WorldWideScience

Sample records for electromagnetic shower contents

  1. Frozen-shower simulation of electromagnetic showers in the ATLAS forward calorimeter

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2016-01-01

    Accurate simulation of calorimeter response for high energy electromagnetic particles is essential for the LHC experiments. Detailed simulation of the electromagnetic showers using Geant4 is however very CPU intensive and various fast simulation methods were proposed instead. The frozen shower simulation substitutes the full propagation of the showers for energies below 1~GeV by showers taken from a pre-simulated library. The method is used for production of the main ATLAS Monte Carlo samples, greatly improving the production time. The frozen showers describe shower shapes, sampling fraction, sampling and noise-related fluctuations very well, while description of the constant term, related to calorimeter non-uniformity, requires a careful choice of the shower library binning. A new method is proposed to tune the binning variables, using multivariate techniques. The method is tested and optimized for the description of the ATLAS forward calorimeter.

  2. Monte-Carlo simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.

    1984-01-01

    The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated

  3. The parametrized simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Peters, S.

    1992-09-01

    The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de

  4. The Geant4-Based ATLAS Fast Electromagnetic Shower Simulation

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glasow, A; Hughes, E; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C; 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications

    2008-01-01

    We present a three-pronged approach to fast electromagnetic shower simulation in ATLAS. Parameterisation is used for high-energy, shower libraries for medium-energy, and an averaged energy deposition for very low-energy particles. We present a comparison between the fast simulation and full simulation in an ATLAS Monte Carlo production.

  5. Reconstruction of inclined shower coordinates in electromagnetic calorimeters based on lead glass

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Mochalov, V.V.; Solov'ev, L.F.

    2007-01-01

    A method for reconstructing the coordinates of inclined showers in lead glass electromagnetic calorimeters is described. Such showers are generated by photons with energies of 0.5-4.0 GeV that are incident on the detector at angles of as great as 30 deg. An analytical expression for the description of the actual photon coordinate in the calorimeter versus the coordinates of the shower center of gravity is proposed. Using this expression, it is possible to reconstruct the coordinates of inclined electromagnetic showers over wide ranges of angles and energies. The dependences of the spatial resolution on the photon energy and angle are determined. The longitudinal fluctuations of the shower length and their effect on the spatial resolution of the calorimeter are discussed [ru

  6. Tests of gas sampling electromagnetic shower calorimeter

    International Nuclear Information System (INIS)

    Barbaro-Galtieri, A.; Carithers, W.; Day, C.; Johnson, K.J.; Wenzel, W.A.; Videau, H.

    1983-01-01

    An electromagnetic shower gas-sampling calorimeter has been tested in both Geiger and proportional discharge modes for incident electron energies in the range 0.125-16 GeV. The 0.2 radiation length-thick layers were lead-fiberglass laminates with cathode strips normal to the sense wires. The 5x10 mm 2 Geiger cells were formed with uniformly spaced nylon fibers perpendicular to the wires. Proportional mode measurements were carried out in the pressure range 1-10 atm. A Monte Carlo simulation is in good agreement with measured shower characteristics and has been used to predict the behavior for oblique of incidence and for various Geiger cell dimensions. (orig.)

  7. The electromagnetic shower library for the Stockholm AMANDA Monte Carlo program

    International Nuclear Information System (INIS)

    Sun Qin.

    1996-05-01

    The Shower Library has been applied in the simulation for the AMANDA experiment which measures up-going muons induced by high energy neutrinos at the South Pole. With a detector measuring Cherenkov radiation in mind, only the information of the Cherenkov photons from the showers were stored in the library in the version of the program described here. The library contains 1000 electromagnetic showers with energies from 0.1 GeV to 100 GeV in steps according to a flat logarithmic distribution. 11 refs, 18 figs

  8. Radiation dose distributions close to the shower axis calculated for high energy electron initiated electromagnetic showers in air

    International Nuclear Information System (INIS)

    Geer, S.; Gsponer, A.

