This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Electromagnetic waves in a magnetized plasma near the critical surface
Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2004-06-30
Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces
Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.
1985-09-01
The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.
Surface waves propagation on a turbulent flow forced electromagnetically
Gutiérrez, Pablo
2015-01-01
We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...
Vladimirov, S V
2015-01-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.
Surface waves in three-dimensional electromagnetic composites and their effect on homogenization.
Xiong, Xiaoyan Y Z; Jiang, Li Jun; Markel, Vadim A; Tsukerman, Igor
2013-05-06
Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.
Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures
Anderson, Nicholas R.
The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic
Electromagnetic fields induced by surface ring waves in the deep sea
Kozitskiy, S. B.
2014-01-01
The paper deals with electromagnetic effects associated with a radially symmetric system of progressive surface waves in the deep sea, induced by underwater oscillating sources or by dispersive decay of the initial localized perturbations of the sea surface.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Characterization of Surface Electromagnetic Waves and Scattering on Infrared Metamaterial Absorbers
Chen, Wen-Chen; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J
2012-01-01
We report, for the first time, a full experimental and computational investigation of all possible light matter interactions on the surface of an infrared metamaterial absorber (MMA). Two channels of energy dissipation - diffuse scattering and generation of surface electromagnetic waves - are quantified in terms of their impact on specular absorption. The diffuse scattering is found to play a negligible roll in the absorption process, at least for wavelengths greater than the periodicity of unit cell. In contrast, surface electromagnetic waves are found to be generated for transverse magnetic (TM) polarized light at the operational wavelength of the MMA, i.e. \\lambda_0, and shorter wavelengths. Our computational results indicate that the highly lossy surface electromagnetic wave generated at \\lambda_0 is responsible for the good angular dependence of absorption in TM polarization. Experimental results are supported by full wave three dimensional electromagnetic and eigenmode simulations.
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Modeling the propagation of electromagnetic waves over the surface of the human body
Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.
2016-12-01
The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.
Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration
Rasheed, Mehran; Faryad, Muhammad
2017-08-01
A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.
2016-01-01
Full Text Available A problem of electromagnetic wave backscattering on a chosen 3D object is solved. A differential equation which is linked change of polarization coefficient of reflected wave with variation of matrix elements of object scattering is ob- tained. Obtained relation enables to develop algorithms of fast numerical solution of inverse problem of scattering on this object that is determination of complex function of object surface scattering and restoration of unknown object shape on phase distribution of reflected wave. The method uses ray representation of scattering fields based on principle Huygens- Fresnel. The algorithm of object shape restoration on phase of reflected wave allows to restore not only smooth surfaces, but also object surfaces with smaller roughness than a wave length.
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Harvesting Atmospheric Ions Using Surface Electromagnetic Wave Technologies
Louis Wai Yip Liu
2017-05-01
Full Text Available For the first time, this paper discloses the use of flowing water for capturing atmospheric ions into a DC electricity. The proposed methodology can be employed to neutralize the positively charged pollutants in air, which are believed to be harmful to our health. Methodology: Atmospheric ions can be collected by a negatively charged antenna which comprises a dielectric layer sandwiched between a top aluminium layer and a bottom lead plate. The top aluminium layer is used to collect the ambient protons, whilst the bottom lead plate is negatively charged by a negative static electricity extracted from flowing water. The voltage has been measured between the top aluminium layer and the bottom lead plate with and without any sunlight. Results: Without any UV light or other electromagnetic disturbance, the generated voltage has rapidly increased from 200 mV to 480 mV within 5 seconds if the bottom lead plate is connected to the negative ion source. Without the negative ion source, however, the output voltage fell to around 10 mV and any significant voltage rise can be observed even in the presence of an UV light. Conclusions: Capturing atmospheric ions is technically feasible. Measured results suggest that, when used in conjunction with a negative ion source, the proposed device can harvest atmospheric ions without any UV light.
Review of Electromagnetic Surface Waves - 1960 Through 1987
1988-01-01
Magnetized Ferrite Layers," Soy. J. Commun. Tech. and Electr., Vol. 30 (1985), p. 48. 51. D. Marcuse . "Radiation Losses of Tapered Dielectric Slab... Marcuse , D. "A New Type of Surface Waveguide With Bandpass Properties," Arch. elek. Ubertragung., Vol. 11 (1957), p. 146. "Investigation of the
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
P. Kovacs
2010-04-01
Full Text Available The paper is focused on the automated design and optimization of electromagnetic band gap structures suppressing the propagation of surface waves. For the optimization, we use different global evolutionary algorithms like the genetic algorithm with the single-point crossover (GAs and the multi-point (GAm one, the differential evolution (DE and particle swarm optimization (PSO. The algorithms are mutually compared in terms of convergence velocity and accuracy. The developed technique is universal (applicable for any unit cell geometry. The method is based on the dispersion diagram calculation in CST Microwave Studio (CST MWS and optimization in Matlab. A design example of a mushroom structure with simultaneous electromagnetic band gap properties (EBG and the artificial magnetic conductor ones (AMC in the required frequency band is presented.
Kousaka, Hiroyuki; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2003-05-01
The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy.
Reflection of Electromagnetic Waves by a Nonuniform Plasma Layer Covering a Metal Surface
GAO Hong-Mei; FA Peng-Ting
2008-01-01
Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domain method. It is shown that the reflection coefficients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.
Favaro, Alberto
2016-01-01
The propagation of light through bianisotropic materials is studied in the geometrical optics approximation. For that purpose, we use the quartic general dispersion equation specified by the Tamm-Rubilar tensor, which is cubic in the electromagnetic response tensor of the medium. A collection of different and remarkable Fresnel (wave) surfaces is gathered, and unified via the projective geometry of Kummer surfaces.
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.
1987-01-01
A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Fractional Electromagnetic Waves
Gómez, J F; Bernal, J J; Tkach, V I; Guía, M
2011-01-01
In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.
无
2000-01-01
The reflection of plane electromagnetic waves (TE wave and TM wave) from a perfect conductor which moves in an arbitrary direction is investigated. Based on Maxwell's equations and the boundary conditions for moving boundary, the relation between the field vectors of reflected and incident waves, and the reflection coefficient are derived. The energy balance between incident and reflected waves, the force exerted by electromagnetic waves to the moving conductor are also discussed and some new conclusions are suggested for notice.
Electromagnetic waves and photons
Hofmann, Ralf
2015-01-01
We explore how the thermal ground states of two mixing and pure SU(2) Yang-Mills theories, SU(2)$_{\\tiny\\mbox{CMB}}$ of scale $\\Lambda_{\\tiny\\mbox{CMB}}\\sim 10^{-4}\\,$eV and SU(2)$_{e}$ of scale $\\Lambda_{e}\\sim 5\\times 10^5\\,$eV, associate either wave or particle aspects to electromagnetic disturbances during thermalisation towards the photon gas of a blackbody, in realising the photoelectric effect, and through the frequency dependence of the monochromatic, nonthermal beam structure in Thomson/Compton scattering.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
王舸; 曹金祥; 宋法伦
2003-01-01
Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Michelotti, Francesco
2008-02-01
Dispersion curves of surface electromagnetic waves (SEWs) in 1D silicon nitride photonic crystals having periodic surface corrugations are considered. We experimentally demonstrate that a bandgap for SEWs can be obtained by fabricating a polymeric grating on the multilayered structure. Close to the boundary of the first Brillouin zone connected to the grating, we observe the splitting of the SEW dispersion curve into two separate branches and identify two regions of very low group velocity. The proper design of the structure allows the two folded branches to lie beyond the light line in a wide spectral range, thus doubling the density of modes available for SEWs and avoiding light scattering.
Wang, Hanwei; Yao, Qiufang; Wang, Chao; Ma, Zhongqing; Sun, Qingfeng; Fan, Bitao; Jin, Chunde; Chen, Yipeng
2017-05-23
In this study, nanooctahedra MnFe₂O₄ were successfully deposited on a wood surface via a low hydrothermal treatment by hydrogen bonding interactions. As-prepared MnFe₂O₄/wood composite (MW) had superior performance of soft magnetism, fire resistance and electromagnetic wave absorption. Among them, small hysteresis loops and low coercivity (electromagnetic wave absorption with a minimum reflection loss of -9.3 dB at 16.48 GHz. Therefore, the MW has great potential in the fields of special decoration and indoor electromagnetic wave absorbers.
Focusing of electromagnetic waves
Dhayalan, V.
1996-12-31
The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs.
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Electromagnetic fields and waves
Rojansky, Vladimir
2012-01-01
This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.
Uysal, Ismail E.
2016-08-09
Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.
On-chip near-wavelength diffraction gratings for surface electromagnetic waves
Bezus, Evgeni A.; Podlipnov, Vladimir V.; Morozov, Andrey A.; Doskolovich, Leonid L.
2017-05-01
In the present work, on-chip dielectric diffraction gratings for steering the propagation of surface plasmon polaritons (SPP) are theoretically, numerically and experimentally studied. The investigated plasmonic gratings consist of dielectric ridges located on the SPP propagation surface (on the metal surface). In contrast to Bragg gratings, at normal incidence the periodicity direction of the grating is perpendicular to the SPP propagation direction. The studied gratings are designed using a simple plane-wave grating model and rigorously simulated using the aperiodic Fourier modal method for numerical solution of Maxwell's equations. In particular, plasmonic grating-based beam splitter with subwavelength footprint in the propagation direction is presented. Along with the theoretical and numerical results, proof-of-concept experimental results are presented. The investigated grating-based plasmonic gratings were fabricated from resist on a silver film using electron beam lithography and characterized using the leakage radiation microscopy technique. The obtained experimental results are in good agreement with the performed numerical simulations. The proposed on-chip gratings may find application in the design of systems for optical information transmission and processing at the nanoscale.
Line geometry and electromagnetism II: wave motion
Delphenich, D H
2013-01-01
The fundamental role of line geometry in the study of wave motion is first introduced in the general context by way of the tangent planes to the instantaneous wave surfaces, in which it is first observed that the possible frequency-wave number 1-forms are typically constrained by a dispersion law that is derived from a constitutive law by way of the field equations. After a general review of the basic concepts that relate to quadratic line complexes, these geometric notions are applied to the study of electromagnetic waves, in particular.
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Proposed electromagnetic wave energy converter
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Landau levels for electromagnetic wave
Zyuzin, Vladimir A
2016-01-01
In this paper we show that the frequencies of propagating electromagnetic wave (photon) in rotating dielectric media obey Landau quantization. We show that the degeneracy of right and left helicities of photons is broken on the lowest Landau level. In spatially homogeneous system this level is shown to be helical, i.e. left and right helical photons counter-propagate.
Electromagnetic van Kampen waves
Ignatov, A. M., E-mail: aign@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2017-01-15
The theory of van Kampen waves in plasma with an arbitrary anisotropic distribution function is developed. The obtained solutions are explicitly expressed in terms of the permittivity tensor. There are three types of perturbations, one of which is characterized by the frequency dependence on the wave vector, while for the other two, the dispersion relation is lacking. Solutions to the conjugate equations allowing one to solve the initial value problem are analyzed.
Visinelli, Luca
2014-01-01
We extend the duality symmetry between the electric and the magnetic fields to the case in which an additional axion-like term is present, and we derive the set of Maxwell's equations that preserves this symmetry. This new set of equations allows for a gauge symmetry extending the ordinary symmetry in the classical electrodynamics. We obtain explicit solutions for the new set of equations in the absence of external sources, and we discuss the implications of a new internal symmetry between the axion field and the electromagnetic gauge potential.
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.
Surface-wave photonic quasicrystal
Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile
2016-01-01
In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Electromagnetic waves in variable media
Brosa, Ulrich [Brosa GmbH, Amoeneburg (Germany); Marburg Univ. (Germany)
2012-03-15
Two methods are explained to exactly solve Maxwell's equations where permittivity, permeability, and conductivity may vary in space. In the constitutive relations, retardation is regarded. If the material properties depend but on one coordinate, general solutions are derived. If the properties depend on two coordinates, geometrically restricted solutions are obtained. Applications to graded reflectors, especially to dielectric mirrors, to filters, polarizers, and to waveguides, plain and cylindrical, are indicated. New foundations for the design of optical instruments, which are centered around an axis, and for the design of invisibility cloaks, plain and spherical, are proposed. The variability of material properties makes possible effects which cannot happen in constant media, e.g. stopping the flux of electromagnetic energy without loss. As a consequence, spherical devices can be constructed which bind electromagnetic waves. (orig.)
Surface Waves on Metamaterials Interfaces
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...
Surface Waves on Metamaterials Interfaces
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;
2016-01-01
We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich platf...
Electromagnetic wave energy conversion research
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Solitary Waves in Relativistic Electromagnetic Plasma
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Spheroidal Wave Functions in Electromagnetic Theory
Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng
2001-11-01
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Moradi, Afshin
2016-07-01
In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
Linear electromagnetic wave equations in materials
Starke, R.; Schober, G. A. H.
2017-09-01
After a short review of microscopic electrodynamics in materials, we investigate the relation of the microscopic dielectric tensor to the current response tensor and to the full electromagnetic Green function. Subsequently, we give a systematic overview of microscopic electromagnetic wave equations in materials, which can be formulated in terms of the microscopic dielectric tensor.
Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.
2016-10-01
In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.
Golenitskii, K U; Bogdanov, A A
2016-01-01
In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.
On the gravitational fields created by the electromagnetic waves
Loinger, A.; Marsico, T.
2011-01-01
We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Exact plane gravitational waves and electromagnetic fields
Montanari, E; Montanari, Enrico; Calura, Mirco
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...
Electromagnetic and Gravitational Waves: the Third Dimension
Marsh, Gerald E
2011-01-01
Plane electromagnetic and gravitational waves interact with particles in such a way as to cause them to oscillate not only in the transverse direction but also along the direction of propagation. The electromagnetic case is usually shown by use of the Hamilton-Jacobi equation and the gravitational by a transformation to a local inertial frame. Here, the covariant Lorentz force equation and the second order equation of geodesic deviation followed by the introduction of a local inertial frame are respectively used. It is often said that there is an analogy between the motion of charged particles in the field of an electromagnetic wave and the motion of test particles in the field of a gravitational wave. This analogy is examined and found to be rather limited. It is also shown that a simple special relativistic relation leads to an integral of the motion, characteristic of plane waves, that is satisfied in both cases.
Safari, S.; Jazi, B.
2017-07-01
The scattering phenomenon of plane waves from an unstable elliptical plasma antenna is investigated. The role of surface plasmon excitation in the scattering pattern is studied. In the antenna mentioned above, there is a metallic rod with dielectric cover embedded in a long plasma column with an elliptical cross section. The antenna is considered unstable because of the injection of an electron beam into the plasma layer. The effects of applied accelerating voltage and applied current intensity on the scattering pattern and resonance frequency are investigated. The geometrical structure and its effect on the scattering cross section and creation of new resonance frequency are studied.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinary strong nonlinear wave propagation effect in the same way as electronic diode function is provided by a nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differing by a factor of 65.
Electromagnetic Generators and Detectors of Gravitational Waves
Grishchuk, L P
2003-01-01
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be exp...
Interference of electromagnetic waves in dynamic metabolism
黄卡玛; 唐敬贤; 刘永清; 徐兰
1995-01-01
Life is a continuous process of the dynamic metabolism.The influence of electromagneticwaves on the process of metabolism cannot be neglected.Here a new theory of electromagnetic interference inthe dynamic metabolism of life is proposed.The statistical dynamic equations of ion and free radical in thebiochemical reaction radiated by electromagnetic waves are given.The intensity of electromagnetic interferencecould be described with an interference factor.Good agreement can be seen between the calculated and meas-ured results for a famous experiment of radio-frequency radiation-induced calcium ion efflux enhancement.
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Fundamentals of electromagnetics 2 quasistatics and waves
Voltmer, David
2007-01-01
This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundame
Exact plane gravitational waves and electromagnetic fields
Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed, creat
Electromagnetic Wave Propagation in Random Media
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
Electromagnetic wave propagations in conjugate metamaterials.
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2017-03-06
In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Electromagnetic wave collapse in a radiation background.
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-10-17
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.
Global Simulation of Electromagnetic Ion Cyclotron Waves
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Analytical Study of Electromagnetic Wave in Superlattice
LINChang; ZHANGXiu-Lian
2004-01-01
The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.
Analytical Study of Electromagnetic Wave in Superlattice
LIN Chang; ZHANG Xiu-Lian
2004-01-01
The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.
