WorldWideScience

Sample records for electron beam imaging

  1. Imaging of osteo-odonto-keratoprosthesis by electron beam tomography

    OpenAIRE

    Fong, K C S; Ferrett, C G; Tandon, R; Paul, B; Herold, J; Liu, C S C

    2005-01-01

    Aim: To describe the experience of using electron beam tomography (EBT) in imaging of osteo-odonto-keratoprosthesis (OOKP) to identify early bone and dentine loss which may threaten the viability of the eye.

  2. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  3. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  4. Suppression of COTR in electron beam imaging diagnosis at FLASH

    International Nuclear Information System (INIS)

    Yan, Minjie

    2011-12-01

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  5. An electron beam imaging system for quality assurance in IORT

    Science.gov (United States)

    Casali, F.; Rossi, M.; Morigi, M. P.; Brancaccio, R.; Paltrinieri, E.; Bettuzzi, M.; Romani, D.; Ciocca, M.; Tosi, G.; Ronsivalle, C.; Vignati, M.

    2004-01-01

    Intraoperative radiation therapy is a special radiotherapy technique, which enables a high dose of radiation to be given in a single fraction during oncological surgery. The major stumbling block to the large-scale application of the technique is the transfer of the patient, with an open wound, from the operating room to the radiation therapy bunker, with the consequent organisational problems and the increased risk of infection. To overcome these limitations, in the last few years a new kind of linear accelerator, the Novac 7, conceived for direct use in the surgical room, has become available. Novac 7 can deliver electron beams of different energies (3, 5, 7 and 9 MeV), with a high dose rate (up to 20 Gy/min). The aim of this work, funded by ENEA in the framework of a research contract, is the development of an innovative system for on-line measurements of 2D dose distributions and electron beam characterisation, before radiotherapy treatment with Novac 7. The system is made up of the following components: (a) an electron-light converter; (b) a 14 bit cooled CCD camera; (c) a personal computer with an ad hoc written software for image acquisition and processing. The performances of the prototype have been characterised experimentally with different electron-light converters. Several tests have concerned the assessment of the detector response as a function of impulse number and electron beam energy. Finally, the experimental results concerning beam profiles have been compared with data acquired with other dosimetric techniques. The achieved results make it possible to say that the developed system is suitable for fast quality assurance measurements and verification of 2D dose distributions.

  6. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  7. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  8. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  9. Imaging of osteo-odonto-keratoprosthesis by electron beam tomography.

    Science.gov (United States)

    Fong, K C S; Ferrett, C G; Tandon, R; Paul, B; Herold, J; Liu, C S C

    2005-08-01

    To describe the experience of using electron beam tomography (EBT) in imaging of osteo-odonto-keratoprosthesis (OOKP) to identify early bone and dentine loss which may threaten the viability of the eye. Seven patients with an OOKP in one eye underwent EBT. The OOKP lamina dimensions were measured on EBT and compared to the manual measurements at the time of surgery. There was a high degree of resolution of the OOKP lamina noted with EBT. In particular, it identified three patients with a marked degree of thinning of the lamina edges. Two of these patients had OOKP that were allografts. The mean time from surgery to examination was 3.6 years (range 1.2-5 years) while the mean age of the patients was 56 years (range 31-79 years). It is important to monitor regularly the dimensions and stability of the OOKP lamina as it will help detect cases that are at risk of extrusion of the optical cylinder and consequent endophthalmitis. Prophylactic measures can then be taken to prevent such serious complications from occurring. In this series, the authors found EBT to have excellent resolution and speed and they would support regular scanning of the OOKP lamina in all patients.

  10. Diffraction and depths-of-field effects in electron beam imaging at SURF III

    International Nuclear Information System (INIS)

    Arp, U.

    2001-01-01

    Imaging an electron beam with visible light is a common method of diagnostics applied to electron accelerators. It is a straightforward way to deduce the transverse electron distribution as well as its changes over time. The electrons stored in the Synchrotron Ultraviolet Radiation Facility (SURF) III at the National Institute of Standards and Technology (NIST) were studied over an extended period of time to characterize the upgraded accelerator. There is good agreement between experimental and theoretical horizontal beam sizes at three different electron energies

  11. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  12. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  13. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  14. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  15. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials

    International Nuclear Information System (INIS)

    Woehl, Taylor J.; Jungjohann, Katherine L.; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2013-01-01

    Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment

  16. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor J., E-mail: tjwoehl@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Jungjohann, Katherine L. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Evans, James E. [Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Arslan, Ilke [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Ristenpart, William D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 (United States); Browning, Nigel D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-04-15

    Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.

  17. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  18. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide

  19. Generation of low KV x-ray portal images with mega-voltage electron beams

    International Nuclear Information System (INIS)

    Kenny, J.; Ebert, M.

    2004-01-01

    Full text: The increasing complexity of radiation therapy plans and reduced target margins, have made accurate localization of patients at treatment a crucial quality assurance issue. Mega-voltage portal images, the standard for treatment localization, are inherently low in contrast because x-ray attenuation at these energies is similar for most body tissues. Thus anatomical features are difficult to distinguish and match to features on a reference diagnostic image. This project investigates the possibly of using x-rays created by an external target placed in the path of a clinical mega-voltage electron beam. This target is optimised to produce a higher proportion of useful imaging x-rays in the range of 50-200kV. It is thought that a high efficiency Varian aSi500 amorphous silicon EPID will be sufficient to compensate for the very low efficiency of x-ray production. The project was undertaken with concurrent theoretical and experimental components. The former involved Monte Carlo models of low Z target design while in the later, experimental data was gathered to validate the model and explore the practical issues associated with electron mode image acquisition. A 6 MeV electron beam model for a Varian Clinac 21EX was developed with EGS4/BEAMnrc User Code and compared to measured beam data. Phase space data scored at the secondary collimator then became the input for simulations of a target placed in the accessory tray. Target materials were predominately low atomic number (Z) because a) production of high energy x-rays is minimized and, b) fewer low energy x-rays produced will be absorbed within the target. Photon and electron energy spectrums of the modified beam were evaluated for a range of target geometries. Ultimately, several materials were used in combination to optimise an x-ray yield for energies <200kV while removing electrons and very low energy x-rays, that contribute to patient dose but not to image formation. Low energy images of a PIPs EPID QA

  20. Observation of electron beam moiré fringes in an image conversion tube

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yunfei; Liao, Yubo [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Long, Jing-hua [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Cai, Houzhi; Bai, Yanli [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Liu, Jinyuan, E-mail: ljy@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China)

    2016-11-15

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  1. Observation of electron beam moiré fringes in an image conversion tube

    International Nuclear Information System (INIS)

    Lei, Yunfei; Liao, Yubo; Long, Jing-hua; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan

    2016-01-01

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  2. The rapid secondary electron imaging system of the proton beam writer at CIBA

    International Nuclear Information System (INIS)

    Udalagama, C.N.B.; Bettiol, A.A.; Kan, J.A. van; Teo, E.J.; Watt, F.

    2007-01-01

    The recent years have witnessed a proliferation of research involving proton beam (p-beam) writing. This has prompted investigations into means of optimizing the process of p-beam writing so as to make it less time consuming and more efficient. One such avenue is the improvement of the pre-writing preparatory procedures that involves beam focusing and sample alignment which is centred on acquiring images of a resolution standard or sample. The conventional mode of imaging used up to now has utilized conventional nuclear microprobe signals that are of a pulsed nature and are inherently slow. In this work, we report the new imaging system that has been introduced, which uses proton induced secondary electrons. This in conjunction with software developed in-house that uses a National Instruments DAQ card with hardware triggering, facilitates large data transfer rates enabling rapid imaging. Frame rates as much as 10 frames/s have been achieved at an imaging resolution of 512 x 512 pixels

  3. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  4. Three-dimentional imaging of dentomaxillofacial region using electron beam tomography

    International Nuclear Information System (INIS)

    Tanaka, Takemasa; Kanda, Shigenobu; Muranaka, Toru

    1998-01-01

    Authors reported their results of the 3-D imaging of dentomaxillofacial region mainly for jaw deformity with electron beam tomography (EBT). The EBT apparatus used was Imatron C-100 (Imatron Corp.), with which, using bremsstrahlung radiation generated from the electron beam, CT is possible with rapid scanning rate at <0.1 sec. Imaging was done with those conditions as tube voltage: 130 kV, current: 610 mA, scanning rate: 0.1 sec/slice whose thickness was 1.5 mm, feeding rate: 1.5 mm and number of slices: 40-170. Patients were 15 cases with jaw deformity. Data were processed for 3-D image by Scribe Imaging Workstation (Multi-dimensional Imaging Inc.) which giving surface rendering and further by Power Macintosh 8500 (Apple Computer Inc.) with VoxBlast 1.1.0 (VayTec Inc.) software which giving volume rendering or with Image 1.60 (NIH) which allowing multi-planar reconstruction and re-analog projection. These actual images were presented in the report. (K.H.)

  5. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  7. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  8. Many-beam effects in electron microscope images of lattice defects

    International Nuclear Information System (INIS)

    Izui, Kazuhiko; Nishida, Takahiko; Furuno, Shigemi; Otsu, Hitoshi

    1974-01-01

    Multi-beam effects in electron microscopic images were investigated. A computation program was developed on the basis of a matrix theory of the multi-beam effects. The matrix theory for a perfect crystal and an imperfect crystal is described, and expression for absorption coefficient is presented. The amplitude of electron wave penetrating through lattice defects is expressed by using scattering matrices which correspond to crystal slices. Calculation of extinction distance was performed, and compared with experimental results. In case of systematic reflection, the difference between two beams and from four to eight beams approximation was small, while a large effect was seen in case of accidental reflection. The intensity profile of bend contour was calculated for silicon and copper-aluminum alloy. Distance between submaxima becomes short with increase of thickness. The change in stacking fault fringes with diffraction condition was investigated. Samples were copper-aluminum alloy. Systematic behavior of the fringes was obtained, and the calculated results reproduced experimental ones. (Kato, T.)

  9. Initial Imaging of 7-GeV Electron Beams with OTR/ODR Techniques at APS

    CERN Document Server

    Lumpkin, Alex H; Sereno, Nicholas S; Yao, Chihyuan

    2005-01-01

    The development of nonintercepting (NI) diagnostics continues to be of interest at the Advanced Photon Source (APS) as well as elsewhere. In the three rings of the APS facility we use optical synchrotron radiation generated as the electron beam transits the dipole magnetic fields as an NI mechanism to image the beam during top-up operations. However, in the straight transport lines an alternative method is needed. Optical diffraction radiation (ODR) is under investigation to monitor 7-GeV beam trajectory and potentially transverse shape in the booster-to-storage ring (BTS) beamline during top-up operations. We have performed our initial measurements with an Al blade/mirror that served as an optical transition radiation (OTR) monitor when fully inserted into the beam and as an ODR monitor when the beam passed near the edge. In the case of ODR, appreciable signal is emitted by the metal when gamma times the reduced ODR wavelength is comparable to the impact parameter, where gamma is the Lorentz factor. Visible ...

  10. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W. [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  11. Pictorial review: Electron beam computed tomography and multislice spiral computed tomography for cardiac imaging

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Dohmen, Pascal M.; Klessen, Christian; Wiese, Till H.; Hoffmann, Udo; Hamm, Bernd; Enzweiler, Christian N.H.

    2006-01-01

    Electron beam computed tomography (EBCT) revolutionized cardiac imaging by combining a constant high temporal resolution with prospective ECG triggering. For years, EBCT was the primary technique for some non-invasive diagnostic cardiac procedures such as calcium scoring and non-invasive angiography of the coronary arteries. Multislice spiral computed tomography (MSCT) on the other hand significantly advanced cardiac imaging through high volume coverage, improved spatial resolution and retrospective ECG gating. This pictorial review will illustrate the basic differences between both modalities with special emphasis to their image quality. Several experimental and clinical examples demonstrate the strengths and limitations of both imaging modalities in an intraindividual comparison for a broad range of diagnostic applications such as coronary artery calcium scoring, coronary angiography including stent visualization as well as functional assessment of the cardiac ventricles and valves. In general, our examples indicate that EBCT suffers from a number of shortcomings such as limited spatial resolution and a low contrast-to-noise ratio. Thus, EBCT should now only be used in selected cases where a constant high temporal resolution is a crucial issue, such as dynamic (cine) imaging. Due to isotropic submillimeter spatial resolution and retrospective data selection MSCT seems to be the non-invasive method of choice for cardiac imaging in general, and for assessment of the coronary arteries in particular. However, technical developments are still needed to further improve the temporal resolution in MSCT and to reduce the substantial radiation exposure

  12. Ralicon anodes for image photon counting fabricated by electron beam lithography

    International Nuclear Information System (INIS)

    Burton, W.M.

    1982-01-01

    The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). This method of fabrication can be used to produce optical patterns for the subsequent manufacture of anodes by conventional photo-etching methods and has also enabled anodes to be produced directly by EBL microfabrication techniques. Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs. (author)

  13. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie

    2018-03-01

    An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.

  14. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  15. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Beam electron microprobe

    CERN Document Server

    Stoller, D; Muterspaugh, M W; Pollock, R E

    1999-01-01

    A beam profile monitor based on the deflection of a probe electron beam by the electric field of a stored, electron-cooled proton beam is described and first results are presented. Electrons were transported parallel to the proton beam by a uniform longitudinal magnetic field. The probe beam may be slowly scanned across the stored beam to determine its intensity, position, and size. Alternatively, it may be scanned rapidly over a narrow range within the interior of the stored beam for continuous observation of the changing central density during cooling. Examples of a two dimensional charge density profile obtained from a raster scan and of a cooling alignment study illustrate the scope of measurements made possible by this device.

  17. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  18. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  19. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  20. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  1. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  2. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  3. MODULATED PLASMA ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, L. H.

