation.

  10. Structural Integrity of an Electron Beam Melted Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Robert Lancaster

    2016-06-01

    Full Text Available Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM, a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.

  11. Observation of melt surface depressions during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    Depths of depressed surface of liquid gadolinium, cerium and copper during electron beam evaporation were measured by triangulation method using a CCD camera. The depression depths estimated from the balance of the vapor pressure and the hydrostatic pressure at the evaporation surface agreed with the measured values. The periodic fluctuation of atomic beam was observed when the depression of 3∼4 mm in depth was formed at the evaporation spot. (author)

  12. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Gulzar, A. [Materials Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ali, G. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Mahmood, M. [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Ajmal, M. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore (Pakistan)

    2009-07-30

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe{sub 3}C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  13. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  14. Characterisation of 100 kW electron beam melting gun and its adaptation as electron gun for high power DC electron accelerators

    International Nuclear Information System (INIS)

    Banerjee, Srutarshi; Bhattacharjee, Dhruva; Waghmare, Abhay; Tiwari, Rajnish; Bakhtsingh, R.I.; Dasgupta, K.; Gupta, Sachin; Prakash, Baibhaw; Jha, M.N.

    2015-01-01

    The paper deals with the characterization of the 100 kW electron beam melting gun for its adaptation in high power DC Electron Accelerators. The indigenously designed electron beam melting system at BARC is chosen for characterization. It comprises of electron gun as source of electrons, two electromagnetic focusing lenses viz. upper focusing lens and lower focusing lens for beam focusing, intermediate beam aperture for vacuum decoupling between gun region and melt zone, deflection and oscillation lens for maneuvering the beam on the melt charge and water cooled crucible that acts as a beam dump. In this system, the electron gun is designed for 40 kV and 100 kW corresponding to a maximum beam current of 2.5 A. The electron gun uses directly heated spiral tungsten filament. The operating temperature of the filament is 2800 °K. The focusing electrode and the anode profile are designed based on Pierce geometry. High Power DC Electron Accelerators require high currents of 1 A. The beam must comply with the requirement of 40 mm beam diameter and 10 mrad divergence at the exit of the electron gun. The characterization of the existing electron gun was done to find out all the beam parameters, for e.g. beam size, beam divergence, perveance etc. to be adapted or to be modified for the design of electron gun for high power DC accelerators. This paper shows limitations and the possible solutions for design of high power DC accelerators. (author)

  15. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  16. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack; Rollett, Anthony D.

    2018-01-01

    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths is a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.

  17. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.

    Science.gov (United States)

    Smith, C J; Tammas-Williams, S; Hernandez-Nava, E; Todd, I

    2017-09-05

    Metallic powder bed additive manufacturing is capable of producing complex, functional parts by repeatedly depositing thin layers of powder particles atop of each other whilst selectively melting the corresponding part cross-section into each layer. A weakness with this approach arises when melting overhanging features, which have no prior melted material directly beneath them. This is due to the lower thermal conductivity of the powder relative to solid material, which as a result leads to an accumulation of heat and thus distortion. The Electron Beam Melting (EBM) process alleviates this to some extent as the powder must first be sintered (by the beam itself) before it is melted, which results in the added benefit of increasing the thermal conductivity. This study thus sought to investigate to what extent the thermal conductivity of local regions in a titanium Ti-6Al-4V powder bed could be varied by imparting more energy from the beam. Thermal diffusivity and density measurements were taken of the resulting sintered samples, which ranged from being loosely to very well consolidated. It was found that the calculated thermal conductivity at two temperatures, 40 and 730 °C, was more than doubled over the range of input energies explored.

  18. Thermal characterization of indirectly heated axi-symmetric solid cathode electron beam gun for melting application

    International Nuclear Information System (INIS)

    Prakash, B.; Gupta, S.; Malik, P.; Mishra, K.K.; Jha, M.N.; Kandaswamy, E.; Martin, M.

    2015-01-01

    Electron beam melting gun with indirectly heated axi-symmetric solid cathode was designed, fabricated and characterized experimentally. The thermal simulation and optical analysis of the electron gun was carried out to estimate the power required to achieve the emission temperature of the solid cathode, to obtain the temperature distribution in the assembly and the beam transportation. On the basis of the thermal simulation and electron optics, the electron gun design was finalised. The electron gun assembly was fabricated and installed in the vacuum chamber for carrying out the experiment to find the actual temperature distribution. Thermocouple and two colour pyrometer were used to measure the temperature at various locations in the electron gun. The attenuation effect of the viewing port glass of the vacuum chamber was compensated in the final reading of the temperature measured by the pyrometer. The temperature of solid cathode obtained by the experiment was found to be 2800K which is the emission temperature of solid cathode. (author)

  19. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    International Nuclear Information System (INIS)

    Powell, A.; Szekely, J.; Van Den Avyle, J.; Damkroger, B.

    1995-01-01

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia's 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10 -3 , 10 -4 and 10 -5 torr)

  20. The judgment of the All-melted-moment during using electron beam melting equipment to purify silicon

    Science.gov (United States)

    Han, Xiaojie; Meng, Jianxiong; Wang, Shuaiye; Jiang, Tonghao; Wang, Feng; Tan, Yi; Jiang, Dachuan

    2017-06-01

    Experiment has proved that the rate of impurity removal depends on the pressure and the temperature of the vacuum chamber during using electron beam to smelt silicon, and the amount of removed-impurity depends on time when other conditions are the same. In the actual production process, smelting time is a decisive factor of impurity removal amount while pressure and temperature of the vacuum chamber is certain due to a certain melting power. To avoiding the influence of human control and improving the quality of production, thinking of using cooling water temperature to estimate the state of material during metal smelting is considered. We try to use the change of cooling water temperature to judge that when silicon is all melted and to evaluate the effectiveness of this method.

  1. A contribution to the electron-beam surface-melting process of metallic materials. Numerical simulation and experimental verification

    International Nuclear Information System (INIS)

    Bruckner, A.

    1996-08-01

    For the optimization of the surface melting process it is necessary to make many different experiments. Therefore, the simulation of the surface melting process becomes a major role for the optimization. Most of the simulations, developed for the laser surface melting process, are not usable for the electron-beam surface melting process, because of the different energy input and the possibility of high frequent movement of the electron-beam. In this thesis, a calculation model for electron-beam surface melting is presented. For this numerical simulation a variable volume source is used, which moves in axial direction with the same velocity as the vapor cavity into the material. With this calculation model also the high frequent movement of the electron-beam may be taken into account. The electron-beam diameter is measured with a method of drilling holes with short electron-beam pulses in thin foils. The diameter of the holes depends on the pulse length and reaches a maximal value, which is used for the diameter of the volume source in the calculation. The crack-formation, seen in many treated surfaces, is examined with the Acoustic-Emission Testing. The possibilities of the electron-beam surface melting process are shown with some experiments for different requirements of the treated surfaces, like increasing the hardness, reducing the porosity of a sintered material and the alloying of tin in an aluminium-silicon surface. (author)

  2. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    International Nuclear Information System (INIS)

    Zhong, Yuan; Rännar, Lars-Erik; Wikman, Stefan; Koptyug, Andrey; Liu, Leifeng; Cui, Daqing; Shen, Zhijian

    2017-01-01

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  3. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuan [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Rännar, Lars-Erik [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Wikman, Stefan [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Koptyug, Andrey [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Liu, Leifeng; Cui, Daqing [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden)

    2017-03-15

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  4. Kinetics of Evaporation of Alloying Elements under Vacuum: Application to Ti alloys in Electron Beam Melting

    Science.gov (United States)

    Choi, Wonjin; Jourdan, Julien; Matveichev, Alexey; Jardy, Alain; Bellot, Jean-Pierre

    2017-09-01

    Vacuum metallurgical processes such as the electron beam melting are highly conducive to volatilization. In titanium processing, it concerns the alloying elements which show a high vapor pressure with respect to titanium matrix, such as Al. Two different experimental approaches using a laboratory electron beam furnace have been developed for the estimation of volatilization rate and activity coefficient of Al in Ti64. The first innovative method is based on the deposition rate of Al on Si wafers located at different angles θ above the liquid bath. We found that a deposition according to a cos2(π/2-θ) law describes well the experimental distribution of the weight of the deposition layer. The second approach relies on the depletion of aluminum in the liquid pool at two separate times of the volatilization process. Both approaches provide values of the Al activity coefficient at T=1, 860 °C in a fairly narrow range [0.044-0.0495], in good agreement with the range reported in the literature. Furthermore numerical simulation of the Al behavior in the liquid pool reveals (in the specific case of electron beam button melting) a weak transport resistance in the surface boundary layer.

  5. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev

    2013-10-01

    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  6. Environmentally clean micromilling of electron beam melted Ti6Al4V

    DEFF Research Database (Denmark)

    Bruschi, S.; Tristo, G.; Rysava, Z.

    2016-01-01

    The paper is aimed at evaluating the performances of Minimum Quantity Lubrication (MQL), dry cutting and cryogenic cooling when applied to the micro-milling of Ti6Al4V titanium alloy samples obtained by Additive Manufacturing (AM) using the Electron Beam Melting (EBM) technology. The micro...... alterations, in order to prove the impact of clean cutting conditions when applied to micro-machining of a AM titanium alloy of biomedical interest. It is shown that dry cutting assures the same performances of MQL, representing then the most suitable option to decrease the environmental impact...

  7. Influence of electron beam Irradiation on PP/Piassava fiber composite prepared by melt extrusion process

    International Nuclear Information System (INIS)

    Gomes, Michelle G.; Ferreira, Maiara S.; Oliveira, Rene R.; Silva, Valquiria A.; Teixeira, Jaciele G.; Moura, Esperidiana A.B.

    2013-01-01

    In the latest years, the interest for the use of natural fibers in materials composites polymeric has increased significantly due to their environmental and technological advantages. Piassava fibers (Attalea funifera) have been used as reinforcement in the matrix of thermoplastic and thermoset polymers. In the present work (20%, in mass), piassava fibers with particle sizes equal or smaller than 250 μm were incorporated in the polypropylene matrix (PP) no irradiated and polypropylene matrix containing 10 % and 30 % of polypropylene treated by electron-beam radiation at 40 kGy (PP/PPi/Piassava). The composites PP/Piassava and PP/PPi/Piassava were prepared by using a twin screw extruder, followed by injection molding. The composite material samples obtained were treated by electron-beam radiation at 40 kGy, using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air. After irradiation treatment, the irradiated and non-irradiated specimens tests samples were submitted to thermo-mechanical tests, melt flow index (MFI), sol-gel analysis, X-Ray diffraction (XRD) and scanning electron microscopy (SEM). (author)

  8. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  9. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  10. X-ray Tomography Characterisation of Lattice Structures Processed by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Everth Hernández-Nava

    2017-08-01

    Full Text Available Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM, is assessed from X-ray computed tomography (CT scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 × 10−3 vol % levels of pores, as do nodes at which many (in our case 24 struts meet. On the other hand, for struts more closely aligned (0° to 54° to the build direction, the fraction of porosity appears to be much lower (~0.17 × 10−3% arising mainly from pores contained within the original atomised powder particles.

  11. Low carbon content NiTi shape memory alloy produced by electron beam melting

    Directory of Open Access Journals (Sweden)

    Otubo Jorge

    2004-01-01

    Full Text Available Earlier works showed that the use of electron beam melting is a viable process to produce NiTi shape memory alloy. In those works a static and a semi-dynamic processes were used producing small shell-shaped and cylindrical ingots respectively. The main characteristics of those samples were low carbon concentration and good composition homogeneity throughout the samples. This paper presents the results of scaling up the ingot size and processing procedure using continuous charge feeding and continuous casting. The composition homogeneity was very good demonstrated by small variation in martensitic transformation temperatures with carbon content around 0.013wt% compared to 0.04 to 0.06wt% of commercial products.

  12. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  13. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant

    Directory of Open Access Journals (Sweden)

    Ravikumar Ramakrishnaiah

    2017-05-01

    Full Text Available The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.

  14. [Comparison of adaptation and microstructure of titanium upper complete denture base fabricated by selecting laser melting and electron beam melting].

    Science.gov (United States)

    Ye, Y; Xiong, Y Y; Zhu, J R; Sun, J

    2017-06-09

    Objective: To fabricate Ti alloy frameworks for a maxillary complete denture with three-dimensional printing (3DP) technique, such as selective laser melting (SLM) and electron beam melting (EBM), and to evaluate the microstructure of these frameworks and their adaptation to the die stone models. Methods: Thirty pairs of edentulous casts were divided into 3 groups randomly and equally. In each group, one of the three techniques (SLM, EBM, conventional technique) was used to fabricate Ti alloy frameworks. The base-cast sets were transversally sectioned into 3 sections at the distal of canines, mesial of first molars, and the posterior palatal zone. The gap between the metal base and cast was measured in the 3 sections. Stereoscopic microscope was used to measure the gap. Three pieces of specimens of 5 mm diameter were fabricated with Ti alloy by SLM, EBM and the traditional casting technology (as mentioned above). Scanning electron microscope (SEM) was used to evaluate the differences of microstructure among these specimens. Results: The gaps between the metal base and cast were (99.4±17.0), (98.2±26.1), and (99.6± 16.1) μm in conventional method; (99.4 ± 22.8), (83.1 ± 19.3), and (103.3 ± 13.8) μm in SLM technique; (248.3±70.3), (279.1±71.9), and (189.1±31.6) μm in EBM technique. There was no statistical difference in the value of gaps between SLM Ti alloy and conventional method Ti alloy group ( P> 0.05). There was statistical difference among EBM Ti alloy, conventional method Ti alloy and SLM Ti alloy group ( Palloy showed more uniform and compact microstructure than the cast Ti alloy and EBM Ti alloy did. Conclusions: SLM technique showed initial feasibility to manufacture the dental base of complete denture. The mechanical properties and microstructure of the denture frameworks prepared by SLM indicate that these dentures are appropriate for clinical use. EBM technique is inadequate to make a complete denture now.

  15. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications

    Science.gov (United States)

    Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian

    2017-04-01

    A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.

  16. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be

  17. Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; Cooper, Ryan C.; An, Ke; Choo, Hahn; Wu, Wei; Dehoff, Ryan R.; Babu, Sudarsanam S.

    2016-01-01

    Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. Two different build strategies were employed; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planes was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.

  18. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  19. High-Purity Nickel Prepared by Electron Beam Melting: Purification Mechanism

    Science.gov (United States)

    Zhang, Tao; Shang, Zaiyan; Chen, Ming; He, Jinjiang; Lv, Baoguo; Wang, Xingquan; Xiong, Xiaodong

    2013-12-01

    A bulk cylindrical high-purity nickel ingot, with purity of more than 99.999 pct (5N) in mass, was obtained from the raw nickel with 99.95 pct (3N5) initial purity by virtue of double electron beam melting (EBM). A chemical analysis was performed by using glow discharge mass spectrometry (GDMS) analysis for all elements in the periodic table except carbon, nitrogen, and oxygen, which were tested by the high-performance combustion and fusion method. The major impurities B, Na, Al, Si, P, S, Ca, Ti, Cr, Fe, Cu, Co, Zn, As, Ag, Sb, and Pb showed an excellent removal effect with removal efficiency of more than 85 pct following the double EBMs. Li, Mg, Cl, K, V, Mn, Ga, Ge, Cd, Se, In, Sn, Tl, Au, and Pt were below the detection limit. No significant change in concentration was found for the refractory elements W, Mo, Ta, Nb, and Ir. Be, F, Sc, Se, Br, Rb, Sr, Zr, Y, Ru, Rh, Pd, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Re, Os, Hg, Bi, Th, and U were not detectable following the purification as compared to the raw nickel. Gaseous impurities, C, N, O, especially for N, was removed sufficiently. Theoretical calculations for removal efficiency of impurity Fe based on the calculated vapor pressure, activity coefficient, and melt temperature were in good agreement with measured results, and the purification mechanism was ascribed to the evaporation of major impurities and subsequently evacuation by repetitive EBM.

  20. Materials Characterization of Electron Beam Melted Ti-6Al-4V

    Science.gov (United States)

    Draper, Susan L.; Lerch, Bradley A.; Telesman, Jack; Martin, Richard E.; Locci, Ivan E.; Garg, Anita; Ring, Andrew J.

    2016-01-01

    An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed on samples fabricated on an ARCAM A2X EBM machine. The specimens were fabricated under eight separate builds with the material divided into two lots for material testing purposes. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Several nondestructive evaluation (NDE) techniques were utilized to characterize the samples both before and after HIP. The test matrix included tensile, high cycle fatigue, low cycle fatigue, fracture toughness, and fatigue crack growth at cryogenic, room, and elevated temperatures. The mechanical properties of the EBM Ti-6Al-4V are compared to conventional Ti-6Al-4V in the annealed condition. Fractography was performed to determine failure initiation site. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.

  1. Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report.

    Science.gov (United States)

    Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders

    2016-08-01

    In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  3. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    International Nuclear Information System (INIS)

    Tammas-Williams, S.; Zhao, H.; Léonard, F.; Derguti, F.; Todd, I.; Prangnell, P.B.

    2015-01-01

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population

  4. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    Science.gov (United States)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns

    Science.gov (United States)

    Ge, Wenjun; Han, Sangwoo; Fang, Yuchao; Cheon, Jason; Na, Suck Joo

    2017-10-01

    In this study, a 3D numerical model was proposed that uses the computational fluid dynamics (CFD) method to investigate molten pool formation in electron beam melting under different process parameters. Electron beam ray tracking was used to determine energy deposition in the powder bed model. The melt tracks obtained in this study can be divided into three categories: a balling pattern, distortion pattern and straight pattern. The 3D mesoscale model revealed that it is possible to obtain different molten pool temperature distributions, flow patterns and top surface morphologies using different process parameters. Detailed analysis was performed on the formation mechanism of both the balling defect and distortion pattern. The simulation results of the top surface morphology were also compared with experimental results and showed good agreement.

  6. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering

    Science.gov (United States)

    Sochalski-Kolbus, L. M.; Payzant, E. A.; Cornwell, P. A.; Watkins, T. R.; Babu, S. S.; Dehoff, R. R.; Lorenz, M.; Ovchinnikova, O.; Duty, C.

    2015-03-01

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process.

  7. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo

    International Nuclear Information System (INIS)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (< 1.5 V) and EBM specimen was the best under the high electric potential (> 1.5 V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. - Highlights: • EBM and SLM Ti-6Al-4V alloy have good corrosion resistance, and both of them can be applied in vivo. • SLM Ti-6Al-4V alloy was more suitable for implantation in vivo than that of EBM Ti-6Al-4V alloy. • The crevice corrosion resistance of the EBM specimen is the best. • EBM and SLM specimens can form oxide film.

  8. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  9. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating

    NARCIS (Netherlands)

    Biemond, J.E.; Hannink, G.; Verdonschot, Nicolaas Jacobus Joseph; Buma, P.

    2013-01-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and

  10. Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting

    Science.gov (United States)

    Scherillo, F.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Squillace, A.; Langella, A.; Carrino, L.

    2016-10-01

    Additive Layer Manufacturing is one of the most promising and investigated manufacturing system due to its advantages to produces near net shape components, also with a very complex shape, in a single shot. Among the different techniques now available, the Electron Beam Melting (EBM) is of particular interest in the production of metal components. Particularly the application of this technique to titanium alloys allows to produces components with a very low buy to fly ratio. In the present paper the microstructure attained is accurately described and mini tensile tests performed allowed to understand the fracture behavior of specimen with the specific microstructure realized under static load.

  11. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting.

    Science.gov (United States)

    Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng

    2018-03-31

    Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

  12. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Michaela Fousová

    2018-03-01

    Full Text Available Additive manufacture (AM appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM and electron beam melting (EBM—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

  13. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    International Nuclear Information System (INIS)

    Karlsson, Joakim; Sjögren, Torsten; Snis, Anders; Engqvist, Håkan; Lausmaa, Jukka

    2014-01-01

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM ® ) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level

  14. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.

    Science.gov (United States)

    Wang, Pan; Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-09-22

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part's surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM.

  15. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi

    2015-01-01

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  16. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting

    Science.gov (United States)

    Murr, L. E.; Martinez, E.; Gaytan, S. M.; Ramirez, D. A.; Machado, B. I.; Shindo, P. W.; Martinez, J. L.; Medina, F.; Wooten, J.; Ciscel, D.; Ackelid, U.; Wicker, R. B.