田炜; 任新成
2013-01-01
The rough surface of snow and soil is simulated using a rough surface of exponential type. The transmission characteristics of electromagnetic wave through the soil surface covered by snow is investigated using the hybrid method based on the Method of Moment (MoM) and the Kirchhoff Approximation (KA). The snow surface and the soil surface are divided into an MoM region and a KA region by the hybrid method. The angular distribution of the transmission coefficient is obtained by the numerical calculation. The influences of the root-mean-square height of the snow surface and the soil surface, the type of the snow layer, the soil moisture, the thickness of the snow layer on the transmission coefficient are analyzed. It is indicated that the root-mean-square height of the snow surface, the type of the snow layer and the soil moisture have a considerable influence on the transmission coefficient,, but the influence of the root-mean-square height of the soil surface and the thickness of the snow layer can be neglected.%采用指数型粗糙面模拟实际的粗糙雪层和土壤表面,运用矩量法(MoM)结合基尔霍夫近似(KA)的混合算法研究了雪层覆盖土壤面的电磁波透射特征.混合算法将雪层表面划分在MoM区,土壤面划分在KA区,数值计算得到了透射系数的角分布曲线,分析了雪层和土壤表面的高度起伏均方根、雪层类型、土壤湿度、雪层厚度对透射系数的影响.结果表明,雪层表面高度起伏均方根、雪层类型、土壤湿度对透射系数有显著影响,而土壤表面高度起伏均方根和雪层厚度对透射系数影响较小.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Measurements Of High Frequency Electromagnetic Waves In Center Of Mus
etem, taha; ABBASOV, Teymuraz
2016-01-01
All electrically powered devices cause electromagnetic wave exposure onhuman body and we use them nearly every moment in a day. Mobile phones,computers, televisions, hair dryers, lighting systems, etc. they all useelectricity and naturally radiate electromagnetic waves. Effects ofelectromagnetic waves are not clear but international organizations definelimit values depending on epidemiological studies in this field. In this studywe measure high frequency electromagnetic waves in city center o...
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2013-01-01
We propose a method for dynamically controlling the properties of a metamaterial that mimics electromagnetically induced transparency (EIT) by introducing varactor diodes to manipulate the structural symmetry of the metamaterial. Dynamic modulation of the EIT property enables the storage and retrieval of electromagnetic waves. We confirmed that the electromagnetic waves were stored and released, while maintaining the phase distribution in the propagating direction.
Fermi energy-dependence of electromagnetic wave absorption in graphene
Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro
2015-05-01
Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.
Electromagnetic Fields and Waves in Fractional Dimensional Space
Zubair, Muhammad; Naqvi, Qaisar Abbas
2012-01-01
This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
Acedo, L
2015-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The resulting gravitational time-dilation near these masses gives rise to a frequency change of any periodic process, including electromagnetic oscillations as the wave propagates across the gravitational field. This phenomenon can be tackled with classical electrodynamics assuming a curved spacetime background and Maxwell's equations in a generally covariant form. In the present paper, we show that in a classical field-theoretical context the gravitational redshift can be interpreted as the propagation of electromagnetic waves in a medium with corresponding conductivity $\\sigma=g/(\\mu_0 c^3)$, where $g$ is the gravitational acceleration and $\\mu_0$ is the vacuum magnetic p...
Palenzuela, Carlos; Yoshida, Shin
2009-01-01
In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Do electromagnetic waves always propagate along null geodesics?
Asenjo, Felipe A
2016-01-01
We find exact solutions to Maxwell equations written in terms of four-vector potentials in non--rotating, as well as in G\\"odel and Kerr spacetimes. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non--rotating spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However, electromagnetic plane waves on G\\"odel and Kerr spacetimes do not exhibit that behavior.
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
The influence of an electromagnetic field on the wave-current interaction
Rousseaux, Germain
2010-01-01
We study the propagation of surface waves on a current in the presence of an electromagnetic field. A horizontal (vertical) field strengthens (weakens) the counter-current which blocks the waves. We compute the phase space diagrams (blocking velocities versus period of the waves) with and without surface tension. Three new dimensionless numbers are introduced to compare the relative strengths of gravity, surface tension and field effects. This work shows the importance of an electromagnetic field in order to design wave-breakers or in microfluidics applications.
Instantaneous polarization statistics of electromagnetic waves
WANG Xuesong; LI Yongzhen; DAI Dahai; XIAO Shunping; ZHUANG Zhaowen
2004-01-01
The problem of statistical description of instantaneous polarization of electromagnetic waves is studied. First, the physical meanings of instantaneous Stokes vectors' components are analyzed, which provide a short cut for solving statistical distribution functions of instantaneous Stokes vectors. Second, in the condition of Gaussian hypothesis, the analytical expressions of probability density function (PDF) of instantaneous Stokes vectors are presented. Finally, some computation results are presented in the condition of two independent polarization channels, which show the validity and simplicity of the statistical description method.
Simultaneous observation of gravitational and electromagnetic waves
Branchina, Vincenzo
2016-01-01
Assuming that the short gamma-ray burst detected by the Fermi Gamma-Ray Space Telescope about 0.4 seconds after the gravitational waves observed by the LIGO and VIRGO Collaborations originated from the same black hole merger event, we perform a model-independent analysis of different quantum gravity scenarios based on (modified) dispersion relations (typical of quantum gravity models) for the graviton and the photon. We find that only scenarios where at least one of the two particles is luminal (the other being sub- or super-luminal) are allowed, while scenarios where none of the two particles is luminal are ruled out. Moreover, the physical request of having acceptable values for the quantum gravity scale imposes stringent bounds on the difference between the velocities of electromagnetic and gravitational waves, much more stringent than any previously known bound.
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
Broadband wave manipulation in surface-wave photonic crystal
Gao, Zhen
2016-01-01
The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...
郭斌; 王晓钢
2005-01-01
We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.
Scattering and Depolarization of Electromagnetic Waves--Full Wave Solutions.
1984-01-01
Analysis," Proceedings of the International Union of Radio Science URSI Conference at Ciudad Universitaria , Madrid, August 1983, in press. . . 13...rough land and seat3 J. The full wave approach was also used to determine the scattering and depolarization of radio waves in irregular spheroidal struc...Full Wave Solutions," Radio Science, Vol. 17, No. 5, September-October 1982, pp. 1055-1066. 4. "Scattering and Depolarization by Rough Surfaces: Full
High latitude electromagnetic plasma wave emissions
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
The plane wave spectrum representation of electromagnetic fields
Clemmow, P C
1966-01-01
The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co
Ultra-fast multiple tunnelling of electromagnetic X-waves
Shaarawi, Amr M. [Physics Department, American University in Cairo, Cairo (Egypt); Besieris, Ioannis M. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)
2000-12-01
A study is provided of the transmission of a three-dimensional electromagnetic X-wave undergoing frustrated total internal reflection on the upper surface of a multi-layered structure. The stratified structure consists of successive layers alternately allowing the transmission of evanescent and free-propagation components. It is shown that the peak of an X-wave is transmitted through these successive layers at an ultra-fast speed. Under certain conditions, the total traversal time through all successive evanescent and free-propagation sections appears to be less than zero. The peak of the transmitted pulse emerges from the stack before the incident peak reaches the front surface of the stratified structure. Conditions for the materialization of this ultra-fast multiple tunnelling of pulses are pointed out and their consequences and limitations are discussed. (author)
Plane-Wave Propagation in Electromagnetic PQ Medium
Lindell, Ismo V
2015-01-01
Two basic classes of electromagnetic media, recently defined and labeled as those of P media and Q media, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is known to decompose to two quadratic equations or be identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special conditi...
Surface waves on metal-dielectric metamaterials
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;
2016-01-01
In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...
Tunneling properties of electromagnetic wave in slab superconducting material
Khem B. Thapa; Sanjay Srivastava; Alka Vishwakarma; S. P. Ojha
2011-01-01
When the electromagnetic wave propagates through a slab superconducting material in microwave ranges, tunneling properties of the electromagnetic wave at critical temperature are investigated theoretically. The transmittance and the reflectance of the slab superconducting material vary with the thickness of material as well as the refractive index of substrates.The high transmittance is found for thin superconductor at low wavelength region.However, optical properties are strongly dependent upon temperature and incidence wavelength. The electromagnetic wave is totally transmitted without loss for incidence wavelength (λ = 5000 nm) due to the zero refractive index and infinite penetration depth of the superconductor at the critical temperature.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Dolgov, A.; Postnov, K.
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Propagation of Electromagnetic Wave in Coaxial Conical Transverse Electromagnetic Wave Cell
LIU Xingxun; ZHANG Tao; QI Wangquan
2015-01-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor areθ1=1.5136° andθ2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Propagation of electromagnetic wave in coaxial conical transverse electromagnetic wave cell
Liu, Xingxun; Zhang, Tao; Qi, Wangquan
2015-11-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor are θ 1=1.5136° and θ 2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Effects of charged sand on electromagnetic wave propagation and its scattering field
HE; Qinshu; ZHOU; Youhe; ZHENG; Xiaojing
2006-01-01
Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.
Electromagnetic aquametry electromagnetic wave interaction with water and moist substances
Kupfer, Klaus
2006-01-01
This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.
Time reversal techniques in electromagnetic wave propagation
Yi, Jiang
The time reversal method is a novel scheme utilizing the scattering components in a highly cluttered environment to achieve super-resolution focusing beyond Rayleigh criteria. In acoustics, time reversal effects are comprehensively analyzed and utilized in underwater target detection and communication. Successful demonstrations of the time reversal method using low frequency waveform in acoustics have generated wide interest in utilizing time reversal method by radio frequency electromagnetic waves. However, applications of the time reversal method in electromagnetics are considered to be emerging research topics and lack extensive analyses and studies. In this thesis, we present a systematic study in which a series of novel time reversal techniques have been developed for target detection and imaging in highly cluttered environments where higher order scattering is substantial. This thesis also contributes to insightful understanding of basic time reversal properties in electromagnetic (EM) wave propagation in such environment. EM time reversal focusing and nulling effects using both single and multiple antennas are first demonstrated by FDTD simulations. Based on these properties, single antenna time reversal detection indicates significant enhancement in detection capability over traditional change detection scheme. A frequency selection scheme utilizing the frequencies with strong constructive interference between the target and background environment is developed to further improve the performance of the time reversal detector. Moreover, a novel time reversal adaptive interference cancellation (TRAIC) detection scheme developed based on TR properties can obtain null of the background through the time reversal nulling effect and achieve automatic focusing on the target through the time reversal focusing effect. Therefore, the detection ability, dynamic range and signal to noise ratio of a radar system can be significantly enhanced by the time reversal method
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation
Syshchenko, V. V.
2016-07-01
The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.
Electromagnetic wave propagation in alternating material-metamaterial layered structures
Carrera-Escobedo, V H
2016-01-01
Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified
The triggering of electromagnetic observations by gravitational wave events
Sylvestre, Julien
2003-01-01
The prospects for the observation of electromagnetic emissions by gravitational wave sources first detected using a network of interferometers are discussed. Various emission mechanisms and detection techniques for compact binary inspirals are studied to show that the pointing ability of gravitational wave observatories and the efficacy of electromagnetic detectors can be combined to predict that counterpart detections are improbable for the Initial interferometers, possible with Advanced LIG...
Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue.
Lv, Hualiang; Guo, Yuhang; Wu, Guanglei; Ji, Guangbin; Zhao, Yue; Xu, Zhichuan J
2017-02-15
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.
Electromagnetic wave propagation in a random distribution of C{sub 60} molecules
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2014-10-15
Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the π and σ electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.
Conversion from surface wave to surface wave on reflection
Novitsky, Andrey
2010-01-01
We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Transmission of electromagnetic waves through sub-wavelength channels
Zhang, Jingjing; Luo, Yu; Mortensen, Asger
2010-01-01
We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
On new electromagnetic waves in a multicomponent insulator
Dubovik, V. M.
The dispersion equation for additional transverse electromagnetic waves in a multicomponent amorphous insulator is analyzed in the vicinity of a narrow absorption line. Such waves can be excited due to spatial dispersion associated with fluctuation of the polarizability of insulator molecules. The
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena
The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.
Cosmological Electromagnetic Fields due to Gravitational Wave Perturbations
Marklund, M; Brodin, G; Marklund, Mattias; Dunsby, Peter K. S.; Brodin, Gert
2000-01-01
We consider the dynamics of electromagnetic fields in an almost-Friedmann-Robertson-Walker universe using the covariant and gauge-invariant approach of Ellis and Bruni. Focusing on the situation where deviations from the background model are generated by tensor perturbations only, we demonstrate that the coupling between gravitational waves and a weak magnetic test field can generate electromagnetic waves. We show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude is determined by the wavelengths of the magnetic field and gravitational waves. A number of implications for cosmology are discussed, in particular we calculate an upper bound of the magnitude of this effect using limits on the quadrapole anisotropy of the Cosmic Microwave Background.
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Dühring, Maria Bayard
of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...
In-plane propagation of electromagnetic waves in planar metamaterials
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
PROPAGATION OF ELECTROMAGNETIC WAVE IN THE THREE PHASES SOIL MEDIA
陈云敏; 边学成; 陈仁朋; 梁志刚
2003-01-01
The fundamental parameters such as dielectric permittivity and magnetic permeability are required to solve the propagation of electromagnetic wave (EM Wave) in the soil. Based on Maxwell equations, the equivalent model is proposed to calculate the dielectric permittivity of mixed soil. The results of calculation fit. the test data well and will provide solid foundation for the application of EM wave in the soil moisture testing, CT analyzing of soil and the inspecting of geoenvironment.
Chiral Surface Waves for Enhanced Circular Dichroism
Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2016-01-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
Chiral surface waves for enhanced circular dichroism
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2017-06-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-07-01
Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.
谢涛; William Perrie; 赵尚卓; 方贺; 于文金; 何宜军
2016-01-01
Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.
Illusions and Cloaks for Surface Waves
McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.
2014-08-01
Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.
Broadband surface-wave transformation cloak
Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile
2015-01-01
Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299
Aharonov-Bohm phase for an electromagnetic wave background
Bright, Max [California State University Fresno, Department of Physics, Fresno, CA (United States); Singleton, Douglas [California State University Fresno, Department of Physics, Fresno, CA (United States); UNESP-Univ. Estadual Paulista, ICTP South American Institute for Fundamental Research, Sao Paulo, SP (Brazil); Yoshida, Atsushi [University of Virginia, Department of Physics, Charlottesville, VA (United States); Hue University College of Education, Hue (Viet Nam)
2015-09-15
The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral A{sub μ} dx{sup μ}) and the field (i.e. (1)/(2) ∫ F{sub μν}dσ{sup μν}) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)
The SEM description of interaction of a transient electromagnetic wave with an object
Pearson, L. W.; Wilton, D. R.
1980-01-01
The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.
Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves
Lekner, John
2016-01-01
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Electromagnetic resonance waves. Resonancias de ondas electromagneticas
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs.
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Hoffmann, T.; Strawinska, J. [Politechnika Poznanska, Poznan (Poland)
1993-12-31
The present considerations are devoted to the description of an electromagnetic field in deformable body within the framework of the conceptional extended electrodynamics. The formal tool used is the classical field theory based on methods of analytical mechanics. The deformation is described by applying the relativistic kinematics of a medium which makes it possible to obtain, as a particular case, three dimensional laws with simple physical interpretation. The dynamics of bodies interacting with an electromagnetic field has been expressed by Lagrange`s equation of motion with a view to obtaining linear field equations. In the domain of wave problems one-dimensional volume waves have been analysed. (author). 19 refs.
Transmission of Information by Longitudinal Electromagnetic Waves
Barashenkov, V S; Yuriev, M Z
2001-01-01
In Maxwell electrodynamics longitudinal wave irradiation is strongly forbidden by the so-called gauge invariance. However, these waves are present in virtual quantum processes and they can be used to transfer information at macroscopic distances by the displacement of the interference picture due to the change of the phase of electron wave function. The transmission can be carried out so that it will be hidden for usual observation.
Nonlinear surface waves over topography
Janssen, T.T.
2006-01-01
As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to
Propagation of Electromagnetic Waves in Extremely Dense Media
Masood, Samina
2016-01-01
We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
On the interaction of electromagnetic waves with conductors
Paranjape, B V
2012-01-01
We study the interaction of electromagnetic waves with electrons. Our results can be applied to radio waves in the ionosphere or to lasers impinging on metals causing melting. We generalize the classical analysis of Zener to the case which includes the interactions of the electrons with lattice vibrations or the positive ions. We use the induced polarization to give a globally coherent and unifying analysis of the two cases, where collisions are important and where they are negligible.
Electronic Wave Packet in a Quantized Electromagnetic Field
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B. J.; Fuselier, S. A.
1994-10-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
A possible mechanism of current in medium under electromagnetic wave
Zhang Tao
2006-01-01
In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.