    1983-01-01

    Absorbed radiation doses produced by 500, 1,000 and 10,000 MeV electron initiated electromagnetic showers in air have been calculated using a Monte Carlo program. The radial distributions of the absorbed dose near to the shower axis are found to be significantly narrower than predicted by simple analytical shower theory. For a 500 MeV, 10 kA, 100 ns electron beam pulse, the region in which the total dose is in excess of 1 krad and the dose rate in excess of 10 10 rad/s is a cigar-shaped envelope of radius 1 m and length 200 m. (orig.) [de

  9. Fast simulation of electromagnetic showers in the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Peso, J. del; Ros, E.

    1991-02-01

    We present a fast Monte Carlo algorithm for the generation of electromagnetic showers in the uranium-scintillator sampling calorimeter of the ZEUS experiment. This algorithm includes a simulation of longitudinal and transverse profiles, their fluctuations and the correlation between these fluctuations as well. The tuning of this fast Monte Carlo with data generated with EGS is described and its performance together with some applications is discussed. (orig.)

  10. Fast shower simulation in the ATLAS calorimeter

    International Nuclear Information System (INIS)

    Barberio, E; Boudreau, J; Mueller, J; Tsulaia, V; Butler, B; Young, C C; Cheung, S L; Savard, P; Dell'Acqua, A; Simone, A D; Gallas, M V; Ehrenfeld, W; Glazov, A; Placakyte, R; Marshall, Z; Rimoldi, A; Waugh, A

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ∼ 1GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

  11. Test of a proportional tube modulus used to localize the electromagnetic showers in a calorimeter

    International Nuclear Information System (INIS)

    Lees, J.-P.

    1981-01-01

    In this work are given results of a test in an electron-hadron beam (5-92 GeV) of the prototype of a position detector. This position detector consists of proportional tubes with charge division readout; it will be used in the end cap electromagnetic calorimeter ('bouchon') of the UA1 experiment at CERN (pantip collisions at a center of mass energy of 540 GeV). This detector gives the position of the showers, and also a coarse value of their energy. Results about properties of the tubes (saturation phenomena, position and energy accuracies) and, then, results about the development of high energy electromagnetic showers in lead-plastic sandwich are given here [fr

  12. Measurement of the Muon Content of Air Showers with IceTop

    Science.gov (United States)

    Gonzalez, JG; IceCube Collaboration

    2016-05-01

    IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.

  13. High performance interactive graphics for shower reconstruction in HPC, the DELPHI barrel electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Stanescu, C.

    1990-01-01

    Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showers (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used

  14. Measurement of muon content in inclined air showers above 4 x 10{sup 18} eV

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans; Roth, Markus [IKP, Karlsruhe Institut of Technology (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2013-07-01

    The Pierre Auger Observatory in Malarguee, Argentina, is sensitive to air showers up to almost horizontal angles of incidence. Air showers with zenith angles between 60 and 80 degrees are suited to measure the muon component of the shower with the Auger Surface Detector since the primary electromagnetic component gets absorbed in the atmosphere before the shower reaches ground. Some of those events are also observed by the Fluorescence Detector which allows us to determine the total energy of the shower independent of the Surface Detector. Based on these hybrids events the size of muon component for a given cosmic ray energy is determined, which can then be compared to model predictions. We present an update of this analysis.

  15. Fast shower simulation in the ATLAS calorimeter

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glazov, A; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.

  16. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  17. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time

  18. Measurement of the muon content in air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Veberič Darko

    2016-01-01

    Full Text Available The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  19. Time structure of cascade showers

    International Nuclear Information System (INIS)

    Nakatsuka, Takao

    1984-01-01

    Interesting results have been reported on the time structure of the electromagnetic components of air showers which have been obtained by using recent fast electronic circuit technology. However, these analyses and explanations seem not very persuasive. One of the reasons is that there is not satisfactory theoretical calculation yet to explain the delay of electromagnetic components in cascade processes which are the object of direct observation. Therefore, Monte Carlo calculation was attempted for examining the relationship between the altitude at which high energy γ-ray is generated up in the air and the time structure of cascade showers at the level of observation. The investigation of a dominant factor over the delay of electromagnetic components indicated that the delay due to the multiple scattering of electrons was essential. The author used the analytical solution found by himself of C. N. Yang's equation for the study on the delay due to multiple scattering. The results were as follows: The average delay time and the spread of distribution of electromagnetic cascades were approximately in linear relationship with the mass of a material having passed in a thin uniform medium; the rise time of arrival time distribution for electromagnetic cascade showers was very steep under the condition that they were generated up in the air and observed on the ground; the subpeaks delayed by tens of ns in arrival time may sometimes appear due to the perturbation in electromagnetic cascade processes. (Wakatsuki, Y.)