    1963-08-15

    Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)

  4. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  5. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  6. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  7. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  8. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    International Nuclear Information System (INIS)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-01-01

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  9. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  10. SU-E-T-775: Use of Electronic Portal Imaging Device (EPID) for Quality Assurance (QA) of Electron Beams On Varian Truebeam System

    Energy Technology Data Exchange (ETDEWEB)

    Cai, B; Yaddanapudi, S; Sun, B; Li, H; Noel, C; Mutic, S; Goddu, S [Department of Radiation Oncology, Washington University in St Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: In a previous study we have demonstrated the feasibility of using EPID to QA electron beam parameters on a single Varian TrueBeam LINAC. This study aims to provide further investigation on (1) reproducibility of using EPID to detect electron beam energy changes on multiple machines and (2) evaluation of appropriate calibration methods to compare results from different EPIDs. Methods: Ad-hoc mode electron beam images were acquired in developer mode with XML code. Electron beam data were collected on a total of six machines from four institutions. A custom-designed double-wedge phantom was placed on the EPID detector. Two calibration methods - Pixel Sensitivity Map (PSM) and Large Source-to-Imager Distance Flood Field (LSID-FF) - were used. To test the sensitivity of EPID in detecting energy drifts, Bending Magnet Current (BMC) was detuned to invoke energy changes corresponding to ∼±1.5 mm change in R50% of PDD on two machines from two institutions. Percent depth ionization (PDI) curves were then analyzed and compared with the respective baseline images using LSID-FF calibration. For reproducibility testing, open field EPID images and images with a standard testing phantom were collected on multiple machines. Images with and without PSM correction for same energies on different machines were overlaid and compared. Results: Two pixel shifts were observed in PDI curve when energy changes exceeded the TG142 tolerance. PSM showed the potential to correct the differences in pixel response of different imagers. With PSM correction, the histogram of images differences obtained from different machines showed narrower distributions than those images without PSM correction. Conclusion: EPID is sensitive for electron energy changes and the results are reproducible on different machines. When overlaying images from different machines, PSM showed the ability to partially eliminate the intrinsic variation of various imagers. Research Funding from Varian Medical Systems

  11. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  12. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    Science.gov (United States)

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  13. Analyser of sweeping electron beam

    International Nuclear Information System (INIS)

    Strasser, A.

    1993-01-01

    The electron beam analyser has an array of conductors that can be positioned in the field of the sweeping beam, an electronic signal treatment system for the analysis of the signals generated in the conductors by the incident electrons and a display for the different characteristics of the electron beam

  14. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  15. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  16. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  17. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device

    CERN Document Server

    Liu, G; Bezak, E

    2002-01-01

    The input/output characteristics of the Wellhofer BIS 710 electronic portal imaging device (EPID) have been investigated to establish its efficacy for periodic quality assurance (QA) applications. Calibration curves have been determined for the energy fluence incident on the detector versus the pixel values. The effect of the charge coupled device (CCD) camera sampling time and beam parameters (such as beam field size, dose rate, photon energy) on the calibration have been investigated for a region of interest (ROI) around the central beam axis. The results demonstrate that the pixel output is a linear function of the incident exposure, as expected for a video-based electronic portal imaging system. The field size effects of the BIS 710 are similar to that of an ion chamber for smaller field sizes up to 10 x 10 cm sup 2. However, for larger field sizes the pixel value increases more rapidly. Furthermore, the system is slightly sensitive to dose rate and is also energy dependent. The BIS 710 has been used in t...

  18. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging

    International Nuclear Information System (INIS)

    Garcia, Alejandra; Raya, Andres M.; Mariscal, Marcelo M.; Esparza, Rodrigo; Herrera, Miriam; Molina, Sergio I.; Scavello, Giovanni; Galindo, Pedro L.; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-01-01

    In this work we examined MoS 2 sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS 2 sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron–matter. The threshold energy for the MoS 2 material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS 2 layers. - Highlights: • MoS 2 sheets were exfoliated by using hydrogen gas flow to separate the MoS 2 layers. • The optimum energy to avoid structural damage was calculated. • Cs-corrected STEM imaging was used to obtain atomic resolution images. • Three energies were used in STEM imaging: 80, 120 and 200 kV. • A quantitative method for determining the number of layers has been applied

  19. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  20. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  1. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  2. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  3. Verification of setup errors in external beam radiation therapy using electronic portal imaging

    International Nuclear Information System (INIS)

    Krishna Murthy, K.; Al-Rahbi, Zakiya; Sivakumar, S.S.; Davis, C.A.; Ravichandran, R.

    2008-01-01

    The objective of this study was to conduct an audit on QA aspects of treatment delivery by the verification of the treatment fields position on different days to document the efficiency of immobilization methods and reproducibility of treatment. A retrospective study was carried out on 60 patients, each 20 treated for head and neck, breast, and pelvic sites; and a total of 506 images obtained by electronic portal imaging device (EPID) were analyzed. The portal images acquired using the EPID systems attached to the Varian linear accelerators were superimposed on the reference images. The anatomy matching software (Varian portal Vision. 6.0) was used, and the displacements in two dimensions and rotation were noted for each treated field to study the patient setup errors. The percentages of mean deviations more than 3 mm in lateral (X) and longitudinal (Y) directions were 17.5%, 11.25%, and 7.5% for breast, pelvis, and head and neck cases respectively. In all cases, the percentage of mean deviation with more than 5 mm error was 0.83%. The maximum average mean deviation in all the cases was 1.87. The average mean SD along X and Y directions in all the cases was less than 2.65. The results revealed that the ranges of setup errors are site specific and immobilization methods improve reproducibility. The observed variations were well within the limits. The study confirmed the accuracy and quality of treatments delivered to the patients. (author)

  4. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  5. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  6. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  7. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    International Nuclear Information System (INIS)

    Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.

    2016-01-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  8. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  10. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    International Nuclear Information System (INIS)

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-01-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  11. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangwook, E-mail: medicalphysics@hotmail.com [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Ma, Sun Young; Jeung, Tae Sig [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Lee, Sang Hoon [Department of Radiation Oncology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Jung-gu, Seoul (Korea, Republic of); Lee, Suk [Department of Radiation Oncology, College of Medicine, Korea University, Seongbuk-gu, Seoul (Korea, Republic of); Cho, Sam Ju [Department of Radiation Oncology, Eulji University School of Medicine, Eulji General Hospital, Nowon-gu, Seoul (Korea, Republic of); Choi, Jinho [Department of Radiation Oncology, Gachon University of Medicine and Science, Namdong-gu, Incheon (Korea, Republic of)

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  12. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  13. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  14. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  15. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  16. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    International Nuclear Information System (INIS)

    Karlsson, Joakim; Sjögren, Torsten; Snis, Anders; Engqvist, Håkan; Lausmaa, Jukka

    2014-01-01

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM ® ) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level

  17. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim, E-mail: Joakim.karlsson@sp.se [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Sjögren, Torsten [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Snis, Anders [Arcam AB, Krokslätts fabriker 27 A, SE-431 37, Mölndal (Sweden); Engqvist, Håkan [Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lausmaa, Jukka [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden)

    2014-11-17

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM{sup ®}) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level.

  18. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  19. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  20. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  1. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  2. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  3. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  4. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  5. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  6. A new approach for 3D reconstruction from bright field TEM imaging: Beam precession assisted electron tomography

    International Nuclear Information System (INIS)

    Rebled, J.M.; Yedra, Ll.; Estrade, S.; Portillo, J.; Peiro, F.

    2011-01-01

    The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49 o to -61 o at intervals of 2 o and with a precession angle of 0.6 o in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: → Electron beam precession reduces spurious diffraction contrast in bright field mode. → Bend contour related contrast depends on precession angle. → Electron beam precession is combined with bright field electron tomography. → Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.

  7. A new approach for 3D reconstruction from bright field TEM imaging: Beam precession assisted electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rebled, J.M. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, 08193 Bellaterra (Spain); Yedra, Ll. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Estrade, S.; Portillo, J. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); TEM-MAT, CCiT-UB, Sole i Sabaris 1, 08028 Barcelona (Spain); Peiro, F., E-mail: francesca.peiro@ub.edu [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2011-08-15

    The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49{sup o} to -61{sup o} at intervals of 2{sup o} and with a precession angle of 0.6{sup o} in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: {yields} Electron beam precession reduces spurious diffraction contrast in bright field mode. {yields} Bend contour related contrast depends on precession angle. {yields} Electron beam precession is combined with bright field electron tomography. {yields} Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.

  8. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    OpenAIRE

    Leijten, Zino J. W. A.; Keizer, Arthur D. A.; de With, Gijsbertus; Friedrich, Heiner

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length s...

  9. Comparison of coronary artery calcium screening image quality between C-150 and e-Speed electron beam scanners.

    Science.gov (United States)

    Budoff, Matthew J; Shinbane, Jerold S; Oudiz, Ronald J; Child, Janis; Carson, Sivi; Chau, Alex; Tseng, Philip; Gao, Yanlin; Mao, Songshou

    2005-03-01

    The newest generation of electron beam tomographic scanner (e-Speed) has increased spatial and temporal resolution compared with the C-150 XP scanner. The aim of this study was to evaluate coronary artery calcium screening image quality between the e-Speed and C-150 scanners (GE Imatron, San Francisco, CA). Studies from 41 patients (14 women and 27 men) who underwent serial coronary artery calcium screening with the C-150 (first study) and the e-Speed (second study) were analyzed. Individual computed tomography (CT) slices were assessed for coronary artery motion artifacts, and CT Hounsfield units (HU) and noise values (CT HU standard deviation) at 16 discrete cardiac sites were measured and averaged. With the e-Speed scanner, there were significant decreases in right coronary artery motion artifacts compared with the C-150 scanner (0.3% versus 1.8%, P Image quality is significantly improved with use of the e-Speed scanner, due to its improved temporal and spatial resolution, compared with the C-150 scanner.

  10. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    Science.gov (United States)

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer

  11. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  12. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  13. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  14. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    International Nuclear Information System (INIS)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Williams, B; Gladstone, D

    2015-01-01

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup

  15. Beam Characterizations at Femtosecond Electron Beam Facility

    CERN Document Server

    Rimjaem, Sakhorn; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Saisut, Jatuporn; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond electron pulses. Theses short pulses are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed.

  16. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  17. Beam imaging sensor and method for using same

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2017-01-03

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature. In another embodiment, the beam imaging sensor of the present invention comprises, among other things, a discontinuous partially circumferential slit. Also disclosed is a method for using the various beams sensor embodiments of the present invention.

  18. Towards the low-dose characterization of beam sensitive nanostructures via implementation of sparse image acquisition in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Hwang, Sunghwan; Han, Chang Wan; Ortalan, Volkan; Venkatakrishnan, Singanallur V; Bouman, Charles A

    2017-01-01

    Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials

  19. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  20. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  2. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  3. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  4. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  5. Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Masuda, Yuriko; Inami, Wataru; Kawata, Yoshimasa

    2016-07-25

    We present label-free and high spatial-resolution imaging for specific cellular structures using an electron-beam excitation-assisted optical microscope (EXA microscope). Images of the actin filament and mitochondria of stained HeLa cells, obtained by fluorescence and EXA microscopy, were compared to identify cellular structures. Based on these results, we demonstrated the feasibility of identifying label-free cellular structures at a spatial resolution of 82 nm. Using numerical analysis, we calculated the imaging depth region and determined the spot size of a cathodoluminescent (CL) light source to be 83 nm at the membrane surface.

  6. Electron beam spectrum monitor using synchrotron light

    International Nuclear Information System (INIS)

    Reagan, D.; Hostetler, T.E.

    1979-03-01

    This instrument shows the positions, widths, and shapes of momentum spectra of SLAC beams. It uses synchrotron light produced when the beam is deflected by a magnet. Some of the light is focused on the face of an image splitter consisting of acrylic light pipes. The light pipes illuminate twelve photomultiplier tubes. Pulses from the PM tubes are integrated, multiplexed, and displayed on an oscilloscope. The resolution of the instrument is usually better than 0.2%. It has some advantages over the secondary emitter foil spectrum monitors (SEM's) currently in use at SLAC. It need never be put out of service to avoid disturbing the beam. It is as sensitive as the most sensitive SLAC SEM. (Its performance has been optimized for high-current beams; it can easily be made much more sensitive.) It provides information on a pulse-to-pulse basis and, with better cables, could indicate electron beam pulse shapes

  7. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  8. TH-CD-202-02: A Preliminary Study Evaluating Beam-Hardening Artifact Reduction On CT Direct Electron-Density Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Dolly, S; Zhao, T; Anastasio, M; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Ritter, A; Colombo, V; Raupach, R; Huenemohr, N [Siemens Healthcare GmbH, Deutschland (Germany); Mistry, N [Siemens Medical Solutions USA, Malvern, PA (United States); Yu, L [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at five tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.

  9. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  10. Plural beam electron gun assembly

    International Nuclear Information System (INIS)

    Stratton, M.G.

    1977-01-01

    The invention relates to a cathode ray tube plural-beam-in-line bi-potential electron gun assembly, having applied beam currents of differing levels, manifests structurally modified gun structures to effect focused beam landings at the screen that are evidenced as substantially equi-sized spots thereby providing improved resolution and brightness of the screen imagery. The structural changes embody modifications of the related focusing and accelerator electrodes of the respective guns to provide a partial telescoping arrangement for effecting the discrete placement, forming and shielding of the final focusing lenses. The three lenses so formed are in different planes in partial overlapping axial relationship

  11. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  12. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  13. Electron beam writing on semiconductors

    International Nuclear Information System (INIS)

    Bierhenke, H.; Kutzer, E.; Pascher, A.; Plitzner, H.; Rummel, P.; Siemens A.G., Muenchen; Siemens A.G., Muenchen

    1979-08-01

    Reported are the results of the 3 1/2 year research project 'Electron beam Writing on Semiconductors'. Work has been done in the field of direct wafer exposure techniques, and of mask making. Described are resist technology, setting up of a research device, exploration of alignment procedures, manufacturing of devices and their radiation influence. Furthermore, investigations and measurements of an electron beam machine bought for mask making purposes, the development of LSI-circuits with this machine, the software necessary and important developments of digital subsystems are reported. (orig.) [de

  14. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  15. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  16. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  17. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  18. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  19. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  20. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  1. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  2. Measurement of electron beams profile of pierce type electron source using sensor of used Tv tube

    International Nuclear Information System (INIS)

    Darsono; Suhartono; Suprapto; Elin Nuraini

    2015-01-01

    The measurement of an electron beam profile has been performed using electron beam monitor based on method of phosphorescent materials. The main components of the electron beam monitor consists of a fluorescent sensor using a used Tv tube, CCTV camera to record images on a Tv screen, video adapter as interface between CCTV and laptop, and the laptop as a viewer and data processing. Two Pierce-type electron sources diode and triode was measured the shape of electron beam profile in real time. Results of the experiments showed that the triode electron source of Pierce type gave the shape of electron beam profiles better than that of the diode electron source .The anode voltage is not so influential on the beam profile shape. The focused voltage in the triode electron source is so influence to the shape of the electron beam profile, but above 5 kV no great effect. It can be concluded that the electron beam monitor can provide real time observations and drawings shape of the electron beam profile displayed on the used Tv tube glass screen which is the real picture of the shape of the electron beam profile. Triode electron source produces a better electron beam profile than that of the diode electron source. (author)

  3. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  4. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  5. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells.

    Science.gov (United States)

    Miyazaki, Hideki T; Kasaya, Takeshi; Takemura, Taro; Hanagata, Nobutaka; Yasuda, Takeshi; Miyazaki, Hiroshi

    2013-11-18

    An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.