Detection of leukemia using electromagnetic waves
Colton, David L.; Monk, Peter
1995-10-01
The presence of leukemia in bone marrow causes an increase in the electric permittivity and a decrease in the conductivity of the marrow. This suggests the possibility of detecting leukemia by electromagnetic imaging. We show how this can be done for the case of an absorbing host medium (i.e. water) and provide numerical experiments using synthetic data for detecting proliferated tissue at localized portions of the bone marrow. We do not assume that the refractive index of the fat, bone, and muscle are known but will instead recover these values as part of the imaging process.
A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency
Duan, Xin; Chen, Xing; Zhou, Lin
2016-12-01
A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.
On the Superposition and Elastic Recoil of Electromagnetic Waves
Schantz, Hans G
2014-01-01
Superposition demands that a linear combination of solutions to an electromagnetic problem also be a solution. This paper analyzes some very simple problems: the constructive and destructive interferences of short impulse voltage and current waves along an ideal free-space transmission line. When voltage waves constructively interfere, the superposition has twice the electrical energy of the individual waveforms because current goes to zero, converting magnetic to electrical energy. When voltage waves destructively interfere, the superposition has no electrical energy because it transforms to magnetic energy. Although the impedance of the individual waves is that of free space, a superposition of waves may exhibit arbitrary impedance. Further, interferences of identical waveforms allow no energy transfer between opposite ends of a transmission line. The waves appear to recoil elastically one from another. Although alternate interpretations are possible, these appear less likely. Similar phenomenology arises i...
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Tree-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients
Slabko, Vitaly V; Tkachenko, Viktor A; Myslivets, Sergey A
2016-01-01
Three-wave mixing of ordinary and backward electromagnetic waves in pulsed regime is investigated in the metamaterials, which enable co-existence and phase matching of such waves. It is shown that opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes in greatly enhanced optical parametric amplification and in frequency up or down shifting nonlinear reflectivity. The discovered transients resemble slowed response of an oscillator on pulsed excitation in the vicinity of its resonance
Depolarization and Scattering of Electromagnetic Waves. Appendices.
1986-06-30
flakes. The irregular shaped flake is characterized by its surface height spectral density function and its lateral dimension is assumed to be larger...parameter 0 - 1.0 several surfaces with different surface height spectral density functions W(k) were considered. (The surface height spectral density function W...scattering cross sections were found to be critically dependent upon the form of surface height spectral density function and the mean radius of the spheres
Scattering of electromagnetic light waves from a deterministic anisotropic medium
Li, Jia; Chang, Liping; Wu, Pinghui
2015-11-01
Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.
Electron beam injection during active experiments. I - Electromagnetic wave emissions
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Impact of Fog on Electromagnetic Wave Propagation
Morris, Jonathon; Fleisch, Daniel
2002-04-01
This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.
Electromagnetic Waves Broadcast by a VCR.
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Electromagnetic Lead Screw for Potential Wave Energy Application
Lu, Kaiyuan; Wu, Weimin
2014-01-01
This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...... lead screw (MLS) employing permanent magnets only, the new EMLS proposed uses dc current to provide the required helical-shape magnetic field, offering a much simpler, robust structure compared with the MLS. The working principle and the performances of this EMLS are analyzed in this paper. Comparison...
Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks
Wilson, L B; Szabo, A; Breneman, A; Cattell, C A; Goetz, K; Kellogg, P J; Kersten, K; Kasper, J C; Maruca, B A; Pulupa, M
2012-01-01
We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between \\partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
史阳; 杨坤德; 杨益新; 马远良
2015-01-01
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave prop-agation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis-tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean.
Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?
Surface acoustic wave microfluidics.
Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun
2013-09-21
The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.
Maximizing the Probability of Detecting an Electromagnetic Counterpart of Gravitational-wave Events
Coughlin, Michael W
2016-01-01
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. These are among the most promising sources for joint detection of electromagnetic (EM) and gravitational-wave (GW) emission. To maximize the science performed with these objects, it is essential to undertake a followup observing strategy that maximizes the likelihood of detecting the EM counterpart. We present a follow-up strategy that maximizes the counterpart detection probability, given a fixed investment of telescope time. We show how the prior assumption on the luminosity function of the electro-magnetic counterpart impacts the optimized followup strategy. Our results suggest that if the goal is to detect an EM counterpart from among a succession of GW triggers, the optimal strategy is to perform long integrations in the highest likelihood regions, with a time investment that is proportional to the $2/3$ power of the surface...
Predicting Electromagnetic Signatures of Gravitational Wave Sources
D'Orazio, Daniel John
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.
Perfect absorbers for electromagnetic wave, based on metamaterials
Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak
2015-10-01
Metamaterials (MMs), which are not existing in nature, but artificially-engineered materials for controlling electromagnetic wave. MMs have attracted more and more research attentions, since they have shown greatly novel properties such as left-handed behavior, negative refractive index, classical analog of electromagnetically-induced transparency, and extraordinary transmission. Among MMs, MM perfect absorbers (MMPAs), which are useful to enhance the efficiency in capturing solar energy and applied to various application areas, have been rapidly developed. In general, the structure of MMPAs is very simple, which consist of three layers: patterned conductor layer, which is used for minimizing the reflection by impedance matching, dielectric layer and continuous conductor layer for blocking the transmission. In addition, the unit-cell size of general MM absorbers is only 1/3-1/5 of the working wavelength of incident electromagnetic wave. Nevertheless, the properties of general MMPAs are in problems of the absorption only at specific frequency, the narrow absorption band, the polarization sensitivity and so on. In this review paper, the introduction of recent researches in the field of MMPAs operating in different frequency ranges is presented. Moreover, the researches on the improved electromagnetic properties are discussed, which comprise multi-band, broadband, tunable, polarization-insensitive, and wide-incident-angle MMPAs. The perspectives and the future works for the further investigations and the various real applications of MMPAs are also presented.
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)
1994-10-01
Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Vojkan M. Radonjić
2011-01-01
, i.e. the strength of a signal received at the entrance of the receiver. The error in the received bit (BER is a function of the receiving field. By reducing the level of the field the BER increases and vice versa. The level of the receiving field in the absence of margin is called the nominal level of the receiving field. The difference between the nominal level and the receiving threshold represents a margin or a budget for the fading for the given BER. Diffraction is a phenomenon that follows the propagation of electromagnetic waves and indicates their ability to bend round the relief, uneven surfaces and other obstacles, during propagation through the environment. Diffraction is considered when the obstacles on the path of propagation of electromagnetic waves enter the first Fresnel zone, because then an error in the information transmission occurs. Refraction is the refraction of electromagnetic waves in the lower layers of the atmosphere and is caused by its unhomogeneity. The upper part of the EM wave front progresses faster and the wave bends towards the Earth. The phenomenon of EM wave bending towards the Earth is called refraction. Reflection When electromagnetic waves propagate near the Earth surface, a part of the wave front, reflected from the surface of the Earth, may arrive in the receiving antenna of radio relay equipment together with direct electromagnetic waves. EM waves (direct and reflected are summed up vectorially in the receiver giving the resulting EM wave. This can cause a substantial reduction in the resulting field when compared to the field in ideal conditions, which leads to the error increase. Absorption or EM wave absorption occurs in all frequency bands and signifies a higher or lower level of attenuation of electromagnetic waves. It is taken into consideration in digital radio-relay devices which operate in the frequency range over 7 GHz. Multiple propagation of electromagnetic waves EM waves from the transmitter can reach the
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Attractors and chaos of electron dynamics in electromagnetic standing wave
Esirkepov, Timur Zh; Koga, James K; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N; Korn, Georg; Bulanov, Sergei V
2014-01-01
The radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Influence of electromagnetic SHF-waves on motility of tubifex
I. K. Smolyarenko
2005-02-01
Full Text Available We investigated influence of electromagnetic superhigh frequency (SHF waves (10 hHz on mechanical parameters of motility of bunch tubifex (1300 - 1500 units at a different load and sequence of its mechanical stimulation. Is shown, that after a пот-thermal waveirradiation (1 MVt/sm2 latency and forward front of mechanograms is increased on 5 - 10 %, amplitude and duration of the answers simultaneously decreases. The maximal mass, which can lift single unit tubifex is decreased. The capacity of single unit is reduced on the average about 80 %. The authors make conclusion about temporary negative influence SHF-waves on simple biological systems.
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang, E-mail: chenxg83@zju.edu.cn
2015-11-15
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400–800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<−5 dB and −10 dB. For RN samples, the maximum bandwidth for −5 dB and −10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400–800 for EM absorption is 1.5–2.0 mm, with maximum RL of between −28.9 and −68.4 dB, bandwidth of 6.7–13 GHz for RL<−5 dB and 3.2–6.2 GHz for RL<−10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400–800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers. - Highlights: • RN400–800 samples are potential light-weight electromagnetic absorbers. • Carbon and SiC are considered as dominating contributions for the dielectric loss. • Magnesiumothermic reduction extends the EM wave absorption potential of RHN.
Proton acceleration by circularly polarized traveling electromagnetic wave
Amol Holkundkar
2012-09-01
Full Text Available The acceleration of charged particles, producing collimated monoenergetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 keV proton to 386 MeV under optimum conditions. Finally, we discuss possible limitations of the acceleration scheme.
Proton acceleration by circularly polarized traveling electromagnetic wave
Holkundkar, A; Marklund, M
2012-01-01
The acceleration of charged particles, producing collimated mono-energetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase-modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 KeV proton to 386 MeV under optimum conditions. Finally we discuss possible limitations of the acceleration scheme.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Particle Methods for Electromagnetic Wave Propagation Problems
2014-09-15
approximation stability. Fig. 7. Inverse pole locations for reduced-domain LDTBC solutions on complex -domain, . Stars are for the...increasing random space dimensionality are exemplified. The objective in the second application is to compute expected signal strength above flat Earth ...was to compute expected signal strength above flat Earth surface at ranges far from transmitter location, where randomness was present due to
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Numerical simulation of azimuth electromagnetic wave tool response based on self-adaptive FEM
Li, Hui; Shen, Yi-Ze
2017-07-01
Azimuth electromagnetic wave is a new type of electromagnetic prospecting technology. It can detect weak electromagnetic wave signal and realize real-time formation conductivity imaging. For effectively optimizing measurement accuracy of azimuth electromagnetic wave imaging tool, the efficient numerical simulation algorithm is required. In this paper, self-adaptive finite element method (FEM) has been used to investigate the azimuth electromagnetic wave logging tool response by adjusting antenna array system in different geological conditions. Numerical simulation examples show the accuracy and efficiency of the method, and provide physical interpretation of amplitude attenuation and phase shift of electromagnetic wave signal. Meanwhile, the high-accuracy numerical simulation results have great value to azimuth electromagnetic wave imaging tool calibration and data interpretation.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Overview: Electromagnetic Scattering from Ocean Surface
ZHAO Zhi-qin
2006-01-01
Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.
Surface spin-electron acoustic waves in magnetically ordered metals
Andreev, Pavel A
2015-01-01
Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Won-Jun Lee
2014-01-01
Full Text Available The applications of electromagnetic- (EM- wave-absorbers are being expanded for commercial and military purposes. For military applications in particular, EM-wave-absorbers (EMWAs could minimize Radar Cross Section (RCS of structures, which could reduce the possibility of detection by radar. In this study, EMWA composite structure containing a square periodic patterned layer is presented. It was found that control of the pattern geometry and surface resistance induced EMWA characteristics which can create multiresonance for wideband absorption in composite structures.
Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
Valovik, D. V.; Smol'kin, E. Yu.
2017-08-01
The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ωe and ωm and two propagation constants {\\widehat γ _e} and {\\widehat γ _m}. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ({\\widehat γ _e}, {\\widehat γ _m}) in proven and intervals of their localization are determined.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Inversion of an Atomic Wave Packet in a Circularly Polarized Electromagnetic Wave
ZENG Gao-Jian
2001-01-01
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.``
2011-09-01
transformed into a matrix system with Gauss -Legendre quadrature as the underlying quadrature rule of the LCN method. In the present formulation, the far...1234–1237. 30. Johnson, J. T. A Numerical Study of Low-Grazing Angle Backscatter From Ocean-Like Impedance Surfaces With the Canonical Grid...Using the Physics-Based Two-Grid Method and the Canonical -Grid method,‖ IEEE Trans. Antennas Propagat. April 1999, 47 (4), 752–763. 33. Chan, C. H
Spectroscopy of candidate electromagnetic counterparts to gravitational wave sources
Steele, Iain A; Piascik, Andrzej S
2016-01-01
A programme of worldwide, multi-wavelength electromagnetic follow-up of sources detected by gravitational wave detectors is in place. Following the discovery of GW150914 and GW151226, wide field imaging of their sky localisations identified a number of candidate optical counterparts which were then spectrally classified. The majority of candidates were found to be supernovae at redshift ranges similar to the GW events and were thereby ruled out as a genuine counterpart. Other candidates ruled out include AGN and solar system objects. Given the GW sources were black hole binary mergers, the lack of an identified electromagnetic counterpart is not surprising. However the observations show that is it is possible to organise and execute a campaign that can eliminate the majority of potential counterparts. Finally we note the existence of a "classification gap" with a significant fraction of candidates going unclassified.
Electromagnetic Counterparts of Gravitational Wave Sources : Mergers of Compact Objects
Kamble, Atish
2016-01-01
Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO, VIRGO etc. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to $10^{51}$ erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies which could be detected out to about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow up could, however, distinguish between the mergers and supernovae.
Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses
Raman, Chandra S.
1998-05-01
This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
GUO Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.
Electromagnetic wave scattering on nonspherical particles basic methodology and simulations
Rother, Tom
2014-01-01
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. Beside the systematically developed Green’s function formalism of the first edition this second and enlarged edition contains additional material regarding group theoretical considerations for nonspherical particles with boundary symmetries, an iterative T-matrix scheme for approximate solutions, and two additional but basic applications. Moreover, to demonstrate the advantages of the group theoretical approach and the iterative solution technique, the restriction to axisymmetric scatterers of the first edition was abandoned.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Electromagnetic form factors of the Δ with D-waves
Ramalho, Gilberto T.F. [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Pena, Maria Teresa [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-06-01
The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge G_{E0}, the magnetic dipole G_{M1}, the electric quadrupole G_{E2} and the magnetic octupole G_{M3}. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Attractors and chaos of electron dynamics in electromagnetic standing waves
Esirkepov, Timur Zh. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Stepan S. [University of California, Berkeley, CA 94720 (United States); Koga, James K.; Kando, Masaki; Kondo, Kiminori [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Rosanov, Nikolay N. [Vavilov State Optical Institute, Saint-Petersburg 199034 (Russian Federation); Korn, Georg [ELI Beamline Facility, Institute of Physics, Czech Academy of Sciences, Prague 18221 (Czech Republic); Bulanov, Sergei V., E-mail: bulanov.sergei@jaea.go.jp [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan)
2015-09-25
In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Electromagnetic form factors of the Delta with D-waves
Ramalho, G; Gross, Franz
2010-01-01
The electromagnetic form factors of the Delta baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the $\\Delta$ wave function. We predict all the four Delta multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Electromagnetic Wave Scattering on Nonspherical Particles Basic Methodology and Simulations
Rother, Tom
2009-01-01
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. A related Green’s function formalism is systematically developed which provides a powerful mathematical basis not only for the development of numerical approaches but also to discuss those general aspects like symmetry, unitarity, and the validity of Rayleigh’s hypothesis. Example simulations are performed in order to demonstrate the usefulness of the developed formalism as well as to introduce the simulation software which is provided on a CD-ROM with the book.
Scattering of electromagnetic waves by a traversable wormhole
B. Nasr Esfahani
2005-09-01
Full Text Available Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.
Robust imaging with electromagnetic waves in noisy environments
Borcea, Liliana; Garnier, Josselin
2016-10-01
We study imaging with an array of sensors that probes a medium with single frequency electromagnetic waves and records the scattered electric field. The medium is known and homogenous except for some small and penetrable inclusions. The goal of inversion is to locate and characterize these inclusions from the data collected by the array, which are corrupted by additive noise. We use results from random matrix theory to obtain a robust inversion method. We assess its performance with numerical simulations and quantify the benefit of measuring more than one component of the scattered electric field.
Motion of a charge in a superstrong electromagnetic standing wave
Esirkepov, Timur Z.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.
2015-05-01
Radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense colliding laser pulses. Depending on the laser intensity and wavelength, the quantum corrections to the electron motion and the radiation reaction force can be independently small or large, thus dividing the parameter space into 4 regions. When radiation reaction dominates, the electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Attractors and chaos of electron dynamics in electromagnetic standing waves
Esirkepov, Timur Zh.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.