  20. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  1. Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques

    CERN Document Server

    Benaglia, Andrea; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-01-01

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. These studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advanceme...

  2. Electromagnetic shower counter

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.

  3. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  4. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  5. Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter

    CERN Document Server

    Ruan, Manqi; Bourdy, Vincent; Brients, Jean-Claude; Videau, Henri

    2014-01-01

    fractal dimension of showers measured in a high granularity calorimeter designed for a future lepton collider. The shower fractal dimension reveals detailed information of the spatial configuration of the shower. It is found to be characteristic of the type of interaction and highly sensitive to the nature of the incident particle. Using the shower fractal dimension, we demonstrate a particle identification algorithm that can efficiently separate electromagnetic showers, hadronic showers and non-showering tracks. We also find a logarithmic dependence of the shower fractal dimension on the particle energy.

  6. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  7. CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

    Science.gov (United States)

    Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin

    2018-01-01

    The precise modeling of subatomic particle interactions and propagation through matter is paramount for the advancement of nuclear and particle physics searches and precision measurements. The most computationally expensive step in the simulation pipeline of a typical experiment at the Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a new fast simulation technique based on generative adversarial networks (GANs). We apply these neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter and achieve speedup factors comparable to or better than existing full simulation techniques on CPU (100 ×-1000 × ) and even faster on GPU (up to ˜105× ). There are still challenges for achieving precision across the entire phase space, but our solution can reproduce a variety of geometric shower shape properties of photons, positrons, and charged pions. This represents a significant stepping stone toward a full neural network-based detector simulation that could save significant computing time and enable many analyses now and in the future.

  8. A profile-based gaseous detector with capacitive pad readout as the prototype of the shower maximum detector for the end-cap electromagnetic calorimeter for the STAR experiment

    International Nuclear Information System (INIS)

    Averichev, G.; Chernenko, S.; Matyushevskij, E.

    1997-01-01

    The results of testing the full-scale prototype of a profile-based shower maximum detector with external pick-up pads for the end-cap electromagnetic calorimeter (EMC) for the STAR experiment at RHIC are presented. It is shown that the plastic streamer tubes with coverless profile operating in the proportional mode with low gain are a suitable basic unit for the shower maximum detector

  9. The CASTOR shower library

    International Nuclear Information System (INIS)

    Mundim Filho, Luiz Martins; Carvalho, Wagner de Paula

    2012-01-01

    Full text: CASTOR (Centaur And Strange Object Research) is an electromagnetic (EM) and hadronic (HAD) calorimeter, based on tungsten and quartz plates, operating in the CMS Detector (Compact Muon Solenoid) at LHC. The calorimeter detects Cerenkov radiation and is positioned around the beam pipe in the very forward region of CMS (at 14.38 m from the interaction point), covering the pseudo-rapidity range between -6.6 ≤ η≤-5.1 . It is longitudinally segmented into 14 sections, 2 for the EM and 12 for the HAD parts and is 16-fold azimuthally symmetric around the beam pipe. A Shower Library is needed for CASTOR Monte Carlo simulation, as the full simulation of showers takes a long time and the high multiplicity of particles in the forward region makes this simulation very time consuming. The Shower Library is used as a look-up table in the form of a ROOT file, so that when a simulated particle enters the detector with a certain energy and direction, characterized by the azimuthal angle φ and the pseudo-rapidity η, instead of making the full simulation of the shower in CASTOR, it is substituted by one already stored in the Shower Library. Showers corresponding to two types of particles are included in the Shower Library: electrons (or photons) and charged pions. The software implemented to make the Shower Library is described, as well as the validation of this library and timing studies. This package has been developed in the context of the official software of the CMS Collaboration, CMSSW. (author)

  10. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    Directory of Open Access Journals (Sweden)

    Cazon L.

    2013-06-01

    Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  11. Electromagnetic-shower development in concrete and the punchthrough effect

    International Nuclear Information System (INIS)

    Mikocki, S.; Poirier, J.