  6. From Electron Beams to Photon Beams

    International Nuclear Information System (INIS)

    Ranieri, Alberto

    2015-01-01

    n this article I try to report at the best the events and the emotions I experienced, together with my colleagues, when I was a young researcher working at the Frascati Center of CNEN. In the middle of 70’s the high energy physics activities carried out in Frascati were transferred from CNEN to INFN (Istituto Nazionale Fisica Nucleare) and the personnel had the chance to chose to continue to work at the CNEN (obviously in a different research field) or to continue to work in high energy physics, but at the INFN. I decided to remain at the CNEN and, consequently, I had to change my research activity. I moved from the high energy accelerators research field to the lasers research field in which, at that time at the CNEN, a new interesting project on “uranium laser isotope separation” was just starting. This article is focused on the theoretical and experimental development activity, carried out in the years 70’s-80’s at the CNEN Frascati Center, on a quite particular kind of laser to be utilized in that project. In this laser the active medium is not made of atoms or molecules but is a beam of free electrons running along a spatially periodic magnetic structure: this laser is the “Free Electron Laser” [it

  7. Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Directory of Open Access Journals (Sweden)

    Wu Qing

    2015-10-01

    Full Text Available Three sample preparation techniques, focused ion beam (FIB, ion beam (IB etching, and ultramicrotomy (UM were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  8. Electron beam facility for divertor target experiments

    International Nuclear Information System (INIS)

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-01-01

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m 3 ), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts

  9. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  10. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  11. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  12. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  13. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-06-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams. There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject? The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons, of generality and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron--positron collisions. 33 refs., 26 figs., 5 tabs

  14. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  15. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  16. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  17. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-01-01

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the imaging optics was in good agreement with the design value

  18. CEBAF beam viewer imaging software

    International Nuclear Information System (INIS)

    Bowling, B.A.; McDowell, C.

    1993-01-01

    This paper discusses the various software used in the analysis of beam viewer images at CEBAF. This software, developed at CEBAF, includes a three-dimensional viewscreen calibration code which takes into account such factors as multiple camera/viewscreen rotations and perspective imaging, and maintaining a calibration database for each unit. Additional software allows single-button beam spot detection, with determination of beam location, width, and quality, in less than three seconds. Software has also been implemented to assist in the determination of proper chopper RF control parameters from digitized chopper circles, providing excellent results

  19. Electron beam curing of coating

    International Nuclear Information System (INIS)

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  20. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  1. Nanosecond electron beams compact generator

    Energy Technology Data Exchange (ETDEWEB)

    Konkin, D V; Nagovitsin, A Yu; Pavlov, S S; Popkov, N F [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    A small-scale accelerator providing a storage energy of 40 J, electron energy of 200 keV, beam current released into air of 1 kA, and current pulse duration of 30-40 ns at the half-height is described. The multi-channel commutation is implemented in the accelerator capacitive energy storage, ensuring an output current pulse front of 10 ns, while the inductiveness is 120 nH. The gross weight of the device is approximately 100 kg. (author). 4 figs., 6 refs.

  2. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    Miller, A.

    1983-12-01

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  3. Nanosecond electron beams compact generator

    International Nuclear Information System (INIS)

    Konkin, D.V.; Nagovitsin, A.Yu.; Pavlov, S.S.; Popkov, N.F.

    1996-01-01

    A small-scale accelerator providing a storage energy of 40 J, electron energy of 200 keV, beam current released into air of 1 kA, and current pulse duration of 30-40 ns at the half-height is described. The multi-channel commutation is implemented in the accelerator capacitive energy storage, ensuring an output current pulse front of 10 ns, while the inductiveness is 120 nH. The gross weight of the device is approximately 100 kg. (author). 4 figs., 6 refs

  4. Analysis of degradation in nickel-based alloys using focused ion beam imaging and specimen preparation combined with analytical electron microscopy

    International Nuclear Information System (INIS)

    Phaneuf, M.W.; Botton, G.A.

    2002-01-01

    Focused ion beam (FIB) microscopes have become well-established in the semiconductor industry during the past decade, and are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided transmission electron microscope (TEM) specimens and as stand alone specimen preparation and imaging systems. FIB secondary electron imaging (SEI) of nickel-based alloys, such as commercially produced Alloy 600 (approximately Ni 15Cr 10Fe 0.5C), has been demonstrated to show a high degree of sensitivity to the presence of deformation in the alloy, and FIB secondary ion imaging (SII) is particularly useful for identifying the presence of grain boundary corrosion, as secondary ion yields from metallic specimens can increase by three orders of magnitude in the presence of oxygen. This 'oxygen enhanced yield', makes FIB SII ideal for detection of corrosion at grain boundaries down to thicknesses of only a few tens of nanometers. Historically, while TEM has been considered the tool of choice for high resolution chemical and crystallographic analysis of specimens, the technique has suffered from difficulties in producing suitable samples from site-specific areas with a high probability of success. The advent of FIB specimen preparation for TEM has largely changed that. FIB imaging can be combined with FIB 'nano-machining' techniques to produce site-specific, parallel sided TEM specimens well-suited to analytical electron microscopy (AEM) analyses in the TEM, including electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDX) and electron diffraction. When combined with new FIB-based methodologies for surveying large areas to exactly select the regions of interest, such as crack tips or the maximum extent of penetration of intergranular attack (IGA), subsequent FIB TEM specimen preparation and TEM analysis unite to produce a powerful tool to study these phenomena. Examples of these applications of FIB

  5. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  6. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-01-01

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  7. Chirping the LCLS Electron Beam

    International Nuclear Information System (INIS)

    Emma, P.

    2005-01-01

    We explore scenarios for generating a linear time-correlated energy spread in the LCLS electron bunch, prior to the undulator, that is needed for optical (x-ray) pulse compression. The correlated energy spread (''chirp'') is formed by generating an energy gradient along the length of the electron bunch using RF phasing and/or longitudinal wakefields of the accelerating structures. The sign of the correlation is an important limitation. Excluding a complete re-design of the compression systems, the best possibility is to use ''over-compression'' to effect the required energy chirp. This is easily done with only a slight strength increase (∼10%) in the chicane bends of the second compressor. In this case, the bend-plane emittance dilution associated with the increased coherent synchrotron radiation (CSR) in the bunch compressor may, however, significantly compromise the electron beam density. The CSR calculations for the momentary extremely short (∼1 (micro)m) electron bunch during over-compression are quite subtle and an adequate confidence level may not be achievable. A practical limit in this short-pulse scenario may be to use spontaneous rather than FEL radiation. Ignoring the potential emittance growth, a FWHM electron energy spread of 2% is possible

  8. Spatial coherence of electron beams from field emitters and its effect on the resolution of imaged objects

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch

    2017-04-15

    Sub-nanometer and nanometer-sized tips provide high coherence electron sources. Conventionally, the effective source size is estimated from the extent of the experimental biprism interference pattern created on the detector by applying the van Cittert Zernike theorem. Previously reported experimental intensity distributions on the detector exhibit Gaussian distribution and our simulations show that this is an indication that such electron sources must be at least partially coherent. This, in turn means that strictly speaking the Van Cittert Zernike theorem cannot be applied, since it assumes an incoherent source. The approach of applying the van Cittert Zernike theorem is examined in more detail by performing simulations of interference patterns for the electron sources of different size and different coherence length, evaluating the effective source size from the extent of the simulated interference pattern and comparing the obtained result with the pre-defined value. The intensity distribution of the source is assumed to be Gaussian distributed, as it is observed in experiments. The visibility or the contrast in the simulated holograms is found to be always less than 1 which agrees well with previously reported experimental results and thus can be explained solely by the Gaussian intensity distribution of the source. The effective source size estimated from the extent of the interference pattern turns out to be of about 2–3 times larger than the pre-defined size, but it is approximately equal to the intrinsic resolution of the imaging system. A simple formula for estimating the intrinsic resolution, which could be useful when employing nano-tips in in-line Gabor holography or point-projection microscopy, is provided. - Highlights: • van Cittert Zernike theorem for nano- and sub-nano electron emitting tips is revised. • Simulations show that nano- and sub-nano electron emitting tips are at least partially coherent. • A simple formula for evaluating

  9. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  10. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  11. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  12. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  13. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  14. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  15. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  16. Dose modeling of noninvasive image-guided breast brachytherapy in comparison to electron beam boost and three-dimensional conformal accelerated partial breast irradiation.

    Science.gov (United States)

    Sioshansi, Shirin; Rivard, Mark J; Hiatt, Jessica R; Hurley, Amanda A; Lee, Yoojin; Wazer, David E

    2011-06-01

    To perform dose modeling of a noninvasive image-guided breast brachytherapy (NIIGBB) for comparison to electrons and 3DCRT. The novel technology used in this study is a mammography-based, noninvasive breast brachytherapy system whereby the treatment applicators are centered on the planning target volume (PTV) to direct (192)Ir emissions along orthogonal axes. To date, three-dimensional dose modeling of NIIGBB has not been possible because of the limitations of conventional treatment planning systems (TPS) to model variable tissue deformation associated with breast compression. In this study, the TPS was adapted such that the NIIGBB dose distributions were modeled as a virtual point source. This dose calculation technique was applied to CT data from 8 patients imaged with the breast compressed between parallel plates in the cranial-caudal and medial-lateral axes. A dose-volume comparison was performed to simulated electron boost and 3DCRT APBI. The NIIGBB PTV was significantly reduced as compared with both electrons and 3DCRT. Electron boost plans had a lower D(min) than the NIIGBB technique but higher V(100), D(90), and D(50). With regard to PTV coverage for APBI, the only significant differences were minimally higher D(90), D(100), V(80), and V(90), with 3DCRT and D(max) with NIIGBB. The NIIGBB technique, as compared with electrons and 3D-CRT, achieved a lower maximum dose to skin (60% and 10%, respectively) and chest wall/lung (70-90%). NIIGBB achieves a PTV that is smaller than electron beam and 3DCRT techniques. This results in significant normal tissue sparing while maintaining dosimetric benchmarks to the target tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  18. Measurement of an electron-beam size with a beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Iida, K.; Nakamura, N.; Sakai, H.; Shinoe, K.; Takaki, H.; Fujisawa, M.; Hayano, H.; Nomura, M.; Kamiya, Y.; Koseki, T.; Amemiya, Y.; Aoki, N.; Nakayama, K.

    2003-01-01

    We present a non-destructive and real-time beam profile monitor using Fresnel zone plates (FZPs) and the measurement of an electron-beam size with this monitor in the KEK-Accelerator Test Facility (ATF) damping ring. The monitor system has the structure of a long-distance X-ray microscope, where two FZPs constitute an X-ray imaging optics. The synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is sufficiently high to measure the horizontal and vertical beam sizes of the ATF damping ring. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the X-ray imaging optics in the monitor system was in good agreement with the design value

  19. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    Science.gov (United States)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  20. Imaging of fullerene-like structures in CNx thin films by electron microscopy; sample preparation artefacts due to ion-beam milling

    International Nuclear Information System (INIS)

    Czigany, Zs.; Neidhardt, J.; Brunell, I.F.; Hultman, L.

    2003-01-01

    The microstructure of CN x thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200 kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5 nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN x surfaces. The thickness of the damaged surface layer at 5 deg. grazing incidence was 13 and 10 nm at 3 and 0.8 keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25 keV, was less than 1 nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN x films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN x was observed at 200 kV

  1. Electron beam hardened paint binder

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binder hardened by the effect of electron beams (0.1-100 Mrad/sec). It consists of a dispersion of (A) an ethylenic unsaturated material in (B) at least one vinyl monomer. The component (A) in a reaction product of degraded rubber particles (0.1-4 μm) and an ethylenic unsaturated component with a reactive epoxy, hydroxy or carboxy group which is bonded to the rubber particles by ester or urethane compounds. The rubber particles possess a nucleus and a cross-linked elastomeric acryl polymer, an outer shell with reactive groups and an intermediate layer formed by the monomers of the nucleus and the shell. The manner of production is described in great detail and supplemented by 157 examples. The coatings are suitable to coat articles which will be subject to deformation. (UWI) [de

  2. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  3. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  4. Shielding in electron beams used in radiotherapy

    International Nuclear Information System (INIS)

    Sentenac, Irenee.

    1979-01-01

    The interactions of electron beams with initial energies between 7 and 30 MeV have been studied in various materials including polystyrene, aluminium, copper and lead. The following experimental results have been found: estimation of measurement point displacement in a cylindrical chamber and of its variations with electron beam energy, empirical relations between the energy at the surface and the practical range of the electrons in various materials, an estimation of the relative ionisation due to the 'bremsstrahlung' measured behind different materials with beam complete shielding. Improvement of electron beam collimation is suggested after analysis of the dose distribution behind partial shielding [fr

  5. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  6. Electron beam emittance monitor for the SSC

    International Nuclear Information System (INIS)

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements

  7. EIC Electron Beam Polarimetry Workshop Summary

    International Nuclear Information System (INIS)

    Lorenzon, W.

    2008-01-01

    A summary of the Precision Electron Beam Polarimetry Workshop for a future Electron Ion Collider (EIC) is presented. The workshop was hosted by the University of Michigan Physics Department in Ann Arbor on August 23-24, 2007 with the goal to explore and study the electron beam polarimetry issues associated with the EIC to achieve sub-1% precision in polarization determination. Ideas are being presented that were exchanged among experts in electron polarimetry and source and accelerator design to examine existing and novel electron beam polarization measurement schemes

  8. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  9. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  10. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  11. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  12. Generation and application of bessel beams in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Harris, Jérémie [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada); Gazzadi, Gian Carlo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Balboni, Roberto [CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Dennis, Mark R. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W.; Karimi, Ebrahim [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2016-07-15

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  13. Generation and application of bessel beams in electron microscopy

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R.; Frabboni, Stefano; Boyd, Robert W.; Karimi, Ebrahim

    2016-01-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  14. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  15. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  16. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  17. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  18. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  19. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    1994-01-01

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  20. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  1. Monitor tables for electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Christ, G.; Dohm, O.S.

    2007-01-01

    The application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units. The present paper summarizes and discusses the main aspects concerning the preparation of tables of monitor units for electron beams. The measurement equipment and procedures for measuring basic beam data needed for tables of monitor units for electron beams are described for a standard radiation therapy linac. The design of tables of monitor units for standard electron applicators is presented; this design can be extended for individual electron inserts, to variable applicator surface distances, to oblique beam incidence, and the use of bolus material. Typical data of an Elekta linac are presented in various tables. (orig.)

  2. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  3. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  4. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  5. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  6. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  7. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  8. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  9. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  10. Electron beam extraction from a HVPES

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S; Cramariuc, R [Accelerators Laboratory, Institute of Physics and Technology for Radiation Devices, PO Box MG-06, R-76900 Bucharest (Romania); Nicolescu, I; Niculescu, M [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, `a discharge space`, filled with plasma and fast electrons and another, `working space`, occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I{sub d} - discharge current, U{sub d} - discharge voltage, were the same as for the reference geometry. (authors) 5 refs., 4 figs., 3 tabs.