2015-09-01
In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.
Collision of arbitrary strong gravitational and electromagnetic waves in the expanding universe
Alekseev, G A
2015-01-01
A completely analytical model of the process of collision and nonlinear interaction of gravitational and electromagnetic soliton wave pulses and strong electromagnetic travelling waves of arbitrary profiles propagating in the expanding universe (symmetric Kasner space-time) is presented. In contrast to intuitive expectations that rather strong travelling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic wave of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a travelling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of Einstein - Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electr...
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
WANG Dong; CHEN Yinhua; WANG Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian
2016-12-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).
Nearly non-scattering electromagnetic wave set and its application
Liu, Hongyu; Wang, Yuliang; Zhong, Shuhui
2017-04-01
For any inhomogeneous compactly supported electromagnetic (EM) medium, it is shown that there exists an infinite set of linearly independent EM waves which generate nearly vanishing scattered wave fields. If the inhomogeneous medium is coated with a layer of properly chosen conducting medium, then the wave set is generated from the Maxwell-Herglotz approximation to the interior perfectly electric conducting or perfectly magnetic conducting eigenfunctions and depends only on the shape of the inhomogeneous medium. If no such a conducting coating is used, then the wave set is generated from the Maxwell-Herglotz approximation to the generalised interior transmission eigenfunctions and depends on both the content and shape of the inhomogeneous medium. We characterise the nearly non-scattering wave sets in both cases with sharp estimates. The results can be used to give a conceptual design of a novel shadowless lamp. The crucial ingredient is to properly choose the source of the lamp so that nearly no shadow will be produced by surgeons operating under the lamp.
Li, Xiangming; Gao, Mingjun
2016-07-01
A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.
Features of the ELF Electromagnetic Wave Propagation in the Homogeneous Ionosphere
Sergeev, Igor
The quasi-stationary Maxwell equations of the gyrotropic waves have been examined. In con-trast to the approach used in the other papers (Sorokin et al., 2009; Sorokin et al., 2006; Sergeev and Sorokin, 2005) the general form of the electromagnetic equation of the gyrotropic waves has been considered. The dispersion equation analysis shows that attenuation of one of the mode tends to zero in the perpendicular to the magnetic field direction while along this direction the attenuation is finite. Basing on this feature we can suppose that low frequency electromagnetic fluctuations tend to expand along the magnetic field. It forms in the iono-sphere long areas with invariable direction of the electric field and current and weakly variable magnitude of these parameters. To check this conclusion the direct problem of the evolution of an electromagnetic fluctuation has been solved numerically. The results show that spherically symmetric fluctuation expands along the magnetic field lines by 5-30 times while in some cases the widening is fully absent. References Sorokin V.M., Sergeev I.Yu., Pokhotelov O.A. Low latitude gyrotropic waves in a finite thickness ionospheric conducting layer. Journal of Atmospheric and Solar-Terrestrial Physics, V. 71, P. 175-179, 2009. Sorokin V.M., Sergeev I.Yu., and Yaschenko A.K. Electromagnetic field generation by explosion in the ionosphere. Advances in Space Research, V. 38, No. 11, P. 2511-2515, 2006. Sergeev I.Yu. and Sorokin V.M. Mechanism of the LF Narrow-Band Spectrum Electromagnetic Disturbance Formation Observed on the Earth Surface during Spacecraft Launches. Geomag-netism and Aeronomy, Vol. 45, No. 4, P. 520-525, 2005.
Carcione, José M
2014-01-01
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...
Bogdanov, O V
2014-01-01
The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...
Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae
The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.
Electromagnetic waves in complex systems selected theoretical and applied problems
Velychko, Lyudmyla
2016-01-01
This book gives guidance to solve problems in electromagnetics, providing both examples of solving serious research problems as well as the original results to encourage further investigations. The book contains seven chapters on various aspects of resonant wave scattering, each solving one original problem. All of them are unified by the authors’ desire to show advantages of rigorous approaches at all stages, from the formulation of a problem and the selection of a method to the interpretation of results. The book reveals a range of problems associated with wave propagation and scattering in natural and artificial environments or with the design of antennas elements. The authors invoke both theoretical (analytical and numerical) and experimental techniques for handling the problems. Attention is given to mathematical simulations, computational efficiency, and physical interpretation of the experimental results. The book is written for students, graduate students and young researchers. .
Jiahua Li(李家华); Wenxing Yang(杨文星); Jucun Peng(彭菊村)
2004-01-01
Using Schrodinger-Maxwell formalism, we propose and analyze a continuous-wave four-wave mixing (FWM) scheme for the generation of coherent light in a six-level atomic system based on electromagnetically dual induced transparency. We derive the corresponding explicit analytical expressions for the generated mixing field. We find that the scheme greatly enhances FWM production efficiency and is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference by choosing the proper decay rate in the second electromagnetically induced transparency (EIT) process.In addition, such an optical process also provides possibilities for producing short-wave-length coherent radiation at low pump intensities.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
Surface Wave Cloak from Graded Refractive Index Nanocomposites
La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.
2016-07-01
Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.
Electromagnetic wave propagation of wireless capsule endoscopy in human body
LIM; Eng-Gee; 王炤; 陈瑾慧; TILLO; Tammam; MAN; Ka-lok
2013-01-01
Wireless capsule endoscopy(WCE) is a promising technique which has overcome some limitations of traditional diagnosing tools, such as the comfortlessness of the cables and the inability of examining small intestine section. However, this technique is still far from mature and asks for the feasible improvements. For example, the relatively low transmission data rate and the absence of the real-time localization information of the capsule are all important issues. The studies of them rely on the understanding of the electromagnetic wave propagation in human body. Investigation of performance of WCE communication system was carried out by studying electromagnetic(EM) wave propagation of the wireless capsule endoscopy transmission channel. Starting with a pair of antennas working in a human body mimic environment, the signal transmissions and attenuations were examined. The relationship between the signal attenuation and the capsule(transmitter) position, and direction was also evaluated. These results provide important information for real-time localization of the capsule. Moreover, the pair of antennas and the human body were treated as a transmission channel, on which the binary amplitude shift keying(BASK) modulation scheme was used. The relationship between the modulation scheme, data rate and bit error rate was also determined in the case of BASK. With the obtained studies, it make possible to provide valuable information for further studies on the selection of the modulation scheme and the real-time localization of the capsules.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.
Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying
2016-02-01
Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Influence of electromagnetism field on the flame transmission and shock wave in gas explosion
Li Jing [Anhui University of Technology, Maanshan (China). College of Metallurgy and Resources
2008-01-15
The influence of electromagnetic field on flame transmission and explosion wave overpressure in gas explosions was investigated. The research results show that the velocity of flame propagation and the explosion wave overpressure in an electromagnetic field is much higher than that in plain tube, and the stronger the electromagnetic field, the greater the influence. Based on experimental results, the influence of electromagnetic field on gas explosion propagation was analyzed and a reasonable explanation was put forward. The influence of electromagnetic field is not equal to the sum of the electric field and the magnetic field. 7 refs., 4 figs., 2 tabs.
Generation of 1D interference patterns of Bloch surface waves
Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.
2016-09-01
Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.
Computer-aided design-based high-frequency electromagnetic wave scattering from complex bodies
Baldauf, John Eric
1991-02-01
This work investigates the use of high frequency electromagnetic scattering techniques, such as the physical theory of diffraction (PTD) and the geometrical theory of diffraction (GTD) and the shooting and bouncing rays (SBR) method combined with computer aided design (CAD) compatible geometries, to perform the electromagnetic scattering analysis of complex arbitrary bodies. The use of CAD formats such as solid modelled bodies and bodies modelled with triangular patch surface elements allows the scattering analysis of arbitrary bodies which can be constructed using CAD packages. The scattering analyses are applied to radar cross section (RCS) problems, cavity radiation problems, and antenna pattern predictions of complex electrically large structures, thereby showing that it is feasible to accurately approximate the electromagnetic wave scattering from general complex bodies using CAD techniques and high frequency scattering techniques. First, the RCS of large targets which involve multiple geometric optics (GO) interactions are investigated by comparing the RCS calculated using CAD designed radar targets and the SBR method and PTD for targets such as trihedral corner reflectors and an idealized military vehicle model with the experimentally obtained RCS. The comparisons between the calculated and measured results demonstrate that the SBR and PTD can provide accurate approximations of the RCS for targets which have complex multiple GO interactions. Second, the problem of interior cavity radiation for closed cavities is approached using a ray tracing and GO method based on the SBR method and triangular surface patch described geometries. Comparisons between the ray-based calculations and more exact techniques such as the method of moments (MM) for two-dimensional cavities demonstrate that ray-based methods can provide good approximations for the field behavior inside of nonresonant cavities. A three-dimensional case is shown to demonstrate that this technique can be
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Development of CIP/graphite composite additives for electromagnetic wave absorption applications
Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo
2017-09-01
In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.
Scattering of electromagnetic plane waves by a buried vertical dike
Batista Lurimar S.
2003-01-01
Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.
Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
Priyadarshini, N; Rajkumar, E R
2013-01-01
Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.
Searching for electromagnetic counterparts of gravitational wave transients
Branchesi, M; Laas-Bourez, M
2011-01-01
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved ground-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
Mangum, Jeffrey G
2014-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...
Quantum metamaterials: Electromagnetic waves in Josephson qubit lines
Zagoskin, A.M. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Physics and Astronomy Department, University of British Columbia, Vancouver, B.C. (Canada); Rakhmanov, A.L. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Institute for Theoretical and Applied Electrodynamics RAS, Moscow (Russian Federation); Savel' ev, Sergey [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (United States)
2009-05-15
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ''breathing'' photonic crystal with an oscillating bandgap. Similar behaviour is expected from a transmission line formed by flux qubits. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Diffraction of Electromagnetic Wave by Circular Disk and Circular Hole
Shahzad, Muhammad Adnan
2010-01-01
The problem of diffraction of an electromagnetic plane wave by a perfectly conducting circular disk and its complementary problem, diffraction by a circular hole in an infinite conducting plate, are rigorously solved using the method of the Kobayashi potential. The mathematical formulation involved dual integral equation derived from the potential integral and boundary condition on the plane where a disk or hole is located. The weighting function in the potential integral are determined by applying the properties of the Weber-Schafheitlin's discontinuous integral and the solution are obtained in the form of a matrix equation. The matrix elements of the equations for the expansion coefficients are given by three kinds of infinite integral and the series solution for these infinite integral are derived. For the verification of these series solution, the numerical integral are derived and the results are computed numerically using the method of Gaussian quadrature for conformation. The numerical results are give...
Electromagnetic wave propagation through a slab of a dispersive medium
Ismail, Mohamed
2016-01-01
A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.
Modal Ring Method for the Scattering of Electromagnetic Waves
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Design of Metamaterials for control of electromagnetic waves
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods
Ji, Yanju; Hu, Yanpu; Imamura, Naoto
2017-05-01
Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.
Application of electromagnetic waves in damage detection of concrete structures
Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.
2000-04-01
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.
Broadband transverse electric surface wave in silicene
Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro
2016-08-01
Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
Burke, W.J.; Ginet, G.P.; Heinemann, M.A.; Villalon, E.
1988-01-01
The relativistic equations of motion have been analyzed for electrons in magnetized plasmas and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The electron energy is obtained from a set of non-linear differential equations as functions of time, initial conditions and cyclotron harmonic numbers. For a given cyclotron resonance the energy oscillates in time within the limits of a potential well. Stochastic acceleration occurs if the widths of hamiltonian potentials overlap. Numerical analyses suggest that, at wave energy fluxes in excess of 10/sup 8/ mW/m/sup 2/, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Practical attempts to validate the theory with a series of planned rocket flights over the HIPAS facility in Alaska are discussed. The HIPAS antennas will be used to irradiate the magnetic mirror points of 10 - 40 keV electrons emitted from the ECHO 7 rocket in the early winter of 1988. Follow-on rocket experiments to exploit the wave amplification properties of the ionospheric 'radio window' are described.
Interaction of High Intensity Electromagnetic Waves with Plasmas
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Frequency-domain electromagnetic sounding with combination wave in near-field zone
苏发; 何继善
1996-01-01
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.
On the generation of internal wave modes by surface waves
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Wang Jiang
2014-03-01
Full Text Available When partial discharge occurs in Gas Insulated Switchgear (GIS with insulation defects, Ultrahigh-Frequency (UHF electromagnetic wave up to several MHz and GHz will be exited and propagate inside GIS cavity. This study, based on the propagation theory of electromagnetic waves in coaxial waveguide, performs simulation analysis of the relationship between PD pulse form and the exited UHF electromagnetic wave using Finite-Deferential Time-Domain (FDTD algorithm. First, we study the relationship of partial discharge magnitude and electric field strength of electromagnetic wave. It is found that the changes of partial discharge magnitude have little effect on electric field strength of electromagnetic wave at certain variation rate of PD pulse current. Next, we examine the relationship of variation rate of PD pulse current to electric field strength of electromagnetic wave. It is pointed out that, at a certain partial discharge magnitude, the two are approximately linearly related. Finally, we study the impact of variation rate of PD pulse current on higher mode components. Variation coefficient is used to analyze the proportion of higher mode components in electromagnetic wave. The proportion of higher mode components increases with increasing variation rate of PD pulse current.
Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events
Coughlin, Michael; Stubbs, Christopher
2016-10-01
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. These are among the most promising sources for joint detection of electromagnetic (EM) and gravitational-wave (GW) emission. To maximize the science performed with these objects, it is essential to undertake a followup observing strategy that maximizes the likelihood of detecting the EM counterpart. We present a follow-up strategy that maximizes the counterpart detection probability, given a fixed investment of telescope time. We show how the prior assumption on the luminosity function of the electro-magnetic counterpart impacts the optimized followup strategy. Our results suggest that if the goal is to detect an EM counterpart from among a succession of GW triggers, the optimal strategy is to perform long integrations in the highest likelihood regions. For certain assumptions about source luminosity and mass distributions, we find that an optimal time investment that is proportional to the 2/3 power of the surface density of the GW location probability on the sky. In the future, this analysis framework will benefit significantly from the 3-dimensional localization probability.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
A review of nondestructive testing approaches using mechanical and electromagnetic waves
Lau, Denvid; Qiu, Qiwen
2016-04-01
Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.
Electromagnetic field in matter. Surface enhanced Raman scattering
Marian Apostol
2013-07-01
Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.
Databases of surface wave dispersion
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Horne, Richard B.; Miyoshi, Yoshizumi
2016-10-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
The modulation of electromagnetic ion cyclotron waves by Pc 5 ULF waves
T. M. Loto'aniu
2009-01-01
Full Text Available The modulation of electromagnetic ion cyclotron (EMIC waves by longer-period ULF waves has been proposed as a method for producing pearl structured Pc 1–2 EMIC waves. This study examines frequency and phase relationship between Pc 1 EMIC wavepacket envelopes and simultaneously occurring Pc 5 ULF waves using magnetic data measured by the CRRES spacecraft. Intervals from three days in 1991 where CRRES observed pearls are presented along with simple statistics for 58 EMIC wavepackets. The observations were dominated by EMIC waves propagating away from the equatorial region. Comparisons between pearl wavepacket envelopes and Pc 5 waves show excellent agreement. The pearl wavepacket duration times, τ_{dur}, were statistically correlated with Pc 5 wave periods, T_{Pc5}, resulting in a correlation coefficient of R=0.7 and best fit equation τ_{dur}=0.8·T_{Pc5}+6 s. In general, phase differences varied although time intervals of constant in-phase or anti-phase correlation were observed. Anti-phase modulation may be explained by a decreasing background magnetic field due to the negative cycle of the ULF wave decreasing Alfvén velocity and minimum resonant energy. In-phase modulation could be the result of adiabatic modulation of temperature anisotropy in-phase with variations in the background field. Non-adiabatic processes may contribute to intervals that showed varying phase differences with time. Results suggest that future theoretical developments should take into account the full range of possible wave particle interactions inside the magnetosphere.
A wave guide model of lightning currents and their electromagnetic field
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
Photo-Ionization of Hydrogen Atom in a Circularly Polarized Standing Electromagnetic Wave
LIU Xiang-Tao; ZHANG Qi-Ren; WANG Wan-Zhang
2004-01-01
Applying time-independent non-perturbative formalism to the photo-ionization of hydrogen atom immersed in a strong circularly polarized standing electromagnetic wave, we calculate the shift of energy levels and the distortion of wave functions for the hydrogen atom, the ionization cross section induced by the standing wave, and the angular distribution of photoelectrons and obtain some interesting results.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.
The Surface Wave Scattering-Microwave Scanner (SWS-MS)
Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe
2016-01-01
The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.