    2011-11-01

    Microstructures and a microstructural, columnar architecture as well as mechanical behavior of as-fabricated and processed INCONEL alloy 625 components produced by additive manufacturing using electron beam melting (EBM) of prealloyed precursor powder are examined in this study. As-fabricated and hot-isostatically pressed ("hipped") [at 1393 K (1120 °C)] cylinders examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive (X-ray) spectrometry (EDS), and X-ray diffraction (XRD) exhibited an initial EBM-developed γ″ (bct) Ni3Nb precipitate platelet columnar architecture within columnar [200] textured γ (fcc) Ni-Cr grains aligned in the cylinder axis, parallel to the EBM build direction. Upon annealing at 1393 K (1120 °C) (hot-isostatic press (HIP)), these precipitate columns dissolve and the columnar, γ, grains recrystallized forming generally equiaxed grains (with coherent {111} annealing twins), containing NbCr2 laves precipitates. Microindentation hardnesses decreased from 2.7 to 2.2 GPa following hot-isostatic pressing ("hipping"), and the corresponding engineering (0.2 pct) offset yield stress decreased from 0.41 to 0.33 GPa, while the UTS increased from 0.75 to 0.77 GPa. However, the corresponding elongation increased from 44 to 69 pct for the hipped components.

  17. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  18. Electron beam-melted, free-form-fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits.

    Science.gov (United States)

    Thomsen, Peter; Malmström, Johan; Emanuelsson, Lena; René, Magnus; Snis, Anders

    2009-07-01

    Titanium-6aluminum-4vanadium implants (Ti6Al4V) were prepared by free-form-fabrication (FFF) and were used either as produced or after machining and compared with wrought machined Ti6Al4V. Auger electron spectroscopy (AES), depth profiles, and interferometry were used to analyze the surface properties. The tissue response after 6-weeks in rabbit femur and tibia was evaluated using light microscopy and histomorphometry. The results revealed that the bulk chemical and mechanical properties of the reference material and the electron beam-melted (EBM) material were within the ASTM F136 specifications. The as-produced EBM Ti6Al4V implants had increased surface roughness, thicker surface oxide and, with the exception of a higher content of Fe, a similar surface chemical composition compared with machined EBM Ti6Al4V and machined, wrought Ti6Al4V implants. The two latter implants did not differ with respect to surface properties. The general tissue response was similar for all three implant types. Histomorphometry revealed a high degree of bone-to-implant contact (no statistically significant differences) for all the three implant types. The present results show that the surface properties of EBM Ti6Al4V display biological short-term behavior in bone equal to that of conventional wrought titanium alloy. The opportunity to engineer geometric properties provides new and additional benefits which justify further studies. (c) 2008 Wiley Periodicals, Inc.

  19. Use of an Electron Beam Melting Manufactured Titanium Collared Cementless Femoral Stem to Resist Subsidence After Canine Total Hip Replacement.

    Science.gov (United States)

    Liska, William D; Doyle, Nancy D

    2015-10-01

    To evaluate the effect of a collared electron beam melting (EBM)-manufactured titanium cementless femoral stem on implant subsidence after total hip replacement (THR). Prospective study Dogs (n = 26); 33 THR. Records were maintained on the first 110 consecutive THR using an EBM collared femoral stem. Radiographs on the first 33 THR that had 6-months follow-up were evaluated for implant subsidence. These results were compared to 27 dogs with subsidence after THR with a Co Cr collarless stem. Dogs that had EBM collared stem THR had a mean body weight of 35.4 kg, body condition score (BCS) of 6.21, and mean canal flare index (CFI) of 1.56. EBM stem sizes used (number implanted) were #7 (13), #8 (10), #9 (8), and #10 (2). Subsidence of collared stems did not occur if the collar was in contact with cortical bone during surgery. Subsidence of 1-3 mm occurred closing a gap between the collar and bone if contact was not made during surgery, but subsidence stopped once contact was made. No major complications directly related to the EBM collared stem were encountered. A collar on a cementless femoral stem in contact with cortical bone resists subsidence. © Copyright 2015 by The American College of Veterinary Surgeons.

  20. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xipeng, E-mail: xptan1985@gmail.com [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Kok, Yihong; Tan, Yu Jun [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Vastola, Guglielmo, E-mail: vastolag@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore)

    2015-10-15

    Build thickness dependent microstructure of electron beam melted (EBM{sup ®}) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification.

  1. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting

    Directory of Open Access Journals (Sweden)

    Anika Jonitz-Heincke

    2013-11-01

    Full Text Available Synthetic materials for bone replacement must ensure a sufficient mechanical stability and an adequate cell proliferation within the structures. Hereby, titanium materials are suitable for producing patient-individual porous bone scaffolds by using generative techniques. In this in vitro study, the viability of human osteoblasts was investigated in porous 3D Ti6Al4V scaffolds, which were produced by electron-beam (EBM or laser-beam melting (LBM. For each examination, two cylindrical scaffolds (30 mm × 10 mm in size, 700 µm × 700 µm macropores were placed on each other and seeded with cells. The oxygen consumption and the acidification in the center of the structures were investigated by means of microsensors. Additionally, the synthesis of pro-collagen type 1 was analyzed. On the LBM titanium scaffolds, vital bone cells were detected in the center and in the periphery after 8 days of cultivation. In the EBM titanium constructs, however, vital cells were only visible in the center. During the cultivation period, the cells increasingly produced procollagen type 1 in both scaffolds. In comparison to the periphery, the oxygen content in the center of the scaffolds slightly decreased. Furthermore, a slight acidification of the medium was detectable. Compared to LBM, the EBM titanium scaffolds showed a less favorable behavior with regard to cell seeding.

  2. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat

    2015-04-01

    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  3. Studying the issues in the additive manufacturing of dental implants by Electron Beam MeltingRTM (EBM)

    Science.gov (United States)

    Jamshidinia, Mahdi

    properties of lattice abutments in response to a static compression load were analyzed. However, the mechanical behavior of a structure could be considerably different under cyclic loads where fatigue failure could occur at stresses far below the static failure stress. Therefore, experimental and numerical analyses were performed in order to investigate the fatigue properties of the lattice dental abutment. Beside the design of a structure, some numerical models were developed to investigate the effects of Electron Beam MeltingRTM (EBM) process parameters on the heat distribution and the mentioned issues such as surface roughness and residual stress. A moving electron beam heat source and the temperature dependent properties of Ti-6Al- 4V were used in order to provide a 3D thermal-fluid flow model of EBMRTM, where the influence of process parameters as well as fluid convection on heat distribution were studied. Also, a coupled Computational Fluid Dynamic (CFD) - Finite Element Method (FEM) model was developed for studying the heat and thermal stress distribution in EBMRTM. The coupled CFD-FEM model combines the ability of CFD in considering the effects of fluid convection with the ability of FEM in calculating the thermal stress. The influences of the spacing distance between the Ti-6Al-4V plates produced by EBMRTM on the heat accumulation and the resultant surface roughness were investigated numerically and experimentally. An equation was derived from experimental data to predict the values of surface roughness as a function of the spacing distance. Finally, the influence of a novel design of heat sinks on the minimization of anisotropy was investigated, where the heat sinks were built in-situ during the EBMRTM process. Three sets of coupons with different numbers of heat sinks were designed and produced by EBMRTM. Another set of coupons was produced without a heat sink for comparison purposes. The results of the study could be used as the supportive experimental

  4. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Narendran; Simunovic, Srdjan; Dehoff, Ryan; Plotkowski, Alex; Turner, John; Kirka, Michael; Babu, Suresh

    2017-11-01

    In addition to design geometry, surface roughness, and solid-state phase transformation, solidification microstructure plays a crucial role in controlling the performance of additively manufactured components. Crystallographic texture, primary dendrite arm spacing (PDAS), and grain size are directly correlated to local solidification conditions. We have developed a new melt-scan strategy for inducing site specific, on-demand control of solidification microstructure. We were able to induce variations in grain size (30 μm–150 μm) and PDAS (4 μm - 10 μm) in Inconel 718 parts produced by the electron beam additive manufacturing system (Arcam®). A conventional raster melt-scan resulted in a grain size of about 600 μm. The observed variations in grain size with different melt-scan strategies are rationalized using a numerical thermal and solidification model which accounts for the transient curvature of the melt pool and associated thermal gradients and liquid-solid interface velocities. The refinement in grain size at high cooling rates (>104 K/s) is also attributed to the potential heterogeneous nucleation of grains ahead of the epitaxially growing solidification front. The variation in PDAS is rationalized using a coupled numerical-theoretical model as a function of local solidification conditions (thermal gradient and liquid-solid interface velocity) of the melt pool.

  5. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  6. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  7. Corrosion Behavior in 3.5% NaCl Solutions of γ-TiAl Processed by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Asiful Hossain Seikh

    2015-12-01

    Full Text Available In this work, the corrosion behavior of γ-TiAl alloy produced by electron beam melting (EBM process in 3.5% NaCl solution was reported. The study has been performed using potentiodynamic polarization resistance and electrochemical impedance spectroscopy techniques and complemented by scanning electron microscopy investigations. All measurements were carried out after different periods of alloy exposure in the chloride solutions and at different temperatures. The results showed that the EBM produced γ-TiAl alloy has excellent corrosion resistance confirmed by the high values of polarization resistance and the low values of corrosion current and corrosion rate. With increase in immersion time, the corrosion potential moved to a higher positive value with a decrease in corrosion current and corrosion rate, which suggests an improvement in corrosion resistance. On the other hand, the increase of temperature was found to significantly increase the corrosion of the processed γ-TiAl alloy.

  8. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

    Science.gov (United States)

    Cunningham, Ross; Narra, Sneha P.; Ozturk, Tugce; Beuth, Jack; Rollett, A. D.

    2016-03-01

    Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a "near-net-shape" process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes' method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

  9. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  10. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system

    Science.gov (United States)

    Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.

    2018-04-01

    The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (mechanical parameters to the values of the NiTi substrate.

  11. Skull Bone Defects Reconstruction with Custom-Made Titanium Graft shaped with Electron Beam Melting Technology: Preliminary Experience in a Series of Ten Patients.

    Science.gov (United States)

    Francaviglia, Natale; Maugeri, Rosario; Odierna Contino, Antonino; Meli, Francesco; Fiorenza, Vito; Costantino, Gabriele; Giammalva, Roberto Giuseppe; Iacopino, Domenico Gerardo

    2017-01-01

    Cranioplasty represents a challenge in neurosurgery. Its goal is not only plastic reconstruction of the skull but also to restore and preserve cranial function, to improve cerebral hemodynamics, and to provide mechanical protection of the neural structures. The ideal material for the reconstructive procedures and the surgical timing are still controversial. Many alloplastic materials are available for performing cranioplasty and among these, titanium still represents a widely proven and accepted choice. The aim of our study was to present our preliminary experience with a "custom-made" cranioplasty, using electron beam melting (EBM) technology, in a series of ten patients. EBM is a new sintering method for shaping titanium powder directly in three-dimensional (3D) implants. To the best of our knowledge this is the first report of a skull reconstruction performed by this technique. In a 1-year follow-up no postoperative complications have been observed and good clinical and esthetic outcomes were achieved. Costs higher than those for other types of titanium mesh, a longer production process, and the greater expertise needed for this technique are compensated by the achievement of most complex skull reconstructions with a shorter operative time.

  12. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    Science.gov (United States)

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. © 2014 Wiley Periodicals, Inc.

  13. Immediate mandibular reconstruction via patient-specific titanium mesh tray using electron beam melting/CAD/rapid prototyping techniques: One-year follow-up.

    Science.gov (United States)

    Farid Shehab, Mohamed; Hamid, Nabila Mohammed Abdel; Askar, Nevien Abdullatif; Elmardenly, Ahmed Mokhtar

    2018-02-21

    Immediate mandibular reconstruction was performed using a patient-specific titanium mesh tray fabricated by electron beam melting (EBM) /rapid prototyping techniques. Patient-specific titanium trays were virtually designed and fabricated using EBM technology/rapid prototyping for patients requiring mandibular resection and immediate reconstruction using an iliac crest bone graft. Dental implants were placed in the grafted sites and the patients received prosthetic rehabilitation with a follow-up of one year. Clinical data, postoperative bone formation and complications were evaluated. A symmetric appearance of facial contours was achieved. The titanium tray incorporated the particulate iliac crest bone graft that provided significant bone formation (mean 18.97 ± 1.45 mm) and predictable results. Stability of the dental implants was achieved. The patient-specific titanium meshes and immediate particulate autogenous bone graft showed satisfactory clinical and surgical results in improving patients' quality of life and decreasing the overall treatment time with adequate functional rehabilitation. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  15. Electron Beam Lithography

    Science.gov (United States)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  16. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  17. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available BACKGROUND: High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. METHODS: In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. RESULTS: The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young's modulus being 14.5-38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. CONCLUSIONS: This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.

  18. Electron beam curing paint

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu

    1991-04-01

    Electron beam curing (EBC) type paint is paint that is specially prepared so that it can be cured and dried by electron beam irradiation. Electron beam irradiation achieves hardly any curing and drying of ordinary normal-temperature drying type paint or heat-drying type paint. The main type of paint in which an electron beam produces a curing reaction is one in which a radical polymerization reaction takes place under irradiation. The use of this EBC painting - drying system has been considered for a variety of fields since it has a number of special features such as the fact that the paint dries instantaneously, no heat is applied and no solvent is used. (Author)

  19. Electron beam transport

    International Nuclear Information System (INIS)

    Rudjak, Yu.V.; Vladyko, V.B.

    1993-01-01

    The electron beam transport in ion channel has been investigated. The influence of the external longitudinal magnetic field and self beam magnetic field on the charge neutralization process was defined. Beam head erosion under channel is curved or the availability of transverse external magnetic field was numerically simulated. The numerical investigation of the ion-hose instability was performed. The conditions, when as a result of ion-hose instability development may be coming out of the channel by beam tail, were founded. It was shown, that supplementary creation of plasma by electron beam and ions did not lead to the reduction of ion-hose instability. Sufficient slowing down of ion-hose instability development could be achieved if betatron length increased to impulse tail. In the case of a weak initial nonsymmetrical perturbation, sausage instability was investigated. Numerical simulation showed that this instability could lead to beam radius increasing in order. The electron beam guiding by low conductive plasma channel was considered. The attractive force of beam to this channel under nonsymmetrical injection was defined analytically

  20. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  1. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  2. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  3. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  4. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  5. Relativistic electron beam device

    Science.gov (United States)

    Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

    1975-07-01

    A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

  6. Depressed collector for electron beams

    Science.gov (United States)

    Ives, R. Lawrence (Inventor)

    2005-01-01

    A depressed collector for recovery of spent beam energy from electromagnetic sources emitting sheet or large aspect ration annular electron beams operating aver a broad range of beam voltages and currents. The collector incorporates a trap for capturing and preventing the return of reflected and secondary electrons.

  7. Use of beam deflection to control an electron beam wire deposition process

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  8. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  9. Focused ion beam structuring of low melting polymeric materials

    International Nuclear Information System (INIS)

    Schmied, R.

    2014-01-01

    strategy was applied for the preparation of ultra-thin lamellas for transmission electron microscopy. The results revealed that the new approach is capable of preserving 10nm thick polymeric interface layers without delamination and / or chemical intermixing of adjacent layers. The successful reduction of chemical damage with increased morphological stabilities by application of the alternative patterning strategy pushes the combination of FIB processing with low melting polymers towards the unavoidable, intrinsic limit of single ion beam pulses. In consequence, this new approach is expected to open new possibilities for FIB-related soft matter processing, which in the past has often been considered to be complicated or even impossible. (author) [de

  10. Influence of heat treatment on the mechanical and electrical characteristics of Ni{sub 0.5}Ti{sub 0.5} alloy prepared by electron-beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, A.H. [Thin Film Laboratory, Physics Department, Faculty of Education, Ain Shams University (Egypt); Physics Department, Faculty of Science and Arts, Al-Ola, Taibah University (Saudi Arabia); Al-Buhairi, M. [Physics Department, Faculty of Science, Taiz University (Yemen); Farag, A.A.M., E-mail: alaafaragg@yahoo.com [Thin Film Laboratory, Physics Department, Faculty of Education, Ain Shams University (Egypt); Al-Wajeeh, N.M.M. [Physics Department, Faculty of Science, Taiz University (Yemen)

    2013-06-15

    Nickel titanium alloys (Ni{sub 0.5}Ti{sub 0.5}) were successfully produced from elemental Ni/Ti powders by electron-beam melting method and then subjected to annealing and aging treatment. Microstructure of the alloys was examined by XRD and SEM. The mechanical properties of the alloyed surface were examined. The microhardness was studied as a function of annealing temperature and time. It was found that the microhardness decreases with increasing annealing temperature until 660 °C after which the microhardness increases. Electrical resistance measurements were carried out in order to study the transformation behavior. The electrical measurements point out the importance of temperature dependence of Ni{sub 0.5}Ti{sub 0.5} electrical resistance for the identification of particular transformation. The influence of aging on the development of electrical resistivity was also investigated.

  11. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  12. Formation of Ti-Ta-based surface alloy on TiNi SMA substrate from thin films by pulsed electron-beam melting

    Science.gov (United States)

    Meisner, L. L.; Markov, A. B.; Ozur, G. E.; Rotshtein, V. P.; Yakovlev, E. V.; Meisner, S. N.; Poletika, T. M.; Girsova, S. L.; Semin, V. O.; Mironov, Yu P.

    2017-05-01

    TiNi shape memory alloys (SMAs) are unique metallic biomaterials due to combination of superelastisity and high corrosion resistance. Important factors limiting biomedical applications of TiNi SMAs are a danger of toxic Ni release into the adjacent tissues, as well as insufficient level of X-ray visibility. In this paper, the method for fabrication of protective Ni-free surface alloy of thickness ∼1 μm of near Ti70Ta30 composition on TiNi SMA substrate has been successfully realized. The method is based on multiple alternation of magnetron co-deposition of Ti70Ta30 thin (50 nm) films and their liquid-phase mixing with the TiNi substrate by microsecond low-energy, high current electron beam (≤15 keV, ∼2 J/cm2) using setup RITM-SP (Microsplav, Russia). It was found by AES, XRD, SEM/EDS and HRTEM/EDS examinations, that Ti-Ta surface alloy has an increased X-ray visibility and gradient multiphase amorphous-nanocrystalline structure containing nanopores.

  13. Computer simulation of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S.P.; Mladenov, G.M. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Elektronika)

    1994-04-14

    Self-fields and forces as well as the local degree of space-charge neutralization in overcompensated electron beams are considered. The radial variation of the local degree of space-charge neutralization is analysed. A novel model which describes the equilibrium potential distribution in overcompensated beams is proposed and a method for computer simulation of the beam propagation is described. Results from numerical experiments which illustrate the propagation of finite emittance overneutralized beams are presented. (Author).

  14. Novel electron beam recording media

    International Nuclear Information System (INIS)

    1974-01-01

    Electron beam recording media comprise a film of an olefin-SO 2 copolymer on a support. Certain of these copolymers give direct print-out relief patterns after exposure to electron beams. The chemical composition and preparation of these layered films is described

  15. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  16. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  17. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  18. Electron beam effects on gelatin polymer

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del; Colombo, Maria A.

    2009-01-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  19. Electron beam effects on gelatin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del, E-mail: patyoko@yahoo.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: mascolombo@yahoo.com.b [Faculdade de Tecnologia da Zona Leste, Sao Paulo, SP (Brazil)

    2009-07-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  20. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  1. Laser and electron beam processing of silicon and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, J.

    1979-10-01

    Laser (photon) and electron beams provide a controlled source of heat by which surface layers of silicon and gallium arsenide can be rapidly melted and cooled with rates exceeding 10/sup 80/C/sec. The melting process has been used to remove displacement damage in ion implanted Si and GaAs, to remove dislocations, loops and precipitates in silicon and to study impurity segregation and solubility limits. The mechanisms associated with various phenomena will be examined. The possible impact of laser and electron beam processing on device technology, particularly with respect to solar cells is discussed.

  2. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  3. Laser Beam Melting of Alumina: Effect of Absorber Additions

    Science.gov (United States)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  4. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  5. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  6. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  8. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  9. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  10. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  11. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  12. Plural beam electron gun assembly

    International Nuclear Information System (INIS)

    Stratton, M.G.