    1987-01-01

    We present Monte Carlo calculations of the cascade curves in a concrete absorber for showers initiated by photons with energies from 10 MeV to 100 GeV. As an application of these curves, we estimate the punchthrough effect of photons and electrons in extensive-air-shower arrays which use a concrete absorber to identify muons. The results indicate that this effect is negligible

  12. Air shower detection and the energy flow in electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor (Nuclear Power Oversight Committee (United States)); Vankov, H.P. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

    1992-02-01

    We study the longitudinal behaviour of the energy carried by the shower particles E{sub c} and its lateral distribution, give simple parametrizations of the results of Monte Carlo simulations, and discuss the advantages of shower detectors that measure directly E{sub c}. (author).

  13. GEAN T4 Simulations of Electromagnetic Showers Initiated by 30MeV y-Rays Entering the Atmosphere at Different Altitudes

    International Nuclear Information System (INIS)

    Akopov, N.; Grigoryan, A.; Karyan, G.

    2017-01-01

    The aim of this paper is to investigate the GEANT4 simulation for electromagnetic showers initiated by 30 MeV photons entering into the atmosphere at different altitudes (h). Charged and neutral components of the shower have been studied in various radial slices (R) with the detecting level corresponding to the altitude of Aragats mount, where the experimental setups of Cosmic Ray Division (CRD) of Yerevan Physics Institute (YerPhI) are operating. Qualitative observations of the energy spectra, as well as the tabulated parameters describing the fluxes at different values of h and R are used to make a comparison with those from the experimental data. The experimental data on particle fluxes are considered to be correlated with the atmospheric conditions such as pressure, temperature, presence of the charged clouds initiating the lightnings etc. (author)

  14. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  15. Studies on muon showers underground

    Energy Technology Data Exchange (ETDEWEB)

    Bergamasco, L; Castagnoli, C; Dardo, M; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati; Sitte, K [Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-08-21

    The 4 m/sup 2/ spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, and to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm/sup 2/ of rock.

  16. Studies on muon showers underground

    International Nuclear Information System (INIS)

    Bergamasco, L.; Castagnoli, C.; Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.

    1976-01-01

    The 4 m 2 spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, adn to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm 2 of rock

  17. Parameterized Shower Simulation in Lelaps: a Comparison with Geant4

    International Nuclear Information System (INIS)

    Langeveld, Willy G.J.

    2003-01-01

    The detector simulation toolkit Lelaps[1] simulates electromagnetic and hadronic showers in calorimetric detector elements of high-energy particle detectors using a parameterization based on the algorithms originally developed by Grindhammer and Peters[2] and Bock et al.[3]. The primary motivations of the present paper are to verify the implementation of the parameterization, to explore regions of energy where the parameterization is valid and to serve as a basis for further improvement of the algorithm. To this end, we compared the Lelaps simulation to a detailed simulation provided by Geant4[4]. A number of different calorimeters, both electromagnetic and hadronic, were implemented in both programs. Longitudinal and radial shower profiles and their fluctuations were obtained from Geant4 over a wide energy range and compared with those obtained from Lelaps. Generally the longitudinal shower profiles are found to be in good agreement in a large part of the energy range, with poorer results at energies below about 300 MeV. Radial profiles agree well in homogeneous detectors, but are somewhat deficient in segmented ones. These deficiencies are discussed

  18. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    CERN Document Server

    Adloff, C.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Gottlicher, P.; Gunter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P.D.; Magnan, A.M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.

    2011-01-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of faked signals is smaller than 1x10^{-5} for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  19. On Micro VAX farms and shower libraries: Monte Carlo techniques developed for the D0 detector

    International Nuclear Information System (INIS)

    Raja, R.

    1988-01-01

    In order to predict correctly the effects of cracks and dead material in a nearly hermetic calorimeter, hadronic and electromagnetic showers need to be simulated accurately on a particle by particle basis. Tracking all the particles of all showers in the calorimeter leads to very large CPU times (typically 5 hours on a VAX780) for events at √(s) = 2TeV. Parametrizing the energy deposition of electromagnetic particles in showers with energy below 200 MeV results in event times of the order of 1 hour on a VAX780. This is still unacceptably large. The D0 collaboration then employed a farm of 16 MicroVax II's to get acceptable throughputs. The calorimeter hit patterns of each individual track was output, to be summed up by a later job. These individual hit patterns were entered into a random access shower library file, which was then used for subsequent Monte Carlo simulations. This shower library technique results in further speed-ups of a factor of 60 without degrading the quality of simulation significantly

  20. A liquid argon ionisation calorimeter for detection of electromagnetic and hadronic showers

    International Nuclear Information System (INIS)

    Hofmann, W.