  11. Electron beam extraction from a HVPES

    International Nuclear Information System (INIS)

    Marghitu, S.; Cramariuc, R.; Nicolescu, I.; Niculescu, M.

    1996-01-01

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, 'a discharge space', filled with plasma and fast electrons and another, 'working space', occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I d - discharge current, U d - discharge voltage, were the same as for the reference geometry. (authors)

  12. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena

    2014-01-01

    in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......, the room temperature is controlled to an accuracy of 0.1 degrees in order to minimize the thermally induced drift of the beam during pattern writing. We present process results in a standard positive tone resist and pattern transfer through etch to a Silicon substrate. Even though the electron beam...... of electrons in the substrate will influence the patterning. We present solutions to overcome these obstacles....

  13. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  14. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  15. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  16. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Sadat, T.; Ross, A.; Leveziel, H.

    1994-01-01

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  17. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  18. Review of electron beam therapy physics

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R; Almond, Peter R

    2006-01-01

    For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed. (review)

  19. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Grunder, H.A.; Bisognano, J.J.; Diamond, W.I.; Hartline, B.K.; Leemann, C.W.; Mougey, J.; Sundelin, R.M.; York, R.C.

    1987-01-01

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  20. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  1. Electron beam interaction with space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.S.

    1999-01-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification. Recently, theoretical studies of the nonlinear evolution of a thin monoenergetic electron beam injected in a magnetized plasma and interacting with a whistler wave packet have led to new results. The influence of an effective dissipation process connected with whistler wave field leakage out of the beam volume to infinity (that is, effective radiation outside the beam) on the nonlinear evolution of beam electrons distribution in phase space has been studied under conditions relevant to active space experiments and related laboratory modelling. The beam-waves system's evolution reveals the formation of stable nonlinear structures continuously decelerated due to the effective friction imposed by the strongly dissipated waves. The nonlinear interaction between the electron bunches and the wave packet are discussed in terms of dynamic energy exchange, particle trapping, slowing down of the beam, wave dissipation and quasi-linear diffusion. (author)

  2. Making electron beams for the SLC linac

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; James, M.B.; Miller, R.H.; Sheppard, J.C.; Sodja, J.; Truher, J.B.; Minten, A.

    1984-01-01

    A source of high-intensity, single-bunch electron beams has been developed at SLAC for the SLC. The properties of these beams have been studied extensively utilizing the first 100-m of the SLAC linac and the computer-based control system being developed for the SLC. The source is described and the properties of the beams are summarized. 9 references, 2 figures, 1 table

  3. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  4. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  5. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  6. Runaway electron beam in atmospheric pressure discharges

    International Nuclear Information System (INIS)

    Oreshkin, E V; Barengolts, S A; Chaikovsky, S A; Oreshkin, V I

    2015-01-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes. (paper)

  7. Electron Beam interaction with an inhomogeneous

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, N G; El-Shorbagy, Kh H [Plasma physics and Nuclear Fusion Dept. Nuclear Research Centre Atomic Energy Authority, Cairo, (Egypt)

    1997-12-31

    The linear and nonlinear interaction of an electron beam with an inhomogeneous semi bounded warm plasma is investigated. The amount of energy absorbed by the plasma is obtained. The formation of waves at double frequency at the inlet of the beam into the plasma is also considered.

  8. Electron-beam initiated HF lasers

    International Nuclear Information System (INIS)

    Gerber, R.A.; Patterson, E.L.

    1975-01-01

    Electron beams were used to ignite hydrogen/fluorine mixtures, producing laser energies up to 4.2 kJ, and giving hope that this approach may soon produce energy levels suitable for laser-fusion studies. (auth)

  9. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  10. Photon-Electron Interaction and Condense Beams

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1998-01-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations

  11. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  12. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  13. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  14. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  15. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  16. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  17. Electron beam interaction with space plasmas.

    Science.gov (United States)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  18. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  19. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  20. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  1. Electron beam dynamics in Pasotron microwave sources

    International Nuclear Information System (INIS)

    Carmel, Y.; Shkvarunets, A.; Nusinovich, G.S.; Rodgers, J.; Bliokh, Yu.P.; Goebel, D.M.

    2003-01-01

    The Pasotron is a high efficiency (∼50%), plasma-assisted microwave generator in which the beam electrons exhibit two-dimensional motion in the slow wave structure. The electron beam propagates in the ion-focusing regime (Bennett pinch regime) because there is no applied magnetic field. Since initially only the neutral gas is present in the vacuum system and the ions in the neutralizing plasma channel are produced only due to the beam impact ionization, the beam dynamics in Pasotrons is inherently a nonstationary process, and important for efficient operation. The present paper contains results of experimental studies of stationary and nonstationary effects in the beam dynamics in Pasotrons and their theoretical interpretation

  2. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  3. Development of a model using narrow slit beam profiles to account for the backscatter response of an amorphous silicon electronic portal imaging device

    International Nuclear Information System (INIS)

    Maria Das, K.J.; Ostapiak, Orest

    2008-01-01

    An electronic portal imaging device (EPID), currently used for determining proper patient placement during irradiation in a radiotherapy treatment, can also be used for the purpose of pre- treatment IMRT QA. However, the Varian aS500 portal imager exhibits dosimetric artifacts caused by non-uniform backscatter from mechanical support structures located behind the imager

  4. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.; Vaidyanathan, V.; Skromme, B.J.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis

  5. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  6. Equilibrium state of colliding electron beams

    Directory of Open Access Journals (Sweden)

    R. L. Warnock

    2003-10-01

    Full Text Available We study a nonlinear integral equation that is a necessary condition on the equilibrium phase-space distribution function of stored, colliding electron beams. It is analogous to the Haïssinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in 1 degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove the existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, as would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.

  7. Fundamental limits to imaging resolution for focused ion beams

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.; Utlaut, M.

    1996-01-01

    This article investigates the limitations on the formation of focused ion beam images from secondary electrons. We use the notion of the information content of an image to account for the effects of resolution, contrast, and signal-to-noise ratio and show that there is a competition between the rate at which small features are sputtered away by the primary beam and the rate of collection of secondary electrons. We find that for small features, sputtering is the limit to imaging resolution, and that for extended small features (e.g., layered structures), rearrangement, redeposition, and differential sputtering rates may limit the resolution in some cases. copyright 1996 American Vacuum Society

  8. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    Science.gov (United States)

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  9. Deflection of electron beams by ground planes

    International Nuclear Information System (INIS)

    Fernsler, R.F.; Lampe, M.

    1991-01-01

    Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well

  10. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    International Nuclear Information System (INIS)

    Mohos, I.; Dietrich, J.

    1998-01-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Juelich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network

  11. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    Science.gov (United States)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  12. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-01-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  13. Secondary-electron-bremsstrahlung imaging for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mitsutaka; Nagao, Yuto [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan); Ando, Koki; Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-Ku, Nagoya, Aichi (Japan); Kataoka, Jun [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo (Japan); Kawachi, Naoki [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan)

    2016-10-11

    A feasibility study on an imaging technique of a therapeutic proton-beam trajectory using a gamma camera by measuring secondary electron bremsstrahlung (SEB) was performed by means of Monte Carlo simulations and a beam-irradiation experiment. From the simulation and experimental results, it was found that a significant amount of SEB yield exists between the beam-injection surface and the range position along the beam axis and the beam trajectory is clearly imaged by the SEB yield. It is concluded that the SEB imaging is a promising technique for monitoring of therapeutic proton-beam trajectories.

  14. WEBEXPIR: Windowless target electron beam experimental irradiation

    International Nuclear Information System (INIS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait

    2008-01-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications

  15. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  16. Apparatus for electron beam irradiation of objects

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Ivanov, A.S.; Sviniin, M.P.; Fedotov, M.T.

    1984-01-01

    This patent provides an apparatus for electron beam irradiation of objects, comprising a shaper of a ribbon-shaped electron beam and a deflecting electromagnet having a frame-type magnetic circuit and used to direct said electron beam onto an irradiated object substantially at an angle of 90 degrees. The deflecting electromagnet has two poles extended over the width of the irradiated object and comprises two windings embracing said poles and connected to a d.c. source. The deflecting electromagnet is arranged in such a manner that the trajectories of the electrons at an area from the shaper to the electromagnet are inclined to the plane of the frame of its magnetic circuit

  17. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  18. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  19. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  20. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  1. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  2. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Nagata, Hidetoshi; Kobayashi, Takashi

    1988-01-01

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  3. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  4. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  5. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  6. Limiting currents of overcompensated electron beams

    International Nuclear Information System (INIS)

    Malafaev, V.A.

    1990-01-01

    A possibility of producing recompensated electron beam and increasing its limiting currents in the magnetic field is experimentally investigated. It is shown that such a possibility is realized when the beam is surrounded by a cylindrical net placed into the tube located under the positive potential relative to the net. In this case an increase of limiting current at the expense of increasing the ion life time, takes place. Current, exceeding the Pierce threshold 1.5 times, is obtained

  7. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  8. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  9. Electron clearing for the ISA proton beam

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1976-01-01

    The circulating protons in the ISABELLE intersecting storage ring accelerator will collide with the residual gas in the vacuum chamber. The electrons produced will tend to be captured by the potential well of the beam itself and result in a neutralization of the space charge of the beam. A detailed analysis is given of the various mechanisms which can be used to reduce the net degree of beam neutralization. It is concluded that the average neutralization will be about 10 -4 for a residual gas pressure of 3 x 10 -11 torr of hydrogen

  10. Electron beam processing of combustion flue gases

    International Nuclear Information System (INIS)

    1987-07-01

    This report contains the papers presented at the consultants' meeting on electron beam processing of combustion flue gases. The meeting provided an excellent opportunity for exchanging information and reviewing the current status of technology development. Characteristics of the electron beam processing recognized by the meeting are: capability of simultaneous removals of SO 2 and NO x , safe technology and simplicity of control, dry process without waste water to be treated, cost benefit of electron beam processing compared with conventional technology and the conversion of SO 2 and NO x to a by-product that can be used as agricultural fertilizer. A separate abstract was prepared for each of the 22 papers in this technical report

  11. Beam profile for Malaysian electron accelerator

    International Nuclear Information System (INIS)

    Abu Bakar Ghazali; Muhamad Zahidee Taat

    2007-01-01

    This paper comprises of two calculations that require in designing a dose profile for an electron accelerator machine before its fabrication. The first is to calculate the beam deflection due to changes of high voltage (HV) supply as well as the deflection coil currents so that the electron beam will only scan at the window foil of 18 cm length and 6 cm width. Secondly, we also require to calculate the beam profile at 50 mm underneath the window foil. The electron gun that produces a beam of 10 mm diameter has to be oscillated in a sawtooth wave for the prescribed window size at frequencies of 50 Hz and 400 Hz along the length and width directions respectively. For the beam deflection, we apply a basic formula from Lorentz force law to obtain a set of HV supply and the coil current that is suitable for both deflections and this result can assist in designing the coil current against HV changes via an electronic controller. The dose profile was calculated using the RMS current formulation along the length direction. We found that the measured and the calculated RMS currents are in comparable for the case of 1 MeV, 50 mA accelerator facility that is going to be installed at Nuclear Malaysia complex. A similar measurement will be carried out for our locally designed accelerator of 150 KeV, 10 mA after fabrication and installation of the machine are completed. (Author)

  12. Determination of the electron beam irradiated area

    International Nuclear Information System (INIS)

    Zarbout, K.; Kallel, A.; Moya, G.

    2005-01-01

    The investigation of the charge trapping properties of non-conductive materials open the way to an understanding of the degradation of their characteristics due to ageing and catastrophic phenomena, such as breakdown, which originate from the rapid relaxation of trapped charges. The defects, in particular those introduced during the fabrication process, are responsible for the charging phenomena which limit the technological performances and the reliability of these materials. Several characterisation techniques have been developed and among them the one which uses the electron beam of the scanning Electron Microscope (SEM). The study of the charge trapping properties in non-conductive solids by using the electron beam of a SEM requires the knowledge of the current beam and injected charges densities. These densities depend on the irradiated sample area. For this reason, we report in this work two experimental procedures allowing a direct determination of the irradiated area size by the incident defocused beam. The first is based on the charging effect of oxide surfaces (SiO2, MgO, AL2O3) and the second is derived from the electron beam lithography technique. The latter procedure constitutes a convenient experimental method

  13. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  14. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  15. Tesla-transformer-type electron beam accelerator

    International Nuclear Information System (INIS)

    Liu Jinliang; Zhong Huihuang; Tan Qimei; Li Chuanlu; Zhang Jiande

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  16. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  17. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  18. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  19. Analysis of emissions from prebunched electron beams

    Directory of Open Access Journals (Sweden)

    Jia Qika

    2017-07-01

    Full Text Available The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  20. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  1. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  2. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  3. Small field electron beam dosimetry using MOSFET detector.

    Science.gov (United States)

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  4. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  5. Electron cloud effects in hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [TU-Darmstadt, Institut fuer Theorie Elektromagnetischer Felder,Schlossgartenstr. 8 64289 Darmstadt (Germany)

    2013-07-01

    Accelerators operating with intense positively charged beams can suffer from the electron cloud phenomenon. For example, it is the intensity limiting factor in CERN LHC and SPS. In past decades a lot of progress in understanding the electron cloud effects was made worldwide. Methods to suppress or weaken the electron cloud phenomenon were proposed. Theories governing the bunch stability in presence of the electron cloud were developed. Recently the theory was introduced to describe the bunch energy loss due to the electron cloud. However, most of the publications concern the single bunch electron cloud effects. In reality bunches are packed into trains. A disturbance of the cloud caused by the bunch in the beginning of the train affects the subsequent bunches. We present a further investigation of single-bunch electron cloud effects and planned activities to study the phenomenon in case of multiple bunches.

  6. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  7. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  8. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  9. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  10. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    Heyse, J.

    2009-01-01

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  11. Electron-beam-induced conduction in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  12. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  13. Brookhaven National Laboratory electron beam test stand

    International Nuclear Information System (INIS)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Prelec, K.; Snydstrup, L.

    1998-01-01

    The main purpose of the electron beam test stand (EBTS) project at the Brookhaven National Laboratory is to build a versatile device to develop technologies that are relevant for a high intensity electron beam ion source (EBIS) and to study the physics of ion confinement in a trap. The EBTS will have all the main attributes of EBIS: a 1-m-long, 5 T superconducting solenoid, electron gun, drift tube structure, electron collector, vacuum system, ion injection system, appropriate control, and instrumentation. Therefore it can be considered a short prototype of an EBIS for a relativistic heavy ion collider. The drift tube structure will be mounted in a vacuum tube inside a open-quotes warmclose quotes bore of a superconducting solenoid, it will be at room temperature, and its design will employ ultrahigh vacuum technology to reach the 10 -10 Torr level. The first gun to be tested will be a 10 A electron gun with high emission density and magnetic compression of the electron beam. copyright 1998 American Institute of Physics

  14. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  15. Electron beam puts a shine on leather

    International Nuclear Information System (INIS)

    Berberich, S.