    1977-01-01

    The invention relates to a cathode ray tube plural-beam-in-line bi-potential electron gun assembly, having applied beam currents of differing levels, manifests structurally modified gun structures to effect focused beam landings at the screen that are evidenced as substantially equi-sized spots thereby providing improved resolution and brightness of the screen imagery. The structural changes embody modifications of the related focusing and accelerator electrodes of the respective guns to provide a partial telescoping arrangement for effecting the discrete placement, forming and shielding of the final focusing lenses. The three lenses so formed are in different planes in partial overlapping axial relationship

  13. Characterization of an Electron Gun for Hollow Electron Beam Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Siqi [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-08-01

    Hollow electron beam collimation (HEBC) is a new technique developed to complement conventional beam collimation system to remove beam halo in a controlled fashion. We study the characteristics of the electron gun that produces the hollow electron beam. Cathode yield and beam profile measurements are used to extract information on gun performance. Results of characteristic measurements are presented.

  14. Electron beam writing on semiconductors

    International Nuclear Information System (INIS)

    Bierhenke, H.; Kutzer, E.; Pascher, A.; Plitzner, H.; Rummel, P.; Siemens A.G., Muenchen; Siemens A.G., Muenchen

    1979-08-01

    Reported are the results of the 3 1/2 year research project 'Electron beam Writing on Semiconductors'. Work has been done in the field of direct wafer exposure techniques, and of mask making. Described are resist technology, setting up of a research device, exploration of alignment procedures, manufacturing of devices and their radiation influence. Furthermore, investigations and measurements of an electron beam machine bought for mask making purposes, the development of LSI-circuits with this machine, the software necessary and important developments of digital subsystems are reported. (orig.) [de

  15. Generalized melting criterion for beam-induced amorphization

    International Nuclear Information System (INIS)

    Lam, N. Q.; Okamoto, Paul R.

    1993-09-01

    Recent studies have shown that the mean-square static atomic displacements provide a generic measure of the enthalpy stored in the lattice in the form of chemical and topological disorder, and that the effect of the displacements on the softening of shear elastic constants is identical to that of heating. This finding lends support to a generalized form of the Lindemann phenomenological melting criterion and leads to a natural interpretion of crystalline-to-amorphous transformations as defect-induced melting of metastable crystals driven beyond a critical state of disorder where the melting temperature falls below the glass-transition temperature. Application of the generalized Lindemann criterion to both the crystalline and amorphous phases indicates that the enthalpies of the two phases become identical when their shear moduli become equal. This thermo-elastic rule provides a basis for predicting the relative susceptibility of compounds to amorphization in terms of their elastic properties as measured by Debye temperatures. The present approach can explain many of the basic findings on beam-induced amorphization of intermetallic compounds as well as amorphous phase formation associated with ion implantation, ion-beam mixing and other solid-state processes

  16. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  17. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  18. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  19. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  20. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  1. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  2. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  3. Electron beam control for barely separated beams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  4. Investigation of effect of electron beam on various polyethylene blends

    CERN Document Server

    Morshedian, J

    2003-01-01

    With regards to the expanding usage of electron beams irradiation in polymer industries such as sterilization of polymeric disposable medical products; cable manufacturing; pipes, heat shrinkable materials, etc. In this project the effect of electron beam on polyethylene used in manufacturing of pipe and heat shrinkable products was studied. Results showed that by increasing the applied dose on samples; the crosslink density would increase and polymers with tertiary carbon atoms in their backbone structure tend to crosslink more readily. The melting temperature and crystallinity percent decreased and degradation temperature increased. Density in low doses decreased and in high doses increased.

  5. Ignition of organic explosives by an electron beam

    Directory of Open Access Journals (Sweden)

    Ivanov Georgy A.

    2015-01-01

    Full Text Available A numerical simulation of the ignition of organic explosives (PETN, HMX, RDX, TATB with an electron beam was performed. A criterion for the ignition of energetic materials with a melting point below the temperature of ignition is obtained. The results of numerical calculations of the critical energy density of the electron beam are consistent with the criterion of ignition. Calculations of the critical energy density of PETN ignition in good agreement with the experiment. The most sensitive is PETN and the most heat-resistant is TATB.

  6. Electron beam measurements on the Daresbury SRS

    International Nuclear Information System (INIS)

    Laundy, D.; Cummings, S.

    1992-01-01

    Two experiments which use hard x-ray synchrotron radiation have been carried out to allow us to monitor the electron beam on the Daresbury SRS. The beam spatial and angular vertical position and size was determined over a period of time when the SRS was operating normally. From these measurements, the position and angular stability of the electron beam during the measurement period was assessed and correlation of the beam emittance to the electron current was determined

  7. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  8. Electron beam curing of coating

    International Nuclear Information System (INIS)

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  9. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    Miller, A.

    1983-12-01

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  10. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  11. Electron beam parallel X-ray generator

    Science.gov (United States)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  12. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  13. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  14. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  15. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  16. Electron beam induced heat flow transient in aluminium

    International Nuclear Information System (INIS)

    Dalle Rose, L.F.D.; Brotto, R.

    1983-01-01

    On the basis of a numerically solved heat diffusion equation, the structure of the thermal transient induced in an aluminium sample by an electron beam pulse is described in terms of slush zone formation, molten depth, liquid phase duration, and melt front history. The heat flow dynamics, as determined by monochromatic (electron energy ranging between 5 and 25 keV) and ultrashort (15 ns fwhm) pulses, is contrasted with the ruby laser induced one. Accessible absorbed energy intervals for sample surface melting are given as a function of electron energy; heating of the sample interior at values higher than those attained at the surface is shown to occur only at higher electron energies, for a given pulse duration. The general dependence of the present results on the pulse duration and the effects produced by polychromatic pulses are also discussed. (author)

  17. Experimental Device for Electron Beam Micromachining

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor; Zobač, Martin; Dupák, Jan; Vlček, Ivan

    2006-01-01

    Roč. 41, 5-6 (2006), s. 272-275 ISSN 0861-4717. [EBT 2006 - International Conference on Electron Beam Technologies /8./. Varna, 05.06.2006-10.06.2006] Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam drilling * quartz glass Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  19. Counterstreaming electron beam profile and position monitor

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hohban, K.J.

    1977-01-01

    Individual profiles and positions of two counterstreaming 10 MeV electron beams were measured using the strongly forward directed bremsstrahlung radiation produced when a small fraction of the beam impinges on a tantalum foil. The 0.02 mm wide foil is driven through the electron beams by an external motor connected to the foil by a linear vacuum feedthrough. Bremsstrahlung radiation is detected by a series of ordinary semiconductor diodes spaced around the circumference of the beam vacuum pipe in two planes. The planes are on opposite sides of the foil and are equidistant and parallel to the plane of motion of the foil. The diodes produce output currents proportional to the bremsstrahlung radiation intensity and require no biasing voltages. Design and operational features of the beam monitor for electron beams up to 100 MeV are described. Measurements on counterstreaming 10 MeV pulsed electron beams are presented. Spatial resolutions of 0.3 mm are easily discernable

  20. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  1. Electron beam sterilization for dishes

    International Nuclear Information System (INIS)

    Deren, Wang; Meizhen, Fang

    1995-01-01

    Modern biological science often needs various fine strike devices which are often made from non-toxic transparent plastic. The application of high temperature steam to the sterilization as a traditional methods often causes deformation and colour change. When chemicals are applied to the sterilization residure of chemical grain often causes toxicity. Only application of radiation to the sterilization can overcome this faults and carry out with sterility assurance at room temperature. In this research 1.3 MeV electron beam coming from Model JJ-2 accelerator was applied for sterilization to 96-well tissue culture plates. After clean packaging the plates were irradiated with 31.7 XGy and operational voltage 1.3 MeV and 100 μA on the PY device. Repeated tests demonstrate that the products are sterile. The output is 2 x 10 5 pieces for each year. (author)

  2. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  3. Electron-beam curing of epoxy resins

    Indian Academy of Sciences (India)

    Electron-beam (e-beam) induced polymerization of epoxy resins proceeds via cationic mechanism in presence of suitable photoinitiator. Despite good thermal properties and significant processing advantages, epoxy-based composites manufactured using e-beam curing suffer from low compressive strength, poor ...

  4. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  5. EIC Electron Beam Polarimetry Workshop Summary

    International Nuclear Information System (INIS)

    Lorenzon, W.

    2008-01-01

    A summary of the Precision Electron Beam Polarimetry Workshop for a future Electron Ion Collider (EIC) is presented. The workshop was hosted by the University of Michigan Physics Department in Ann Arbor on August 23-24, 2007 with the goal to explore and study the electron beam polarimetry issues associated with the EIC to achieve sub-1% precision in polarization determination. Ideas are being presented that were exchanged among experts in electron polarimetry and source and accelerator design to examine existing and novel electron beam polarization measurement schemes

  6. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  7. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  8. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  9. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    Science.gov (United States)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  10. High power electron beam dumps at CEBAF

    International Nuclear Information System (INIS)

    Wiseman, M.; Sinclair, C.K.; Whitney, R.; Zarecky, M.

    1997-01-01

    The CEBAF accelerator produces a very small emittance CW electron beam of up to 200 μA average current. The resulting beam power, up to 1 MW at 5 GeV, and the very high beam power density, pose challenging problems for beam dump design. Two styles of high power dumps have been developed. The first, rated for 100+ kW, is used for beam tune-up and accelerator commissioning. The beam power is entirely contained in metal in this dump, minimizing the problems associated with radioactive water handling. Full power 1 MW dumps are used with the experimental halls. In these dumps, one-third of the beam power is directly absorbed in water. Both dump designs require the beam to be rastered when the smallest beam sizes are used. Design details for each of these dumps will be presented

  11. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  12. An inexpensive electron beam annealing apparatus with line focus, made from a converted electron welding machine

    International Nuclear Information System (INIS)

    Krimmel, E.F.; Lutsch, AG.K.; Meyer, H.P.; Theron, S.B.K.

    1985-01-01

    Electron beam annealing has, after an active period of research, become an established technology in the production of semiconductor devices, since high quality restoration practically without out-diffusion, can be achieved. Many universities and research institutions cannot afford to purchase a dedicated electron beam annealing apparatus. In the following a conversion of an industrial electron beam welding apparatus into an annealing apparatus with line focus is described, which could easily be copied by interested institutions. A magnetic quadrupole-lens is described which converts the point into a line focus. Standard-TV deflections with a special generator circuit for the X and Y deflection are used. Electron currents of 4 to 5 mA cause silicon to melt (1415 deg C). Annealing results obtained with the apparatus are discussed. (author)

  13. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  14. Applications of electron beam in nanotechnology

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan; Jamaliah Sharif

    2005-01-01

    The use of radiation technique to process nanostructured materials or to produce nanostructured materials have been shown technically superior as alternative and viable techniques for further commercial exploitation. Research on radiation processing of nanocomposites have been initiated at the Radiation Processing Technology Division of MINT in the past three years. The main focus of this research is to utilize indigenous natural polymer for production of nanocomposites material. Natural rubber/clay composites and thermoplastic natural rubber/clay composites are the important materials that under studied. The natural rubber used in this work is of grade SMRL (Standard Malaysian Rubber) and the clay used was sodium montmorillonite modified with various types of cationic surfactants in order to make the galleries hydrophobic and thus more compatible with the elastomer. The natural rubber/clay nanocomposites were prepared by melt mixing. The compound was then irradiated using electron beam at optimum dose of 250 kGy. X-ray diffraction results indicated intercalation of the natural rubber into silicate interlayer. Upon irradiation at 250 kGy, the tensile strength of the NR/Na-MMT nanocomposites constantly reduced slightly with increasing clay loading, whereas the tensile strengths of NR/DDA-MMT and NR/ODA-MMT increases to optimum levels, 12.1 MPa and 9.5 MPa respectively at 3 phr clay contents. On the other hand, the elongation of NR/DDA-MMT nanocomposites is less affected with increasing clay content up to 3 phr. (author)

  15. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  16. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  17. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  18. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  19. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  20. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena

    2014-01-01

    Electron beam lithography is a versatile tool for fabrication of nano-sized patterns. The patterns are generated by scanning a focused beam of high-energy electrons onto a substrate coated with a thin layer of electron-sensitive polymer (resist), i.e. by directly writing custom-made patterns...... in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......V and focused to a beam spot size down to ~5nm. The electron beam can scan across the substrate with a speed of 100MHz and can write areas of 1mm x 1mm without stitching. In order to ensure high-precision patterning, the beam position on the substrate is controlled by a two-stage deflector system and substrates...

  1. An experimental technique to repair cracked teeth using calcium phosphate, melted by a laser beam: an in vitro evaluation.

    Science.gov (United States)

    Levy, G C; Koubi, G F

    1993-11-01

    Using a neodymium: yttrium-aluminum-garnet laser beam to seal vertical root fracture lines with tricalcium phosphate paste represents an alternative treatment for cracked teeth with noted clinical results. This article describes a study of the permeability of molten crystals of hydroxyapatite in the dentin of a cracked root after crack lines have been filled with a preparation of tricalcium phosphate melted by a neodymium: yttrium-aluminum-garnet laser beam. The morphology of the sealed cracks was analyzed under a scanning electron microscope that showed a deep fusion of tricalcium phosphate along crack lines.

  2. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  3. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  4. Electron beam processing of polymers and composites

    International Nuclear Information System (INIS)

    Singh, R. P.

    1994-01-01

    Electron beam processing has emerged as one of the foremost techniques for surface treatment of materials. Recently polymers and advanced composites are being treated with the electron beams of 1-10 MeV. In polymers the surface improvement is caused by radiation curing, cross linking and grafting. It has made inroads in vital sector of plastic industries in industrially advanced countries. Advanced composites can also be cured at ambient temperatures thus avoiding emission of volatiles during curing. Details of all these aspects of electron beam processing of polymers and composites are given. (author). 9 refs., 1 fig

  5. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  6. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Sadat, T.; Ross, A.; Leveziel, H.

    1994-01-01

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  7. Review of electron beam therapy physics

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R; Almond, Peter R

    2006-01-01

    For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed. (review)

  8. Review of electron beam therapy physics.

    Science.gov (United States)

    Hogstrom, Kenneth R; Almond, Peter R

    2006-07-07

    For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed.

  9. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  10. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  11. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  12. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  13. Electron-beam initiated HF lasers

    International Nuclear Information System (INIS)

    Gerber, R.A.; Patterson, E.L.

    1975-01-01

    Electron beams were used to ignite hydrogen/fluorine mixtures, producing laser energies up to 4.2 kJ, and giving hope that this approach may soon produce energy levels suitable for laser-fusion studies. (auth)

  14. Horizontal electron beam welding for stainless steels

    International Nuclear Information System (INIS)

    Martin, P.; Olivera, J.J.

    1977-01-01

    Stainless steel samples have been realized by local vacuum apparatus for electron beam welding applications to reactor core shell realizations. The best welding parameters have been determined by a systematic study. The welds have been characterized by mechanical tests [fr

  15. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  16. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  17. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  18. Primary beams of an electron beam ion source (EBIS)

    International Nuclear Information System (INIS)

    Lenoir-Zink, E.

    1986-06-01

    Electron guns for the ion sources of the SATURN II facility were tested and compared with models. The guns tested were a gun with 36 mm diameter cathode, 7 mm, 4 mm, 4 mm with insulated Whenelt, and 8 mm. A lanthanium hexaboride cathode is presented. For the primary ion beams, zeolite and plasma sources were realized. In DIONE, which will replace CRYEBIS as ion source in SATURNE, the density of the electron beam compressed within the maximum magnetic field can be evaluated. Results indicate a factor of 3 improvement compared with CRYEBIS. Lithium sources can be used, but gas sources do not produce significant improvements [fr

  19. The electron beam damage of synthetic polymers

    International Nuclear Information System (INIS)

    Vesely, D.

    1977-01-01

    Beam damage is a severe limitation when the electron microscope is applied to the study of microstructures of synthetic polymers. There is no practical method for increasing significantly the critical dose required to damage a specimen. It is therefore necessary to utilize fully the information present in the electron beam by efficient recording and by eliminating unnecessary accumulation of irradiation damage. The STEM technique provides a unique facility for this type of work mainly because of localized and well controlled beam damage in both the image and microdiffraction modes. Examples are given. (author)

  20. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  1. Progress toward uranium scrap recycling via electron beam cold hearth refining

    International Nuclear Information System (INIS)

    McKoon, R.H.

    1994-01-01

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using Virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented

  2. Modified process for refining niobium by electron beam

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Takano, C.

    1982-01-01

    The experimental results, thermodynamic equilibrium and kinetic theory of the metal/gas interaction in refractory metals are reviewed. The adsorption and desorption of nitrogen, hydrogen and CO are reversible, whereas those of oxygen are irreversible, with adsorption of an oxygen atom and volatilisation of the metal oxide. Based upon this fact, a new electron beam refining technology is proposed for niobium, consisting of four points: preparation of an electrode by aluminothermic reduction; zone refining in the first melt; kinetic refining in subsequent melts and compact design of the refining plant. Experimental results from a 300 kW pilot plant were in complete agreement with the technology proposed, giving 2.4 times the productivity predicted by the conventional technology. (Author) [pt

  3. Guassian beams and electron acceleration

    International Nuclear Information System (INIS)

    Collins, M.; Castillo, R.; Osman, F.; Evans, P.; Stiat-Gardener, T.; Hora, H.

    2000-01-01

    Full text: A guassian solution to the free space wave equation to fourth order is derived using the Fourier transform method. Higher order solutions can be generated, as needed, using the convolution method. These results are used to investigate the acceleration of an electron in a laser field. The acceleration is determined if energy is transferred to a relativistic electron, this energy transfer can be determined by calculating the change in the potential of the electron

  4. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...

  5. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-01-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  6. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  7. A simple electron-beam lithography system

    International Nuclear Information System (INIS)

    Moelhave, Kristian; Madsen, Dorte Noergaard; Boeggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50x50 μm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 nm. We demonstrate how the EBL system can be used to write three-dimensional nanostructures by electron-beam deposition

  8. Electron beam damage in oxides: a review.

    Science.gov (United States)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  9. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  10. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  11. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  12. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    International Nuclear Information System (INIS)

    Sahu, G K; Baruah, S; Thakur, K B

    2012-01-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  13. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Nagata, Hidetoshi; Kobayashi, Takashi

    1988-01-01

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  14. Hansan ramie fibers irradiated by electron beam

    International Nuclear Information System (INIS)

    Choi, Haeyoung; Lee, Jeong Sun

    2010-01-01

    Material is inexpensive, abundant Light weight: fuel efficient Environment: Co 2 reduction, renewable Performance: acceptable Spec. But it is variability, Irregular hollow fiber shape, limited planting counting Environment: odor, degradation of mechanical properties Performance: poor fiber-matrix bonding, water absorption, difficulty in quality control. Hansan ramie fibers were irradiated by electron beam to make surface modification for better bonding in the manufacture of composite. EB irradiation on cellulose changed the surface morphology property. - Impurities on the surface of ramie and lignin were removed by electron beam irradiation. The electron beam irradiation with high energy reduced α-cellulose and increased β-cellulose. - The reduction of α-cellulose indicates the degradation of cellulose chain, which usually lead to decrease of fiber strength properties. When ramie fibers were irradiated by electron beam with 3kGy, α-cellulose was not decreased significantly and the impurity and lignin were separated from the ramie fiber. The best mechanical properties were obtained when ramie fibers were obtained when ramie fibers were irradiated by electron beam with 3kGy

  15. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm

  16. Nonlinear evolution of the auroral electron beam

    Science.gov (United States)

    Maggs, James E.

    1989-01-01

    The nonlinear spatial evolution, from the source to the atmosphere, of the auroral electron beam and the beam-generated electrostatic whistler noise was studied, calculating changes in beam parameters from equations for the conservation of total particle and wave energy and momentum flux density. Wave power fluxes were calculated by numerically integrating the wave kinetic equations, and the levels of beam-generated noise were determined by using thermal levels of Cerenkov radiation as a source. It was found that beam parameters evolve on ionospheric scale lengths, and their positive slope feature in velocity space is maintained over altitudes measured in thousands of kilometers of altitude, even though they can generate wave energy density fluxes sufficient to modify the ionospheric density profile.