    1975-02-01

    The performance of a liquid argon ionization chamber, consisting of a set of eighty 2 mm thick iron plates, is described. Measurements with muons, and electron and proton showers were performed; from these measurements a ratio of 1.2 for the electron to proton response was derived. For hadron showers a good detection efficiency of nuclear spallation products could be established. (orig.) [de

  1. Studying High pT muons in Cosmic-Ray Air Showers

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    Most cosmic-ray air shower arrays have focused on detecting electromagnetic shower particles and low energy muons. A few groups (most notably MACRO + EASTOP and SPASE + AMANDA) have studied the high energy muon component of showers. However, these experiments had small solid angles, and did not study muons far from the core. The IceTop + IceCube combination, with its 1 km 2 muon detection area can study muons far from the shower core. IceCube can measure their energy loss (dE/dx), and hence their energy. With the energy, and the known distribution of production heights, the transverse momentum (p T ) spectrum of high p T muons can be determined. The production of the semuons is calculable in perturbative QCD, so the measured muon spectra can be used to probe the composition of incident cosmic-rays

  2. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    International Nuclear Information System (INIS)

    Eigen, G.; Price, T.; Watson, N. K.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.

    2016-01-01

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range of 10–80 GeV/ c . Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP-BERT and FTFP-BERT physics lists from GEANT4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h / e , are estimated using the extrapolation and decomposition of the longitudinal profiles.

  3. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    CERN Document Server

    Eigen, G.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Doren, B.van; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Antequera, J.Berenguer; Alamillo, E.Calvo; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; der Kolk, N.van; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.C.; Cizel, J.B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; de Freitas, P.Mora; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; Taille, Ch.de la; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-06-23

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.

  4. Shower Counters for SLAC experiments E142/E143

    Energy Technology Data Exchange (ETDEWEB)

    Borel, H; Grenier, P; Le Meur, J; Lombard, R; Lugol, J C; Marroncle, J; Morgenstern, J; Mouly, J P; Paul, B; Staley, F; Terrien, Y [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Breton, V; Comptour, C; Crouau, M; Fonvieille, H; Roblin, Y; Savinel, G [Clermont-Ferrand-2 Univ., 63 - Aubiere (France); Gearhart, R [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1994-10-01

    The two electromagnetic calorimeters each made of 200 lead glass blocks used at SLAC to discriminate between electrons and pions and to measure electron energies are described. Procedures to reconstruct electron showers and to calibrate calorimeters are treated as well as the calorimeter performance. (author). 6 refs., 10 figs.

  5. Aspects of perturbative QCD in Monte Carlo shower models

    International Nuclear Information System (INIS)

    Gottschalk, T.D.

    1986-01-01

    The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures

  6. Measurement of the time development of particle showers in a uranium scintillator calorimeter

    International Nuclear Information System (INIS)

    Caldwell, A.; Hervas, L.; Parsons, J.A.; Sciulli, F.; Sippach, W.; Wai, L.

    1992-11-01

    We report on the time evolution of particle showers, as measured in modules of the uranium-scintillator barrel calorimeter of the ZEUS detector. The time development of hadronic showers differs significantly from that of electromagnetic showers, with about 40% of the response to hadronic showers arising from energy depositions which occur late in the shower development. The degree of compensation and the hadronic energy resolution were measured as a function of integration time, giving a value of e/π=1.02±0.01 for a gate width of 100 ns. The possibilities for electron-hadron separation based on the time structure of the shower were studied, with pion rejection factors in excess of 100 being achieved for electron efficiencies greater than 60%. The custom electronics used to perform these measurements samples the calorimeter signal at close to 60 MHz, stores all samples for a period of over 4 μs using analog switched capacitor pipelines, and digitizes the samples for triggered events with 12-bit ADC's. (orig.)