MAGNETO-ABRASIVE MACHINING OF SURFACES FORMED BY ELECTROMAGNET SURFACING WITH PLASTIC DEFORMATION
Zh. A. Mrochek
2011-01-01
Full Text Available The paper presents investigation results pertaining to magneto-abrasive machining of product surfaces formed by electromagnet surfacing with a plastic deformation of P6M5K5 powder.
GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION
Zh. A. Mrochek
2011-01-01
Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Kómár, A; Fülöp, T
2013-01-01
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials
Cheng Qiang; Jiang Weixiang; Cui Tiejun, E-mail: tjcui@seu.edu.c [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)
2010-08-25
We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials
Cheng, Qiang; Jiang, Wei Xiang; Cui, Tie Jun
2010-08-01
We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.
Impact of Mobile Phone Electromagnetic Waves on Brainwaves
Fu-Chien Kao
2015-07-01
Full Text Available In the era of wireless communication, cellular phone becomes an indispensable accessory to most people. People use cellular phone to interact with others, perform commercial and financial transactions, or conducting recreational activities, etc. The advance in wireless technology and escalate of broadband networks not only flourish communications industry and application service providers but also encourage people perform prolonged wireless network activities under the risk of over exposing themselves in long term high frequency electromagnetic waves. For example, some people conduct excessive phone-trading activities, as it is necessary to the job, and some people exercise the non-stop e-learning or recreation activities on mobile devices with long hours. However, would prolonged exposure to high frequency EMW environment bring adverse effects on human health? This research from the perspective of cognitive neuroscience investigates the effect of EMW from cellular phone to the energy distribution of human brainwave characteristic band by examine brainwave changes of test subjects when exposing to high frequency EMW environment. Experiment uses left ear and right ear to answer the phone separately. The calling session is divided into three stages: the instant of call connection, during the call, and after the call. On each ear, the brainwave signal of each calling stage is extracted and analyzed. The experiment shows at the instant of call connection stage, resulting maximum EMW strength, having extreme effect on the energy distribution of the human brainwave characteristic band, and causing severe changes on the energy of human brainwave.
Multi-scattering of electromagnetic waves by nanoshell aggregates
Li, Ben Q., E-mail: benqli@umich.edu [University of Michigan, Department of Mechanical Engineering (United States); Liu Changhong, E-mail: liuch@sjtu.edu.cn [Shanghai Jiao Tong University, Department of Electrical Engineering (China)
2012-05-15
A general analytical expression is derived for calculating the total scattering cross-section of an aggregate of nanoparticles. The approach is based on the far zone approximation and repeated use of recursive relations for Bessel functions and Legendre polynomials. In comparison with the existing formula for total scattering cross-section, the expression converges faster and makes it easier to analyze the terms that characterize the interactive coupling between nanoparticles during multiple scattering of electromagnetic waves. The expressions are valid for particle aggregates in which no two particles are in direct contact. Calculated results compare well with measurements for a nanoshell dimer. For a linear chain of particles with the chain axis parallel to the polarization direction of the electric field, analysis shows that the red-shift of resonance peaks results primarily from electrons in metal shells of two adjacent particles oscillating out-of-phase to cancel each other's radiation effects. Multi-scattering in aggregates with more complex arrangements may be explained by combining the effects of linear particle chains.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Scattering of Electromagnetic Waves by Many Nano-Wires
Alexander G. Ramm
2013-07-01
Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M = M (a. It is assumed that the points, xˆm, are distributed, so that N (∆ = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.
Geodetic refraction effects of electromagnetic wave propagation through the atmosphere
1984-01-01
With very few exceptions, geodetic measurements use electro magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow ing parameters of the electromagnetic wave are measured: ampli tude, phase, angle-of-arrival, polarisation and frequency. Ac curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter restrial and space applications. Instrumental accuracies are al ready below the atmospherically i...
Locating voids beneath pavement using pulsed electromagnetic waves
Steinway, W. J.; Echard, J. D.; Luke, C. M.
1981-11-01
The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.
Surface Acoustic Wave Frequency Comb
Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L
2011-01-01
We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Sourabh Bal; M Bose
2009-10-01
We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.
2004-10-01
The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.
Characterization of porous construction materials using electromagnetic radar wave
Lai, Wallace Wai Lok
This thesis reports the effort of characterizing three porous construction materials (i.e. concrete, asphalt and soils) and the establishment and formulation of novel unified constitutive models by utilizing electromagnetic (EM) radar wave. An important outcome of this research is that the studied materials were assigned successfully into their rightful positions corresponding to the different regimes governed by three EM wave properties and two engineering/geological properties of the materials. The former refers to the real part of complex dielectric permittivity (epsilon'), energy attenuation and peak-frequency drift. The latter refers to porosity and permeability determined with forward models or conventional testing techniques. In soil and asphalt, the material characterization was achieved by a novel inhouse developed method called Cyclic Moisture Variation Technique (CMVT). The technique is termed cyclic because the porous materials were subjected to change from partially saturated states to fully saturated state (i.e. permeation), and vice versa (i.e. de-watering). With CMVT, water was used as an enhancer or a tracer to differentiate the studied materials which are otherwise difficult when they are dry. Soils and asphalt with different textures were characterized by different curve families exhibited in the relationship between epsilon' and degrees of water saturation (SW). In particular, these curve families were divided into three regions: slow-climbing region in very low SW, fast-climbing region in intermediate SW and another slow-climbing region at high S W. When data obtained from the permeation and de-watering cycles was compared, dielectric hysteresis was observed, but rarely reported in the field of ground penetrating radar (GPR). Different curing histories affect both porosity and pore size distribution within mature concrete. By injecting pressurized water into concrete specimens, different concrete curing histories was back-tracked through the
Nakanishi, Toshihiro
2015-01-01
We propose a metamaterial to realize true electromagnetically induced transparency (EIT), where the incidence of an auxiliary electromagnetic wave called the control wave induces transparency for a probe wave. The analogy to the original EIT effect in an atomic medium is shown through analytical and numerical calculations derived from a circuit model for the metamaterial. We performed experiments to demonstrate the EIT effect of the metamaterial in the microwave region. The width and position of the transparent region can be controlled by the power and frequency of the control wave. We also observed asymmetric transmission spectra unique to the Fano resonance.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Parabolic Wave Equation for Surface Water Waves.
1986-11-01
extended to wave propagation problems in other fields of physical sciences, such as nonlinear optics ( Svelto , 1974), plasma physics (Karpman, 1975...34 Journal of Fluid Mechanics, Vol. 72, pp. 373-384. Svelto , 0., 1974, Progress in Optics, North-Holland Pub., Chapter 1, pp. 1-51. Tappert, F.D., 1977, "The
Nikolay S. Akintsov
2015-12-01
The formulae for the mean kinetic energy of a relativistic charged particle as a function of initial conditions, electromagnetic wave amplitude, wave intensity and its polarization parameter were obtained. The different cases of initial conditions of a charged particle motion and of a wave polarization were investigated. The obtained results can be put to use when studying the high-temperature plasma formed on the surface of the target and when searching for new modes of laser- plasma interaction.
Anisotropic effects of background fields on Born-Infeld electromagnetic waves
Aiello, Matias; Bengochea, Gabriel; Ferraro, Rafael
2006-01-01
We show exact solutions of Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of Born-Infeld equations generates an interaction between background and wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction --a behavior resembling the one of a wave in an anisotropic medium--. This...
YU Shi-jian; Cheng Jiu-long; LIU Jia-qi
2007-01-01
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
Surface waves on a quantum plasma half-space
Lázár, M; Smolyakov, A
2007-01-01
Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Surface waves on metal-dielectric metamaterials
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;
2016-01-01
of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....
Francis, L; De Palma, R; Bertrand, P; Campitelli, A
2003-01-01
Surface acoustic waveguides are increasing in interest for (bio)chemical detection. The surface mass modification leads to measurable changes in the propagation properties of the waveguide. Among a wide variety of waveguides, Love mode has been investigated because of its high gravimetric sensitivity. The acoustic signal launched and detected in the waveguide by electrical transducers is accompanied by an electromagnetic wave; the interaction of the two signals, easily enhanced by the open structure of the sensor, creates interference patterns in the transfer function of the sensor. The influence of these interferences on the gravimetric sensitivity is presented, whereby the structure of the entire sensor is modelled. We show that electromagnetic interferences generate an error in the experimental value of the sensitivity. This error is different for the open and the closed loop configurations of the sensor. The theoretical approach is completed by the experimentation of an actual Love mode sensor operated un...
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Dyakonov surface waves in lossy metamaterials
Sorni, A J; Zapata-Rodríguez, C J; Miret, J J
2015-01-01
We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.
Generation of long subharmonic internal waves by surface waves
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
Light, Max Eugene [Los Alamos National Laboratory
2017-04-13
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n_{e}(r), which will modify the wave propagation in the direction of the gradient rn_{e}(r).
Surface Shear, Persistent Wave Groups and Rogue Waves
Chafin, Clifford
2014-01-01
We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.
Berreman approach to electromagnetic wave and beam propagation in anisotropic metamaterials
Gnawali, Rudra; Banerjee, Partha
2016-09-01
The Berreman matrix method is used to analyze the polarization and propagation of electromagnetic waves and beams in anisotropic metamaterials. The metamaterial, comprising a multilayer structure of alternating metal and dielectric layers, is modeled as an effective anisotropic medium. The Maxwell's equations for electromagnetic propagation are then represented as a set of coupled differential equations using the Berreman matrix. These coupled equations are then solved analytically and cross checked numerically using MATLAB® for plane wave propagation. The analysis can be extended to Gaussian beam propagation through such anisotropic metamaterials using the angular plane wave spectral approach.
Liu, J T; Wu, X; Liu, N H; Li, J; Su, F H
2013-07-01
Group delay of electromagnetic pulses through multilayer dielectric mirrors (MDM) combined with gravitational wave (GW) is investigated. Unlike in traditional quantum tunneling, the group delay of a transmitted wave packet irradiated by a GW increases linearly with MDM length. This peculiar tunneling effect can be attributed to electromagnetic wave leakage in a time-dependent photonic bandgap caused by the GW. In particular, we find that the group delay of the tunneling photons is sensitive to GW. Our study provides insight into the nature of the quantum tunnelling as well as a novel process by which to detect the GW.
Improvements on Mean Free Wave Surface Modeling
董国海; 滕斌; 程亮
2002-01-01
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).
Photon management assisted by surface waves on photonic crystals
Angelini, Angelo
2017-01-01
This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...
Temporal characteristics of surface-acoustic-wave-driven luminescence from a lateral p-n junction
Gell, J. R.; Ward, M. B.; Shields, A. J.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Ritchie, D. A.
2007-07-01
Short radio frequency pulses were used to study the surface-acoustic-wave-driven light emission from a molecular beam epitaxy regrown GaAs /AlGaAs lateral p-n junction. The luminescence provides a fast probe of the signals arriving at the junction allowing the authors to temporally separate the effect of the surface-acoustic-wave from pickup of the free space electromagnetic wave. Oscillations in the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.
Parametric excitation of electromagnetic fields by two pump waves
Brodin, G.; Lundberg, J.; Stenflo, L. (Umeaa Univ. (Sweden). Dept. of Plasma Physics)
1991-01-01
A collisionless plasma in the presence of two monochromatic electric fields is considered. By means of a kinetic analysis, a dispersion relation that governs the excitation of transverse electromagnetic fluctuations is derived and analysed. (orig.).
A Wave Modulation Model of Ripples over Long Surface Waves
CONG Peixiu; ZHENG Guizhen
2011-01-01
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.
Wave scattering from statistically rough surfaces
Bass, F G; ter Haar, D
2013-01-01
Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Electromagnetic Scattering from Randomly Rough Surfaces with Hybrid FEM/BIE
LI Jie; GUO Li-Xin; HE Qiong; WEI Bing
2011-01-01
The hybrid finite element method (FEM) together with the boundary integral equation (BIE) is firstly applied to scattering from a conducting rough surface.The BIE is used as the truncation boundary condition for the special unbounled half space,whereas the FEM is used to solve the governing equation in the region surrounded by a rough surface and artificial boundary.Tapered wave incidence is employed to cancel the so-called “edge effect”.A hybrid FEM/BIE form ulation for generalized one-dimensional conducting rough surface scattering is presented,as well as examples that evaluate its validity compared to the method of moments.The bistatic scattering coefficients of a Gaussian rough surface are calculated for transverse-magnetic wave incidence.Conclusions are reached after analyzing the scattering patterns of rough surfaces with different rms heights and correlation lengths Analysis of electromagnetic scattering from a rough surface[1-3] is a very important issue in various areas of electromagnetic wave theory.Methods used to study rough surface scattering can be categorized into two groups:(1) analytical and approximate methods[4,5] and (2) numerical methods.[6,7] including method of moment (MoM)[8-10] and the finite difference in time domain method (FDTD).%The hybrid finite element, method (FEM) together with the boundary integral equation (BIE) in firstly applied to scattering from a conducting rough surface. The BIE is used an the truncation boundary condition for the special unbounded half space, whereas the FEM is used to solve the governing equation in the region surrounded by a rough surface and artificial boundary. Tapered wave incidence is employed to cancel the so-called "edge effect". A hybrid FEM/BIE formulation for generalized one-dimensional conducting rough surface scattering is presented, as well as examples that evaluate its validity compared to the method of moments, The bistatic scattering coefficients of a Gaussian rough surface are
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Kelley, Luke Zoltan; Ramirez-Ruiz, Enrico
2013-01-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms, and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short GRBs to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multi-messenger observations in the Advanced detector era, and find that searches triggered on short GRBs --- with current high-energy instruments, such as Fermi --- and nucleosynthetic `kilonov...
Unidirectional propagation of designer surface acoustic waves
Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou
2014-01-01
We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.
SHU Wei-Xing; LUO Hai-Lu; LI Fei; REN Zhong-Zhou
2006-01-01
@@ We investigate the propagation of electromagnetic waves at the interface between an isotropic material and the anisotropic medium with a unique dispersion relation. We show that the refraction behaviour of E-polarized waves is opposite to that of H-polarized waves, though the dispersion relations for E- and H-polarized waves are the same. It is found that waves exhibit different propagation properties in anisotropic media with different sign combinations of the permittivity and permeability tensors. Some interesting properties of propagation are also found in the special anisotropic media, leading to potential applications.
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Weak localization of electromagnetic waves and radar polarimetry of Saturn's rings
Mishchenko, Michael I
2008-01-01
We use a state-of-the-art physics-based model of electromagnetic scattering to analyze average circular polarization ratios measured for the A and B rings of Saturn at a wavelength of 12.6 cm. This model is directly based on the Maxwell equations and accounts for the effects of polarization, multiple scattering, weak localization of electromagnetic waves, and ring particle nonsphericity. Our analysis is based on the assumption that the observed polarization ratios are accurate, mutually consistent, and show a quasi-linear dependence on the opening angle. Also, we assume that the ring system is not strongly stratified in the vertical direction. Our numerical simulations rule out the model of spherical ring particles, favor the model of ring bodies in the form of nearly spherical particles with small-scale surface roughness, and rule out nonspherical particles with aspect ratios significantly exceeding 1.2. They also favor particles with effective radii in the range 4-10 cm and definitely rule out effective rad...
Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)
Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry
2016-09-01
Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.
On the properties of electromagnetic waves propagating inside the moving dielectric media
He Qi-Cai; Xu Sheng-Hui; Li Ping-Yang; Wei Dong-Ji; Ling Yang-Hao; Chen Di-Hu
2004-01-01
The properties of electromagnetic waves propagating inside isotropic or uniaxial dielectric media moving in an arbitrary direction are analysed. The scalar products of electromagnetic field vectors inside these moving media are investigated in the kEB system from Maxwell's equations and Lorentz-covariant constitutive relations. Several important equations are derived. They are useful in discussing problems such as the energy density and radiation pressure,which are of interest in theoretical studies and many application subjects.
Electromagnetic excitation of phonons at C(001) surfaces
Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)
2009-09-02
The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.
Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals
Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong
2017-03-01
We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.
Surface wave and linear operating mode of a plasma antenna
Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
Expansion of Arbitrary Electromagnetic Fields in Terms of Vector Spherical Wave Functions
Moreira, W L; Garbos, M K; Euser, T G; Russell, P St J; Cesar, C L
2010-01-01
Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of an electromagnetic plane-wave, generalizing his analysis to the case of an arbitrary incident wave has proved elusive. This is due to the presence of certain radially-dependent terms in the equation for the beam-shape coefficients of the expansion of the electromagnetic fields in terms of vector spherical wave functions. Here we show for the first time how these terms can be canceled out, allowing analytical expressions for the beam shape coefficients to be found for a completely arbitrary incident field. We give several examples of how this new method, which is well suited to numerical calculation, can be used. Analytical expressions are found for Bessel beams and the modes of rectangular and cylindrical metallic waveguides. The results are highly relevant for speeding up calculation of the radiation forces acting on small spherical particles placed in an arbitrary electromagnetic field, fo...