  17. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  18. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  19. Beam profile for Malaysian electron accelerator

    International Nuclear Information System (INIS)

    Abu Bakar Ghazali; Muhamad Zahidee Taat

    2007-01-01

    This paper comprises of two calculations that require in designing a dose profile for an electron accelerator machine before its fabrication. The first is to calculate the beam deflection due to changes of high voltage (HV) supply as well as the deflection coil currents so that the electron beam will only scan at the window foil of 18 cm length and 6 cm width. Secondly, we also require to calculate the beam profile at 50 mm underneath the window foil. The electron gun that produces a beam of 10 mm diameter has to be oscillated in a sawtooth wave for the prescribed window size at frequencies of 50 Hz and 400 Hz along the length and width directions respectively. For the beam deflection, we apply a basic formula from Lorentz force law to obtain a set of HV supply and the coil current that is suitable for both deflections and this result can assist in designing the coil current against HV changes via an electronic controller. The dose profile was calculated using the RMS current formulation along the length direction. We found that the measured and the calculated RMS currents are in comparable for the case of 1 MeV, 50 mA accelerator facility that is going to be installed at Nuclear Malaysia complex. A similar measurement will be carried out for our locally designed accelerator of 150 KeV, 10 mA after fabrication and installation of the machine are completed. (Author)

  20. Successful Electron Beam Recirculation Test for Fermilab Electron Cooling

    Science.gov (United States)

    Nagaitsev, Sergei; Crawford, A. Curtis; Sharapa, Anatoly; Shemyakin, Alexander

    1998-04-01

    In this paper we describe the successful operation of a dc recirculation electron beam system at energies 1 -- 1.5 MeV and currents in excess of 200 mA. This system employs an electrostatic HV supply like a Van de Graaff generator with maximum charging current of a few hundred microamps. Electron beam line consits of a 10 m long channel with discrete focusing elements flanked by high-gradient (10 kV/cm), small aperture (2.54 cm ID) acceleraton and deceleration tubes. This work is performed as part of the Fermilab R&D program to develop electron cooling for 8 GeV antiprotons.

  1. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  2. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  3. Compression of pulsed electron beams for material tests

    Science.gov (United States)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  4. Three-Dimensional Electron Beam Dose Calculations.

    Science.gov (United States)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional

  5. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  6. Gamma Putty dosimetric studies in electron beam

    Directory of Open Access Journals (Sweden)

    Aime M Gloi

    2016-01-01

    Full Text Available Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83, bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively and measured the ionizing radiation on the central axis (CAX for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12-20 MeV and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6-9 MeV.

  7. Electron cloud effects in hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [TU-Darmstadt, Institut fuer Theorie Elektromagnetischer Felder,Schlossgartenstr. 8 64289 Darmstadt (Germany)

    2013-07-01

    Accelerators operating with intense positively charged beams can suffer from the electron cloud phenomenon. For example, it is the intensity limiting factor in CERN LHC and SPS. In past decades a lot of progress in understanding the electron cloud effects was made worldwide. Methods to suppress or weaken the electron cloud phenomenon were proposed. Theories governing the bunch stability in presence of the electron cloud were developed. Recently the theory was introduced to describe the bunch energy loss due to the electron cloud. However, most of the publications concern the single bunch electron cloud effects. In reality bunches are packed into trains. A disturbance of the cloud caused by the bunch in the beginning of the train affects the subsequent bunches. We present a further investigation of single-bunch electron cloud effects and planned activities to study the phenomenon in case of multiple bunches.

  8. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...... dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters, which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments......, and new calorimeters are being developed....

  9. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  10. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  11. Brookhaven National Laboratory electron beam test stand

    International Nuclear Information System (INIS)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Prelec, K.; Snydstrup, L.

    1998-01-01

    The main purpose of the electron beam test stand (EBTS) project at the Brookhaven National Laboratory is to build a versatile device to develop technologies that are relevant for a high intensity electron beam ion source (EBIS) and to study the physics of ion confinement in a trap. The EBTS will have all the main attributes of EBIS: a 1-m-long, 5 T superconducting solenoid, electron gun, drift tube structure, electron collector, vacuum system, ion injection system, appropriate control, and instrumentation. Therefore it can be considered a short prototype of an EBIS for a relativistic heavy ion collider. The drift tube structure will be mounted in a vacuum tube inside a open-quotes warmclose quotes bore of a superconducting solenoid, it will be at room temperature, and its design will employ ultrahigh vacuum technology to reach the 10 -10 Torr level. The first gun to be tested will be a 10 A electron gun with high emission density and magnetic compression of the electron beam. copyright 1998 American Institute of Physics

  12. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  13. Economy in utilizing electron beam accelerators

    International Nuclear Information System (INIS)

    Takahashi, Masao

    1980-01-01

    As the typical industrialized processes using electron beam irradiation, the following items may be given: the manufacture of cables covered with cross-linking polyethylene or PVC, heat-contracting material, cross-linking polyethylene foam, etc., and the curing of coatings or surface finishes. The results of investigating economy in these processes are described. First, the running cost of electron beam irradiation equipments is calculated. The result shows that, in general, the unit cost of the equipments becomes small with increasing output, therefore the selection of large power equipments may be advantageous for economy. Other important factors concerning the equipments are the reliability and lifetime which are being improved every year and the improvement of the operational efficiency of the equipments. Next, the comparison of cost was made for each industrialized process of the cables covered with cross-linking polyethylene, polyethylene foam, and the curing of coatings. In general, the processing cost is smaller and the depreciation cost is larger in electron beam irradiation process as compared with conventional processes. In addition, since the productive capacity is larger in electron beam process it is preponderant when the amount of production is large. In the industrialized examples, unique processes or features which are not obtainable by other methods are attained. (Wakatsuki, Y.)

  14. The CMS Beam Halo Monitor electronics

    International Nuclear Information System (INIS)

    Tosi, N.; Fabbri, F.; Montanari, A.; Torromeo, G.; Dabrowski, A.E.; Orfanelli, S.; Grassi, T.; Hughes, E.; Mans, J.; Rusack, R.; Stifter, K.; Stickland, D.P.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data

  15. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  16. The CMS Beam Halo Monitor electronics

    Science.gov (United States)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  17. Electron beam puts a shine on leather

    International Nuclear Information System (INIS)

    Berberich, S.

    1986-01-01

    A technique for curing leather using either ultraviolet or electron-beam radiation has been developed. This type of radiation curing saves at least 60 percent of the energy cost of conventional leather finishing and can also result in considerable savings in plant space and labor. The implications of the new technology in international balance of trade are discussed

  18. Penetration of electronic beams in ionizing media

    International Nuclear Information System (INIS)

    Martiarena, M.L.; Zanete, D.H.; Garibotti, C.R.

    1988-01-01

    It is studied the penetration of an electron beam in an ionizable medium by means of a generalized kinetic equation. This equation is related to elastic collisions, processes of creation and destruction of particles. By integrating numerically the transport equation, it can be evaluated the relative effects of all the processes involved in the evolution of the system. (A.C.A.S.) [pt

  19. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  20. Parallel electron-beam-induced deposition using a multi-beam scanning electron microscope

    NARCIS (Netherlands)

    Post, P.C.; Mohammadi-Gheidari, A.; Hagen, C.W.; Kruit, P.

    2011-01-01

    Lithography techniques based on electron-beam-induced processes are inherently slow compared to light lithography techniques. The authors demonstrate here that the throughput can be enhanced by a factor of 196 by using a scanning electron microscope equipped with a multibeam electron source. Using

  1. Studies of space charge effects on operating electron beam ion trap at low electron beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger [The Key Lab of Applied Ion Beam Physics, Ministry of Education (China); Shanghai EBIT Laboratory, Modern Physics Institute, Fudan University, Shanghai (China); Zou, Yaming, E-mail: zouym@fudan.edu.cn [The Key Lab of Applied Ion Beam Physics, Ministry of Education (China); Shanghai EBIT Laboratory, Modern Physics Institute, Fudan University, Shanghai (China)

    2013-08-21

    An electron beam ion trap (EBIT) is a powerful machine for disentangling studies of atomic processes in plasmas. To assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. Large amounts of simulation works were done to study the factors which hinder the EBIT from operation at very low electron beam energies. Under the guide line of the simulation results, we finally managed to successfully reach 60 eV for the lower end of the electron beam energy with a beam transmission above 57%. In this presentation, simulation studies of the space charge effect, which is one of the most important causes of beam loss, was made based on Tricomp (Field precision)

  2. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  3. Modification of fluoroelastomer by electron beam irradiation

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Montagna, Lea S.; Leitao Junior, Claudio B.; Pino, Eddy S.; Machado, Luci D.B.

    2005-01-01

    Fluoroelastomer is a polymer usually used as a sealing material due to some excellent properties, comparing to other elastomers, such as good chemical and thermal resistance. The fluoroelastomer used in this paper was a commercial product obtained from two monomers, vinylidene and hexafluoropropylene, containing also carbon black and inorganic fillers. Samples were irradiated with electron beam at doses from 10 to 250 kGy. The results obtained showed that electron beam radiation, in the studied conditions, promotes significant changes in the fluoroelastomer mechanical properties ending up in an increase of hardness, tensile strength and stiffness. The modifications on the mechanical properties can be related to a better adhesion between the fluoro elastomer and the fillers, induced by EB radiation. Micrographs obtained by Scanning Electron Microscopy for non-irradiated and irradiated samples confirmed this behavior. (author)

  4. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    Science.gov (United States)

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  5. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  6. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.

    1977-01-01

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  7. Dose computation for therapeutic electron beams

    Science.gov (United States)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter

  8. Transverse electron beam diagnostics at REGAE

    International Nuclear Information System (INIS)

    Bayesteh, Shima

    2014-12-01

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  9. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  10. Effect of electron beam irradiation on the thermal properties of polycarbonate / polyester blend

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2007-01-01

    The effect of electron beam irradiation on the thermal properties of Bayfol (polycarbonate/polyester blend) solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) to obtain the activation energy of thermal decomposition for Bayfol detector. The thermogravimetric analysis (TGA) indicated that the Bayfol samples were decomposed in one main break down stage. Samples of 250 μm thickness sheets were exposed to electron beam irradiations in the dose range 20-600 KGy. The variation of melting temperatures with the electron dose was determined using differential thermal analysis (DTA). The results indicated that the electron irradiation in the dose range 200-600 KGy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures

  11. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  12. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  13. Study on local vacuum electron beam welding of flange rim

    CERN Document Server

    He Cheng Dan; Ying Lei; Xu Qi Jin

    2002-01-01

    Local vacuum electron beam welding and its application prospect in military and civil industry are introduced. A home made local vacuum electron beam welding is completed. Its main technical parameters and key techniques are also presented

  14. Large area electron beam diode development

    International Nuclear Information System (INIS)

    Helava, H.; Gilman, C.M.; Stringfield, R.M.; Young, T.

    1983-01-01

    A large area annular electron beam diode has been tested at Physics International Co. on the multi-terawatt PITHON generator. A twelve element post hole convolute converted the coaxial MITL into a triaxial arrangement of anode current return structures both inside and outside the cathode structure. The presence of both inner and outer current return paths provide magnetic pressure balance for the beam, as determined by diode current measurements. X-ray pinhole photographs indicated uniform emission with intensity maxima between the post positions. Current losses in the post hole region were negligible, as evidenced by the absence of damage to the aluminum hardware. Radial electron flow near the cathode ring however did damage the inner anode cylinder between the post positions. Cutting away these regions prevented further damage of the transmission lines

  15. Profiles of an initially perturbed electron beam

    International Nuclear Information System (INIS)

    Abdelsalam, F.W.

    1991-01-01

    This paper discusses the solutions for the profiles of an electron beam which is launched into a constant magnetic field with an initial boundary slope and injected with a radius which is greater or less than the cathode radius. It has been found that the outermost electron traces sine waves and executes limited excursions when the initial boundary slope corresponds to angles up to 1 degree, no matter whether the initial radius is 0.90 or 1.10 times the radius of the cathode. For initial inclination angles close to 2 degrees, the beam boundary does not preserve a sinusoidal shape, this statement holds true for focusing magnetic flux densities varying from 200x10 -4 to 700x10 -4 weber per square meter

  16. NOx reduction by compact electron beam processing

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Wallman, P.H.; Vogtlin, G.E.

    1995-01-01

    Among the new methods being investigated for the post-combustion removal of nitrogen oxides (NO x ) are based on non-thermal plasmas. These plasmas can be produced by electrical discharge methods or electron beam irradiation. The application of electron beam irradiation for NO x removal in power plant flue gases has been investigated since the early 1970's in both laboratory- and pilot-scale experiments. Electrical discharge methods are relatively new entrants in the field of flue gas cleanup. Pulsed corona and dielectric-barrier discharge techniques are two of the more commonly used electrical discharge methods for producing nonthermal plasmas at atmospheric pressure. There are basically two types of reactions responsible for the depletion of NO by non-thermal plasmas: oxidation and reduction

  17. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    OpenAIRE

    Leijten, Zino J. W. A.; Keizer, Arthur D. A.; de With, Gijsbertus; Friedrich, Heiner

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length s...

  18. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Sarada Idris; Mohd Suhaimi Jusoh; Siti Aiasah Hashim

    2011-01-01

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  19. Polarization in electron and proton beams

    International Nuclear Information System (INIS)

    Buon, J.

    1986-03-01

    One first introduces the concept of polarization for spin 1/2 particle beams and discusses properties of spin kinetics in a stationary magnetic field. Then the acceleration of polarized protons in synchrotrons is studied with emphasis on depolarization when resonances are crossed and on the cures for reducing it. Finally, transverse polarization of electrons in storage rings is discussed as an equilibrium between polarizing and depolarizing effects of synchrotron radiation. Means for obtaining longitudinal polarization are also treated

  20. Manipulation and electron-oscillation-measurement of laser accelerated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, H; Hayashi, Y; Kawase, K; Mori, M; Kando, M; Homma, T; Koga, J K; Daido, H; Bulanov, S V, E-mail: kotaki.hideyuki@jaea.go.jp [Advanced Photon Research Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto (Japan)

    2011-01-15

    Monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A stable electron beam is generated in the self-injection scheme by using a nitrogen gas jet target. We found the profile of the electron beam was manipulated by rotating the laser polarization. The electron beam is in the first bucket of the wake wave. In the energy space, transverse oscillation is observed when the laser pulse has S-polarization. The direction of the electron beam is controlled by the gas jet position.

  1. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  2. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin ...

  3. Electron beam treatment of tungsten mock-ups

    Science.gov (United States)

    Zalavutdinov, R.; Novokhatsky, A.; Gusev, V.; Bukhovets, V.; Gorodetsky, A.; Kuznetsov, V.; Litunovsky, N.; Makhankov, A.; Mazul, I.; Mukhin, E.; Petrov, Yu; Rybkina, T.; Sakharov, N.; Tolstyakov, S.; Voronin, A.; Zakharov, A.

    2017-12-01

    To simulate thermal loads in ITER several tungsten (W) water cooled mock-ups were treated by a scanning electron beam (Tsefey-M) at a heat flux up to 1.68 GW m‑2 for a duration of 18 μs and a frequency about 30 kHz. Surface morphology, chemical composition, structure, and microhardness of formed W layers were analyzed by SEM, EPMA, XRD, OM, and Vickers hardness tester. The irradiation treatment resulted in W melting to a depth of 0.3 mm, increasing sub-surface grain sizes, grain ordering in the metal bulk, deep cracking, and decreasing of microhardness to a depth of 2–4 mm. Installation of the pre-damaged W samples in a tokamak Globus-M divertor did not change practically discharge conditions.

  4. Linear and nonlinear characterization of surfaces from a laser beam melt ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Bube, Kevin [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Neto, Camilo Rodrigues [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); University of Sao Paulo, Av. Arlindo Bettio 1000, EACH, 03828-000 Sao Paulo (Brazil); Donner, Reik [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Schwarz, Udo [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Feudel, Ulrike [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)

    2006-04-07

    We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data.

  5. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  6. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm 2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  7. Electron beam radiation effects on recycled polyamide-6

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Silva, Leonardo G. de Andrade e

    2001-01-01

    Applications of electron beam processing in the treatment of polymers are commonly used. The interaction of high energy radiation with polymers may cause permanent modifications in the polymer's physicochemical structure. The induced modifications may result in degradation of the polymer or in improvement of its properties (crosslinking), which are simultaneous and competing processes, depending on the radiation dose utilized. Crosslinking occurs more readily in the polymer's amorphous content and this process makes the glass transition temperature (Tg) of the polymers to increase. Successive recycling cycles promote changes in polymers properties, such as breaking of structure, molecular weight reduction, melt index increase and mechanical resistance reduction. The polyamide-6 resin was recycled for three successive recycling cycles and thi polyamide-6 specimens were molded by the process of injection molding. These specimens were irradiated at the Nuclear Energetic Research Institute (IPEN) radiation facility, on a JOB 188 model accelerator, with a 1.5 MeV electron beam, doses of 200, 300, 400, 500 and 600 kGy, and dose rate of 22.61 kGy/s. The DMA tests were performed using DMA-983 equipment from TA Instruments and two heatings were adopted in order to eliminate the moisture absorption. The X-ray diffraction analysis wa carried out at the Philips PW 1830 model equipment

  8. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  9. Efficient electron beam deposition for repetitively pulsed krypton fluoride lasers

    International Nuclear Information System (INIS)

    Hegeler, F.; Myers, M.C.; Friedman, M.; Sethian, J.D.; Swanekamp, S.B.; Rose, D.V.; Welch, D.R.

    2002-01-01

    We have demonstrated that we can significantly increase the electron beam transmission efficiency through a pressure foil structure (hibachi) by segmenting the beam into strips to miss the hibachi support ribs. In order to increase the electron beam transmission, the cathode strips are adjusted to compensate for beam rotation and pinching. The beam propagation through the hibachi has been both measured and simulated with 1-D and 3-D codes

  10. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  11. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  12. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  13. Electron beam application in gas waste treatment in China

    International Nuclear Information System (INIS)

    Wu Haifeng

    2003-01-01

    In the most recent decade, electron beam waste treatment technology attracted serious attention from environment policymaker and industrial leaders in power industry in China. Starting in middle of 1980's, Chinese research institute began experiment of electron beam treatment on flue gas. By the end of 2000, two 10,000 cubic meters per hour small scale electron beam gas purifying station were established in Sichuang province and Beijing. Several electron beam gas purifying demonstration projects are under construction. With robust economy and strong energy demand, needless to say, in near future, electron beam gas purifying technology will have a bright prospect in China. (author)

  14. Environmental applications of electron-beam technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    2001-01-01

    The main directions of modern environmental applications of electron-beam technology are the following: 1) treatment of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes; 2) purification of gases; 3) treatment of sewage sludges; 4) treatment of solid wastes (medical wastes, contaminated soil and so on). In some cases, the results of respective researches and developments found a large-scale application. For example, recently several industrial plants for electron-beam purification of flue gases of thermal power plants from SO2 and NOx were created in China, Poland and Japan. In the report, a brief summary of the most important results obtained in the mentioned directions will be presented. A special attention will be paid to the data in the first direction. In particular, the recent results on radiation treatment of some liquid systems obtained in the laboratory under author's leadership will be considered. One of them is water polluted with petroleum products (motor oil, diesel fuel, residual fuel oil). The pollutants were present in water in dissolved form and as a separate phase. It was found that irradiation (dose 25-40 kGy) decomposes and removes the pollutants as a precipitate. The second system is natural oil gas consisting of gaseous and low-boiling hydrocarbons, water and so on. Laboratory- and pilot-scale (with electron accelerator of 0.7 MeV and 30 kW) studies have shown that electron-beam treatment (in a recycling regime with continuous sampling the liquid phase) of this gas leads to the formation of a mixture of liquid branched hydrocarbons, alcohols, ethers and so on, i.e., there is a radiation-induced liquefaction of the natural oil gas. The mechanism of radiolytic conversions occurring in the mentioned systems will be discussed

  15. Dispersion of metal microdrops exposed to an electron beam with dynamical retention in an electrostatic trap

    Science.gov (United States)

    Ermolaev, Yu. L.; Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Gurevich, S. A.

    2014-01-01

    The process of obtaining nanoparticles of pure metals by melting down initial powder particles using the infrared emission and by charging them electrically in an electron beam with the subsequent splitting them to nanodrops is investigated numerically. The possibility of a substantial increase in the duration of the drop's stay in the working zone due to the effect of an electrostatic trap is shown, which allows the requirements for the electron beam to be lowered, the range of initial conditions to be extended, and the stability of the process as a whole to be enhanced by implementing the cascade splitting of drops of all sizes in a single regime.

  16. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  17. The CMS Beam Halo Monitor Electronics

    CERN Document Server

    AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...