  7. Measuring the muon content of air showers with IceTop

    Science.gov (United States)

    Gonzalez, Javier G.

    2015-08-01

    IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  8. Measuring the muon content of air showers with IceTop

    Directory of Open Access Journals (Sweden)

    Gonzalez Javier G.

    2015-01-01

    Full Text Available IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  9. Content-Based Image Retrieval Based on Electromagnetism-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available Recently, many researchers in the field of automatic content-based image retrieval have devoted a remarkable amount of research looking for methods to retrieve the best relevant images to the query image. This paper presents a novel algorithm for increasing the precision in content-based image retrieval based on electromagnetism optimization technique. The electromagnetism optimization is a nature-inspired technique that follows the collective attraction-repulsion mechanism by considering each image as an electrical charge. The algorithm is composed of two phases: fitness function measurement and electromagnetism optimization technique. It is implemented on a database with 8,000 images spread across 80 classes with 100 images in each class. Eight thousand queries are fired on the database, and the overall average precision is computed. Experimental results of the proposed approach have shown significant improvement in the retrieval performance in regard to precision.

  10. Tuning of the Shower Library for the LHCb calorimeter fast simulation

    CERN Document Server

    Rabemananjara, Tanjona Radonirina

    2016-01-01

    The standard simulation of the LHCb detector uses the Geant4 simulation toolkit, which provides very accurate results but is CPU-expensive. A number of faster simulation options are available or under development. Among the latter, the replacement of the electromagnetic and hadronic showers simulation in the calorimeter with pre-simulated hit libraries is ongoing. My work has focused on the characterization of the particles reaching the calorimeter in simulated minimum bias events and on the study of how the cell hit distributions change as a function of some particle parameters. The results will contribute to understanding how to optimize the information stored in the shower library under development.

  11. A swimming pool array for ultra high energy showers

    Science.gov (United States)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  12. Separation of the overlapping electromagnetic showers in the cellular GAMS-type calorimeters

    International Nuclear Information System (INIS)

    Lednev, A.A.

    1993-01-01

    The structure of gamma reconstruction program for the GAMS spectrometer is described. Reconstruction efficiencies of two and three space-overlapping showers for detectors with different cell sizes are presented. 3 refs., 17 figs

  13. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  14. Performance of a dual readout calorimeter with a BGO electromagnetic section

    International Nuclear Information System (INIS)

    Gaudio, Gabriella

    2011-01-01

    The dual readout technique has been tested on a hybrid calorimeter. The electromagnetic section of this instrument consists of 100 BGO crystals and the hadronic section is made out scintillating and Cherenkov fibers embedded in a copper matrix (DREAM). The electromagnetic fraction of hadronic showers is evaluated on an event-by-event basis from the relative amounts of Cherenkov and scintillation lights produced in the shower development. The performance of such a calorimeter in terms of energy resolution is presented. Effects of side leakage on detector performance are also studied.

  15. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  16. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    International Nuclear Information System (INIS)

    Stanev, T.; Vankov, C.; Petrov, S.; Elbert, J.W.

    1981-01-01

    We discuss the angular distribution of the electrons with threshold energy 20 MeV in electromagnetic showers. Our electrons are at much smaller angles to the shower axis compared with these of Messel and Crawford. This fact will have a serious impact on the angular distribution of the Cerenkov light in air. We also present approximations for the shower profiles of electrons with the same threshold and the lateral distribution of the electron energy flux

  17. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    identify the position of the first hard interaction in hadron showers is developed in this work. It is applied to measure hadron shower profiles without the fluctuations in the position of the first hard interaction and to estimate and correct for longitudinal leakage. Finally, different hadron simulation models are confronted with the measured data. The Geant4 based simulation of the test-beam is explained; the detector modelling and the systematic error assumptions are verified with electromagnetic showers. The studies comprise thirteen different Geant4 physics lists and six different hadron shower models. Both the description of the spatial shower development and the modelling of the detector response and the resolution are tested. (orig.)

  18. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    identify the position of the first hard interaction in hadron showers is developed in this work. It is applied to measure hadron shower profiles without the fluctuations in the position of the first hard interaction and to estimate and correct for longitudinal leakage. Finally, different hadron simulation models are confronted with the measured data. The Geant4 based simulation of the test-beam is explained; the detector modelling and the systematic error assumptions are verified with electromagnetic showers. The studies comprise thirteen different Geant4 physics lists and six different hadron shower models. Both the description of the spatial shower development and the modelling of the detector response and the resolution are tested. (orig.)