    1986-01-01

    A technique for curing leather using either ultraviolet or electron-beam radiation has been developed. This type of radiation curing saves at least 60 percent of the energy cost of conventional leather finishing and can also result in considerable savings in plant space and labor. The implications of the new technology in international balance of trade are discussed

  16. Electron beam effects on gelatin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del, E-mail: patyoko@yahoo.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: mascolombo@yahoo.com.b [Faculdade de Tecnologia da Zona Leste, Sao Paulo, SP (Brazil)

    2009-07-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  17. Electron acceleration in a plane laser beam

    Czech Academy of Sciences Publication Activity Database

    Petržílka, Václav; Krlín, Ladislav; Tataronis, J. A.

    2002-01-01

    Roč. 52, supplement D (2002), s. 279-282 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : electron acceleration, laser beam Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  18. Penetration of electronic beams in ionizing media

    International Nuclear Information System (INIS)

    Martiarena, M.L.; Zanete, D.H.; Garibotti, C.R.

    1988-01-01

    It is studied the penetration of an electron beam in an ionizable medium by means of a generalized kinetic equation. This equation is related to elastic collisions, processes of creation and destruction of particles. By integrating numerically the transport equation, it can be evaluated the relative effects of all the processes involved in the evolution of the system. (A.C.A.S.) [pt

  19. Electron beam effects on gelatin polymer

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del; Colombo, Maria A.

    2009-01-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  20. SLC polarized beam source electron optics design

    International Nuclear Information System (INIS)

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2 1/2-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs

  1. Economy in utilizing electron beam accelerators

    International Nuclear Information System (INIS)

    Takahashi, Masao

    1980-01-01

    As the typical industrialized processes using electron beam irradiation, the following items may be given: the manufacture of cables covered with cross-linking polyethylene or PVC, heat-contracting material, cross-linking polyethylene foam, etc., and the curing of coatings or surface finishes. The results of investigating economy in these processes are described. First, the running cost of electron beam irradiation equipments is calculated. The result shows that, in general, the unit cost of the equipments becomes small with increasing output, therefore the selection of large power equipments may be advantageous for economy. Other important factors concerning the equipments are the reliability and lifetime which are being improved every year and the improvement of the operational efficiency of the equipments. Next, the comparison of cost was made for each industrialized process of the cables covered with cross-linking polyethylene, polyethylene foam, and the curing of coatings. In general, the processing cost is smaller and the depreciation cost is larger in electron beam irradiation process as compared with conventional processes. In addition, since the productive capacity is larger in electron beam process it is preponderant when the amount of production is large. In the industrialized examples, unique processes or features which are not obtainable by other methods are attained. (Wakatsuki, Y.)

  2. The CMS Beam Halo Monitor electronics

    International Nuclear Information System (INIS)

    Tosi, N.; Fabbri, F.; Montanari, A.; Torromeo, G.; Dabrowski, A.E.; Orfanelli, S.; Grassi, T.; Hughes, E.; Mans, J.; Rusack, R.; Stifter, K.; Stickland, D.P.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data

  3. Electron beams, lenses, and optics. Volume 2

    International Nuclear Information System (INIS)

    El-Kareh, A.B.; El-Kareh, J.C.J.

    1970-01-01

    This volume presents a systematic coverage of aberrations. It analyzes the geometrical aberrations and treats the spherical and chromatic aberrations in great detail. The coefficients of spherical and chromatic aberration have been computed for a series of electrostatic and magnetic lenses and are listed in table form. The book also covers space charge and its effect on highly focused electron beams

  4. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  5. Radiation dermatitis following electron beam therapy

    International Nuclear Information System (INIS)

    Price, N.M.

    1978-01-01

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads

  6. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  7. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  8. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  9. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  10. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    Science.gov (United States)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  11. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  12. Probing the magnetsophere with artificial electron beams

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection

  13. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  14. Runaway electrons beams in ITER disruptions

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1993-01-01

    In agreement with the initial projections, the potential generation of runaway beams in disruptions of ITER discharges was performed. This analysis was based on the best-available present projections of plasma parameters existing in large-tokamak disruptions. Using these parameters, the potential contributions from various basic mechanisms for the generation of runway electrons were estimated. The envisioned mechanisms included (i) the well-known Dreicer process (assuming an evaporation of the runways from the thermal distribution), (ii) the seeding of runaway beams resulting from the potential presence of trapped high-temperature electrons from the original discharge still remaining in the disruption plasma at time of reclosure of the magnetic surfaces, and (iii) the generation of runaway beams through avalanche exponentiation of low-level seed runaways resulting via close collisions of existing runaways with cold plasma electrons. Finally, the prospective behavior of the any generated runaway beams -- in particular during their decay -- as well as their potential avoidance and/or damage controlled extraction through the use of magnetic perturbation fields also was considered in some detail

  15. Peripheral dose outside applicators in electron beams

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm 2 cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm 2 cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 deg. (note)

  16. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  17. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.

    1977-01-01

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  18. Statistical process control for electron beam monitoring.

    Science.gov (United States)

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    International Nuclear Information System (INIS)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics, and

  20. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz [Uppsala Univ. (Sweden). Dept. of Materials Science

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics

  1. A gamma beam profile imager for ELI-NP Gamma Beam System

    Science.gov (United States)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  2. Transverse electron beam diagnostics at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Bayesteh, Shima

    2014-12-15

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  3. Transverse electron beam diagnostics at REGAE

    International Nuclear Information System (INIS)

    Bayesteh, Shima

    2014-12-01

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  4. Electron-beam driven relaxation oscillations in ferroelectric nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nathaniel; Ahluwalia, Rajeev [Institute of High Performance Computing, Singapore 138632 (Singapore); Kumar, Ashok [CSIR-National Physical Laboratory, Delhi 110012 (India); Srolovitz, David J. [Department of Materials Science and Engineering and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Chandra, Premala [Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 (United States); Scott, James F. [Department of Physics, Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews YX16 9ST (United Kingdom)

    2015-10-12

    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems, and possible applications of gated versions are discussed.

  5. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  6. Beam accumulation with the SIS electron cooler

    International Nuclear Information System (INIS)

    Steck, M.; Groening, L.; Blasche, K.; Franczak, B.; Franzke, B.; Winkler, T.; Parkhomchuk, V.V.

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 8 to 1x10 9 . For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 -4 range and emittances well below 10 π mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of the charge state. Strong enhancement of the recombination rate with free electrons compared to theoretical calculations of radiative electron capture have been observed

  7. T2 signal intensity as an imaging biomarker for patients with superficial Fibromatoses of the hands (Dupuytren's disease) and feet (Ledderhose disease) undergoing definitive electron beam irradiation.

    Science.gov (United States)

    Banks, James S; Wolfson, Aaron H; Subhawong, Ty K

    2018-02-01

    Electron beam therapy is a definitive radiation treatment option for superficial fibromatoses of the hands and feet. Because objective criteria for treatment response remain poorly defined, we sought to describe changes in electron beam treated lesions on MRI. The study included 1 male and 9 female patients with a total of 37 superficial fibromatoses; average age was 60.7 years. Standard 6 MeV electron beam treatment included 3 Gy per fraction for 10 or 12 treatments using split-course with 3-month halfway break. Pre- and post-treatment MRIs were evaluated to determine lesion size (cm3), T2 signal intensity and contrast enhancement (5-point ordinal scales) by a fellowship trained musculoskeletal radiologist. MRI findings were correlated with clinical response using a composite 1-5 ordinal scale, Karnofsky Performance Scale and patient-reported 10-point visual analog scale for pain. Mean volume decreased from 1.5 to 1.2 cm 3 (p = 0.01, paired t-test). Mean T2 hyperintensity score decreased from 3.0 to 2.1 (p Wilcoxon signed-rank). Mean enhancement score available for 22 lesions decreased from 3.8 to 3.0 (p Wilcoxon signed-rank). Performance scores improved from 78.9 ± 13.7 to 84.6 ± 6.9 (p = 0.007, paired t-test). Pain scores decreased from 3.0 ± 3.3 to 1.1 ± 2.0 (p = 0.0001, paired t-test). Post-treatment T2 signal correlated weakly with performance and pain (Spearman's ρ = -0.37 and 0.16, respectively). MRI is valuable for evaluating patients undergoing electron beam therapy for superficial fibromatoses: higher pretreatment T2 intensity may predict benefit from radiotherapy. T2 hypointensity may be a better marker than size for therapeutic effect.

  8. Stabilization of electron beam spot size by self bias potential

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.

    1998-01-01

    In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment

  9. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  10. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  11. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  12. Suppression of electron waves in relation to the deformation of the electron beam distribution function

    International Nuclear Information System (INIS)

    Fukumasa, O.; Itatani, R.

    1978-01-01

    The change of the electron beam distribution function due to the wave excited by the beam density modulation is observed, in relation to the suppression of electron waves in a beam-plasma system. (Auth.)

  13. Electron beam induced emission from carbon plasmas

    International Nuclear Information System (INIS)

    Whetstone, S.; Kammash, T.

    1989-01-01

    Plasma use as a lasing medium has many potential advantages over conventional techniques including increased power levels and greater wavelength ranges. The basic concept is to heat and then rapidly cool a plasma forcing inversion through bottleneck creation between the recombination reaction populating a given energy level and the subsequent decay processes. Much effort has been devoted to plasmas heated by lasers and pinch devices. The authors are concerned here with electron beam heated plasmas focusing on the CIV 5g-4f transition occurring at 2530 Angstroms. These studies were initiated to provide theoretical support for experiments being performed at the University of Michigan using the Michigan Electron Long-Pulse Beam Accelerator (MELBA)

  14. Profiles of an initially perturbed electron beam

    International Nuclear Information System (INIS)

    Abdelsalam, F.W.

    1991-01-01

    This paper discusses the solutions for the profiles of an electron beam which is launched into a constant magnetic field with an initial boundary slope and injected with a radius which is greater or less than the cathode radius. It has been found that the outermost electron traces sine waves and executes limited excursions when the initial boundary slope corresponds to angles up to 1 degree, no matter whether the initial radius is 0.90 or 1.10 times the radius of the cathode. For initial inclination angles close to 2 degrees, the beam boundary does not preserve a sinusoidal shape, this statement holds true for focusing magnetic flux densities varying from 200x10 -4 to 700x10 -4 weber per square meter

  15. Large area electron beam diode development

    International Nuclear Information System (INIS)

    Helava, H.; Gilman, C.M.; Stringfield, R.M.; Young, T.

    1983-01-01

    A large area annular electron beam diode has been tested at Physics International Co. on the multi-terawatt PITHON generator. A twelve element post hole convolute converted the coaxial MITL into a triaxial arrangement of anode current return structures both inside and outside the cathode structure. The presence of both inner and outer current return paths provide magnetic pressure balance for the beam, as determined by diode current measurements. X-ray pinhole photographs indicated uniform emission with intensity maxima between the post positions. Current losses in the post hole region were negligible, as evidenced by the absence of damage to the aluminum hardware. Radial electron flow near the cathode ring however did damage the inner anode cylinder between the post positions. Cutting away these regions prevented further damage of the transmission lines

  16. NOx reduction by compact electron beam processing

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Wallman, P.H.; Vogtlin, G.E.

    1995-01-01

    Among the new methods being investigated for the post-combustion removal of nitrogen oxides (NO x ) are based on non-thermal plasmas. These plasmas can be produced by electrical discharge methods or electron beam irradiation. The application of electron beam irradiation for NO x removal in power plant flue gases has been investigated since the early 1970's in both laboratory- and pilot-scale experiments. Electrical discharge methods are relatively new entrants in the field of flue gas cleanup. Pulsed corona and dielectric-barrier discharge techniques are two of the more commonly used electrical discharge methods for producing nonthermal plasmas at atmospheric pressure. There are basically two types of reactions responsible for the depletion of NO by non-thermal plasmas: oxidation and reduction

  17. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  18. Calorimetric determination of electron beam output

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, J; Kovar, Z; Jandejsek, L [Ceskoslovenska Akademie Ved, Prague. Ustav Radiologicke Dozimetrie

    1979-07-01

    Two types of portable graphite calorimeter are described having modified replaceable absorbers allowing measurements of energy flux density in betatron electron beams in a range of 4 to 50 MeV. In a range of 4 to 20 MeV the total measurement error was about 1%. The results are discussed of the standardization of Siemens and Ostron medical betatrons using the said calorimeters.

  19. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Sarada Idris; Mohd Suhaimi Jusoh; Siti Aiasah Hashim

    2011-01-01

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  20. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  1. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  2. Process variation in electron beam sterilization

    International Nuclear Information System (INIS)

    Beck, Jeffrey A.

    2012-01-01

    The qualification and control of electron beam sterilization can be improved by the application of proven statistical analysis techniques such as Analysis of Variance (ANOVA) and Statistical Tolerance Limits. These statistical techniques can be useful tools in: •Locating and quantifying the minimum and maximum absorbed dose in a product. •Estimating the expected process maximum dose, given a minimum sterilizing dose. •Setting a process minimum dose target, based on an allowance for random measurement and process variation. •Determining the dose relationship between a reference dosimeter and process minimum and maximum doses. This study investigates and demonstrates the application of these tools in qualifying electron beam sterilization, and compares the conclusions obtained with those obtained using practices recommended in Guide for Process Control in Radiation Sterilization. The study supports the following conclusions for electron beam processes: 1.ANOVA is a more effective tool for evaluating the equivalency of absorbed doses than methods suggested in . 2.Process limits computed using statistical tolerance limits more accurately reflect actual process variability than the AAMI method, which applies +/−2 sample standard deviations (s) regardless of sample size. 3.The use of reference dose ratios lends itself to qualification using statistical tolerance limits. The current AAMI recommended approach may result in an overly optimistic estimate of the reference dose adjustment factor, as it is based on application of +/−2(s) tolerances regardless of sample size.

  3. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  4. Electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    Smith, J.R.; Luo, C.M.; Schneider, R.F.; Rhee, M.J.