  18. Polystyrene as a zwitter resist in electron beam lithography based ...

    Indian Academy of Sciences (India)

    The resist action of polystyrene (w, 2,600,000) towards electroless deposition of gold on Si(100) surface following cross-linking by exposing to a 10 kV electron beam, has been investigated employing a scanning electron microscope equipped with electron beam lithography tool. With a low dose of electrons (21 C/cm2), ...

  19. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  20. Online measurement of electron beam parameters by image processing

    International Nuclear Information System (INIS)

    Tyagi, Y.; Puntambekar, T.A.

    2010-01-01

    The basic image acquisition software which was developed earlier has been recently upgraded to support online measurement of beam centroid, beam height and beam width from the diagnostic devices namely fluorescent screen beam profile monitors and beam slit monitor installed in Transport Line -1(TL-1) at Indus Accelerator Complex at RRCAT, Indore. The online measurement of these electron beam parameters has helped the Indus operation team to take necessary corrective action if required before injection of the electron beam into booster synchrotron. This paper presents the methodology adopted for online measurement of above parameters in the software. (author)

  1. Beam characterisation of the KIRAMS electron microbeam system

    International Nuclear Information System (INIS)

    Sun, G. M.; Kim, E. H.; Song, K. B.; Jang, M.

    2006-01-01

    An electron microbeam system has been installed at the Korea Inst. of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 μm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV μm -1 . The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics. (authors)

  2. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  3. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam ...

  4. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    International Nuclear Information System (INIS)

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-01-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained

  5. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  6. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1992-01-01

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  7. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  8. Polarization of a stored electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  9. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  10. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  11. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  12. Interpenetrating Polymer Network (IPN) Adhesives for Electron Beam Cure

    National Research Council Canada - National Science Library

    Sands, James

    2000-01-01

    Electron beam (e-beam)-processed polymer adhesives have historically performed poorly compared to traditional adhesive technologies due to a lack of toughness engineered into these new types of adhesive materials...

  13. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-01-01

    Purpose: Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Methods: Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Results: Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the

  14. Manual multi-leaf collimator for electron beam shaping - a feasibility study

    International Nuclear Information System (INIS)

    Ravindran, B Paul; Singh, I Rabi Raja; Brindha, S; Sathyan, S

    2002-01-01

    In electron beam therapy, lead or low melting point alloy (LMA) sheet cutouts of sufficient thickness are commonly used to shape the beam. In order to avoid making cutouts for each patient, an attempt has been made to develop a manual multi-leaf collimator for electron beams (eMLC). The eMLC has been developed using LMA for a 15x15 cm 2 applicator. Electron beam characteristics such as depth dose, beam profiles, surface dose, output factors and virtual source position with the eMLC have been studied and compared with those of an applicator electron beam. The interleaf leakage radiation has also been measured with film dosimetry. Depth dose values obtained using the eMLC were found to be identical to those with the applicator for depths larger than D max . However, a decrease in the size of the beam penumbra with the eMLC and increase in the values of surface dose, output factors and virtual source position with eMLC were observed. The leakage between the leaves was less than 5% and the leakage between the opposing leaves was 15%, which could be minimized further by careful positioning of the leaves. It is observed that it is feasible to use such a manual eMLC for patients and eliminate the fabrication of cutouts for each patient

  15. Unveiling the orbital angular momentum and acceleration of electron beams.

    Science.gov (United States)

    Shiloh, Roy; Tsur, Yuval; Remez, Roei; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2015-03-06

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

  16. Intensive Ion Beam In Storage Rings With Electron Cooling

    CERN Document Server

    Korotaev, Yu V; Kamerdjiev, V; Maier, R; Meshkov, I; Noda, K; Prasuhn, D; Sibuya, S; Sidorin, A; Stein, H J; Stockhorst, H; Syresin, E M; Uesugi, T

    2004-01-01

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) and an ion beam at HIMAC (Chiba, Japan) are presented. Intensity of the ion beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Methods of the instability suppression, which allow increasing the cooled beam intensity, are described.

  17. Measurement of electron beams profile of pierce type electron source using sensor of used Tv tube

    International Nuclear Information System (INIS)

    Darsono; Suhartono; Suprapto; Elin Nuraini

    2015-01-01

    The measurement of an electron beam profile has been performed using electron beam monitor based on method of phosphorescent materials. The main components of the electron beam monitor consists of a fluorescent sensor using a used Tv tube, CCTV camera to record images on a Tv screen, video adapter as interface between CCTV and laptop, and the laptop as a viewer and data processing. Two Pierce-type electron sources diode and triode was measured the shape of electron beam profile in real time. Results of the experiments showed that the triode electron source of Pierce type gave the shape of electron beam profiles better than that of the diode electron source .The anode voltage is not so influential on the beam profile shape. The focused voltage in the triode electron source is so influence to the shape of the electron beam profile, but above 5 kV no great effect. It can be concluded that the electron beam monitor can provide real time observations and drawings shape of the electron beam profile displayed on the used Tv tube glass screen which is the real picture of the shape of the electron beam profile. Triode electron source produces a better electron beam profile than that of the diode electron source. (author)

  18. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-09-01

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  19. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  20. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  1. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  2. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  3. Deterministic Nanopatterning of Diamond Using Electron Beams.

    Science.gov (United States)

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  4. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  5. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  6. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  7. Electron Cloud with Inverted Beam Screens

    CERN Document Server

    Maury Cuna, H

    2011-01-01

    We report the results of computer simulations studying the effect of wrongly oriented LHC beam screens on the local electron-cloud heat load and density. At 3.5 or 7-TeV energy and for maximum secondary emission-yield values below 1.5, with the inverted sawtooth orientation about ten times higher heat load is expected than for the standard orientation, and the wrongly oriented sawtooth chambers could lead to a local heat-load bottleneck during the process of surface conditioning at 25-ns bunch spacing. The available cooling margin can be significantly increased by correcting the sawtooth orientations at least for two dipole magnets in LHC arc cells 26 and 32 R3, in order that there be no half-cell cooling loop containing more than one inverted screen.

  8. Electron Cloud with Inverted Beam Screens

    CERN Document Server

    Maury Cuna, H; CERN. Geneva. ATS Department

    2011-01-01

    We report the results of computer simulations studying the effect of wrongly oriented LHC beam screens on the local electron-cloud heat load and density. At 3.5 or 7-TeV energy and for maximum secondary emission-yield values below 1.5, with the inverted sawtooth orientation about ten times higher heat load is expected than for the standard orientation, and the wrongly oriented sawtooth chambers could lead to a local heatload bottleneck during the process of surface conditioning at 25-ns bunch spacing. The available cooling margin can be significantly increased by correcting the sawtooth orientations at least for two dipole magnets in LHC arc cells 26 and 32 R3, in order that there be no half-cell cooling loop containing more than one inverted screen.

  9. 3D shaping of electron beams using amplitude masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Arie, Ady

    2017-06-15

    Highlights: • Electron beams are shaped in 3D with examples of curves and lattices. • Computer generated holograms are manifested as binary amplitude masks. • Applications in electron-optical particle trapping, manipulation, and synthesis. • Electron beam lithography fabrication scheme explained in detail. • Measurement paradigms of 3D shaped beams are discussed. - Abstract: Shaping the electron wavefunction in three dimensions may prove to be an indispensable tool for research involving atomic-sized particle trapping, manipulation, and synthesis. We utilize computer-generated holograms to sculpt electron wavefunctions in a standard transmission electron microscope in 3D, and demonstrate the formation of electron beams exhibiting high intensity along specific trajectories as well as shaping the beam into a 3D lattice of hot-spots. The concepts presented here are similar to those used in light optics for trapping and tweezing of particles, but at atomic scale resolutions.

  10. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  11. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  12. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  13. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    CERN Document Server

    Fitterer, M; Valishev, A; Bruce, R; Papotti, G; Redaelli, S; Valentino, G; Valentino, G; Valuch, D; Xu, C

    2017-01-01

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  14. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  15. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  16. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  17. Commercializing ALURTRONs electron beam irradiation services

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Mohd Sidek Othman; Shari Jahar; Sarada Idris; Naurah Mohd Isa; Muhamad Zahidee Taat

    2010-01-01

    ALURTRON has been the nation's sole electron irradiation service provider for research sectors. The main irradiation is done by utilising the EPS 3000 Cockcroft-Walton type 3.0 MeV, 90 k Watts electron beam machine (EBM). With more than 15 years experience in the operation and maintenance of the EPS, the challenge is now to commercialize the service at a larger and profitable scale. Medical products sterilization at commercial level has been ruled out since the energy is insufficient to penetrate dense and non-homogenous items. Recently, the demand for irradiation of wire and heat shrinkable tubes is showing bigger commercial potential. Therefore, prudent planning considerations need to be taken to ensure profitable return to the agency. Calculations were made to estimate ALURTRON service capacity, based on the existing EBM and its auxiliary systems. Details of the calculation including all the variables are presented. Results indicated that Alurtron should be able to process a minimum of 1000 km of small wires per month, running at 150 m/ min, working in two shifts, 5 days a week. The projected revenue is dependent on the charges imposed on the basis of total length delivered. (author)

  18. Modification of some properties of polyamide-6 by electron beam induced grafting

    International Nuclear Information System (INIS)

    Timus, D.M.; Cincu, C.; Bradley, D.A.; Craciun, G.; Mateescu, E.

    2000-01-01

    Electron irradiation, applied on its own or in combination with other physical and chemical treatments, can result in radiation damage to materials. One category of such pursuits is electron beam radiation processing technologies, the intent being to produce favourable modification of materials. Study has been made herein of the use of accelerator-generated electron beams for the induced grafting of acrylic and methacrylic acids and acrylamide onto polyamide-6, the latter being popularly used in the textiles industry. Samples of polyamide-6, in the form of rectangular sheets of dimension, 10 cm x 10 cm or granules, have been irradiated using a 3 GHz travelling wave electron accelerator of energy 6.5 MeV. Results show that the degree of grafting is dependent upon radiation dose and extent of monomers dilution. Modifications have been observed in the melting temperature of the crystalline phase, glass transition temperature, mechanical parameters and the reticulation of polyamide

  19. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  20. Planar Heating Element Adjusted by Electron Beam Micromachining

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor; Dupák, Jan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 82-84 ISSN 0861-4717 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam machining * heating element Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  2. Effect of electron beam on in vitro cultured orchid organs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jaihyunk; Bae, Seho; Bae, Changhyu [Sunchon National Univ., Suncheon (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy {approx} 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner.

  3. Surface dynamics using pulsed electron beams

    Science.gov (United States)

    Chan, Ally S. Y.; Jones, Robert G.

    2000-04-01

    Line of sight time of flight has been used to measure the translational energy of ethene formed by dissociative electron attachment of adsorbed dihalocarbons (XCH 2CH 2Y) on Cu(111) at 100 K. A pulsed electron beam was used to generate low energy secondary electrons at the surface, which were the active agents in initiating the decomposition, XCH 2CH 2Y(ads)+e -→XCH 2CH 2rad (ads)+Y(chem)+e -, XCH 2CH 2rad (ads)→C 2H 4(g)+X(chem). For 1,2-dichloroethane (DCE) adsorbed with a spacer layer of chemisorbed chlorine between it and the Cu(111)surface, the TOF data could be fitted using three Maxwell distributions with fast (960 K), slow (180 K) and diffusion ('20 K') components. For a single monolayer of DCE adsorbed directly on the clean Cu(111) surface the fast (1230 K) and slow (225 K) components increased in temperature, indicating that the copper surface was affecting the reaction. For 1-bromo-2-chloroethane the results were the same, consistent with both molecules dissociating via a common intermediate, ClC 2H 4rad (ads). For 1,2-dibromoethane the intermediate is different, BrC 2H 4rad , and decomposition of a monolayer of this molecule on clean Cu(111) exhibited fast (1850 K) and slow (270 K) components, both higher than the corresponding temperatures for DCE. The dynamics of these reactions and the origin of the two Maxwell distributions are discussed in terms of the energy available within the radical, and from the formation of the chemisorbed halogen when the radical dissociates.

  4. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm - 2 μ). This paper considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam at Stanford Linear Accelerator Center, is a few nm. 13 refs., 4 figs. 1 tab

  5. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  6. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  7. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  8. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  9. KrF laser pumping by electron beam discharge

    International Nuclear Information System (INIS)

    Bonnet, Jean; Fournier, Gerard; Pigache, Daniel

    1981-01-01

    Homogeneous ionization with an electron beam has permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio greater than 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This new result does not really modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate [fr

  10. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  11. Comparison of High Resolution Negative Electron Beam Resists

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Schøler, Mikkel; Shi, Peixiong

    2006-01-01

    Four high resolution negative electron beam resists are compared: TEBN-1 from Tokuyama Corp. Japan, ma-N 2401XP and mr-L 6000AXP from microresist technology GmbH Germany, and SU-8 2000 series from MicroChem Corp., USA. Narrow linewidth high density patterns are defined by 100 kV electron beam...

  12. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  13. Metastable atom probe for measuring electron beam density profiles

    Science.gov (United States)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  14. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises of heterogeneous organic based chemicals as well as pathogens. EB (electron beam) ...

  15. Measurement of centroid trajectory of Dragon-I electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Zhang Wenwei; Zhang Kaizhi; Li Jing; Li Chenggang; Yang Guojun

    2005-01-01

    The control of the electron beam in an intense current linear induction accelerator (LIA) is very important. The center position of the electron beam and the beam profile are two important parameters which should be measured accurately. The setup of a time-resolved measurement system and a data processing method for determining the beam center position are introduced for the purpose of obtaining Dragon-I electron beam trajectory including beam profile. The actual results show that the centroid position error can be controlled in one to two pixels. the time-resolved beam centroid trajectory of Dragon-I (18.5 MeV, 2 kA, 90 ns) is obtained recently in 10 ns interval, 3 ns exposure time with a multi-frame gated camera. The results show that the screw movement of the electron beam is mainly limited in an area with a radius of 0.5 mm and the time-resolved diameters of the beam are 8.4 mm, 8.8 mm, 8.5 mm, 9.3 mm and 7.6 mm. These results have provided a very important support to several research areas such as beam trajectory tuning and beam transmission. (authors)

  16. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  17. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-01-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  18. Innovative energy efficient low-voltage electron beam emitters

    Science.gov (United States)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-03-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates.

  19. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  20. Isotope separation using tuned laser and electron beam

    International Nuclear Information System (INIS)

    Trajmar, S.

    1987-01-01

    The method for producing and separating a stream of a selected isotope from an atomic beam containing a mixture of isotopes is described comprising the steps of: (a) producing an atomic beam containing the isotope of interest and other isotopes; (b) producing a magnetic field to broaden the energy domain of the individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough; (c) producing a laser beam; (d) adjusting the polarization of the laser beam to further maximize the activation of only individual magnetic sublevels of the isotope of interest; (e) aiming the laser beam to strike the atomic beam within the magnetic field and traverse the path of the atomic beam; (f) producing a collimated and high intensity beam of electrons within the magnetic field aimed to strike the atomic beam; and, (g) disposing deflection means to have the atomic beam pass therethrough after being struck by the electron beam and deflect the ionized isotope from the remainder of the beam to form a separate stream composed only of the isotope of interest

  1. Large-Area Plasmas Formed by Magnetically Confined Electron Beams

    Science.gov (United States)

    Fernsler, Richard; Meger, Robert; Lampe, Martin; Manheimer, Wallace; Murphy, Donald; Pechacek, Robert

    1998-10-01

    Magnetically confined electron beams can create plasmas in gas with less heating and greater control and uniformity than sources that produce ionization by heating the plasma electrons. Control is greater because the beam is generated separate from the plasma and steered using an external magnetic field. Uniformity is high because the beam current is constant along the propagation direction and confined magnetically in the transverse direction. And last, heating is reduced because energetic beam electrons ionize efficiently. That is, beam electrons typically require 30 eV of discharge energy per plasma electron formed, whereas conventional plasma sources require 100 eV and often much more. Based on these concepts, a Large Area Plasma Processing System (LAPPS) reactor has recently been built at the Naval Research Laboratory.(R. A. Meger et al., this conference) This reactor utilizes a long hollow-cathode glow discharge to generate a sheet electron beam of several keV in energy, and this beam produces planar plasmas up to 60 cm on a side by 2 cm thick with densities as high as 5x10^12 cm-3 in 30 mtorr of oxygen. Various aspects of beam-produced plasmas will be discussed including confinement and stability, efficiency of ionization and dissociation, cathode operation, and the effects of a low and adjustable plasma electron temperature.

  2. Pulsed electron beam propagation in argon and nitrogen gas mixture

    Science.gov (United States)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-01

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  3. Electron beam modification of vanadium dioxide oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Maksim; Velichko, Andrey; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander [Petrozavodsk State University, Petrozavodsk (Russian Federation)

    2017-03-15

    The paper presents the results of a study of electron-beam modification (EBM) of VO{sub 2}-switch I-V curve threshold parameters and the self-oscillation frequency of a circuit containing such a switching device. EBM in vacuum is reversible and the parameters are restored when exposed to air at pressure of 150 Pa. At EBM with a dose of 3 C cm{sup -2}, the voltages of switching-on (V{sub th}) and off (V{sub h}), as well as the OFF-state resistance R{sub off}, decrease down to 50% of the initial values, and the oscillation frequency increases by 30% at a dose of 0.7 C cm{sup -2}. Features of physics of EBM of an oscillator are outlined considering the contribution of the metal and semiconductor phases of the switching channel. Controlled modification allows EBM forming of switches with preset parameters. Also, it might be used in artificial oscillatory neural networks for pattern recognition based on frequency shift keying. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  5. Heat shrinkage of electron beam modified EVA

    International Nuclear Information System (INIS)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K.

    1997-01-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author)

  6. Heat shrinkage of electron beam modified EVA

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K. [Indian Institute of Technology, Kharagpur (India). Rubber Technology Center; Tikku, V.K.; Pradhan, N.K. [NICCO Corporation Ltd., (Cable Div.), Calcutta (India)

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author).

  7. Experiments on Ion Beam Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1998-01-01

    Space-charge neutralization of heavy ion beams with electron beam pulses generated by electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. A charge enhancement factor of four has been achieved by neutralization with pulsed electron beams for Al7+ ions generated from an aluminium target.

  8. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  9. Ion and electron beam interaction on surfaces - a detection mechanism for obtaining visual ion beam images

    International Nuclear Information System (INIS)

    Fine, J.; Gorden, R. Jr.

    1978-01-01

    Two-dimensional images have been obtained of ion beam impact cross sections on solid surfaces by the coincident interaction of a rastered electron beam. This detection method is effective in producing images in real time on various insulator surfaces. The size of these images correlates well with ion beam current density profile measurements (at full width) and, therefore, can be very useful for ion beam diagnostics and alignment. (Auth.)

  10. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  11. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  12. Electron-beam induced conduction in some polymers

    International Nuclear Information System (INIS)

    Suzuoki, Yasuo; Mizutani, Teruyoshi; Ieda, Masayuki

    1976-01-01

    The charge signal induced by pulsed electron beam consists of two components, i.e. the fast and the slow components. The slow component which corresponds to carrier transport via shallow traps exhibited an asymmetry with respect to the bias field polarity. The asymmetry revealed that the main carriers which drifted via shallow traps were electrons in PET, both electrons and holes in PEN, and holes in PS. TSC spectra of electron-beam induced electrets proved directly the existence of electron shallow traps in PET and both electron and hole traps in PEN. Their trap energies were 0.1 to 0.2 eV. (auth.)

  13. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  14. Generation and application of bessel beams in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Harris, Jérémie [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada); Gazzadi, Gian Carlo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Balboni, Roberto [CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Dennis, Mark R. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W.; Karimi, Ebrahim [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2016-07-15

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  15. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  16. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-01-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  17. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  18. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  19. Electron beam curing of acrylic oligomers

    International Nuclear Information System (INIS)

    Seto, J.; Arakawa, S.; Ishimoto, C.; Miyashita, M.; Nagai, T.; Noguchi, T.; Shibata, A.