  19. Study of electromagnetic and hadronic showers with liquid-argon calorimeters

    International Nuclear Information System (INIS)

    Rauschnabel, K.

    1978-05-01

    High energy electrons, pions and protons have been detected by two liquid-argon calorimeters. Measurements of the linearity and energy resolution of the detectors have been performed. As one of the detectors consisted of 80 sections, the spatial development of hadronic cascades could be studied. The results are in reasonable agreement with Monte-Carlo simulations. The spatial and angular resolutions of the detector have been evaluated. Using their different longitudinal shower development, electrons and hadrons could be separated. (orig.) [de

  20. Investigating cosmic rays and air shower physics with IceCube/IceTop

    Science.gov (United States)

    Dembinski, Hans

    2017-06-01

    IceCube is a cubic-kilometer detector in the deep ice at South Pole. Its square-kilometer surface array, IceTop, is located at 2800 m altitude. IceTop is large and dense enough to cover the cosmic-ray energy spectrum from PeV to EeV energies with a remarkably small systematic uncertainty, thanks to being close to the shower maximum. The experiment offers new insights into hadronic physics of air showers by observing three components: the electromagnetic signal at the surface, GeV muons in the periphery of the showers, and TeV muons in the deep ice. The cosmic-ray flux is measured with the surface signal. The mass composition is extracted from the energy loss of TeV muons observed in the deep ice in coincidence with signals at the surface. The muon lateral distribution is obtained from GeV muons identified in surface signals in the periphery of the shower. The energy spectrum of the most energetic TeV muons is also under study, as well as special events with laterally separated TeV muon tracks which originate from high-pT TeV muons. A combination of all these measurements opens the possibility to perform powerful new tests of hadronic interaction models used to simulate air showers. The latest results will be reviewed from this perspective.

  1. Investigating cosmic rays and air shower physics with IceCube/IceTop

    Directory of Open Access Journals (Sweden)

    Dembinski Hans

    2017-01-01

    Full Text Available IceCube is a cubic-kilometer detector in the deep ice at South Pole. Its square-kilometer surface array, IceTop, is located at 2800 m altitude. IceTop is large and dense enough to cover the cosmic-ray energy spectrum from PeV to EeV energies with a remarkably small systematic uncertainty, thanks to being close to the shower maximum. The experiment offers new insights into hadronic physics of air showers by observing three components: the electromagnetic signal at the surface, GeV muons in the periphery of the showers, and TeV muons in the deep ice. The cosmic-ray flux is measured with the surface signal. The mass composition is extracted from the energy loss of TeV muons observed in the deep ice in coincidence with signals at the surface. The muon lateral distribution is obtained from GeV muons identified in surface signals in the periphery of the shower. The energy spectrum of the most energetic TeV muons is also under study, as well as special events with laterally separated TeV muon tracks which originate from high-pT TeV muons. A combination of all these measurements opens the possibility to perform powerful new tests of hadronic interaction models used to simulate air showers. The latest results will be reviewed from this perspective.

  2. Solution of the electromagnetic cascade shower problem by analog Monte Carlo methods-EGS

    CERN Document Server

    Nelson, W R

    1980-01-01

    The development of the Electron-Gamma shower code system (EGS) is outlined and in its current form the author considers that there is now available a means of simulating almost any electron-photon transport problem. (20 refs).

  3. The STAR endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Allgower, C.E.; Anderson, B.D.; Baldwin, A.R.; Balewski, J.; Belt-Tonjes, M.; Bland, L.C.; Brown, R.L.; Cadman, R.V.; Christie, W.; Cyliax, I.; Dunin, V.; Efimov, L.; Eppley, G.; Gagliardi, C.A.; Gagunashvili, N.; Hallman, T.; Hunt, W.; Jacobs, W.W.; Klyachko, A.; Krueger, K.; Kulikov, A.; Ogawa, A.; Panebratsev, Y.; Planinic, M.; Puskar-Pasewicz, J.; Rakness, G.; Razin, S.; Rogachevski, O.; Shimansky, S.; Solberg, K.A.; Sowinski, J.; Spinka, H.; Stephenson, E.J.; Tikhomirov, V.; Tokarev, M.; Tribble, R.E.; Underwood, D.; Vander Molen, A.M.; Vigdor, S.E.; Watson, J.W.; Westfall, G.; Wissink, S.W.; Yokosawa, A.; Yurevich, V.; Zhang, W.-M.; Zubarev, A.