    1984-01-01

    Operation of a plasma focus as a Compact Pulsed Accelerator (CPA) for ions has been previously reported. The CPA consists of: (1) a 15 μF, 3 kJ capacitor, (2) a triggered spark gap, (3) a coaxial transmission line, and (4) a Mather geometry plasma gun. Recently the authors have investigated application of the CPA as an accelerator for electrons. In the previously reported work using the standard Mather plasma gun geometry, ions were accelerated away from the plasma gun and were therefore conveniently extracted for analysis, but electrons were directed into the hollow anode where extraction is blocked by the coaxial transmission line. For investigation of accelerated electrons a new plasma gun design which allows extraction of electrons has been developed. Details of the new plasma gun design and further results of beam diagnostics are discussed

  5. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    Science.gov (United States)

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  6. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  7. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  8. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  9. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  10. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    International Nuclear Information System (INIS)

    Sahu, G K; Baruah, S; Thakur, K B

    2012-01-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  11. Noninvasive coronary angioscopy using electron beam computed tomography and multidetector computed tomography

    NARCIS (Netherlands)

    van Ooijen, PMA; Nieman, K; de Feyter, PJ; Oudkerk, M

    2002-01-01

    With the advent of noninvasive coronary imaging techniques like multidetector computed tomography and electron beam computed tomography, new representation methods such as intracoronary visualization. have been introduced. We explore the possibilities of these novel visualization techniques and

  12. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  13. Environmental applications of electron-beam technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    2001-01-01

    The main directions of modern environmental applications of electron-beam technology are the following: 1) treatment of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes; 2) purification of gases; 3) treatment of sewage sludges; 4) treatment of solid wastes (medical wastes, contaminated soil and so on). In some cases, the results of respective researches and developments found a large-scale application. For example, recently several industrial plants for electron-beam purification of flue gases of thermal power plants from SO2 and NOx were created in China, Poland and Japan. In the report, a brief summary of the most important results obtained in the mentioned directions will be presented. A special attention will be paid to the data in the first direction. In particular, the recent results on radiation treatment of some liquid systems obtained in the laboratory under author's leadership will be considered. One of them is water polluted with petroleum products (motor oil, diesel fuel, residual fuel oil). The pollutants were present in water in dissolved form and as a separate phase. It was found that irradiation (dose 25-40 kGy) decomposes and removes the pollutants as a precipitate. The second system is natural oil gas consisting of gaseous and low-boiling hydrocarbons, water and so on. Laboratory- and pilot-scale (with electron accelerator of 0.7 MeV and 30 kW) studies have shown that electron-beam treatment (in a recycling regime with continuous sampling the liquid phase) of this gas leads to the formation of a mixture of liquid branched hydrocarbons, alcohols, ethers and so on, i.e., there is a radiation-induced liquefaction of the natural oil gas. The mechanism of radiolytic conversions occurring in the mentioned systems will be discussed

  14. Efficient electron beam deposition for repetitively pulsed krypton fluoride lasers

    International Nuclear Information System (INIS)

    Hegeler, F.; Myers, M.C.; Friedman, M.; Sethian, J.D.; Swanekamp, S.B.; Rose, D.V.; Welch, D.R.

    2002-01-01

    We have demonstrated that we can significantly increase the electron beam transmission efficiency through a pressure foil structure (hibachi) by segmenting the beam into strips to miss the hibachi support ribs. In order to increase the electron beam transmission, the cathode strips are adjusted to compensate for beam rotation and pinching. The beam propagation through the hibachi has been both measured and simulated with 1-D and 3-D codes

  15. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  16. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    International Nuclear Information System (INIS)

    Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.

    2009-01-01

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.

  17. Electron beam application in gas waste treatment in China

    International Nuclear Information System (INIS)

    Wu Haifeng

    2003-01-01

    In the most recent decade, electron beam waste treatment technology attracted serious attention from environment policymaker and industrial leaders in power industry in China. Starting in middle of 1980's, Chinese research institute began experiment of electron beam treatment on flue gas. By the end of 2000, two 10,000 cubic meters per hour small scale electron beam gas purifying station were established in Sichuang province and Beijing. Several electron beam gas purifying demonstration projects are under construction. With robust economy and strong energy demand, needless to say, in near future, electron beam gas purifying technology will have a bright prospect in China. (author)

  18. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  19. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  20. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  1. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  2. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  3. Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS

    CERN Document Server

    Yang Bing Xin

    2005-01-01

    The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread...

  4. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  5. Electron beam processing - status and prospects

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1989-01-01

    A variety of commercial products now on the market are being produced by electron beam processing, which involves the treatment of materials with high-energy electrons to obtain beneficial effects. Ongoing applications include the high-speed curing of printing inks, clear and pigmented coatings, release coatings and adhesive films, the crosslinking of plastic film, foam, tubing, pipe, molded parts, electrical wire and cable, the cold vulcanization of rubber sheets for automobile tires and factory roofing as well as the sterilization of medical devices and packaging materials, and the preservation of food. Continuing growth is being driven by some inherent advantages of electron beam processing over alternative chemical and thermal treatment processes, such as enhanced product quality and lower unit costs that result from higher production rates, dynamic process control, quicker process start-up and shutdown, and reductions in scrap loss, energy consumption, floor space requirements, and toxic residues. Other potential applications that have not yet reached commercial fruition are focused on environmental protection and the reclamation of waste materials. These include the disinfection of potable water supplies, municipal waste water, sewage sludge, and the infectious wastes from hospitals and airports, the modification of toxic chemicals, the degradation of cellulosic materials, the cracking of crude oil and residual tars from refineries, and the extraction of sulfur and nitrogen oxides from combustion gases to reduce the effects of acid rain

  6. The CMS Beam Halo Monitor Electronics

    CERN Document Server

    AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...

  7. Interaction of the Modulated Electron Beam with Plasma: Kinetic Effects

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kiyanchuk, M.J.; Soroka, S.V.; Velikanets', D.M.

    2006-01-01

    Evolution of the velocity distribution functions of plasma and beam electrons during modulated electron beam propagation in homogeneous and inhomogeneous plasmas was studied numerically. Velocity distribution function of plasma electrons at the late time moments strongly differs from the initially Maxwellian one. In the regions of strong electric field plasma electrons' bunches are formed. Comparison of distribution functions of beam electrons for modulated and non-modulated beams shows that deep initial modulation suppresses resonant instability development. In the inhomogeneous plasma acceleration of electrons in the plasma resonance point can be observed

  8. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  9. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  10. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  11. Foucault imaging by using non-dedicated transmission electron microscope

    International Nuclear Information System (INIS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-01-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  12. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  13. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  14. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam ...

  15. Study of electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    Smith, J.R.; Luo, C.M.; Rhee, M.J.; Schneider, R.F.

    1983-01-01

    A preliminary investigation of the electron beam produced by a plasma focus device using a current charged transmission line is described. Electron beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography

  16. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  17. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  18. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  19. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    Chergov, I.V.; Jarinov, V.I.; Minine, V.A.

    1983-01-01

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired [fr

  20. Electron beam producing system for very high acceleration voltages and beam powers

    International Nuclear Information System (INIS)

    Andelfinger, C.; Dommaschk, W.; Ott, W.; Ulrich, M.; Weber, G.

    1975-01-01

    An electron beam producing system for acceleration voltages on the order of megavolts and beam powers on the order of gigawatts is described. A tubular housing of insulating material is used, and adjacent to its one closed end, a field emission cathode with a large surface area is arranged, while at its other end, from which the electron beam emerges, an annular anode is arranged. The device for collimating the electron beam consists of annular electrodes. (auth)

  1. Numerical Simulations for the Beam-Induced Electron Cloud in the LHC Beam Screen

    CERN Document Server

    Brüning, Oliver Sim

    1998-01-01

    The following work summarises simulation results obtained at CERN for the beam-induced electron cloud and looks at possible cures for the heat load in the LHC beam screen. The synchrotron radiation in the LHC creates a continuous flow of photoelectrons. These electrons are accelerated by the electric field of the bunch and hit the vacuum chamber on the opposite side of the beam pipe where they crea te secondary electrons which are again accelerated by the next bunch. For a large secondary emission yield the above mechanism leads to an exponential growth of the electron cloud which is limited by space charge forces. The simulations use a two-dimensional mesh for the space charge calculations and include the effect of image charges on the vacuum chamber wall. Depending on the quantum yield for the production of photoelectrons, the secondary emission yield and the reflectivity, the heat load can vary from 0.1 W/m to more than 15 W/m.

  2. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  3. The polarized electron beam at ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.; Drachenfels, W. von; Frommberger, F.; Gowin, M.; Hillert, W.; Husmann, D.; Keil, J.; Helbing, K.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-01-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Moeller polarimeter installed in the external GDH1-beamline

  4. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  5. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  6. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  7. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  8. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1992-01-01

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  9. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  10. Coating composition curable by electron beam irradiation

    International Nuclear Information System (INIS)

    Masuda, Hiromasa; Iijima, Ken-ichi.

    1971-01-01

    Here is provided a coating composition curable with low dose of electron beams to give a smooth coating film having no surface tackiness. In one example, 126 parts of melamine was reacted with 682 parts of formalin followed by 697 parts of β-hydroxyethyl acrylate to produce component (A) (viscosity 780 cp). On the other hand, 900 parts of tung oil was reacted with 343 parts of maleic anhydride followed by 22 parts of dimethylaminoethyl methacrylate and 406 parts of β-hydroxyethyl acrylate. The resulting product was diluted with 508 parts of methyl methacrylate to give component (B) (dark red, viscous substance). 900 parts of (A), 100 parts of (B), 0.5 part of bees wax and 0.2 part of paraffin wax were blended together. A sized material was coated with the mixture and irradiated with electron beams (6 Mrad) in the presence of air. A smooth film free from surface tackiness was obtained. β-hydroxyethyl acrylate may be replaced by other hydroxyalkyl esters of α,β-unsaturated acids, and melamine may be replaced by urea, benzoguanamine or acetoguanamine. Tung oil may be replaced by linseed, safflower, soybean, rice, oiticica or cotton seed oil. A more flexible film is obtained by using component (B) in a larger proportion. (A)/(B) ratio should be in the range of 90/10 to 10/90 by wt. (Kaichi, S.)

  11. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  12. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  13. Application of electron beam, ion beam and positron beam to polymer sciences

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1999-01-01

    Full text: Particle beams are finding increasing application in material sciences and the interest covers both applied as well as fundamental investigations. In the present talk application of electron and ion beams in several polymers such as polysilanes, polystyrene, polyolefins, polymethylmethacrylates and related polymers will be presented. It includes among other investigations (such as product analysis) pulse radiolysis studies and effect of LET on polymers. Importance of positron studies in material sciences especially bulk polymers is well documented. A relatively new technique, namely, positron beam application especially in thin film polymers is a new and emerging areas. The interest ranges from applied aspects as well as fundamental understanding of surfaces and interfaces. The present talk will detail the development of a pulsed positron beam using LINAC at Institute of Scientific and Industrial Research (ISIR) as well as its applications to polymer thin films

  14. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Application of electron beam irradiation. 4. Treatment of pollutants by electron beam irradiation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko

    1994-01-01

    Electron beam irradiation is capable of dissolving and removing pollutants, such as sulfur oxides, nitrogen oxides, and organic compounds, by easy production of OH radicals in flue gas and water. This paper deals with current status in the search for techniques for treating flue gas and waste water, using electron beam irradiation. Pilot tests have been conducted during the period 1991-1994 for the treatment of flue gas caused by coal and garbage burning and road tunnels. Firstly, techniques for cleaning flue gas with electron beams are outlined, with special reference to their characteristics and process of research development. Secondly, the application of electron beam irradiation in the treatment of waste water is described in terms of the following: (1) disinfection of sewage, (2) cleaning of water polluted with toxic organic compounds, (3) treatment for eliminating sewage sludge, (4) promotion of sewage sludge sedimentation, (5) disinfection and composting of sewage sludge, and (6) regeneration of activated carbon used for the treatment of waste water. (N.K.)

  16. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  17. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  18. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  19. Beam dosimetry in high-power electron accelerators

    International Nuclear Information System (INIS)

    Popov, V.N.; Zhitomirskii, B.M.; Ermakov, A.N.; Terebilin, A.V.; Stryukov, V.A.

    1987-01-01

    In order to evaluate beam utilization efficiency, measure the radiation yield, and determine the cost effectiveness of the new technologies, it is necessary to know the radiation power of the electron beam absorbed by the reacting medium. To measure the electron-beam power the authors designed, built, and tested a radiation detector combining a Faraday cylinder with a continuous-flow calorimeter. The construction of the detector is shown. The radiation detector was tested on a number of electron accelerators. The beam-power and mean-electron-energy measurement results for the LUE-8M accelerator with 8 MeV maximum electron energy are given

  20. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  1. Electron gun design study for the IUCF beam cooling system

    International Nuclear Information System (INIS)

    Friesel, D.L.; Ellison, T.; Jones, W.P.

    1985-01-01

    The design of a low temperature electron beam cooling system for the Indiana University electron-cooled storage ring is in progress. The storage ring, which will accept the light ion beams from the existing k=200, multi-stage cyclotron facility, requires an electron beam variable in energy from about 7 to 275 keV. The electron beam system consists of a high perveance electron gun with Pierce geometry and a flat cathode. The gun and a 28 element accelerating column are immersed in a uniform longitudinal magnetic guide field. A computer modeling study of the system was conducted to determine electron beam density and transverse temperature variations as a function of anode region and accelerator column design parameters. Transverse electron beam temperatures (E /SUB t/ = mc 2 β 2 γ(/theta/ /SUB H/ +/theta/ /SUB v/ )) of less than a few tenths of an electron volt at a maximum current density of 0.4 A/cm 2 are desired over the full energy range. This was achieved in the calculations without the use of resonant focusing for a 2 Amp, 275 keV electron beam. Some systematics of the electron beam temperature variations with system design parameters are presented. A short discussion of the mechanical design of the proposed electron beam system is also given

  2. Proton beam writing for producing holographic images

    International Nuclear Information System (INIS)

    Ow, Y.S.; Breese, M.B.H.; Bettiol, A.A.

    2009-01-01

    This work reports on the writing of computer generated hologram diffraction patterns using focused 2 MeV proton beam irradiation. These patterns were designed using a ray tracing algorithm and written directly into a thick polymethylmethacrylate layer. When the developed holographic pattern was illuminated with a 650 nm laser it produced a good reconstructed image. This work provides means of forming high-resolution, high aspect ratio holographic images in polymers for applications in data storage using switchable holography.

  3. On the value of geometry-based models for left ventricular volumetry in magnetic resonance imaging and electron beam tomography: a Bland-Altman analysis

    International Nuclear Information System (INIS)

    Reiter, Gert; Reiter, Ursula; Rienmueller, Rainer; Gagarina, Nina; Ryabikin, Alexander

    2004-01-01

    Objective: Methodological comparison of ellipsoid model-based approaches and Simpson method to evaluate left ventricular volumetric parameters by magnetic resonance (MR) and electron beam tomography (EBT) and analysis of the origin of possible discrepancies. Methods and material: 100 subjects (87 patients, 13 healthy volunteers) were studied in MR in various cardiac views and EBT long axis view to determine left ventricular volumes and masses by applying (rotational) ellipsoid and Simpson model. Observer variation and method agreement was quantified by means of variance component and Bland-Altman analysis. Results: Simpson approach showed smaller observer variability than all ellipsoid approaches. All geometry-based models gave smaller left ventricular volumes than Simpson approach, the bias in mass determination was minimal. Whereas high correlation coefficients (typically 0.85-0.95) for left ventricular volume and mass measurements indicated satisfying correspondence between methods, large 95% limits of agreement made a transfer of results for single subjects between Simpson and ellipsoid approaches difficult and between different geometry-based models almost impossible. Because 95% limits of agreement and observer variability of geometry-based approaches were of equal order, the latter could be identified as main limiting factor of methodological agreement. Conclusion: MR Simpson approach is superior to all ellipsoid model-based approaches, because observer variability is smaller

  4. Ion-acoustic solitons in a plasma with electron beam

    International Nuclear Information System (INIS)

    Esfandyari, A. R.; Khorram, S.