    1984-01-01

    The electron-beam curing process of acrylic oligomers, with and without γ-Fe 2 O 3 pigment filler and blended linear polymer, was investigated in terms of molecular structure and reaction mechanism. The polymerized fraction of trimethylolpropane-triacrylate (TMPTA) oligomers increases with increasing total dose, and is independent of the dose rate. Since the reaction rate is linearly dependent on the dose rate, the reaction mechanism involves monomolecular termination. The reaction rate does not depend on the number of functional groups of the oligomer at low doses, but above 0.3 Mrad the rate is slower for oligomers of higher functionality. A gel is formed more readily upon curing of a polyfunctional than a monofunctional oligomer, especially at high conversion to polymer; the resulting loss of flexibility of the polymer chains slows the reaction. Decrease of the molecular weight per functional group results in lower conversion; this is also due to the loss of chain flexibility, which is indicated as well by a higher glass-transition temperature. Modification of the acrylate oligomers with urethane results in more effective cross-linking reactions because of the more rigid molecular chains. Addition of γ-Fe 2 O 3 pigment reduces the reaction rate very little, but has the effect of providing added structural integrity, as indicated by the decrease of solvent-extractable material and the improvement of anti-abrasion properties. However, the flexibility of the coating and its adhesion to a PET base film are diminished. To increase the flexibility, linear polyvinylchloride and/or polyurethane were added to the acrylic oligomers. Final conversion to polymer was nearly 100 percent, and a higher elastic modulus and better antiabrasion properties were realized

  20. Single-electrode monitors for relativistic intense electron beam parameters

    International Nuclear Information System (INIS)

    Stratienko, V.A.; Khorenko, V.K.

    1977-01-01

    A single-electrode monitor operating in atmosphere on delta-electrons for precision measurement of high-intensity electron beams is developed. As an emitter is used a 0.2 mm aluminium foil with a hole which is a replica of the sample subjected to radiation. The electric charge from the emitter is recorded by a current integrator. The single-electrode monitor enabled to form a 225 MeV electron beam with a flux density of 5x10 15 electrons/ (cm 2 and confine the latter for 140 hours with an accuracy of +- 0.2 mm. Controlling the beam shifting by means of the single-electrode monitor described, it is possible to measure the real dimensions and density distributions of high-intensity electron beams

  1. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-01-01

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the imaging optics was in good agreement with the design value

  2. Electron beam characterization of a combined diode rf electron gun

    Directory of Open Access Journals (Sweden)

    R. Ganter

    2010-09-01

    Full Text Available Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100  MV/m obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson et al., New J. Phys. 12, 035012 (2010NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4  μm for a charge of 200 pC and a bunch length of less than 10 ps (rms. A normalized projected emittance of 0.23  μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54  μm/mm of laser spot size (rms for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2  μm was measured with 200 pC and 100  MV/m diode gradient.

  3. Measurement of electron beam bunch phase length by rectangular cavities

    International Nuclear Information System (INIS)

    Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.

    1976-01-01

    An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers

  4. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  5. The simulation of the electron beam spot control

    Directory of Open Access Journals (Sweden)

    Stelian Emilian Oltean

    2011-12-01

    Full Text Available Electron beams have many special properties which make them particularly well suited for use in materials processing, wherever conventional techniques failed or proved to be inefficient. The entire process has a lot of time varying parameters, so using a distributed control system for 3d position of the electron beam spot may improve the quality of the material processing. Matlab environment was used for model implementation and simulations of the control system which contains the focusing and deflecting components. Due the nature of the process and knowing the electron beam equipment we proposed for the simulations scenarios with a 3D virtual surface.

  6. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  7. A compact, versatile low-energy electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); König, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  8. The use of electron beams for pasteurization of meats

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-01-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed

  9. The use of electron beams for pasteurization of meats

    Energy Technology Data Exchange (ETDEWEB)

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-12-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed.

  10. Design of electron beam accelerator for microwave application

    Science.gov (United States)

    Prestwich, K. R.

    Relativistic electron beams are used for generating high power microwaves. These microwave sources require electron beam generators spanning significant ranges in voltage and impedance. The pulsed power technology used to generate these electron beams is presented. Electron beam generators that produce beams with pulse durations in the 10 ns to 100 ns regime consist of an energy storage section, pulse shaping section, and an electron beam diode. The energy storage section is either a Marx generator or capacitor bank-pulsed transformer. The pulse shaping is done with high-voltage transmission lines. The electron beam diode is usually a cold-cathode, space-charge-limited flow device. For longer pulses (approx 1 microsec) the energy storage and pulse shaping can be combined. Lumped-element pulsed-forming networks (PFN) can be designed to produce the desired pulse shape. The Marx generator becomes one of the elements of the PFN. Alternatively, a low voltage PFN followed by a highly coupled transformer can be used. Basic design principles for all of the above subsystems are discussed. Both PFLs and PFNs can also be operated as inductive storage systems with opening switches.

  11. Production of a helium beam in a focused ion beam machine using an electron beam ion trap

    International Nuclear Information System (INIS)

    Ullmann, F.; Grossmann, F.; Ovsyannikov, V. P.; Gierak, J.; Zschornack, G.

    2007-01-01

    Gallium liquid-metal ion sources that have been introduced in the late 1970s have allowed the development of a new class of micro- and nanofabrication tools collectively denominated as focused ion beam (FIB) machines. To investigate the potential of a helium beam in such a FIB instrument the authors have tested a room-temperature electron beam ion trap coupled with a high resolution FIB machine. In this letter they present their first results in target imaging using a helium beam with a resolution that allows to account for a beam diameter in the submicrometer range

  12. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Science.gov (United States)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  13. Technological Aspects of Corrosion-Resistant Steels Surfacing by Intense Relativistic Electron Beams

    Science.gov (United States)

    Belozerov, V. V.; Donets, S. E.; Klepikov, V. F.; Kivshik, V. F.; Lytvynenko, V. V.; Lonin, Yu. F.; Ponomarev, A. G.; Uvarov, V. T.

    Intense tubular relativistic electron beams are a promising tool for a number of practical applications, such as obtaining nanodispersed powder materials, surface properties modification of products, remote surfacing, etc. In current technologies for obtaining of nanopowder materials, one of the leading techniques is one based on the materials handling concentrated flows of energy. Using the various technological equipment (pulse current generators, accelerators), energy is inputted into the material in the form of intense impulse current, the plasma flows of charged particle beams. Each of the specified types of impact is characterized by a certain decomposition mechanism of processed materials to micro- and nano-sized state. Thus, the action of intense pulsed currents based on the thermal evaporation of a melt conductor with its subsequent condensation in liquid, the use of plasma flows and charged particle beams also involves evaporation and condensation of a material in a vacuum or in a special atmosphere.

  14. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  15. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  16. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  17. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  18. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); University of the Western Cape, Belville (South Africa); Devanandhan, S., E-mail: devanandhan@gmail.com [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa)

    2016-08-15

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.

  19. Instability during bunch shortening of an electron-cooled beam

    Directory of Open Access Journals (Sweden)

    M. Takanaka

    2003-10-01

    Full Text Available Bunch shortening causes an electron-cooled beam to be space charge dominated at low energies. Instability during the bunch shortening has been studied using a particle-tracking program where the 3D space-charge field due to the beam is calculated with a simplifying model.

  20. Electron beam induced conductivity in 'PET' and 'FEP'

    International Nuclear Information System (INIS)

    Walzade, S.J.; Jog, J.P.; Dake, S.B.; Bhoraskar, S.V.

    1983-01-01

    Electron Beam Induced Conductivity (EBIC), classified into EBIC (bulk) and EBIC (surface) have been measured in PET and FEP respectively. The peculiar oscillatory nature of the induced gain versus beam energy variations is explained in terms of the spatial distributions of the trapping centres near the surface of the polymers. (author)

  1. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  2. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  3. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  4. Brushless dc motor uses electron beam switching tube as commutator

    Science.gov (United States)

    Studer, P.

    1965-01-01

    Electron beam switching tube eliminates physical contact between rotor and stator in brushless dc motor. The tube and associated circuitry control the output of a dc source to sequentially energize the motor stator windings.

  5. Electron beam irradiated silver nanowires for a highly transparent heater.

    Science.gov (United States)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-07

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  6. Inductive voltage adder (IVA) for submillimeter radius electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E. [and others

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  7. Theory of suppression of loss cone instabilities by electron beams

    International Nuclear Information System (INIS)

    Sinha, A.; Sinha, M.

    1981-01-01

    A new mechanism for the suppression of Drift Cyclotron Loss Cone instabilities by electron beams injected along the field lines is given. The mechanism explains some of the recent observations. (author)

  8. 'The future of the electron beam irradiation service business'

    International Nuclear Information System (INIS)

    Yamase, Yutaka

    1998-01-01

    The high energy electron beam has less penetration power in comparison with the gamma ray which has been used from before. However, the dose rate of the electron beam is considerably high in comparison with the gamma ray with more than several thousand times. Therefore, the irradiation of the product can be done in a short time, and there are cheap characteristics further in the irradiation cost as well. And, an electron beam is the technology which is very easy to accept in the country of a nuclear allergy constitution like our country so that it may not use radioactive substance. This time, I'd like to think about the present condition of the electron beam irradiation service business and a future based on the experience of Tsukuba EBcenter until now. (J.P.N.)

  9. Measurement of power density distribution and beam waist simulation for electron beam

    International Nuclear Information System (INIS)

    Shen, Chunlong; Peng, Yong; Wang, Kehong; Zhou, Qi

    2013-01-01

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics. - Highlights: ► We build a framework for measuring power density distribution for electron beam. ► We capture actual electron and build transient spatial power distribution for EB. ► Tracing algorithm of power density contour for cross-section was designed. ► The volume and waist of the beam are reconstructed in 4D mode. ► Geometry measurement is finished which is befit for designing of process welding.

  10. The use of electron beam in RIA R and D

    International Nuclear Information System (INIS)

    Gomes, Itacil C.; Nolen, Jerry; Reed, Claude

    2004-01-01

    This paper discusses two electron beam applications for the RIA (Rare Isotope Accelerator) R and D. The first is for simulating energy deposition of heavy ions on lithium jets. The peak energy deposition for a 400-kW uranium beam will be 4 MW/cm 3 . Calculations have shown that a 1-MeV electron beam with 40mA of current has a peak energy deposition about 4 MW/cm 3 making it suitable to mimic the thermal response of lithium jet at that uranium beam heat load. The second application of electron beams for RIA R and D, discussed in this paper, is the use of low energy electron beam as a diagnosis tool for on-line monitoring of thickness variations of thin foils or thin jets. Thin foils can be corroded and jets might experience instabilities that can compromise their functionality. Low energy electron beams can be used to detect any change in thickness enabling a continuous on-line monitoring of the thin film being monitored. Calculations have indicated that variations in lithium jet thicknesses at the micron level can easily be detected

  11. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  12. Fabrication of Nano-pit Array Using Electron Beam Lithography

    International Nuclear Information System (INIS)

    Maryam Alsadat Rad; Kamarulazizi Ibrahim

    2011-01-01

    This work reports the fabrication of nano-pits array pattern using electron beam lithography (EBL). We investigated the effect of different electron beam dosage and acceleration voltage in fabrication nano-pits array pattern and effect of them on dimension of nano-pits. The SEM images have shown effect of the voltage and dosage variation on them and also the proximity effect. (author)

  13. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  14. Time dependence of microsecond intense electron beam transport in gases

    International Nuclear Information System (INIS)

    Lucey, R.F. Jr.; Gilgenback, R.M.; Tucker, J.E.; Brake, M.L.; Enloe, C.L.; Repetti, T.E.

    1987-01-01

    The authors present results of long-pulse (0.5 μs) electron beam propagation in the ion focused regime (IFR). Electron beam parameters are 800 kV with several hundred amperes injected current. For injection into air (from 0.7 mTorr to 75 mTorr) and helium (from 14 mTorr to 227 mTorr) the authors observe a ''time-dependent propagation window'' in which efficient (up to 100%) propagation starts at a time comparable to the electron impact ionization time needed to achieve n/sub i/ -- (1/γ/sup 2/)n/sub eb/. The transport goes abruptly to zero about 50-150 ns after this initial propagation. This is followed by erratic propagation often consisting of numerous narrower pulses 10-40 ns wide. In these pulses the transported current can be 100% of the injected current, but is generally lower. As the fill pressure is increased, there are differences in the propagated beam pulse, which can be summarized as follows: 1) the temporal occurrence of the beam propagation window shifts to earlier times, 2) the propagated beam current has much faster risetimes, 3) a larger portion of the injected beam is propagated. Similar results are observed when the electron beam is propagated in helium. However, at a given pressure, the beam transport window occurs at later times and exhibits a slower risetime. These effects are consistent with electron beam-induced ionization. Experiments are being performed to determine if the observed beam instability is due to the ion hose instability or streaming instability

  15. Molecule-by-Molecule Writing Using a Focused Electron Beam

    DEFF Research Database (Denmark)

    Van Dorp, Willem F.; Zhang, Xiaoyan; Feringa, Ben L.

    2012-01-01

    atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor...... on graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated...

  16. Sterilization of experimental animal feeds with high energy electron beam

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya; Shakudo, Taketomi; Furuta, Masakazu; Tada, Mikiro

    2005-01-01

    Penetration range and depth-dose distribution of 10 MeV electrons within commercial packages of experimental animal feeds were examined with a high power electron accelerator for verification of the application of high energy electron beam irradiation to sterilize experimental animal feeds. Optimum packaging sizes were proposed based on the experimental results. The change of the vitamins and the efficacy of the sterilization by the irradiation were also studied. It is confirmed that the sterilization of experimental animal feeds by 10 MeV electron beam has been completely practical. (author)

  17. Production of large-area plasmas by electron beams

    Science.gov (United States)

    Fernsler, R. F.; Manheimer, W. M.; Meger, R. A.; Mathew, J.; Murphy, D. P.; Pechacek, R. E.; Gregor, J. A.

    1998-05-01

    An analysis is presented for the production of weakly ionized plasmas by electron beams, with an emphasis on the production of broad, planar plasmas capable of reflecting X-band microwaves. Considered first in the analysis is the ability of weakly ionized plasmas to absorb, emit and reflect electromagnetic radiation. Following that is a determination of the electron beam parameters needed to produce plasmas, based on considerations of beam ionization, range, and stability. The results of the analysis are then compared with a series of experiments performed using a sheet electron beam to produce plasmas up to 0.6 m square by 2 cm thick. The electron beam in the experiments was generated using a long hollow-cathode discharge operating in an enhanced-glow mode. That mode has only recently been recognized, and a brief analysis of it is given for completeness. The conclusion of the study is that electron beams can produce large-area, planar plasmas with high efficiency, minimal gas heating, low electron temperature, high uniformity, and high microwave reflectivity, as compared with plasmas produced by other sources.

  18. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  19. Beam size measurement of the stored electron beam at the APS storage ring using pinhole optics

    International Nuclear Information System (INIS)

    Cai, Z.; Lai, B.; Yun, W.

    1995-01-01

    Beam sizes of the stored electron beam at the APS storage ring were measured using pinhole optics and bending magnet x-rays in single-bunch and low-current mode. A pinhole of 25 μm and a fast x-ray imaging system were located 23.8 m and 35.4 m from the source, respectively. The x-ray imaging system consists of a CdWO 4 scintillation crystal 60 μm thick, an optical imaging system, and a CCD detector. A measurement time of a few tenths of a second was obtained on a photon beam of E>30 keV produced in a bending magnet from a 7-GeV electron beam of 2mA current. The measured vertical and horizontal sizes of the electron beam were in reasonable agreement with the expected values

  20. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  1. Development of picosecond pulsed electron beam monitor. 2

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.

    1994-01-01

    A picosecond pulsed electron beam monitor for a 35 MeV linear accelerator has been developed. The monitor consists of an electric SMA connector and aluminium pipe(inner diameter of 50mm). The following characteristics of this monitor were obtained, (a) the rise time is less than 17.5 ps (b) linearity of the monitor output voltage is proportional to the peak current of beam. It is shown that this monitor can be successfully used for bunch measurements of picosecond pulsed electron beam of 35 MeV linac. (author)

  2. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  3. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  4. Note: Characteristic beam parameter for the line electron gun.

    Science.gov (United States)

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  5. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    International Nuclear Information System (INIS)

    Schmidt, Jochen; Sachs, Marius; Fanselow, Stephanie; Wirth, Karl-Ernst; Peukert, Wolfgang; Zhao, Meng; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar

    2016-01-01

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  6. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  7. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  8. Electron Lens as Beam-Beam Wire Compensator in HL-LHC

    CERN Document Server

    Valishev, A

    2013-01-01

    Current wires are considered for compensation of long-range beam-beam interactions for the High Luminosity upgrade (HL-LHC) of the Large Hadron Collider at CERN. In this note, we demonstrate the advantage of using Electron Lens for this purpose instead of a conventional current-bearing wire.

  9. B-dot monitor for intense electron beam measurement

    International Nuclear Information System (INIS)

    Li Qin; Li Hong; Chen Nan; Gao Feng; Wang Yongwei; Wang Liping

    2009-01-01

    Azimuthal arrays of B-dot loops are often used to measure the time-resolved beam centroid position of a pulsed, intense electron beam propagating in a metallic tube. This paper describes the designing principle, parameters and calibration of the B-dot monitors. According to the beam current pulse rise time, fall time and the pulse width, the B-dot is designed to work as a differential loop, the loop inductance is about 60 nH. The B-dot monitor's sensitivity and the displacement curve are calibrated in the test stand. The sensitivity of the B-dots and the passive RC integrator is averagely 4 147 A/V, integrate constant is about 1 μs. The B-dot monitors are used to measure the Dragon-I electron beam and the experimental results show that the B-dot monitors can measure the beam current and centroid position accurately. (authors)

  10. Generation of helical electron beams by a nonadiabatic gun

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1996-01-01

    The design of a non-adiabatic gun to produce a 10A, 50kV hollow laminar electron beam for gyrotron applications is reported. The beam is extracted from the emitting ring in a direction parallel to the axial guide magnetic field and then propagates across the radial electric field in the anode gap. The electrons are thereby given a transverse velocity upon passing through the modulation anode region where an electrostatic pumping mechanism takes place, so that a considerable amount of the electron energy is converted to transverse kinetic energy. Such a beam extraction method gives rise to favourable features that are examined throughout the work. The dynamics of hollow electron beams with gyromotion propagating down a cylindrical drift tube are also analysed. Due to the action of the beam's self-space charge field, the transverse velocity spread has an oscillatory behaviour along the drift tube wherein the spatial automodulation period shortens with increasing current. Numerical simulation results indicate that even at a 10A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (UK)

  11. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  12. Industrial Robot Automation in Solving Non-Vacuum Electron-Beam Welding Problems

    Directory of Open Access Journals (Sweden)

    Borovik Vasiliy

    2016-01-01

    Full Text Available The paper describes one modeling automated hardware-software system to develop additive technologically - based products. Algorithm synthesis for industrial robot control was performed. In this case, the operating tool is an electron -beam projector with plasma emitter. The model testing results of thermal processes (in 3D-enqueuing proceeding within additive substrate material system have been described. The modeling results revealed those required parameters of emission power which would provide the melting of additive material (TiC excluding boiling.

  13. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  14. Safety Aspects of EPS-3000 Electron Beam Machine

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Shari Jahar; Ayub Muhamad; Sarada Idris

    2011-01-01

    The EPS-3000 electron beam machine was installed and commission in 1991 at the Alurtron Electron Beam Irradiation Centre. It is utilized as a tool to enhance finished products through electron beam irradiation. The machine and its auxiliary systems were built with highest safety in mind due to the possible dangers that it can cause during the irradiation activities. Automatic stops may be activated via various interlocks to protect the integrity of the machine. This type of interlocks are controlled by the set upper and lower limits, mostly related to the machine high voltage (and beam) generation and cooling systems. Radiation safety is also taken care of by provision of shielding and area monitoring. Other potential hazards include ozone poisoning and electromagnetic field (EMF) could be generated by the high voltage. This paper describes the safety and security systems installed within the facility as measures to protect the workers and general public from radiation and other physical threats. (author)

  15. A Compact Beam Source for Free Electron Lasers

    Science.gov (United States)

    Wang, Mingchang; Xu, Zhizhan; Yu, Jinhui; Lee, Byung Cheol; Lee, Jongmin

    2000-10-01

    A compact beam source produced by pseudospark discharge for free electron lasers is developed. An impedance match between a Marx generator and a pseudospark discharge chamber is analyzed, the impedance characteristic curve for the pseudospark discharge chamber is measured for the first time. The configuration of the new device is described, it has a length of one meter; the original pulse line accelerator has total length of 6 meters. A voltage of 300 kV, a current of 4 kA for the compact device is measured. The electron beam has a diameter of 1.5 mm and has self-pinch effect. The beam has a brightness of 10^12 A/(m rad)^2, as same as a brightness from photo-cathode. The compact beam source can be used for free electron lasers and high power switch.