Song Falun; Cao Jinxiang; Wang Ge
2005-01-01
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
Absorption of electromagnetic waves by the dust particles in a plasma
LI; Fang; LI; Lianlin; SUI; Qiang
2004-01-01
Absorption of electromagnetic waves by the dust particles in a plasma has been studied based on a Mie-Debye scattering mode. The longitudinal field of the Debye scattering has been derived and the wave energy loss from it has been calculated. It is shown that the lower the temperature of the plasma is and the higher the density of the plasma is, the larger the absorption cross section will be due to the longitudinal scattering.For the low frequency waves the electromagnetic waves scattered in a dusty plasma are mainly in the form of Debye scattering. In this case the energy loss due to the longitudinal scattering will affect the wave propagation seriously.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Zhang, Xiaoming
2016-11-01
The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.
Quantified Energy Dissipation Rates: Electromagnetic Wave Observations in the Terrestrial Bow Shock
Wilson, L B; Breneman, A W; Contel, O Le; Cully, C; Turner, D L; Angelopoulos, V
2013-01-01
We present the first quantified measure of the rate of energy dissipated per unit volume by high frequency electromagnetic waves in the transition region of the Earth's collisionless bow shock using data from the THEMIS spacecraft. Every THEMIS shock crossing examined with available wave burst data showed both low frequency ( 10 Hz) electromagnetic and electrostatic waves throughout the entire transition region and into the magnetosheath. The waves in both frequency ranges had large amplitudes, but the higher frequency waves, which are the focus of this study, showed larger contributions to both the Poynting flux and the energy dissipation rates. The higher frequency waves were identified as combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. These waves were found to have: (1) amplitudes capable of exceeding dB ~ 10 nT and dE ~ 300 mV/m, though more typical values were dB ~ 0.1-1.0 nT and dE ~ 10-50 mV/m; (2) energy flu...
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Electromagnetic modified Bessel-Gauss beams and waves.
Seshadri, S R
2008-01-01
The transverse magnetic (TM) modified Bessel-Gauss beams and their full-wave generalizations are treated. Attention is paid to the spreading properties on propagation of the null in the radiation intensity pattern for the azimuthal mode numbers m=0 and 1. The rate of spreading of the null in the propagation direction is significantly less for the TM modified Bessel-Gauss waves than those for the corresponding TM Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to estimate the quality of the paraxial beam approximation of the wave. The dependence of the quality of the paraxial beam approximation on the azimuthal mode number, the beam shape parameter, and the ratio of the beam waist to the wavelength has a regular pattern for the TM Bessel-Gauss wave and not for the TM modified Bessel-Gauss wave.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
AN INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION IN PLASMA BY SHOCK TUBE
ZHU Naiyi; LI Xuefen; HUANG Lishun; YU Xilong; YANG Qiansuo
2004-01-01
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters ne, v, ω, L, ωb. The φ800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 ～ 35) GHz (ω = 2π f, wave length λ = 15 cm ～ 8 mm). The electron density in the plasma is ne = (3 × 1010 ～ 1× 1014) cm-3. The collision frequency v = (1× 10s ～ 6 × 1010)Hz. The thickness of the plasma layer L = (2 ～ 80) cm. The electron circular frequency ωb = eBo/me, magnetic flux density B0 = (0 ～ 0.84)T. The experimental results show that when the plasma layer is thick (such as L/λ≥ 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters ne, v, ω, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and λ are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range,but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters ne, v, ω, L. In fact, if ω＜ωp, v2 ＜＜ω2, the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if ω＞ωp, v2 ＜＜ω2 (just v ≈ f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power
Graham, D. B.; Robinson, P. A.; Cairns, Iver H. [School of Physics, University of Sydney, New South Wales 2006 (Australia); Skjaeraasen, O. [ProsTek, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway)
2011-07-15
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed {nu}{sub e}/c increases and as the temperature ratio T{sub i}/T{sub e} of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on {nu}{sub e}/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T{sub i}/T{sub e}. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of {nu}{sub e}/c. For {nu}{sub e}/c < or approx. 0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For {nu}{sub e}/c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all {nu}{sub e}/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as {nu}{sub e}/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Superdirected Beam of the Surface Spin Wave
Annenkov, Alexander Yu; Lock, Edwin H
2016-01-01
Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.
Security considerations in blinded exposure experiments using electromagnetic waves.
Wolf, Christian
2008-12-01
Whether exposure to electromagnetic fields well below accepted exposure limits has a cytogenetic effect on human cells has long been debated. It is widely published and generally accepted that the exposure unit invariably used in these experiments is capable of providing blinded exposure conditions. The following short report illustrates, however, that exposure conditions might not always be as effectively masked as is generally assumed.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Nosaeva, T. A.; Syrodoev, G. A.
2016-12-01
We study the effect of electron drag in a semiconductor superlattice during intraband absorption of a biharmonic electromagnetic wave in a process accompanied by the emission (absorption) of a phonon. The problem has been solved in the second order of perturbation theory. The effective interaction Hamiltonian method makes it possible to take into account the multiphoton nature of the electromagnetic wave absorption. With increasing field, the current increases and attains a peak value, after which it decreases in an oscillatory manner due to the ionization stabilization effect.
He, Yingran; He, Sailing
2011-01-01
A new formalism for electromagnetic and mechanical momenta in a metamaterial is developed by means of the technique of wave-packet integrals. The medium has huge mass density and can therefore be regarded as almost stationary upon incident electromagnetic waves. A clear identification of momentum density and momentum flow, including their electromagnetic and mechanical parts, is obtained by employing this formalism in a lossless dispersive metamaterial (including the cases of impedance matching and mismatching with vacuum). It is found that the ratio of the electromagnetic momentum density to the mechanical momentum density depends on the impedance and group velocity of the electromagnetic wave inside the metamaterial. One of the definite results is that both the electromagnetic momentum and the mechanical momentum in the metamaterial are in the same direction as the energy flow, instead of in the direction of the wave vector. The conservation of total momentum is verified. In addition, the law of energy cons...
TO THE QUESTION OF THE SPEED OF WAVE PROPAGATION IN ELECTROMAGNETIC ENVIRONMENT
Alexandrov B. L.
2016-01-01
Full Text Available This question is about the speed of wave propagation in electromagnetic environment. Electromagnetic environment (field is the space that fills the whole Universe, occupied by the electromagnetic particles-photons. At the heart of the special relativity theory, the constancy of the speed of light in vacuum is affirmed. According to modern concepts, the speed of light in vacuum is the maximum speed of the particle motion and propagation of interactions. However, light is the narrow range of electromagnetic radiation – (4÷8·1014 Hz, therefore experimentally measured speed of light is referred to this frequency range. The fact that this speed of electromagnetic waves can theoretically be non permanent – physicists have pondered for a long time and this question is periodically excited in the scientific literature. The author of this article also had an impression that the speed of light, in which he understands distribution speed of waves of a wide range of frequencies in the electromagnetic environment, is not a constant. The article attempts to prove it. Many photons of different frequencies move simultaneously in different directions in a photonic electromagnetic field in environment. They are involved in the formation of a wave of compression – decompression in this field under the influence of the antenna radiated photons. It is approved that the speed of photons of different frequencies can change within a wide range from 1,285·103 m/s (ν = 1024 Hz to 1,285·1012 m/s (ν = 106 Hz and, therefore, the speed of wave propagation in the electromagnetic environments that are filled by photons of the same frequency or a narrow frequency range can change widely from 8,58·102 m/s to 8,58·1011 m/s and be significantly different from the experimentally discovered speed of light. Interplanetary space in different parts of the Universe can be represented by different spectra of photons and therefore they will have different speed of
Electromagnetic waves near the proton cyclotron frequency in the solar wind
Jian, Lan; Alexander, Robert; Wicks, Robert; Stevens, Michael; Figueroa-Vinas, Adolfo; Russell, Christopher
2015-04-01
Strong narrow-band electromagnetic waves around the proton cyclotron frequency have been found sporadically in the solar wind throughout the inner heliosphere. They are nearly-circularly polarized and propagate close to the magnetic field. Electromagnetic waves near the proton cyclotron frequency can be ion cyclotron waves or magnetosonic waves. They can play an important role in modulating the solar wind ion distribution, and contribute to the heating and acceleration of solar wind. Since the waves are left-hand or right-hand polarized in the spacecraft frame with similar characteristics, they are probably due to Doppler shift of a same type of waves, or there could be a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting low frequency wave events in 2005 using high-cadence magnetic field data from the Wind mission. The Solar Wind Experiment team of the Wind mission has provided the temperature anisotropies for core protons, beam protons, and alpha particles, as well as the beam drift for selected cases. We conduct wave dispersion analysis using these ion moments to examine if these waves can be explained by ion cyclotron anisotropy instability or ion beam instability related to the solar wind inhomogeneities.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Rashid, M.
2011-01-01
A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have an interaction with a conducting electron which has a constant time inde
Rashid, M.
2011-01-01
A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have an interaction with a conducting electron which has a constant time
Nonlinear surface waves in photonic hypercrystals
Ali, Munazza Zulfiqar
2017-08-01
Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.
Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes
Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile
2015-01-01
Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...
A novel protocol to measure the attenuation of electromagnetic waves through smoke
Yan-wu, Li; Hong-yong, Yuan; Yang, Lu; Xiaoxiang, Zhang; Ru-feng, Xu; Ming, Fu
2016-06-01
The electromagnetic properties of smoke from a structure fire are important in terms of their relation to the stability of wireless communication systems used in fire rescue. As it is hard to make a measurable electromagnetic environment for particles in the air, compressed and bulk samples are used instead to measure sand storms and smoke plumes. In this paper, an experiment system was designed to measure smoke particles in the air, in consideration of both smoke control and electromagnetic measurement. Several measures had been taken to create a fulfilled smoke environment. The simulated and measured transmission parameters of the electromagnetic testing area were approximate and the electromagnetic wave frequencies were set from 350 to 400 MHz. Repeated experiments have been conducted to test the stability of the results and they showed that there was no obvious attenuation until the smoke concentration was more than 10 dB m-1. It was found that the frequency around 355 and 360 MHz had a larger attenuation coefficient. The relationship between the attenuation coefficient and the smoke concentration was concluded to be linear. The results may help us understand the attenuation of electromagnetic waves within a smoke column.
The wave-function description of the electromagnetic field
Friedman, Yaakov
2013-01-01
For an arbitrary electromagnetic field, we define a prepotential $S$, which is a complex-valued function of spacetime. The prepotential is a modification of the two scalar potential functions introduced by E. T. Whittaker. The prepotential is Lorentz covariant under a spin half representation. For a moving charge and any observer, we obtain a complex dimensionless scalar. The prepotential is a function of this dimensionless scalar. The prepotential $S$ of an arbitrary electromagnetic field is described as an integral over the charges generating the field. The Faraday vector at each point may be derived from $S$ by a convolution of the differential operator with the alpha matrices of Dirac. Some explicit examples will be calculated. We also present the Maxwell equations for the prepotential.
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
[Biological action of electromagnetic fields of 4 MHz decametric waves].
Bezdol'naia, I S
2000-01-01
Exposure to the amplitude-modulated electromagnetic field, 4 MHZ, 400, 200, and 100 V/m over two months for 16 hours a day was found out to bring low the adaptation potential of a number of bodily physiological systems in animals (non-linebred rats). Changes in the brain functional activity, cell-bound, and humoral immunity were ascertained to be the structural-and-functional basis of reorganization of physiological prosesses.
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan
2012-06-01
The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.
Furusawa, Akiniri; Kojima, Fumio; Morikawa, Atsushi [Dept. of Systems Science, Graduate School of System Informatics, Kobe University, Kobe (Japan)
2015-03-15
The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.
Electromagnetic time reversal focusing of near field waves in metamaterials
Chabalko, Matthew J.; Sample, Alanson P.
2016-12-01
Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.
Ruts and waves in the road surface.
Tromp, J.P.M.
1989-01-01
The characteristics of a road and a road surface should not unexpectedly change, if the traffic process is to be kept safe and under control. Knowledge on accidents, in which ruts and waves played a part does not seem to exist. Knowledge on driver behaviour due to the occurrence of waves or ruts is
Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma
Jian Liu and Hong Qin
2011-11-07
The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
Setälä, Tero
2003-01-01
In this thesis, partial polarization and spatial correlation properties of electromagnetic optical fields are investigated. The emphasis is on near fields which exist only within the distance of the light wavelength from the emitting or scattering object. In the near-field region, the contribution of the evanescent (non-radiating) waves is overwhelming compared to the propagating waves that can be observed far from the source. Certain fundamental issues related to the optical near-fields ...
Measurement of the environmental broadband electromagnetic waves in a mid-size European city.
Fernández-García, R; Gil, I
2017-10-01
In this paper, the level of exposure to broadband radiofrequency electromagnetic field in a mid-size European city was evaluated in accordance with the International Commission on Non-ionizing Radiation Protection guidelines from 1998. With the aim to analyse all the potential electromagnetic waves present in the city up to 18GHz, a total of 271 locations distributed along Terrassa (Spain) have been measured. To show the results in an easy-to-interpret way by the citizen, the results have been represented in a set of raster maps. The measurement results obtained showed that the electromagnetic wave measured in all broadband frequency range along the city is much lower than the safety level according to the international regulations for both public and occupational sectors. Copyright © 2017 Elsevier Inc. All rights reserved.
Thiago Prudêncio
2017-01-01
Full Text Available We discuss the modified Maxwell action of a KF-type Lorentz symmetry breaking theory and present a solution of Maxwell equations derived in the cases of linear and elliptically polarized electromagnetic waves in the vacuum of CPT-even Lorentz violation. We show in this case that the Lorentz violation has the effect of changing the amplitude of one component of the magnetic field, while leaving the electric field unchanged, leading to nonorthogonal propagation of electromagnetic fields and dependence of the eccentricity on κ-term. Further, we exhibit numerically the consequences of this effect in the cases of linear and elliptical polarization, in particular, the regimes of nonorthogonality of the electromagnetic wave fields and the eccentricity of the elliptical polarization of the magnetic field with dependence on the κ-term.
CUI Zhi-Wen; WANG Ke-Xie; SUN Jian-Cuo; ZHU Zheng-Ya; YAO Gui-Jin; HU Heng-Shan
2007-01-01
Seismoelectric field excited by purely torsional loading applied directJy to the borehole wall is considered.A brief formulation and some computed waveforms show the advantage of using shear-horizontal (SH) transverseelectric(TE) seismoelectric waves logging to measure shear velocity in a fluid-saturated porous lormation.By assuming that the acoustic field is not influenced by its induced electromagnetic field due to seismoelectric effect,the coupling governing equations for electromagnetic field are reduced to Maxwell equations with a propagation current source.It is shown that this simplification is valid and the borehole seismoelectric conversion effcient is mainly dependent on the electrokinetic coupling coeffcient.The receivers to detect the conversion electromagnetic field and to obtain shear veloeity can be set in the borehole fluid in the SH-TE seismoelectric wave log.
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.
1999-01-01
Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography
Meincke, Peter
2004-01-01
in the forward model. The two inversion schemes include an accurate electromagnetic description of the GPR antennas through their plane-wave transmitting and receiving spectra. The performance of the FTM is investigated through a numerical example involving a 2.5-dimensional configuration in which the GPR...
Abadie, J.; et al., [Unknown; Homan, J.; Fender, R.; Stappers, B.W.; Swinbank, J.; Wijers, R.A.M.J.
2012-01-01
Aims: A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in associati
Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma
Marklund, G B M; Shukla, P K
2006-01-01
A dispersion relation for electromagnetic wave propagation in a strongly magnetized cold plasma is deduced, taking photon-photon scattering into account. It is shown that the combined plasma and quantum electrodynamic effect is important for understanding the mode-structures in magnetar and pulsar atmospheres. The implications of our results are discussed.
Abnormal absorption and scattering effect of human ear model for electromagnetic waves
NIE Min; PEI Changxing; LI Jiandong; MA Chen; YANG Zhen
2005-01-01
@@ To explore the effect of human ear outline structure for electromagnetic waves, two human ear's models, a big one (model 1) and a small one (model 2), were made in proportion as real human ears (Fig. 1). The installation picture is shown in Fig. 2, and its geometry structure and size are shown in Figs. 3 and 4, respectively.