    2001-01-01

    Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated

  5. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas

    International Nuclear Information System (INIS)

    Bright, A.N.; Yoshida, K.; Tanaka, N.

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. -- Highlights: ► ETEM images with point resolution of 0.12 nm in 4 mbar of nitrogen gas. ► Clear Si lattice imaging with 16 mbar of nitrogen gas. ► ETEM image resolution in gas can be much improved by decreasing total beam current. ► Beam current density (beam convergence) has no effect on the image resolution.

  6. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-09-01

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  7. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Novak, W.; Reed, L.; Yang, X.F.

    1993-01-01

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  8. Electron Beam Curing of Coil Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Morganstern, K. H. [Radiation Dynamics, Inc., Westbury, NY (United States)

    1969-12-15

    The application of electron accelerators for the rapid curing of coatings on coil processing of steel and aluminium appears to have many practical and economic advantages. This paper discusses this particular application, but in the general framework of electron beam application by industry. Although industry has investigated radiation application for two decades, there have been few applications to date. The reasons for this are discussed as well as the shift in attitude now taking place, indicating a more ready acceptance of radiation processing by industry. This shift is apparent particularly in the coatings field, where the benefits of radiation processing are quite evident. In order to pinpoint these benefits a specific coatings application - coil coating - has been chosen. A typical conventional coil coating line is discussed and compared to a line employing a radiation source. Specific engineering information on the types of electron accelerators suitable for this application; the relative economics of radiation vs. heat curing; and a number of other peripheral advantages of radiation are discussed. (author)

  9. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  10. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  11. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  12. Electron beam generation in z-pinch discharges

    Energy Technology Data Exchange (ETDEWEB)

    Vikhrev, V.V.; Baronova, E.O. [Kurchatov Inst., Moscow (Russian Federation). Russian Research Center

    1997-12-31

    Numerical modelling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column and the zigzag drift current motion through the plasma have accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression and it is not related with the current break effect. (author)

  13. Experimental study of the stability of a neutralized electron beam

    International Nuclear Information System (INIS)

    Kudelainen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1983-01-01

    Results are reported from measurements of the spectral properties of a long neutralized electron beam in the NAP-M proton storage ring. It is shown that when the number of secondary electrons is small, both the longitudinal and the transverse oscillations are strongly damped, so that beam instability is suppressed. The current density of the neutralized electron beam produced in the experiments was approx.10 2 times greater than the theoretical value determined from the instability threshold for nonaxisymmetric oscillations

  14. Electron beam melting state-of-the-art 1984

    International Nuclear Information System (INIS)

    Bakish, R.

    1984-01-01

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada

  15. The large density electron beam-plasma Buneman instability

    International Nuclear Information System (INIS)

    Mantei, T.D.; Doveil, F.; Gresillon, D.

    1976-01-01

    The threshold conditions and growth rate of the Buneman (electron beam-stationary ion) instability are calculated with kinetic theory, including a stationary electronic population. A criteria on the wave energy sign is used to separate the Buneman hydrodynamic instability from the ion-acoustic kinetic instability. The stationary electron population raises the instability threshold and, for large beam velocities yields a maximum growth rate oblique to the beam. (author)

  16. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  17. Observation of bifurcation phenomena in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1995-01-01

    When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system

  18. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    Sharma, Vijay; Rajan, Rehim; Acharya, S.; Mittal, K.C.

    2011-01-01

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  19. The continuous electron beam accelerator facility

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Tunnel construction and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. Prototype accelerating cavities, assembled in cryostats and tested on site, continue to exceed performance specifications. An on-site liquid helium capability supports cryostat development and cavity testing. Major elements of the accelerator instrumentation and control hardware and software are in use in cryogenics, rf, and injector tests. Prototype rf systems have been operated and prototype klystrons have been ordered. The initial, 100-keV, room-temperature region of the 45-MeV injector is operational and meets specifications. CEBAF's end stations have been conceptually designed; experimental equipment conceptual designs will be completed in 1989. 2 refs., 5 figs., 2 tabs

  20. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  1. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  2. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  3. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  4. Electron-beam flue gas treatment

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    A new flue gas treatment process (EBA process) using an electron beam will be discussed. This EBA process is attracting worldwide attention as a new effective measure for solving acid rain problems and jointly developed by Ebara Corporation and the Japan Atomic Energy Research Institute. This process has many advantages: a) a dry process capable of removing high level SO x and NO x simultaneously, b) a process simple and easy to operate, c) production of agricultural fertilizers as salable by-products, and d) minimal installation space. Test results from the demonstration plant (max. gas flow rate of 24,000 m 3 N/h) which was erected in a coal-fired power station in Indianapolis, Indiana, U.S.A. will be presented. (author)

  5. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  6. Characterization of electron beam welded Zircaloy-4

    International Nuclear Information System (INIS)

    Anishetty, Sharath; Manna, I.; Majumdar, J. Dutta

    2015-01-01

    Zirconium (Zr) alloys are the backbone materials for thermal reactors because of their low neutron absorption cross section and in addition have suitable properties like high temperature mechanical and corrosion properties. For various structural applications, different Zirconium based alloys are used. Zircaloy-4 (Zr-4) is most commonly used as channel boxes in boiling water reactors (BWRs), intermediate grid applications in pressurized water reactors (PWRs) and in fuel cladding. Zircaloy cladding acts as a barrier between the radioactive fuel and exterior coolants. Therefore, the structural integrity of the cladding tube is extremely important in the safe operation of reactors. Efforts are being made to produce Zircaloy-4 products with better mechanical properties. Different routes of processing are involved like forging, pilgering and extrusion are developed over years in fabricating components to improve in-reactor performance. In this study, microstructure and hardness properties of electron beam welded Zr-4 was evaluated

  7. Studies on functional polymer films utilizing low energy electron beam

    International Nuclear Information System (INIS)

    Ando, Masayuki

    1992-01-01

    Also in adhesives and tackifiers, with the expansion of the fields of application, the required characteristics have become high grade and complex. As one of them, the instantaneous hardening of adhesives can be taken up. In the field of lamination works, the low energy type electron beam accelerators having the linear filament of accelerating voltage below 300 kV were developed in 1970s, and the interest in the development of electron beam-handened adhesives has heightend. The authors have carried out research aiming at heightening the functions of the polymer films obtained by electron beam hardening reaction, and developed the adhesives. In this report, the features of electron beam hardening reaction, the structure and properties of electron beam-hardened polymer films and the molecular design of electron beam-hardened monomer oligomers are described. The feature of electron beam hardening reaction is the cross-linking of high degree as the structure of oligomers is maintained. By controlling the structure at the time of electron beam hardening, the heightening of the functions of electron beam-hardened polymer films is feasible. (K.I.)

  8. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  10. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  11. Moving strip technique of electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Kishio; Wakasa, Hiroyuki; Oguri, Nobuhiro; Kitayama, Takuichi; Nakagiri, Yoshitada; Mikami, Yasutaka; Hashimoto, Keiji; Hiraki, Yoshio; Aono, Kaname

    1984-12-01

    The fieldsize in electron beam therapy is determined by the cone size. In case of skin metastasis of a malignant tumor and so on, which need a large field size and whose area is much larger than the size of the cone, a large field size is usually produced by dividing the portals. However, the dose distribution at the border of the field becomes unequal, and hot and cold dose areas are produced according to the distance between portals. We tried the strip field technique in a large field along the long axis of the body in order to flatten the dose of the border employing the moving strip used for whole abdominal irradiation in ovarian cancer. We set the film in Mix-DP and used the strip field technique with 2.5cm steps. We discussed the relationship between the interval (distance between portals) and the flattening of the dose within the field. Skin movement due to breathing and influences on the flattening of the dose were considered. The proper flatness was obtained at depths of 0,1,2, and 3cm by setting the interval at 0.5cm. When skin movement was produced by breathing in +-1.5mm, the proper flaness was obtained also at a 0.5-cm interval. It seems that smoothing is increased by breathing. An ''electron beam moving strip'' with a 2.5-cm step and 0.5-cm interval was clinically effective in the treatment of patients with skin metastasis of colon cancer. (author).

  12. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    is Professor of Chemistry at. IIT Madras. ... speeding up the CW imaging by special novel methods. How- ever, the ... presence of gradients which are applied in two or three dimen- sions and ... optics and mechanical engineer- ing stands for ...

  13. 3D shaping of electron beams using amplitude masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Arie, Ady

    2017-06-15

    Highlights: • Electron beams are shaped in 3D with examples of curves and lattices. • Computer generated holograms are manifested as binary amplitude masks. • Applications in electron-optical particle trapping, manipulation, and synthesis. • Electron beam lithography fabrication scheme explained in detail. • Measurement paradigms of 3D shaped beams are discussed. - Abstract: Shaping the electron wavefunction in three dimensions may prove to be an indispensable tool for research involving atomic-sized particle trapping, manipulation, and synthesis. We utilize computer-generated holograms to sculpt electron wavefunctions in a standard transmission electron microscope in 3D, and demonstrate the formation of electron beams exhibiting high intensity along specific trajectories as well as shaping the beam into a 3D lattice of hot-spots. The concepts presented here are similar to those used in light optics for trapping and tweezing of particles, but at atomic scale resolutions.

  14. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  15. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  16. Interpretation of electron beam induced charging of oxide layers in a transistor studied using electron holography

    DEFF Research Database (Denmark)

    Ubaldi, F; Pozzi, G; Kasama, Takeshi

    2010-01-01

    Off-axis electron holography has been used to characterize a linear array of transistors, which was prepared for examination in cross-sectional geometry in the transmission electron microscope using focused ion beam milling. In reconstructed phase images, regions of silicon oxide that are located...... into account the mean inner potential of the specimen and the perturbed vacuum reference wave. The simulations suggest that the oxide layers contain a uniform volume density of positive charge and that the elliptical contours result from the combined effect of the electrostatic potential in the specimen...

  17. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  18. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  19. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  20. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    Science.gov (United States)

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. On-line Observation Of Electron Beam Bunches In The Large Storage Ring Of Kurchatov Srs

    CERN Document Server

    Ioudin, L I; Krylov, Y V; Rezvov, V A; Stirin, A I; Valentinov, A G; Yupinov, Y L

    2004-01-01

    A complex of instrumentation for visual quantitative estimation of electron beam bunches in the big storage ring of Kurchatov Synchrotron Radiation Centre (KSRC) is tested. The bunches pass through a cylindrical electrostatic sensor whose signal is recorded by a wide-band oscillograph. The TV camera reads the optical image of the signal from the oscillograph screen. The TV signal numbering board inputs the video image to the computer memory. The monitor displays the beam bunch structure. A special program provides on-line visualisation of bunch behaviour on the beam orbit. The images of beam structure and a series of images showing the beam behaviour in the regimes of accumulation, acceleration and in the stationary regime a full power are numbered and stored.

  2. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  3. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  4. Commercializing ALURTRONs electron beam irradiation services

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Mohd Sidek Othman; Shari Jahar; Sarada Idris; Naurah Mohd Isa; Muhamad Zahidee Taat

    2010-01-01

    ALURTRON has been the nation's sole electron irradiation service provider for research sectors. The main irradiation is done by utilising the EPS 3000 Cockcroft-Walton type 3.0 MeV, 90 k Watts electron beam machine (EBM). With more than 15 years experience in the operation and maintenance of the EPS, the challenge is now to commercialize the service at a larger and profitable scale. Medical products sterilization at commercial level has been ruled out since the energy is insufficient to penetrate dense and non-homogenous items. Recently, the demand for irradiation of wire and heat shrinkable tubes is showing bigger commercial potential. Therefore, prudent planning considerations need to be taken to ensure profitable return to the agency. Calculations were made to estimate ALURTRON service capacity, based on the existing EBM and its auxiliary systems. Details of the calculation including all the variables are presented. Results indicated that Alurtron should be able to process a minimum of 1000 km of small wires per month, running at 150 m/ min, working in two shifts, 5 days a week. The projected revenue is dependent on the charges imposed on the basis of total length delivered. (author)

  5. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  6. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  7. Regenerative beam breakup in multi-pass electron accelerators

    International Nuclear Information System (INIS)

    Vetter, A.M. Jr.

    1980-01-01

    Important electron coincidence experiments in the 1 to 2 GeV range require electron beams of high intensity and high duty factor. To provide such beams, multi-pass electron accelerator systems are being developed at many laboratories. The beam current in multi-pass electron machines is limited by bean breakup which arises from interaction of the electron beam with deflection modes of the accelerator structure. Achieving high beam intensity (50 to 100 μA) will require detailed understanding and careful control of beam breakup phenomena, and is the subject of this thesis. The TM 11 -like traveling wave theory is applied to obtain a physical understanding of beam-mode interactions and the principles of focussing in simple two-pass systems, and is used as a basis for general studies of the dependence of starting current on accelerator parameters in systems of many passes. The concepts developed are applied in analyzing beam breakup in the superconducting recyclotron at Stanford. Measurements of beam interactions with selected breakup modes are incorporated in a simple model in order to estimate relative strengths of breakup modes and to predict starting currents in five-pass operation. The improvement over these predicted currents required in order to obtain 50 to 100 μA beams is shown to be achievable with a combination of increased breakup mode loading and improved beam optics

  8. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  9. Measurement of the electron beam mode in earth's foreshock

    Science.gov (United States)

    Onsager, T. G.; Holzworth, R. H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.

  10. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  11. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  12. Focusing and guiding intense electron beams by a superconductor tube

    International Nuclear Information System (INIS)

    Roth, P.

    1996-01-01

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs

  13. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  14. Focusing and guiding intense electron beams by a superconductor tube

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P

    1997-12-31

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs.

  15. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  16. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  17. Effect of electron beam on in vitro cultured orchid organs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jaihyunk; Bae, Seho; Bae, Changhyu [Sunchon National Univ., Suncheon (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy {approx} 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner.

  18. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  19. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm -2 μm). This article considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam (FFTB) at Stanford Linear Accelerator Center, is a few nm

  20. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm - 2 μ). This paper considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam at Stanford Linear Accelerator Center, is a few nm. 13 refs., 4 figs. 1 tab

  1. Secondary electron images obtained with a standard PEEM set up

    International Nuclear Information System (INIS)

    Benka, O.; Zeppenfeld, P.