  16. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  17. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  18. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  19. Bloomington (LL6) chondrite and its shock melt glasses

    International Nuclear Information System (INIS)

    Dodd, R.T.; Olsen, E.J.; Clarke, R.S. Jr.; National Museum of Natural History, Washington, DC; Field Museum of Natural History, Chicago, IL)

    1985-01-01

    The shock melt glasses of the Bloomington LL-group chondrite were examined using electron-beam microscopy and compared with data from studies of other shock melt glasses. Petrologic and mineralogic characterizations were also performed of the samples. The metal contents of the meteorite were almost wholly Ni-rich martensite. The glasses resembled shock melt glasses in L-group chondrites, and were indicative of isochemical melting during one melt phase, i.e., a very simple history. 12 references

  20. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  1. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  2. Upgrade of the electron beam ion trap in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y., E-mail: zouym@fudan.edu.cn [The Key Lab of Applied Ion Beam Physics, Ministry of Education, 200433 Shanghai (China); Shanghai EBIT Lab, Institute of Modern Physics, Fudan University, 200433 Shanghai (China)

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  3. Film dosimetry of small elongated electron beams for treatment planning

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    1989-01-01

    The characteristics of 5, 7, 10, 12, 15, and 18 Mev electron beams for small elongated fields of dimensions L x W (where L=1, 2, 3, 4, 5, and 10 cm; and W=1, 2, 3, 4, 5, and 10 cm) have been studied. Film dosimetry and parallel-plate ion chamber measurements have been used to obtain various dose parameters. Selective results of a series of systematic measurements for central axis depth dose data, uniformity index, field flatness, and relative output factors of small elongated electron beams are reported. The square-root method is employed to predict the beam data of small elongated electron fields from corresponding small square electron fields using film dosimetry. The single parameter area/perimeter radio A/P is used to characterize the relative output factors of elongated electron beams. It is our conclusion that for clinical treatment planning square-root method may be applied with caution in determining the beam characteristics of small elongated electron fields from film dosimetry. The calculated and estimated relative output factors from square-root method and A/P ratio are in good agreement and show agreement to within 1% with the measured film values

  4. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  5. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  6. Dynamics of Pierce instability of hot electron beams

    International Nuclear Information System (INIS)

    Ignatov, A.M.; Novikov, V.N.

    1986-01-01

    On the base of a new method of numerical solution of the Vlasov equation evolution of complete function of electron distribution at the injection of hot electron beams into plasma bounded with electrodes is investigated. It is shown that despite the development of electrostatic instabilities in the system the currents can run substantially exceeding the Pierce critical current

  7. Analysis of a High Speed Electron Beam Deflection System

    Czech Academy of Sciences Publication Activity Database

    Zobač, Martin

    2009-01-01

    Roč. 44, 5-6 (2009), s. 59-63 ISSN 0861-4717 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam deflection * transfer function * eddy - current * hysteresis * instability Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  9. Atomic physics measurements in an electron beam ion trap

    Science.gov (United States)

    Marrs, R. E.; Beiersdorfer, P.; Bennett, C.; Chen, M. H.; Cowan, T.; Dietrich, D.; Henderson, J. R.; Knapp, D. A.; Osterheld, S.; Schneider, M. B.; Scofield, J. H.; Levine, M. A.

    1989-06-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q≥70+) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized.

  10. Simulation of Laser-Compton Cooling of Electron Beams

    OpenAIRE

    Ohgaki, T.

    2000-01-01

    We study a method of laser-Compton cooling of electron beams. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at E_0=2 GeV is considered.

  11. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  12. Scattered radiation from applicators in clinical electron beams.

    NARCIS (Netherlands)

    Battum, L.J. van; Zee, W. van der; Huizenga, H.

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight

  13. Optimisation of electron beam characteristics by simulated annealing

    International Nuclear Information System (INIS)

    Ebert, M.A.; University of Adelaide, SA; Hoban, P.W.

    1996-01-01

    Full text: With the development of technology in the field of treatment beam delivery, the possibility of tailoring radiation beams (via manipulation of the beam's phase space) is foreseeable. This investigation involved evaluating a method for determining the characteristics of pure electron beams which provided dose distributions that best approximated desired distributions. The aim is to determine which degrees of freedom are advantageous and worth pursuing in a clinical setting. A simulated annealing routine was developed to determine optimum electron beam characteristics. A set of beam elements are defined at the surface of a homogeneous water equivalent phantom defining discrete positions and angles of incidence, and electron energies. The optimal weighting of these elements is determined by the (generally approximate) solution to the linear equation, Dw = d, where d represents the dose distribution calculated over the phantom, w the vector of (50 - 2x10 4 ) beam element relative weights, and D a normalised matrix of dose deposition kernels. In the iterative annealing procedure, beam elements are randomly selected and beam weighting distributions are sampled and used to perturb the selected elements. Perturbations are accepted or rejected according to standard simulated annealing criteria. The result (after the algorithm has terminated due to meeting an iteration or optimisation specification) is an approximate solution for the beam weight vector (w) specified by the above equation. This technique has been applied for several sample dose distributions and phase space restrictions. An example is given of the phase space obtained when endeavouring to conform to a rectangular 100% dose region with polyenergetic though normally incident electrons. For regular distributions, intuitive conclusions regarding the benefits of energy/angular manipulation may be made, whereas for complex distributions, variations in intensity over beam elements of varying energy and

  14. Solid gold nanostructures fabricated by electron beam deposition

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Rasmussen, A.M.

    2003-01-01

    and bridges. Transmission electron microscopy was used to study how the composition of these structures was affected when the background gas in the ESEM chamber and the electron beam parameters were varied. The nanostructures were layered composites of up to three different materials each characterized...... by a certain range of gold/carbon ratios. Above a certain threshold of ESEM chamber water vapor pressure and a certain threshold of electron beam current, the deposited tips contained a solid polycrystalline gold core. The deposition technique was used to fabricate free-standing nanowires and to solder free...

  15. The SLAC Polarized Electron Source and Beam for E-158

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, Thomas B

    2003-01-16

    SLAC E-158 is making the first measurement of parity violation in Moeller scattering. E-158 measures the right-left cross-section asymmetry, A{sub LR}, in the scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of {approx} 10{sup -7} to an accuracy of better than 10{sup -8}. This paper discusses the performance of the SLAC polarized electron source and beam during E-158's first physics run in April/May 2002.

  16. Design of the AGS Booster Beam Position Monitor electronics

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

    1991-01-01

    The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry

  17. Surface morphology and chemical composition of TiTa-based surface alloy formed on TiNi by electron beam additive technologies

    Science.gov (United States)

    Gudimova, E. Yu.; Meisner, L. L.; Meisner, S. N.; Yakovlev, E. V.; Shabalina, O. I.

    2017-12-01

    This paper presents research results on the physiochemical and topographic surface properties of a NiTi alloy and their changes after different surface treatments: mechanical polishing, electron beam cleaning, and TiTa-based surface alloying. The possibility of using electron beam treatment for surface preparation with no additional methods is shown. Experiments demonstrate that the TiTa-based alloy surface formed by multiple magnetron deposition of TiTa film and subsequent pulsed electron beam melting of the film/substrate system is chemically and morphologically homogeneous.

  18. Electron Beam Diagnostics Of The JLAB UV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  19. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  20. The optimization of pencil beam widths for use in an electron pencil beam algorithm

    International Nuclear Information System (INIS)

    Pencil beam algorithms for the calculation of electron beam dose distributions have come into widespread use. These algorithms, however, have generally exhibited difficulties in reproducing dose distributions for small field dimensions or, more specifically, for those conditions in which lateral scatter equilibrium does not exist. The work described here has determined that this difficulty can arise from the manner in which the width of the pencil beam is calculated. A unique approach for determining the pencil beam widths required to accurately reproduce small field dose distributions in a homogeneous phantom is described and compared with measurements and the results of other calculations. This method has also been extended to calculate electron beam dose distributions in heterogeneous media and the results of this work are presented. Suggestions for further improvements are discussed.

  1. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  2. Dual scattering foil design for poly-energetic electron beams.

    Science.gov (United States)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-03-07

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  3. Generation of runaway electron beams in high-pressure nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  4. Electron Beam Diagnostic Based on a Short Seeded FEL

    CERN Document Server

    Graves, W; Kaertner, Franz X; Zwart, T

    2005-01-01

    The optical properties of an FEL amplifier are sensitively dependent on the electron beam current profile, energy spread, and transverse emittance. In this paper we consider using a short FEL amplifier operating on a low harmonic of a visible-IR input seed as a mildly destructive electron beam diagnostic able to measure these properties for sub-ps time slices. The optical methods are described as well as a planned implementation of the device for the FERMI@Elettra XUV FEL under construction at Sincrotrone Trieste, including its fiber-based seed laser closely coupled with the facility timing system, undulator parameters, and requirements on the electron and FEL pulses. This diagnostic is conveniently integrated with a "laser heater" designed to increase the very low electron beam energy spread produced by a photoinjector in order to avoid space charge and coherent synchrotron radiation instabilities.

  5. Electron beam irradiation processing for industrial and medical applications

    Science.gov (United States)

    Ozer, Zehra Nur

    2017-09-01

    In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.

  6. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  7. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  8. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Science.gov (United States)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  9. Electron Beam Induced Functionalization of Fluoropolymers

    International Nuclear Information System (INIS)

    Lappan, U.

    2006-01-01

    Ionizing radiation affects the properties of polymers by chain scission and cross-linking reactions. One process will usually predominate, depending on the chemical structure of the polymer and the irradiation conditions such as temperature and atmosphere. Poly(tetrafluoroethylene) (PTFE) and the perfluorinated copolymers poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) and poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) undergo predominantly chain scission, if the irradiation is performed at room temperature. This shortcoming is exploited by converting PTFE into low molecular weight micropowders. The irradiation of PTFE in the presence of air results in micropowders functionalized with oxygen-containing groups. The concentration of end groups was investigated by FTIR and 19F solid-state NMR. The data were used to calculate number-average molecular weights. It was demonstrated that PTFE can be cross-linked by irradiation above its crystalline melting temperature in an oxygen-free atmosphere. Evidence for cross-links in PTFE was derived directly from structural information using 19 F solid-state NMR. FEP is understood to undergo cross-linking by irradiation above the glass transition temperature. It was found that also PFA can be branched and cross-linked by irradiation under special conditions. Radiation-induced grafting of styrene into fluoropolymer films and subsequent sulfonation offers an attractive way to prepare proton exchange membranes. Recently, radiation-induced grafting into cross-linked PTFE was reported. Modified FEP, PFA and ETFE films have been used as base material in this study. The modified films have been prepared by irradiation in nitrogen atmosphere at different temperatures up to temperatures above the melting temperature of the fluoropolymer

  10. Optimization of Compton Source Performance through Electron Beam Shaping

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a way so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.

  11. Application of low energy electron beam to precoated steel plates

    International Nuclear Information System (INIS)

    Koshiishi, Kenji

    1989-01-01

    Recently in the fields of home electric appliances, machinery and equipment and interior building materials, the needs for the precoated steel plates having the design and function of high class increase rapidly. In order to cope with such needs, the authors have advanced the examination on the application of electron beam hardening technology to precoated steel plates, and developed the precoated steel plates of high grade and high design 'Super Tecstar EB Series' by utilizing low energy electron beam. The features of this process are (1) hardening can be done at room temperature in a short time-thermally weak films can be adhered, (2) high energy irradiation-the hardening of thick enamel coating and the adhesion of colored films are feasible, (3) the use of monomers of low molecular weight-by high crosslinking, the performance of high sharpness, high hardness, anti-contamination property and so on can be given. The application to precoated steel plate production process is the coating and curing of electron beam hardening type paints, the coating of films with electron beam hardening type adhesives, and the reforming of surface polymer layers by impregnating monomers and causing graft polymerization with electron beam irradiation. The outline of the Super Tecstar EB Series is described. (K.I.)

  12. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  13. Effect of secondary ions on the electron beam optics in the Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Prost, L.; Saewert, G.; /Fermilab

    2010-05-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1-0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy ({gamma} = 9.49), an Ampere-range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 {micro}s with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the beam optics. For a beam current of 0.3 A, the longitudinal cooling rate was increased by factor of {approx}2 when ions were removed.

  14. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  15. Nanostructure Engineering Using Electron Beam Lithography

    National Research Council Canada - National Science Library

    Fischer, Paul

    1993-01-01

    ...) system created by modifying a scanning electron microscope. (2) The exploration of minimum achievable feature sizes using ultra-high resolution EBL and a lift-off process with polymethyl-methacrylate resists...

  16. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  17. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    1987-03-01

    In this report e + e - colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  18. Beam Profile Diagnostics for the Fermilab Medium Energy Electron Cooler

    Science.gov (United States)

    Warner, A.; Kazakevich, G.; Nagaitsev, S.; Tassotto, G.; Gai, W.; Konecny, R.

    2005-10-01

    The Fermilab Recycler ring will employ an electron cooler to store and cool 8.9 GeV antiprotons. The cooler will be based on a Pelletron electrostatic accelerator working in an energy-recovery regime. Several techniques for determining the characteristics of the beam dynamics are being investigated. Beam profiles have been measured as a function of the beam line optics at the energy of 3.5 MeV in the current range of 10/sup -4/-1 A, with a pulse duration of 2 /spl mu/s. The profiles were measured using optical transition radiation produced at the interface of a 250-/spl mu/m aluminum foil and also from YAG crystal luminescence. In addition, beam profiles measured using multiwire detectors were investigated. These three diagnostics will be used together to determine the profile dynamics of the beam. In this paper we report the results so far obtained using these techniques.

  19. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  20. Laser and Electron Beam Processing of Semiconductors: CW Beam Processing of Ion Implanted Silicon

    Science.gov (United States)

    1980-12-31

    distribution (8) expected for the indicated As+ dose and impantation energy. The total number of electrons/cm2 calculated from this figure is 9.6 x 1014...impurity trapping centers. For typical electron-beam dwell diated surface, over the investigated range, with the mini - times of the order of I msec, we solve

  1. Electron beam assisted field evaporation of insulating nanowires/tubes

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  2. Electron beam assisted field evaporation of insulating nanowires/tubes

    International Nuclear Information System (INIS)

    Blanchard, N. P.; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-01-01

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials

  3. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  4. Formation of helical electron beams by electrostatic pumping

    International Nuclear Information System (INIS)

    Barroso, J.J.; Spassovsky, L.P.; Stellati, C.

    1993-01-01

    A non-adiabatic gun for a 35 GHz, 100 kw gyrotron is presented. A 50 kV, 10 A laminar helical electron beam has been achieved with a perpendicular to parallel velocity ratio of 1.9. A non-adiabatic change of the pumping electric field is used to impart rotational velocity to the beam particles which are extracted at the cathode surface in a direction parallel to the guiding magnetic field. (author)

  5. Many-beam electron extinction distances in zirconium

    International Nuclear Information System (INIS)

    Cann, C.D.

    1977-05-01

    Many-beam extinction distances have been calculated for twenty-two of the lowest order reflections in zirconium. Ten beams comprising the directly transmitted and the nine lowest order systematic reflections were included in each calculation. Extinction distances for each reflection were determined for electron accelerating voltages of 100 and 200 kV, both at the exact Bragg condition and at deviations up to two Bragg angles from this condition. (author)

  6. Physics of high-power electron beam-plasma interaction

    Science.gov (United States)

    Koidan, V. S.

    1996-03-01

    Results related to physics of collective interaction of a high-power relativistic electron beam with a magnetized plasma are presented. The main regularities of this process are given. The observed peculiarities of hot plasma producing by E-beam heating on the GOL-3 device are discussed. Some results on study of strong Langmuir turbulence by laser scattering method on GOL-M device are presented.

  7. Physics of high-power electron beam-plasma interaction

    International Nuclear Information System (INIS)

    Koidan, V.S.

    1996-01-01

    Results related to physics of collective interaction of a high-power relativistic electron beam with a magnetized plasma are presented. The main regularities of this process are given. The observed peculiarities of hot plasma producing by E-beam heating on the GOL-3 device are discussed. Some results on study of strong Langmuir turbulence by laser scattering method on GOL-M device are presented. copyright 1996 American Institute of Physics

  8. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    injection septum, four injection kickers, four RF cavities and five insertion devices. Indus-2 synchrotron radiation facility consists of a pre-injector (microtron, which deliv- ers 20 MeV electron beam of 0.5 μs pulse width), an injector (booster synchrotron, which raises beam energy from 20 MeV to 550 MeV) and the storage ring ...

  9. Transmission of high-power electron beams through small apertures

    International Nuclear Information System (INIS)

    Tschalär, C.; Alarcon, R.; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 h continuous run

  10. Electron beam disruption simulation of first wall material

    International Nuclear Information System (INIS)

    Quataert, D.; Brossa, F.; Moretto, P.; Rigon, G.

    1984-01-01

    The destructive effect of plasma disruptions on first wall material and limiters has been predicted and models have been made to study their behaviour under intensive pulsed energy deposition. The results presented here give a full description of qualitative and semi-quantitative results obtained for several materials (Mo, stainless steel, Cu, Al, Inconel, etc.) under various experimental conditions. Examples are given of specific defects such as: evaporation, melting, void and crack formation and recrystallization of the underlying material. Methods for the evaluation of deposited energy and beam dimensions are also presented. (author)

  11. Production of plasma from diatomic gases by relativistic electron beams

    International Nuclear Information System (INIS)

    Cary, J.R.

    1980-01-01

    The theory of the production of plasma by the interaction of a relativistic electron beam with a diatomic gas is presented. The theory includes atomic species as well as molecular species; this is shown to be necessary when nearly fully ionized plasma are produced. In addition, the theory models magnetic field diffusion by an effective time constant, which allows extensive parameter studies to be performed. The dependence of the production process on the beam intensity and width and the gas pressure is presented. It is shown that the thin beams produced by foil-less diodes are not capable of ionizing high pressure (> or approx. = 3 Torr) targets

  12. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.

    1999-01-01

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  13. A beam intensity profile monitor based on secondary electron emission

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Campbell, J.R.; Davis, C.A.; Davison, N.E.; Mosscrop, D.R.; Page, S.A.; Ramsay, W.D.; Sekulovich, A.M.; Van Oers, W.T.H.; MIschke, R.E.

    1991-03-01

    Two dual function intensity profile monitors have been designed for a measurement of parity violation in antiproton-proton scattering at about 230 MeV using longitudinally polarized protons. Each device contains a set of split secondary electron emission (SEM) foils to determine the median of the beam current distribution (in x and y). The split foils, coupled through servoamplifiers and operational amplifiers to upstream air core steering magnets, have demonstrated the ability to hold the beam position stable to within ± 3 μm after one hour of data taking with a 100 nA, 15 mm FWHM Gaussian beam. (Author) 16 refs., 10 figs., tab

  14. Subharmonic beam-loading in electron linear accelerators

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1983-01-01

    The intention of operating an electron linear accelerator subharmonically beam loaded for free electron laser application requires justification of the beam-loaded energy gain equation. The mode of operation typically planned is 5 to 10 nanocoulombs single RF cycle pulses at 25 to 50 nanosecond intervals. This inquiry investigates the details of this sort of beam loading and discusses the performance achievable. Several other investigations of single bunch beam loading have been undertaken, notably at SLAC, where it has been found experimentally that the beam-loading varies directly as the bunch charge and independently of its energy; that investigation also included radiation effects of the wake field and losses owing to parasitic effects of higher order modes. In the case of beam loading where there are multiple pulses transiting at the same time, and spaced far enough apart that significant RF power is introduced between pulses, the energy gain may be calculated by dividing the waveguide into a number of segments, each equal in length to the integral of the interpulse time and the local group velocity. Equations which reveal that the net energy gain in the steady state is the sum of the energy gains in these segments, which compute the initial field intensity, and which calculate the energy gain in the subharmonic case on the basis of the equivalent beam current are presented

  15. Radiotherapy for ocular lesions by electron beam therapy

    International Nuclear Information System (INIS)

    Miyaishi, Kazuo

    1981-01-01

    Radiotherapy can be very significant as the treatment for ocular lesions, eyes need to be preserved as properly as possible on their functions and cosmetics. The appliance of conventional X ray therapy has been gradually abandaned as conventional X ray therapy ceased to be accepted as the general treatment for malignant tumors. Consequently the necessity of electron beam therapy has been rising even as the substituted method for conventional X ray therapy. The department of radiology of Gunma University was obliged to establish a new therapy for ocular lesions, and has been trying electron beam therapy since 1973; It is concluded that electron beam therapy is not at all inferior to conventional X ray therapy as reported above. Basic therapeutic methods for ocular lesions are the following: 1) For epidermoid carcinoma, 600 rads at a time, 3600 - 4200 rads in total is applied by 8 MeV electron twice a week method. 2) For malignant melanoma, 1000 rads at a time, 4000 - 5000 rads in total is applied by 8 MeV electron twice a week method. 3) For orbitar lymphoid neoplasm, Cobalt-60 γ ray or Linac X ray is applied together with electron beam. 4) For embryonal rhabdomyosarcoma, adenoid cystic cancer etc., the therapy for whole body is necessary. 5) For benign tumors, a small dose at a time is applied for a long time. (author)

  16. Spatial Control of Laser Wakefield Accelerated Electron Beams

    Science.gov (United States)

    Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.