River dykes investigation using seismic surface waves
Bitri, Adnand; Jousset, Philippe; Samyn, Kévin; Naylor, Adam
2010-05-01
Natural underground caves such as karsts are quite common in the region "Centre", France. These subsurface perturbations can be found underneath the protection dykes around "the Loire" River and the damage caused can create routes for floods. Geophysical methods such as Multi-channel Analysis of Surface Waves (MASW) can be used for locating voids or karsts systems, but its efficiency on surface with strong topography such as dykes is not certain. Three dimensional Rayleigh wave modelling was used to understand the role of topography in the propagation of surface waves and with the aim of determining the best way for MASW investigations of surfaces with strong topography such as river dykes. Numerical modelling shows that surface waves propagation is not strongly affected by topography for an array parallel to the dyke. For homogeneous models with topography, a diminution of surface waves amplitude is observed while higher propagation modes are amplified in the dispersion curves in the case of heterogeneous models with topography. For an array perpendicular to the dyke, numerical modeling shows that Rayleigh waves' velocity is lower. MASW investigations can then be applied if lateral variations of the topography are not too strong along the seismic line. Diffraction hyperbolas created by a full of water cavity were identified in numerical modelling with topography. According to these elements, a MASW survey has been performed on the dykes of "the Loire" river close to a collapsed cavity and potential karstic systems were discovered.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
Marchetti, Dedalo
2014-01-01
In this paper it is explained the construction and utility of a didactic exhibit about the effect of aerosol in atmosphere on electromagnetic wave propagation. The exhibit is composed by a lamp simulating the Sun, a Plexiglas case (the atmosphere), white or black panels (surface albedo), a combustion chamber to supply aerosol inside the case and other equipments. There are temperature and relative humidity of air sensors and 5 light sensors to measure direct and scattered light. It is possible to measure the cooling effect of aerosol inside the case and the increasing in scattered light.
Ren Xin-Cheng; Guo Li-Xin
2008-01-01
Electromagnetic scattering from a rough surface of layered medium is investigated, and the formulae of the scattering coefficients for different polarizations are derived using the small perturbation method. A rough surface with exponential correlation function is presented for describing a rough soil surface of layered medium, the formula of its scattering coefficient is derived by considering the spectrum of the rough surface with exponential correlation function; the curves of the bistatic scattering coefficient of HH polarization with variation of the scattering angle are obtained by numerical calculation. The influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the roughness surface parameters and the frequency of the incident wave on the bistatic scattering coefficient is discussed. Numerical results show that the influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the rms and the correlation length of the rough surface, and the frequency of the incident wave on the bistatic scattering coefficient is very complex.
Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film
WANG Rui; GUO Li-Xin; WANG An-Qi; WU Zhen-Sen
2011-01-01
The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional(1D)rough sea surface with the Pierson-Moskowitz(PM)spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic(EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments.
Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten
2007-03-01
In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.
Electromagnetic controllable surfaces based on trapped-mode effect
V. Dmitriev
2012-10-01
Full Text Available In this paper we present some recent results of our theoretical investigations of electromagnetically controllable surfaces. These surfaces are designed on the basis of periodic arrays made of metallic inclusions of special form which are placed on a thin substrate of active material (magnetized ferrite or optically active semiconductor. The main peculiarity of the studied structures is their capability to support the trapped-mode resonance which is a result of the antiphase current oscillations in the elements of a periodic cell. Several effects, namely: tuning the position of passband and the linear and nonlinear (bistable transmission switching are considered when an external static magnetic field or optical excitation are applied. Our numerical calculations are fulfilled in both microwave and optical regions.
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...... steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features may be mapped to the spectrum of EE...
Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe
2016-11-01
Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.
姚展予; 赵柏林; 李万彪; 朱元竞; 杜金林; 戴福山
2001-01-01
On the basis of introducing the basic categories of atmospheric refraction and their existing conditions, the forming processes of three kinds of atmospheric duets are expounded. Several main characteristics of atmospheric duct are summarized and analyzed, and field sounding data from the WEstern North-Pacific cloud-radiation EXperiment (WENPEX) and meteorological data around the Xisha sea area are used to validate these characteristics. Meanwhile the sensitivities of the evaporation duct height to the variations of atmospheric humidity, the air-sea temperature difference, and horizontal wind speed are examined. With the analysis of the effect of atmospheric duct on the propagation of electromagnetic wave, the maximum trapped-wavelength and the critical emitting angle of elevation for electromagnetic wave which can form duct propagation are derived.At the same time the four kinds of necessary conditions for electromagnetic wave to form duct propagation are brought forward. The effects of atmospheric duct on ultrashort wave propagation,radar observation, short wave communication etc. are also discussed.
Sakai, S.; Ustinov, A. V.; Kohlstedt, H.
1994-01-01
Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua
2016-04-18
We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P O
2013-01-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations -- the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave -- are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. General properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half of the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late ti...
Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite
Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian
2017-09-01
We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.
Ion Acceleration by the Radiation Pressure of Slow Electromagnetic Wave
Bulanov, S V; Kando, M; Pegoraro, F; Bulanov, S S; Geddes, C G R; Schroeder, C; Esarey, E; Leemans, W
2012-01-01
When the ions are accelerated by the radiation pressure of the laser pulse, their velocity can not exceed the laser group velocity, in the case when it is less than the speed of light in vacuum. This is demonstrated in two cases corresponding to the thin foil target irradiated by a high intensity laser light and to the hole boring by the laser pulse in the extended plasma accompanied by the collisionless shock wave formation. It is found that the beams of accelerated at the collisionless shock wave front ions are unstable against the Buneman-lke and the Weibel-like instabilities which result in the ion energy spectrum broadening.
System overview on electromagnetic compensation for reflector antenna surface distortion
Acosta, R. J.; Zaman, A. J.; Terry, J. D.
1993-01-01
The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This
Ishihara, Yasutoshi; Ohwada, Hiroshi
2011-01-01
To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Structure of the airflow above surface waves
Buckley, Marc; Veron, Fabrice
2016-04-01
Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.
Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun
2016-06-01
We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.
Source-model technique analysis of electromagnetic scattering by surface grooves and slits.
Trotskovsky, Konstantin; Leviatan, Yehuda
2011-04-01
A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data.
Finite element modeling of electromagnetic fields and waves using NASTRAN
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
Theory of a ring laser. [electromagnetic field and wave equations
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
On the effects of geometry on guided electromagnetic waves
Tucker Robin W.
2007-01-01
Full Text Available The method of moving (Cartan coframes is used to analyze the influence of geometry on the behavior of electromagnetic fields in confining guides and the effect of such fields on their ultra-relativistic sources. Such issues are of relevance to a number of topical problems in accelerator science where the need to control the motion of high current-density micro-meter size bunches of relativistic radiating charge remains a technical and theoretical challenge. By dimensionally reducing the exterior equations for the sources and fields on spacetime using symmetries exhibited by the confining guides one achieves a unifying view that offers natural perturbative approaches for dealing with smooth non-uniform and curved guides. The issue of the back-reaction of radiation fields on the sources is approached in terms of a simple charged relativistic fluid model. .
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin--It\\^{o} and Fokker--Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general n...
Some consequences of intense electromagnetic wave injection into space plasmas
Burke, William J.; Villalon, Elena; Rothwell, Paul L.; Silevitch, Michael
1986-10-01
The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.
Electromagnetic waves and living cells: A kinetic thermodynamic approach
Lucia, Umberto
2016-11-01
Cells are complex thermodynamic systems. Their energy transfer, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes, the border of the complex system. Moreover, cells can also actively modify their behaviours in relation to any change of their environment. All the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into their environment. But, this wasted heat represents also a sort of information, which outflows from the cell towards its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new useful approach to the study of the cells behaviour. This approach allows us to consider the living systems as black boxes and analyse only the inflows and outflows and their changes in relation to any environmental change. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour.
Bidirectional surface wave splitter at visible frequencies.
Gan, Qiaoqiang; Bartoli, Filbert J
2010-12-15
We experimentally demonstrate a metal-film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green-red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.
Interaction of Oblique Incident Electromagnetic Wave with Relativistic Ionization Front
无
2005-01-01
Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection,transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.
Success of electromagnetic shock wave lithotripter as monotherapy ...
K.S. Meitei
The success rate of ESWL for both non-staghorn and staghorn calculi with size above 2 cm is low, so other treatment ..... Conflict of interest. None declared. ... Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of ...
Observations of Electrostatic and Electromagnetic Waves in the Earth's Magnetosphere.
Filbert, Paul Charles
Using data from the University of Minnesota Plasma Wave Experiment aboard the IMP-6 (Explorer 43) satellite, three topics are addressed. The first concerns the wave lengths of certain electrostatic waves in the earth's magnetosphere. Using the fact that the X and Y dipole antennas on IMP-6 are of unequal length, the antenna response to electrostatic waves is calculated as a function of wavelength. This result is used to experimentally determine the wavelengths of Bernstein mode waves observed just beyond the plasmapause. These wavelengths are then used in conjunction with present theoretical models to determine the energy of the electrons driving these waves and a range of energies between (TURN) several tens to (TURN) several hundreds of electron volts is found. This procedure is also applied to Langmuir waves observed upstream of the earth's bow shock and the results are in good agreement with theoretical predictions. Second it is demonstrated that enhanced levels of the so-called continuum radiation are correlated with AE enhancements. In addition, a source region of continuum radiation is directly observed and movement of the source region is seen which is consistent with a cloud of electrons having been injected into the night side magnetosphere and undergoing gradient drifts in an eastward direction towards local dawn. This drift movement is then used to estimate the energy of the electrons which produce the observed continuum enhancement and a range between 10 kev to 50 kev is found. Spectral properties of the directly observed source are also presented, and indicate a high frequency spectral index of (TURN)f('-5.5). A new type of continuum radiation which correlates with TKR on a time scale of (TURN)1 minute is also observed and is found to have a source region distinct from that mentioned above. Third, a correlation between TKR and VLF auroral hiss has been observed for several high latitude passes of IMP-6 through the midnight auroral zone. This
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Automated detection and association of surface waves
C. R. D. Woodgold
1994-06-01
Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.
Surface towed electromagnetic system for mapping of subsea Arctic permafrost
Sherman, Dallas; Kannberg, Peter; Constable, Steven
2017-02-01
Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.
Surface acoustic wave mode conversion resonator
Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.
1983-08-01
The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.
Photonic crystal surface waves for optical biosensors.
Konopsky, Valery N; Alieva, Elena V
2007-06-15
We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.
Asymmetric propagation of electromagnetic waves through nanoscale spirals
Hu, Jingpei; Lin, Yu; Zhu, Aijiao; Zhao, Xiaonan; Wang, Chinhua
2016-10-01
In this paper, we report that normal incidence transmission of different circularly polarized waves through the 2D Archimedes' nanoscale spirals is asymmetric. The structures consist of raised spiral ridge and two layers metal film covered on the substrate and the ridge. The finite difference time domain method was used to design the structure and perform the simulation. The device can distinguish the different circularly polarized wave across the transmission intensity compare with the common Archimedes' nanoscale spirals which just exhibit the bright or dark modes in the light field. We confirmed that the device provide about 10% circular dichroism in 3.85um-6.0um broadband region. The circular dichroism in the wavelength 3.95 um can reach 13%. This ultracompact device could prove useful for remote sensing and advanced telecommunication applications.
Multi-Slit Diffraction of Evanescent Electromagnetic Waves
SONG Zhen-Ming; CHEN Yong-Yao; XU Bo; LI Yan-Feng; HU Ming-Lie; XING Qi-Rong; ZHANG Zhi-Gang; CHAI Lu; WANG Qing-Yue
2008-01-01
The well-known Fraunhofer multi-slit diffraction is described as the multi-slit interference modulated by the single-slit diffraction, namely the multiplication between the single-slit diffraction factor and the multi-slit interference factor. By considering the simplified argument we show that the multi-slit diffraction of evanescent waves which are in the near-field region also has the interference and diffraction effects, and that this two-fold effect can be expressed as the convolution of the diffraction factor and the interference factor. Our conclusion could be helpful to understand the contribution of evanescent waves to the optical responses of sub-wavelength structures such as slits and grooves.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-02-01
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.
The Oblique Incident Effects of Electromagnetic Wave in Atmospheric Pressure Plasma Layers
HE Yong; JIANG Zhonghe; HU Xiwei; LIU Minghai
2008-01-01
The propagating behaviours, i.e. phase shift, transmissivity, reflectivity and absorptivity, of an electromagnetic (EM) wave in a two-dimensional atmospheric pressure plasma layer are described by the numerical solutions of integral-differential Maxwell's equations through a generalized finite-difference-time-domain (FDTD) algorithm. These propagating behaviours are found to be strongly affected by five factors: two EM wave characteristics relevan.t to the oblique incident and three dimensionless factors. The two EM wave factors are the polarization mode (TM mode or TE mode) and its incident angle. The three dimensionless factors are: the ratio of the maximum electron density to the critical density n0/ncr, the ratio of the plasma layer width to the wave length d/λ, and the ratio of the collision frequency between electrons and neutrals to the incident wave frequency ve0/f.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-01-01
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities. PMID:28202903
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial.
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-02-16
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Batchelor, D.B.; Jaeger, E.F.
1990-01-01
High-power electromagnetic waves at frequencies ranging from a few megahertz to a few hundred gigahertz serve many important functions in modern fusion experiments. Probably the most important application is plasma heating. Ignition of a fusion reactor will require a plasma to be heated until the average particle energy is {approximately}10 keV (temperature > 10{sup 8} K). This is routinely accomplished in existing large devices. Waves at the ion cyclotron frequency (typically f = 30 to 100 MHz) are very important for fusion devices because of low cost/unit power compared to other frequency regimes and because of their ability to directly heat fusile ions. These waves are also useful for modifying the velocity distribution for improved stability and to drive currents which affect plasma equilibrium. Study of this frequency range is, however, greatly complicated by long wavelengths compared to device size, nonsymmetric device geometry, and the tendency of the waves to linearly transform to shorter wavelength modes. Geometrical optics is generally inapplicable. Thus, codes have been developed to solve the vector wave equation in toroidal geometry for hot plasmas having anisotropic, spatially nonuniform, dispersive constitutive relations. In this paper we describe the code ORION developed at Oak Ridge National Laboratory and present illustrative applications to a range of fusion experiments. Specific applications of the code include detailed modeling of the antennas used to launch the waves, calculation of wave propagation throughout the plasma, and modeling of the absorption of the waves by the plasma. 11 refs., 3 figs.
Yu, D; Wang, M; Liu, Q
2015-09-07
A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.
Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Kim, H.; Choi, C. R.; Lee, J.; Hwang, J.
2017-05-01
In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies and with different polarizations. These waves are found inside or at the outer edge of the plasmasphere. Another satellite near noon observes no dramatic EMIC wave despite the strongest magnetic compression there. For Event 2, the four satellites are situated at widely separated magnetic local time zones when they see occurrence of EMIC waves. They are again found at different frequencies relative to local ion gyrofrequencies with different polarizations and all outside the plasmasphere. We propose two possible explanations that (i) if triggered by enhanced Pdyn impact, details of ion cyclotron instability growth can be sensitive to local plasma conditions related to background proton distributions, and (ii) there can be preexisting waves with a specific spatial distribution, which determines occurrence and specific properties of EMIC waves depending on satellite's relative position after an enhanced Pdyn arrives.
Warren, Craig; Giannopoulos, Antonios; Giannakis, Iraklis
2016-12-01
gprMax is open source software that simulates electromagnetic wave propagation, using the Finite-Difference Time-Domain (FDTD) method, for the numerical modelling of Ground Penetrating Radar (GPR). gprMax was originally developed in 1996 when numerical modelling using the FDTD method and, in general, the numerical modelling of GPR were in their infancy. Current computing resources offer the opportunity to build detailed and complex FDTD models of GPR to an extent that was not previously possible. To enable these types of simulations to be more easily realised, and also to facilitate the addition of more advanced features, gprMax has been redeveloped and significantly modernised. The original C-based code has been completely rewritten using a combination of Python and Cython programming languages. Standard and robust file formats have been chosen for geometry and field output files. New advanced modelling features have been added including: an unsplit implementation of higher order Perfectly Matched Layers (PMLs) using a recursive integration approach; diagonally anisotropic materials; dispersive media using multi-pole Debye, Drude or Lorenz expressions; soil modelling using a semi-empirical formulation for dielectric properties and fractals for geometric characteristics; rough surface generation; and the ability to embed complex transducers and targets.
Electromagnetic wave attenuation due to the charged particles in dust&sand (DUSA) storms
Dou, X. Q.; Xie, L.