    2004-01-01

    Secondary electron images excited by 3 to 4.3 keV electrons are obtained with a standard photoelectron electron emission microscope (PEEM) set up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 o with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF-reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼ -(V 1 + 5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The lateral resolution is in the range of μm. The material contrast obtained in these difference images are discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer. (author)

  2. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  3. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  4. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  5. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  6. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  7. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  8. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  9. The application and processing of paints hardened by electron beams

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Electron beam hardening is a process for changing liquid surface coatings of different thicknesses by irradiation with electrons of high energy into solid, hard, elastic films. In contrast to the UV process, one can harden pigmented paints with electron beams. An electron accelerator, which remits free electrons is used as the energy source for starting the chemical reaction in the coating material. In order to irradiate flat parts, which were coated with liquid paint by rolling, pouring or spraying, equally with electrons, one must produce an 'electron curtain', similar to that in a paint pouring machine. (orig./PW) [de

  10. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  11. Material machining with pseudo-spark electron beams

    International Nuclear Information System (INIS)

    Benker, W.; Christiansen, J.; Frank, K.; Gundel, H.; Redel, T.; Stetter, M.

    1989-01-01

    The authors give a brief description of the production of pseudo-spark (low pressure gas discharge) electron beams. They illustrate the use of these electron beams for machining not only conducting, semiconducting and insulating materials, but also thin layers of such materials as high temperature superconducting ceramics

  12. Some electron beam welding equipments for the nuclear industry

    International Nuclear Information System (INIS)

    Helm, H.; Rodier, R.; Sayegh, G.

    1978-01-01

    Results of various electron beam welding equipment developed for the nuclear industry obtained from a 100 kW electron beam machine to weld thick plates made of stainless steel and reactor steel, and from some equipment with local vacuum to weld pipes onto a pipe wall. (orig.) [de

  13. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  14. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  15. Diagnose of large area electron beam with faraday cup

    International Nuclear Information System (INIS)

    Tang Ying; Qian Hang; Yi Aiping; Huang Xin; Yu Li; Liu Jingru; Su Jiancang; Ding Zhenjie; Ding Yongzhong; Yu Jianguo

    2008-01-01

    In the experiment of gas laser pumped by electron beam, large area uniform electron beam is important to generate high efficiency laser output. This paper introduces Faraday cup is used in the diagnose experiment on the uniformity of large area e-beam generated by SPG-200 pulsed power generator. Construction of Faraday cup and the results of calibration are presented in detail. The uniformity of velvet emission is given, and the results of experiment are analyzed. (authors)

  16. Electron-beam direct drive for rf accelerator cavities

    International Nuclear Information System (INIS)

    Nahemow, M.D.; Humphries, S. Jr.

    1987-01-01

    This paper describes a Program to Demonstrate Electron-Beam Direct Drive for Radio Frequency (RF) Linear Accelerators at the Westinghouse R and D Center. The experimental program was undertaken using an existing electron beam facility at the Westinghouse R and C Center to demonstrate the potential of the Direct Drive RF Cavities for High Power Beams concept discussed as part of a program to develop a viable alternate concept for driving RF linear accelerators

  17. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  18. Measurement of centroid trajectory of Dragon-I electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Zhang Wenwei; Zhang Kaizhi; Li Jing; Li Chenggang; Yang Guojun

    2005-01-01

    The control of the electron beam in an intense current linear induction accelerator (LIA) is very important. The center position of the electron beam and the beam profile are two important parameters which should be measured accurately. The setup of a time-resolved measurement system and a data processing method for determining the beam center position are introduced for the purpose of obtaining Dragon-I electron beam trajectory including beam profile. The actual results show that the centroid position error can be controlled in one to two pixels. the time-resolved beam centroid trajectory of Dragon-I (18.5 MeV, 2 kA, 90 ns) is obtained recently in 10 ns interval, 3 ns exposure time with a multi-frame gated camera. The results show that the screw movement of the electron beam is mainly limited in an area with a radius of 0.5 mm and the time-resolved diameters of the beam are 8.4 mm, 8.8 mm, 8.5 mm, 9.3 mm and 7.6 mm. These results have provided a very important support to several research areas such as beam trajectory tuning and beam transmission. (authors)

  19. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  20. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-01-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  1. Innovative energy efficient low-voltage electron beam emitters

    Science.gov (United States)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-03-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates.

  2. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Toader, D; Craciun, G; Manaila, E; Oproiu, C [National Institute of Research for Laser, Plasma and Radiation Physics Bucuresti (Romania); Marghitu, S [ICPE Electrostatica S.A - Bucuresti (Romania)

    2009-11-15

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES{sub L}V) with a plasma electron source (PES{sub L}V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP{sub L}V source.

  3. A high average power beam dump for an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianghong, E-mail: xl66@cornell.edu [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States); Bazarov, Ivan; Dunham, Bruce M.; Kostroun, Vaclav O.; Li, Yulin; Smolenski, Karl W. [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    The electron beam dump for Cornell University's Energy Recovery Linac (ERL) prototype injector was designed and manufactured to absorb 600 kW of electron beam power at beam energies between 5 and 15 MeV. It is constructed from an aluminum alloy using a cylindrical/conical geometry, with water cooling channels between an inner vacuum chamber and an outer jacket. The electron beam is defocused and its centroid is rastered around the axis of the dump to dilute the power density. A flexible joint connects the inner body and the outer jacket to minimize thermal stress. A quadrant detector at the entrance to the dump monitors the electron beam position and rastering. Electron scattering calculations, thermal and thermomechanical stress analysis, and radiation calculations are presented.

  4. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  5. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  6. Real-time beam profile imaging system for actinotherapy accelerator

    International Nuclear Information System (INIS)

    Lin Yong; Wang Jingjin; Song Zheng; Zheng Putang; Wang Jianguo

    2003-01-01

    This paper describes a real-time beam profile imaging system for actinotheraphy accelerator. With the flash X-ray imager and the technique of digital image processing, a real-time 3-dimension dosage image is created from the intensity profile of the accelerator beam in real time. This system helps to obtain all the physical characters of the beam in any section plane, such as FWHM, penumbra, peak value, symmetry and homogeneity. This system has been used to acquire a 3-dimension dosage distribution of dynamic wedge modulator and the transient process of beam dosage. The system configure and the tested beam profile images are also presented

  7. Electron beam irradiation of fluoropolymers containing polyethers

    Science.gov (United States)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P. E.

    2009-02-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield ( Gs) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission ( Gs) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its Mn decreases to only 24% of original.

  8. Applications of electron beam in nanotechnology

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan; Jamaliah Sharif

    2005-01-01

    The use of radiation technique to process nanostructured materials or to produce nanostructured materials have been shown technically superior as alternative and viable techniques for further commercial exploitation. Research on radiation processing of nanocomposites have been initiated at the Radiation Processing Technology Division of MINT in the past three years. The main focus of this research is to utilize indigenous natural polymer for production of nanocomposites material. Natural rubber/clay composites and thermoplastic natural rubber/clay composites are the important materials that under studied. The natural rubber used in this work is of grade SMRL (Standard Malaysian Rubber) and the clay used was sodium montmorillonite modified with various types of cationic surfactants in order to make the galleries hydrophobic and thus more compatible with the elastomer. The natural rubber/clay nanocomposites were prepared by melt mixing. The compound was then irradiated using electron beam at optimum dose of 250 kGy. X-ray diffraction results indicated intercalation of the natural rubber into silicate interlayer. Upon irradiation at 250 kGy, the tensile strength of the NR/Na-MMT nanocomposites constantly reduced slightly with increasing clay loading, whereas the tensile strengths of NR/DDA-MMT and NR/ODA-MMT increases to optimum levels, 12.1 MPa and 9.5 MPa respectively at 3 phr clay contents. On the other hand, the elongation of NR/DDA-MMT nanocomposites is less affected with increasing clay content up to 3 phr. (author)

  9. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    Timus, D.M.; Brasoveanu, M.M.; Bradley, D.A.; Popov, A.M.

    1998-01-01

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  10. Electron beam irradiation of fluoropolymers containing polyethers

    International Nuclear Information System (INIS)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P.E.

    2009-01-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield (G s ) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission (G s ) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its M n decreases to only 24% of original

  11. Electron Beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1984-01-01

    Press trials conducted by the US Bureau of Engraving and Printing at the National Bank of Denmark in September 8-21, 1982, clearly indicated the feasibility of Electron Beam (EB) curing for web intaglio printing. These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting EB ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires EB inks to be water dispersable. Also the stability of materials in contact with EB inks is being investigated

  12. Electron beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1985-01-01

    Press trials conducted by the U.S. Bureau of Engraving and Printing at the National Bank of Denmark clearly indicated the feasibility of Electron Beam (E.B.) curing for web intaglio printing . These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting E.B. ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires E.B. inks to be water dispersable. Also the stability of materials in contact with E.B. inks is being investigated. (author)

  13. Electron beam modification of vanadium dioxide oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Maksim; Velichko, Andrey; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander [Petrozavodsk State University, Petrozavodsk (Russian Federation)

    2017-03-15

    The paper presents the results of a study of electron-beam modification (EBM) of VO{sub 2}-switch I-V curve threshold parameters and the self-oscillation frequency of a circuit containing such a switching device. EBM in vacuum is reversible and the parameters are restored when exposed to air at pressure of 150 Pa. At EBM with a dose of 3 C cm{sup -2}, the voltages of switching-on (V{sub th}) and off (V{sub h}), as well as the OFF-state resistance R{sub off}, decrease down to 50% of the initial values, and the oscillation frequency increases by 30% at a dose of 0.7 C cm{sup -2}. Features of physics of EBM of an oscillator are outlined considering the contribution of the metal and semiconductor phases of the switching channel. Controlled modification allows EBM forming of switches with preset parameters. Also, it might be used in artificial oscillatory neural networks for pattern recognition based on frequency shift keying. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  15. Heat shrinkage of electron beam modified EVA

    International Nuclear Information System (INIS)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K.

    1997-01-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author)

  16. Heat shrinkage of electron beam modified EVA

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K. [Indian Institute of Technology, Kharagpur (India). Rubber Technology Center; Tikku, V.K.; Pradhan, N.K. [NICCO Corporation Ltd., (Cable Div.), Calcutta (India)

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author).

  17. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  18. Simple model of electron beam initiated dielectric breakdown

    International Nuclear Information System (INIS)

    Beers, B.L.; Daniell, R.E.; Delmer, T.N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical

  19. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    Science.gov (United States)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  20. ELECTRON CYCLOTRON MASER EMISSIONS FROM EVOLVING FAST ELECTRON BEAMS

    International Nuclear Information System (INIS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q , but increase with the magnetic mirror ratio σ as well as with the steepness index δ . Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  1. Study on the compensation of electron beam space charge in facilittes with electron cooling

    International Nuclear Information System (INIS)

    Dikanskij, N.S.; Kudelajnen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1981-01-01

    The results of experimental investigations of a compensated electron beam on the NAP-M facility are presented. The electron beam is compensated by electrostatic plugs preventing ion leakage along the beam. Cut-off electrodes have the shape of cutted cylinders encircling the electron beam. To eliminate electron accumulation around the plugs one of the electrodes has a zero potential, which results in formation of an transverse electric field causing ionization electron drift in the transverse direction to the electric and magnetic fields. The effect of wave damping, in the compensated beam is observed, that demonstrates the possibility of gaining great current densities in long compensated beams necessary for antiproton storage. For the NAP-M at the 10 10 cm/s electron velocity, 300 cm length of ion column, and 1 kOe field intensity the threshold beam current density is 0.96 A/cm 2 [ru

  2. Imaging electron flow from collimating contacts in graphene

    Science.gov (United States)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  3. Electron-beam induced conduction in some polymers

    International Nuclear Information System (INIS)

    Suzuoki, Yasuo; Mizutani, Teruyoshi; Ieda, Masayuki

    1976-01-01

    The charge signal induced by pulsed electron beam consists of two components, i.e. the fast and the slow components. The slow component which corresponds to carrier transport via shallow traps exhibited an asymmetry with respect to the bias field polarity. The asymmetry revealed that the main carriers which drifted via shallow traps were electrons in PET, both electrons and holes in PEN, and holes in PS. TSC spectra of electron-beam induced electrets proved directly the existence of electron shallow traps in PET and both electron and hole traps in PEN. Their trap energies were 0.1 to 0.2 eV. (auth.)

  4. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  5. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  6. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  7. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  8. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  9. Measurement of the electron beam mode in the Earth's foreshock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Holzworth, R.H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the Earth's foreshock region: the electron beam mode the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequency and wave number of the electron beam waves to be determined. Plasma wave and magnetometer data are used to determine the interplanetary magnetic field direction at which the spacecraft becomes magnetically connected to the Earth's bow shock. From the knowledge of this direction, the upstreaming electron cutoff velocity can be calculated. The authors take this calculated cutoff velocity to be the flow velocity of an electron beam in the plasma. Assuming that the wave phase speed is approximately equal to the beam speed and using the measured electric field frequency, they determine the plasma rest frame frequency and the wave number. They then show that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed

  10. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  11. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  12. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  13. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  14. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Sinclair, Robert

    2017-01-01

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O_2 pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10"−"6 to 10"−"5 mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10"−"3 to 10"0 mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10"−"7 mbar to 10"0 mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O_2 pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O_2 pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  15. Initial patient imaging with an optimised radiotherapy beam for portal imaging

    International Nuclear Information System (INIS)

    Flampouri, Stella; McNair, Helen A.; Donovan, Ellen M.; Evans, Philip M.; Partridge, Mike; Verhaegen, Frank; Nutting, Christopher M.

    2005-01-01

    Background and purpose: To investigate the feasibility and the advantages of a portal-imaging mode on a medical accelerator, consisting of a thin low-Z bremsstrahlung target and a thin Gd 2 O 2 S/film detector, for patient imaging. Patients and methods: The international code of practice for high-energy photon dosimetry was used to calibrate dosimetry instruments for the imaging beam produced by 4.75 MeV electrons hitting a 6 mm thick aluminium target. Images of the head and neck of a humanoid phantom were taken with a mammography film system and the dose in the phantom was measured with TLDs calibrated for this beam. The first head and neck patient images are compared with conventional images (taken with the treatment beam on a film radiotherapy verification detector). Visibility of structures for six patients was evaluated. Results: Images of the head and neck of a humanoid phantom, taken with both imaging systems showed that the contrast increased dramatically for the new system while the dose required to form an image was less than 10 -2 Gy. The patient images taken with the new and the conventional systems showed that air-tissue interfaces were better defined in the new system image. Anatomical structures, visible on both films, are clearer with the new system. Additionally, bony structures, such as vertebrae, were clearly visible only with the new system. The system under evaluation was significantly better for all features in lateral images and most features in anterior images. Conclusions: This pilot study of the new portal imaging system showed the image quality is significantly improved

  16. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T.; Assis, Joaquim T. de

    2009-01-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  17. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  18. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  19. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  20. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.