    2017-10-01

    The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.

  17. Modelling and simulation of beam formation in electron guns

    International Nuclear Information System (INIS)

    Sabchevski, S.; Barbarich, I.

    1996-01-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.)

  18. Modelling and simulation of beam formation in electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)

    1996-11-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).

  19. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng

    1999-01-01

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  20. Imaging nanometer-scale beamlets arrays of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, R. K.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California, 90095 (United States)

    2012-12-21

    In this paper we study the evolution of nanometer scale transverse density modulation of a high brightness electron beam through a drift and simple focusing channel. With the help of particle tracking simulations we analyze the effects of space charge forces, emittance and energy spread on the feasibility of recovering an initial nm-scale transverse modulation after transport through a magnifying optical system. These studies are relevant for applications such as time-resolved MeV transmission electron microscopy and in the high brightness electron beam community due to the recent developments of nano-structured cathodes and due to the possibility of taking advantage of nm-structures in the beam for coherent radiation generation.

  1. Silicon nitride films deposited with an electron beam created plasma

    Science.gov (United States)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  2. Total skin electron beam therapy in mycosis fungoides

    International Nuclear Information System (INIS)

    Terashima, Hiromi; Yamashita, Shigeru; Ishino, Yohichi; Suenaga, Yoshinori

    1988-01-01

    The studies using phantoms confirmed that the reduction of electron beam energy and minimization of X-ray contamination could be achieved when electron beam was interposed by an acrylic plate placed 20 cm anterior to a patient. Four patients of mycosis fungoides were treated with 8 MeV electron beam of a linear accelerator at UOEH Hospital from October 1981 to December 1986. Two of them were treated with this technique by placing 2 cm thick acrylic plate anterior to the patients and satisfactory results were obtained. Cutaneous lesions subsided remarkably with the dosage of 2000 cGy given in 2 months. Leucopenia due to bone marrow suppression was mild and the patients tolerated the treatment well. (author)

  3. Application of electron beam curing in web-offset printing

    International Nuclear Information System (INIS)

    Rodrigues, A.M.; Newcomb, W.T.

    1984-01-01

    Four years ago, the first commercial installation of an electron beam processor, coupled with a high speed web offset printing press was described. This line has been in operation since and its success demonstrates the advantages and feasibility of such an application. Just recently, another company has announced that it is using electron beam curing in its printing lines. Judging from the amount of inquiries and opportunities being actively pursued one can state that the use of electron beam systems in printing applications has come of age. This paper describes the advantages of this process, the characteristics of the equipment that are important for industrial use in a multishift environment, and addresses its economics through analysis of some major cost elements

  4. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  5. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  6. Investigation of electron beam transport in a helical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.U.; Lee, B.C.; Kim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Lossless transport of electrons through the undulator is essential for CW operation of the FELs driven by recirculating electrostatic accelerators. We calculate the transport ratio of an electron beam in a helical undulator by using a 3-D simulation code and compare the results with the experimental results. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The 3-D distribution of the magnetic field of a practical permanent-magnet helical undulator is measured and is used in the calculations. The major parameters of the undutlator are : period = 32 mm, number of periods = 20, number of periods in adiabatic region = 3.5, magnetic field strength = 1.3 kG. The transport ratio is very sensitive to the injection condition of the electron beam such as the emittance, the diameter, the divergence, etc.. The injection motion is varied in the experiments by changing the e-gun voltage or the field strength of the focusing magnet located at the entrance of the undulator. It is confirmed experimentally and with simulations that most of the beam loss occurs at the adiabatic region of the undulator regardless of the length of the adiabatic region The effect of axial guiding magnetic field on the beam finish is investigated. According to the simulations, the increase of the strength of axial magnetic field from 0 to 1 kG results in the increase of the transport ratio from 15 % to 95%.

  7. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  8. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  9. An Electron-Beam Controlled Semiconductor Switch

    Science.gov (United States)

    1989-11-01

    transport processes are linear, i.e the drift velocity is v = pE and the diffusion coeffient follows the Einstein relation D = ikBT/e where k9 denotes...357/19 SEMICONDUC OR SWITCH WIrH 3,917,943 11/1975 Auston............................. 250/211 J CATHODOLLJNE SCENT ELECTRON

  10. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  11. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  12. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  13. Low energy electron beams for industrial and environmental applications

    CERN Document Server

    Skarda, Vlad

    2017-01-01

    EuCARD-2 Workshop, 8-9 December 2016, Warsaw, Poland. Organizers: Science and Technology Facilities Council, UK CERN - The European Organization for Nuclear Research, Switzerland, Institute of Nuclear Chemistry and Technology, Poland, Fraunhofer Institute for Electron Beam and Plasma Technology, Germany, Warsaw University of Technology, Poland. An article presents short information about EuCARD-2 Workshop “Low energy electron beams for industrial and environmental applications”, which was held in December 2016 in Warsaw. Objectives, main topics and expected output of meeting are described. List of organizers is included.

  14. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  15. Harp, a short pulse, high current electron beam accelerator

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1974-01-01

    A 3 MV, 800 kA, 24 ns electron beam accelerator is described and the results of initial switching experiments are discussed. The generator will provide a source for studying the physics of processes leading to electron beam driven, inertially confined fusion. The major components of the accelerator are two diodes with a common anode, twelve oil-dielectric Blumleins with low jitter (less than 2 ns) multichannel switches, three intermediate storage capacitors, a trigger pulse generator and two Marx generators. (U.S.)

  16. Gelatin/piassava composites treated by Electron Beam Radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida Lucia del; Colombo, Maria Aparecida

    2010-01-01

    Piassava (Attalea funifera Mart) fiber has been investigated as reinforcement for polymer composites with potential for practical applications. The purpose of the present work was to assess the behavior of specimens of piassava fiber and gelatin irradiated with electron beam at different doses and percentage. The piassava/gelatin specimens were made with 5 and 10% (w/w) piassava fiber, gelatin 25% (w/w), glycerin as plasticizer and acrylamide as copolymer. The samples were irradiated up to 40 kGy using an electron beam accelerator, at room temperature in presence of air. Preliminary results showed mechanical properties enhancement with the increase in radiation dose. (author)

  17. Artificial electron beams in the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1990-01-01

    The Plasma Diagnostics Payload of the Echo 7 satellite carried TV cameras and photometers by means of which the luminosity around an electron beam in the polar ionosphere could be studied. It was found that, while the beam Larmor spiral could be clearly seen near 100 km, above this only a column due to suprathermal electrons was observable. At high altitudes, the emission of neutral gas both generated powerful luminosity and substantially reduced accelerator potentials. An analysis of conjugate echoes indicates that inferred magnetospheric electric fields do not map well into the ionosphere, as well as the presence of strong pitch-angle scattering. 11 refs

  18. Advanced composites--a new application of electron beam curing

    International Nuclear Information System (INIS)

    Sun Dakuan

    2007-01-01

    Consisting of a matrix phase of epoxy resin and reinforcement phase of high performance synthetic fiber, advanced composites have a number of engineering merits, such as high specific strength and specific modulus, light weight, fatigue resistance, corrosion resistance and dimensional stability, etc. Advanced composites have been applied in aerospace/aircraft industry, military industry, high pressure vessels, automobile industry and sports apparatus. Nowadays, advanced composites are produced by electron beam curing, an environment-friendly technology with greater safety and energy efficiency than conventional curing techniques. This paper gives a review on progresses of electron beam cured advanced composites. (authors)

  19. Sterilization of ground spices by electron beams irradiation

    International Nuclear Information System (INIS)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi

    1999-01-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  20. Sterilization of ground spices by electron beams irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi [K. Kobayashi and Co., Ltd., Kako, Hyogo (Japan)

    1999-09-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  1. The sterilizing potential of electron beams on microbial media

    International Nuclear Information System (INIS)

    Oproiu, C.; Marghitu, S.; Martin, D.; Vasiliu, V.; Vidan, A.; Dima, V.; Oproiu, G.

    1997-01-01

    Measurements have pointed out the electron beam sterilizing potential on microbial media. Two species of microbes have been tested and investigated, species having different sensitivities to the electron beam influence. the semi-logarithmic representation has clearly shown the linear dependence of the number of survivals on the absorbed irradiation dose. The curbs help to determine the inactivation factor characteristic to a predetermined irradiation dose for each species. One can also determine with quite an accuracy, the survival limit of microorganisms functions of the irradiation dose applied. (author)

  2. Period doubling on a non-neutral magnetized electron beam

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Low frequency oscillations on a non-neutral magnetized electron beam of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large amplitude fundamental mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increasedthe waveform ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement

  3. Characteristics of an electron-beam rocket pellet accelerator

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs

  4. Comparison of IAEA protocols for clinical electron beam dosimetry

    International Nuclear Information System (INIS)

    Novotny, J.; Soukup, M.

    2002-01-01

    In most beam calibration protocols so far used in clinical practice, the method recommended for the determination of absorbed dose to water in high-energy electron beams is based on either an exposure or an air kerma calibration factor of an ionisation chamber in a C0 60 gamma-ray or 2 MV x-ray beam. These protocols are complex and the overall uncertainty in the absorbed dose to water under reference conditions is about 3-4%. The new generation of protocols, namely IAEA TRS 398, are based on absorbed dose-to-water standards in photon beams from Co 60 and accelerator beams. The possible errors in absorbed dose determination in reference conditions in practical clinical dosimetry caused by replacement of TRS 277 and TRS 381 protocols for a new TRS 398 protocol were carefully studied for clinical electron beams in energy range 6-20 MeV. All measurements were performed on Varian CLINAC 2100 C linear accelerator. The electron beam energy ranged from 6 to 20 MeV. Basically three different detectors were used for measurements: PTW Roos plane-parallel ionization chamber, calibrated PTW 30002 Farmer type, ionization, Scanditronix electron diode detector. Measurements of central axis percentage depth doses were made by diode using Wellhoefer WP700 beam scanner in 40 cm x 40 cm x 50 cm water phantom. A reference chamber or semiconductor diode mounted on electron treatment cone was used to correct beam output variations for a chamber or diode measurements during scanning. Absolute dose measurements were carried out with Roos plane-parallel chamber connected to PTW UNIDOS electrometer always for preselected number of monitor units. In a new IAEA dosimetry protocol clinical reference dosimetry for electron beam is performed at depth of d ref = 0.6R 50 - 0.1 [cm] instead of d max as in previous ones. To check the stability of electron beams for energy and to establish d ref and standard deviation for reference depth position, the depth dose curves obtained during the quality

  5. Proximity effect of electron beam lithography on single-electron ...

    Indian Academy of Sciences (India)

    were incident on a resist-coated photomask substrate (chrome on quartz plate). The scattering of these electrons causes undesirable resist development energy to accumulate around the patterned areas. This accumulated energy from the scat- tered electron only slightly affects isolated patterns, but significantly more ...

  6. Proximity effect of electron beam lithography on single-electron ...

    Indian Academy of Sciences (India)

    The electrical characteristics of the single-electron transistor were observed to be consistent with the expected behavior of electron transport through gated quantum dots, up to 150 K. The dependence of the electrical characteristics on the dot size reveals that the d oscillation follows from the Coulomb blockade by poly-Si ...

  7. Single Bunch Electron Cloud Effects in the NLC Beam Delivery System(LCC-0126)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D

    2003-12-08

    A positron beam passing through a linear collider beam delivery beam line is finely focused to desired specifications during collimation and especially in Final Focusing (FFS). Undesired additional focusing is generated by beam-electron cloud interactions, which typically leads to beam size increases at high cloud densities. This paper examines the severity of the electron cloud effects and assesses the critical cloud density.

  8. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  9. Electron-beam rocket acceleration of hydrogen pellets

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.; Whealton, J.H.

    1992-01-01

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed

  10. Pencil-beam redefinition algorithm for electron dose distributions.

    Science.gov (United States)

    Shiu, A S; Hogstrom, K R

    1991-01-01

    A pencil-beam redefinition algorithm has been developed for the calculation of electron-beam dose distributions on a three-dimensional grid utilizing 3-D inhomogeneity correction. The concept of redefinition was first used for both fixed and arced electron beams by Hogstrom et al. but was limited to a single redefinition. The success of those works stimulated the development of the pencil-beam redefinition algorithm, the aim of which is to solve the dosimetry problems presented by deep inhomogeneities through development of a model that redefines the pencil beams continuously with depth. This type of algorithm was developed independently by Storchi and Huizenga who termed it the "moments method." Such a pencil beam within the patient is characterized by a complex angular distribution, which is approximated by a Gaussian distribution having the same first three moments as the actual distribution. Three physical quantities required for dose calculation and subsequent radiation transport--namely planar fluence, mean direction, and root-mean-square spread about the mean direction--are obtained from these moments. The primary difference between the moments method and the redefinition algorithm is that the latter subdivides the pencil beams into multiple energy bins. The algorithm then becomes a macroscopic method for transporting the complete phase space of the beam and allows the calculation of physical quantities such as fluence, dose, and energy distribution. Comparison of calculated dose distributions with measured dose distributions for a homogeneous water phantom, and for phantoms with inhomogeneities deep relative to the surface, show agreement superior to that achieved with the pencil-beam algorithm of Hogstrom et al. in the penumbral region and beneath the edges of air and bone inhomogeneities. The accuracy of the redefinition algorithm is within 4% and appears sufficient for clinical use, and the algorithm is structured for further expansion of the physical

  11. Precision Electron Beam Polarimetry in Hall C at Jefferson Lab

    Science.gov (United States)

    Gaskell, David

    2013-10-01

    The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.

  12. Behaviour of some fresh fruits under electron-beam irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.; Stroia, A.L.; Potcoava, A.; Cojocaru, M.; Mihnea, R.; Oproiu, C.

    1994-01-01

    The use of ionizing radiation in preservation of fruits and vegetables is widely recognized. In this paper it is presented a study of the effect of electron-beam irradiation of some fresh, early and perishable fruits, like strawberries, cherries, and sour cherries concerning their shelf-life time extension. The irradiations were performed on common varieties in normal conditions to the IPTRD's electron-beam accelerator (Bucharest-Magurele) having the following parameters: flow current 10 μA, power 60 W and electron mean energy 6.23 MeV. The irradiation doses varied between 0.5-3.0 kGy and the dose rates between 100-1500 Gy/min. It was observed the fruit preservation capability of the treatment and it was analysed the main characteristics as organoleptic properties, weight of dry component, acidity, total and reducing sugars, ascorbic acid content and others. It was evidenced an increase in freshness and shelf-life extension by 5-7 days for strawberries and up to two weeks for cherries without any significant changes in the values of the considered parameters. Otherwise, for the applied doses, the electron-beam irradiation did not produce any significant changes in the values of fruit characteristic parameters. The results lead to the conclusion that the electron-beam irradiation is a good technological solution for fresh fruit processing. (Author) 1 Tab., 7 Refs

  13. Electron beam irradiation of gemstone for color enhancement

    Science.gov (United States)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  14. Electron beam irradiation of gemstone for color enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A' iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  15. Electron beam irradiation of gemstone for color enhancement

    International Nuclear Information System (INIS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-01-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  16. Electron beam sterilization of water discharged from sewage

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Arai, Hidehiko; Tokunaga, Okihiro; Machi, Sueo; Kondo, Masaki; Minemura, Takashi; Nakao, Akio; Seike, Yasuhiko.

    1989-01-01

    At present, the water treated at city sewerages is discharged to rivers after the chlorine sterilization, but it was clarified recently that this chlorine treatment produces carcinogenic organic chlorine compounds, and residual chlorine exerts harmful effect to aquatics, therefore, it is desirable to develop the sterilization techniques substituting for chlorine treatment. Already many reports elucidated that irradiation is effective for the sterilization of the water discharged from sewerage. However, as the technical subject for putting radiation process in practical use, the treatment of large quantity was a problem. Recently by the progress of the technology of manufacturing electron accelerators, the equipment with large power output which can treat in large quantity was developed, and it has become applicable also to sewage treatment. Therefore, the authors examined the practicality of electron beam process as the substitute technology for chlorine sterilizaiton. In the case of using electron beam, though the power output of accelerators is large, the flight range of electron beam in water is short. The comparison of the sterilization effect of electron beam with that of Co-60 gamma ray, the effects of water depth, discharged water quality and water velocity on the sterilization effect and so on were experimentally examined. (K.I.)

  17. Beam-plasma interaction in case of injection of the electron beam to the symmetrically open plasma system

    International Nuclear Information System (INIS)

    Opanasenko, A.V.; Romanyuk, L.I.

    1992-01-01

    A beam-plasma interaction at the entrance of the symmetrically open plasma system with an electron beam injected through it is investigated. An ignition of the plasma-beam discharge on waves of upper hybrid dispersion branch of a magnetoactive plasma is found in the plasma penetrating into the vacuum contrary to the beam. It is shown that the beam-plasma discharge is localized in the inhomogeneous penetrating plasma in the zone where only these waves exist. Regularities of the beam-plasma discharge ignition and manifestation are described. It is determined that the electron beam crossing the discharge zone leads to the strong energy relaxation of the beam. It is shown possible to control the beam-plasma discharge ignition by changing the potential of the electron beam collector. (author)

  18. Uses of pulsed electron beam to solid-states studies

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Nakayama, Takeyoshi; Tanimura, Katsumi; Chong, Taisu; Saidoh, Masahiro

    1982-01-01

    A survey is given on the use of the pulsed electron beams to studies of solid states. Even though main emphasis is placed on the studies carried out at the Faculty of Engineering, Nagoya University, using the Pulsed Electron Facilities installed in 1970, the works carried out at other institutes are also included. Only the studies of crystalline solids with simple structures, such as alkali halides and aromatic hydrocarbons are covered. In the first place several instrumentations which have extended utilities of pulsed-electron beams are presented. Then we discuss the studies of the dynamic of excitons, emphasizing the advantages and disadvantages of the usage of the electron pulses. Then usages of the pulsed-electron beam for the studies of the excited states of the quasi-stable defects are described. Application of the electron pulse for studies of the excitation spectroscopy of the photochemistry is described. The dynamic studies of defects introduced by electron-pulse bombardment is discussed finally. A summary is given, which includes also the possible future experiments. (author)

  19. Electron-beam-fusion progress report, 1975

    International Nuclear Information System (INIS)

    1976-06-01

    Summaries of research work are given on electron sources, insulation problems, and power supplies. Some theoretical work is reported on fusion target design, self-consistent deposition and hydrodynamic calculations, analysis of x-ray pinhole data, diode code calculations, magnetically insulated diodes and transmission lines, ion sheath motion in plasma-filled diodes, relativistic distribution functions, macroscopic properties, and kinetic theory, heavy ion pulsed fusion, and collective ion acceleration. Some experimental work on targets, diode physics, and diagnostic developments is given

  20. Focusing of relativistic electron beams by a solid cone

    International Nuclear Information System (INIS)

    Chen, M; Sheng, Z M; Ma, Y Y; Li, Y T; Yuan, X H; Zhang, J

    2008-01-01

    A scheme for focusing relativistic electron beams has been proposed by use of a solid cone based upon two dimensional particle-in-cell simulations. We compare the transport of hot electrons, produced during the interaction of ultra-intense laser pulse with the targets, through the cone shape target and a flat target. It is found that relativistic electrons can be confined and focused effectively in the cone target case, where both the electron density and temperature have been increased more significantly than the flat target case