2017-07-01
In this paper, we calculated the attenuation of the electromagnetic waves (EMWs) propagating through the dust&sand (DUSA) storms using the predicting model based on Mie theory, in which the charges carried on the DUSA particles, the ambient relative humidity (RH) and the particle size distribution are considered simultaneously. It can be found that the charges carried on the DUSA particles and the RH can change the value of the absorption and scattering efficiency, but they can't change the domain attenuation mechanism caused by the DUSA storms in the EMWs frequency regions (3 GHz, 4 GHz), (8 GHz, 40 GHz) and (75 GHz, 100 GHz). Whatever the DUSA storms are formed by equal-size particles or the mixed-size particles, the charge carried on the particle surface and the RH have a significant impact on the attenuation caused by the DUSA storms, and the change ratio of the attenuation caused by the charge or RH depends on the particle size. By the comparison of the calculated attenuation with the measured one, we found that the charges carried on the particles and the RH will be important factors to affect the attenuation of the EMWs.
Miller, Andrew L
2016-01-01
We focus on understanding the beaming of gravitational radiation from gamma ray bursts (GRBs) by approximating GRBs as linearly accelerated point masses. For accelerated point masses, it is known that gravitational radiation is beamed isotropicly at high speeds, and beamed along the polar axis at low speeds. Aside from this knowledge, there has been very little work done on beaming of gravitational radiation from GRBs, and the impact beaming could have on gravitational wave (GW) detection. We determine the following: (1) the observation angle at which the most power is emitted as a function of speed, (2) the maximum ratio of power radiated away as a function of speed, and (3) the angular distribution of power ratios at relativistic and non-relativistic speeds. Additionally the dependence of the beaming of GW radiation on speed is essentially the opposite of the beaming of electromagnetic (EM) radiation from GRBs. So we investigate why this is the case by calculating the angular EM radiation distribution from ...
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-01-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...
Zheleznyakov, V. V.; Bespalov, P. A.
2016-04-01
In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.
Design of guided Bloch surface wave resonance bio-sensors with high sensitivity
Kang, Xiu-Bao; Wen, Li-Wei; Wang, Zhi-Guo
2017-01-01
The sensing performance of bio-sensors based on guided Bloch surface wave (BSW) resonance (GBR) is studied. GBR is realized by coupling the propagating electromagnetic wave with BSW on one side of a one-dimensional photonic crystal slab via the grating on the other side. The sensitivity of the designed bio-sensors is proportional to the grating constant when the wavelength spectrum is analyzed, and inversely proportional to the normal wave vector of the incident electromagnetic wave when the angular spectrum is resolved. For a GBR bio-sensor designed to operate near 70° angle of incidence from air, the angular sensitivity is very high, reaching 128 deg RIU-1. The sensitivity can be substantially increased by designing bio-sensors for operating at larger angles of incidence.
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations
Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.
2015-03-01
With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.
DING Dengwei; GAO Wensheng; YAO Senjing; LIU Weidong; HE Jiaxi
2013-01-01
The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for applying UHF method to partial discharge (PD) detection.Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave,but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves,we analyzed the proportions between the TEM wave and the high order waves,as well as the influence of the PD position on this proportion,using the finite different time domain (FDTD) method.According to the unique characteristics of the waves,they are separated only approximately.It is found that the high-order mode is the main component,more than 70％,of the electric field around the enclosure of GIS,and that with the increasing distance between PD source and inner conductors,the low frequency (below about 800 MHz) component of EW decreases,but the high frequency component (above 1 GHz) increases,meanwhile the proportion of high-order components in EW could reach 77％ from 70％.It concluded that the closer the PD source to the enclosure is,the easier high order EW may be excited.
Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration
Velazco, J. E.
2016-08-01
Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.
Smith, Nathan Birchard
In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable physical properties, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary patient movements. Using the
Surface tension effects in breaking wave noise.
Deane, Grant B
2012-08-01
The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.
Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts
Shibata, Masaru
2016-12-15
Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.
Electromagnetism and multiple-valued loop-dependent wave functionals
Leal, Lorenzo
2009-01-01
We quantize the Maxwell theory in the presence of a electric charge in a "dual" Loop Representation, i.e. a geometric representation of magnetic Faraday's lines. It is found that the theory can be seen as a theory without sources, except by the fact that the wave functional becomes multivalued. This can be seen as the dual counterpart of what occurs in Maxwell theory with a magnetic pole, when it is quantized in the ordinary Loop Representation. The multivaluedness can be seen as a result of the multiply-connectedness of the configuration space of the quantum theory.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Lorentz invariance violation and simultaneous emission of electromagnetic and gravitational waves
Passos, E.; Anacleto, M. A.; Brito, F. A.; Holanda, O.; Souza, G. B.; Zarro, C. A. D.
2017-09-01
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electromagnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, ξg and ξγ, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, M for the electromagnetic sector and M1 for the gravitational one. We obtain, using the values for M and M1 found in the literature, that ξg ∼10-2, which is expected to be phenomenologically relevant and ξγ ∼103, which cannot be suitable for an effective LIV theory. However, we show that ξγ can be interesting in a phenomenological point of view if M ≫M1. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in Δvg / Δvγ ≲ 1.82 ×10-3.
Effects of alternative electromagnetic field on surface tension and filling ability of molten metal
HE Hong-liang; KANG Fu-wei; WANG Li-ping
2005-01-01
Surface tension and filling ability of molten metal play an important role on the shaping of the molten metal. The surface tension was calculated from wetting angles of the molten metal by the sessile drop method. The specimen for filling ability was designed and the filling ability experiments under the alternative electromagnetic field were performed. The results show that the intensity and frequency of the alternative electromagnetic field have significant effects on the surface tension of the molten metal. The surface tension of Al-6%Si alloy decreases with increasing the intensity of the electromagnetic field. For pure Sn, the surface tension decreases gradually when the frequency of electromagnetic field is reduced. The filling ability is improved by applying the alternative electromagnetic field.
PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.
2016-09-01
We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.
Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals
ZHANG Xiang-dong
2006-01-01
The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally,and the physical properties were analyzed.Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed.In this review,after providing a brief history of the research related to the above phenomena,we will summarize our research works in this field including the method of creating a negative refraction region,generating an absolute negative refraction,the focusing of unpolarized electromagnetic waves,and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens.The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
The involvement of cutaneous receptors in the biological effects of electromagnetic millimeter waves
Anton Emil
2014-01-01
Full Text Available The involvement of peripheral nerve terminations in the mechanisms of action of electromagnetic millimeter waves (mmW was assessed. It is currently thought that mmW could be used in noninvasive complementary therapy because of their analgesic effect. However, the mechanisms of their antinociceptive effect and non-ionizing radiation are the subjects of controversy. The mechanisms of interaction of mmW and the cutaneous tissue have not been elucidated. We observed mast cell degranulation at the place of mmW action, a decrease of chronaxie and Turck reflex time, an increase in the number of afferent impulses after sciatic nerve at stimulation, as well as an increase electrocardiogram R-R interval of isolated frog heart after application of mmW. Based on these investigations, we propose that electromagnetic waves of millimeter length modify, through indirect mechanisms, the excitability and reactivity of peripheral nerve terminations.
Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.
Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman
2016-09-01
Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.
Li, Jia; Chen, Feinan; Chang, Liping
2016-10-17
Within the validity of the first-order Born approximation, expressions are derived for the correlation between intensity fluctuations (CIF) of an electromagnetic plane wave scattered from a spatially quasi-homogeneous (QH), anisotropic medium. Upon establishing the correlation matrix of the scattering potential of the medium, we show that the CIF is the summation of Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potential matrix. Numerical results reveal that the CIF is susceptible to the effective width and correlation length of the medium, and degree of polarization of the incident electromagnetic wave. Our study not only extends the current knowledge of the CIF of a scattered field but also provides an important reference to the study of high-order intensity correlations of light scattered from a spatially anisotropic medium.
Classical electromagnetic model of surface states in topological insulators
Lakhtakia, Akhlesh
2016-01-01
A topological insulator is classically modeled as an isotropic dielectric-magnetic with a magnetoelectric pseudoscalar $\\Psi$ existing in its bulk while its surface is charge-free and current-free. An alternative model is obtained by setting $\\Psi\\equiv0$ and incorporating surface charge and current densities characterized by an admittance $\\gamma$. Analysis of plane-wave reflection and refraction due to a topological-insulator half space reveals that the parameters $\\Psi$ and $\\gamma$ arise identically in the reflection and transmission coefficients, implying that the two classical models cannot be distinguished on the basis of any scattering scenario. However, as $\\Psi$ disappears from the Maxwell equations applicable to any region occupied by the topological insulator, and because surface states exist on topological insulators as protected conducting states, the alternative model must be chosen.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
Finster, Felix
2016-01-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Bachelard, R; Chandre, C; Vittot, M
2008-09-01
The Hamiltonian description of the self-consistent interaction between an electromagnetic plane wave and a copropagating beam of charged particles is considered. We show how the motion can be reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows us to preserve the Hamiltonian character at each step of the derivation.
Bachelard, Romain; Vittot, Michel
2008-01-01
The Hamiltonian description of the self-consistent interaction between an electromagnetic plane-wave and a co-propagating beam of charged particles is considered. We show how the motion can be reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows us to remain Hamiltonian at each step of the derivation.
On electromagnetic instabilities at ultra-relativistic shock waves
Lemoine, Martin
2009-01-01
(Abridged) This paper addresses the issue of magnetic field generation in a relativistic shock precursor through micro-instabilities. The level of magnetization of the upstream plasma turns out to be a crucial parameter, notably because the length scale of the shock precursor is limited by the Larmor rotation of the accelerated particles in the background magnetic field and the speed of the shock wave. We discuss in detail and calculate the growth rates of the following beam plasma instabilities seeded by the accelerated and reflected particle populations: for an unmagnetized shock, the Weibel and filamentation instabilities, as well as the Cerenkov resonant longitudinal and oblique modes; for a magnetized shock, in a generic oblique configuration, the Weibel instability and the resonant Cerenkov instabilities with Alfven, Whisler and extraordinary modes. All these instabilities are generated upstream, then they are transmitted downstream. The modes excited by Cerenkov resonant instabilities take on particula...
A new strategy to conceal an object from electromagnetic wave
Luo, Yu; Chen, Hongsheng; Wu, Bae-Ian; Kong, Jin Au
2008-01-01
A new recipe for concealing objects from detection is suggested. Different with traditional cloak which deflects light around the core of the cloak to make the object inside invisible, our cloak guides the light to penetrate the core of the cloak but without striking some region of the cloak shell - the so called folded region. Full wave analytical calculation shows that this cloak will lead to a scattering enhancement instead of scattering reduction in contrast to the traditional cloak; the scattered field distribution can also be changed as if the scatterer is moved from its original position. Such interesting phenomenon indicates the proposed cloak can be used to disguise the true information of the object, e.g. the position, the size, etc, and further mislead the observer and avoid being detected.
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Modeling radar backscatter from breaking waves on the surface
Melief, H.W.; Greidanus, H.S.F.; Hoogeboom, P.; Genderen, P. van
2003-01-01
A model for describing radar sea clutter is proposed. It consists of two parts, an oceanographic and an electromagnetic one. The former contains swell, small capillary and gravity waves as well as breaking wave events. The latter combines ray tracing, Bragg scattering and the Method of Moments. It i
Electromagnetic Wave Scattering by Small Impedance Particles of an Arbitrary Shape and Applications
Alexander G. Ramm
2014-02-01
Full Text Available The proposal deals with electromagnetic (EM wave scattering by one and many small impedance particles of an arbitrary shape. Analytic formula is derived for EM wave scattering by one small impedance particle of an arbitrary shape and an integral equation for the effective field in the medium where many such particles are embedded. These results are applied for creating a medium with a desired refraction coefficient. The proposed theory has no analogs in the literature. (Mathematical Subject Classiffication: 35J05, 35J25, 65N12, 78A25, 78A48.
Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media
Vynck, Kevin; Carminati, Rémi
2014-01-01
Spatial field correlation functions represent a key quantity for the description of mesoscopic phenomena in disordered media and the optical characterization of complex materials. Yet many aspects related to the vector nature of light waves have not been investigated so far. We study theoretically the polarization and coherence properties of electromagnetic waves produced by a dipole source in a three-dimensional uncorrelated disordered medium. The spatial field correlation matrix is calculated analytically using a multiple scattering theory for polarized light. This allows us to provide a formal description of the light depolarization process in terms of "polarization eigenchannels" and to derive analytical formulas for the spatial coherence of multiply-scattered light.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Relativistic two-boson system in presence of electromagnetic plane waves
Droz-Vincent, Philippe
2015-01-01
The relativistic two-body problem is considered for spinless particles subject to an external macroscopic electromagnetic field. When this field is made of the monochromatic superposition of two conter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem concerning five degrees of freedom.
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
Propagation of a Scattered Electromagnetic Wave with P-Polarization (TE) Mode in Atmospheric Plasma
JIANG Zhong-He; HU Xi-Wei; LIU Ming-Hai; LAN Chao-Hui; HE Yong; ZHANG Shu; PAN Yuan
2006-01-01
@@ The finite-difference-time-domain method is applied to simulate the two-dimensional propagation ofa p-polarization mode electromagnetic wave in atmospheric plasma and metal layer for strong electron-neutral collisions. It is indicated that for a giving electron density profile, the p-polarization attenuation is very different from the spolarization attenuation and it depends even strongly on the incident angle. The mechanism of p-polarization attenuation is analysed by the interference of wave and the relationship between the attenuation property and the main parameters is given.
Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma
Gail, William B.
1990-01-01
The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.
Surface acoustic wave propagation in graphene film
Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)
2015-09-14
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Surface acoustic wave propagation in graphene film
Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula
2015-09-01
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Gas sensing with surface acoustic wave devices
Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.
1985-03-01
The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.
Damez, Jean-Louis; Clerjon, Sylvie
2013-12-01
The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. Besides laboratory researches, food scientists often try to adapt their tools to industrial conditions and easy handling devices useable on-line and in slaughterhouses already exist. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P. O.
2013-12-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.
Yu, Hao; Gu, Bao-Min; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao
2017-02-01
The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.
Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung
2013-11-01
Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.
MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.
Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun
2015-06-24
Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching.
Matin, S F; Yost, A; Streem, S B
2001-12-01
We determined the results of shock wave lithotripsy with a newer electromagnetic lithotriptor and compared them with those in a contemporary series of cases managed by an electrohydraulic lithotriptor using identical treatment and followup criteria at a single center. Between 1995 and 1999, 356 patients (375 renal units, 483 upper urinary tract stones) meeting study inclusion criteria were treated with an MFL 5000 electrohydraulic shock wave lithotripsy unit (Dornier Medical Systems, Inc., Marietta, Georgia). From 1999 to 2000, 173 patients (175 renal units; 218 upper urinary tract stones) meeting identical study inclusion criteria were treated using an electromagnetic Modulith SLX shock wave lithotripsy unit (Karl Storz Lithotripsy, Atlanta, Georgia). In each group stone-free results were determined by plain abdominal x-ray and renal ultrasound 1 month after lithotripsy and efficiency quotients were developed. Baseline patient and stone characteristics were compared by the Wilcoxon rank sum and Fisher exact tests. All variables significant at p electromagnetic lithotripsy units (0.45 and 0.42, respectively, p = 0.43). Electrohydraulic lithotripsy resulted in a higher stone-free rate at 1 month, although it was associated with a higher rate of auxiliary measures. Ultimately the efficiency quotients were equivalent, implying that these 2 contemporary energy sources are acceptable. According to single center treatment and followup criteria they are equally efficacious.
Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave
Chen, Xiaoming; Li, Songsong
2016-04-01
The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.
A time domain energy theorem for scattering of plane electromagnetic waves
de Hoop, A. T.
1984-10-01
A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.
Surface oscillations — A possible source of fracture induced electromagnetic radiation
Rabinovitch, A.; Frid, V.; Bahat, D.
2007-02-01
Radio frequency electromagnetic radiation (EMR) registered hundreds of kilometres away from an earthquake epicentre is detected hours before earthquakes. Yet, accurate earthquakes prediction by their self-induced EMR still remains in its infancy due in part to the lack of understanding of EMR's origin. Here we present a viable model of this origin, according to which EMR is emitted by an oscillating dipole created by ions moving collectively as a surface wave on both sides of the crack; when the crack halts, the EMR pulse amplitude decays by interaction with bulk phonons. The model is shown to be able to provide crack dimensions and velocities, to explain some general similarities of different fracturing processes and indicate the existence of a general failure mechanism. Results raise the hope of developing an EMR based genuine earthquake prediction system.