    2003-01-01

    The STAR endcap electromagnetic calorimeter will provide full azimuthal coverage for high-p T photons, electrons and electromagnetically decaying mesons over the pseudorapidity range 1.086≤η≤2.00. It includes a scintillating-strip shower-maximum detector to provide π 0 /γ discrimination and preshower and postshower layers to aid in distinguishing between electrons and charged hadrons. The triggering capabilities and coverage it offers are crucial for much of the spin physics program to be carried out in polarized proton-proton collisions

  4. The STAR endcap electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Allgower, C.E.; Anderson, B.D.; Baldwin, A.R.; Balewski, J.; Belt-Tonjes, M.; Bland, L.C.; Brown, R.L.; Cadman, R.V.; Christie, W.; Cyliax, I.; Dunin, V.; Efimov, L.; Eppley, G.; Gagliardi, C.A.; Gagunashvili, N.; Hallman, T.; Hunt, W.; Jacobs, W.W.; Klyachko, A.; Krueger, K.; Kulikov, A.; Ogawa, A.; Panebratsev, Y.; Planinic, M.; Puskar-Pasewicz, J.; Rakness, G.; Razin, S.; Rogachevski, O.; Shimansky, S.; Solberg, K.A.; Sowinski, J.; Spinka, H.; Stephenson, E.J.; Tikhomirov, V.; Tokarev, M.; Tribble, R.E.; Underwood, D.; Vander Molen, A.M.; Vigdor, S.E. E-mail: vigdor@iucf.indiana.edu; Watson, J.W.; Westfall, G.; Wissink, S.W.; Yokosawa, A.; Yurevich, V.; Zhang, W.-M.; Zubarev, A

    2003-03-01

    The STAR endcap electromagnetic calorimeter will provide full azimuthal coverage for high-p{sub T} photons, electrons and electromagnetically decaying mesons over the pseudorapidity range 1.086{<=}{eta}{<=}2.00. It includes a scintillating-strip shower-maximum detector to provide {pi}{sup 0}/{gamma} discrimination and preshower and postshower layers to aid in distinguishing between electrons and charged hadrons. The triggering capabilities and coverage it offers are crucial for much of the spin physics program to be carried out in polarized proton-proton collisions.

  5. Simulation studies of the information content of muon arrival time observations of high energy extensive air showers

    International Nuclear Information System (INIS)

    Brancus, I.; Duma, M.; Badea, A. F.; Aiftimiei, C.; Rebel, M. H.; Oehlschlaeger, J.

    2001-01-01

    By extensive Monte Carlo calculations, using the air shower simulation code CORSIKA, EAS muon arrival time distributions and EAS time profiles up to 320 m distances from the shower centre have been generated, for proton, oxygen and iron induced showers using different hadronic interaction models as Monte Carlo generators. The model dependence and mass discriminating features have been scrutinized for three energy ranges, (1-1.7783) 10 15 eV, (1.-1.78) 10 16 eV and (1.78-3.16) 10 16 eV, by use of non-parametric statistical inference method applied to multidimensional distributions, correlating the EAS time quantities with different other EAS observables. The correlations of local muon arrival times with the local muon density and the shower age indicate a good mass separation quality at larger shower distances. The best discrimination was obtained by adding the correlation with N μ tr quantity. The comparison between 'local times', with reference to the first registered muon and 'global times' with reference to the arrival time of the shower core, indicates a slightly better mass discrimination in the case of muon 'global' time distributions. (authors)

  6. Electromagnetic shower development and applications to sampling calorimeters

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1984-07-01

    The application of electromagnetic theory to particle interactions is an old subject which represented one of the early successes in the study of particle interactions and fundamental forces. The ability to describe properties of electron, positron, and photon interactions has led to applications in numerous experimental devices used in high energy experiments. The subject is now considered to be relatively mature, but applications continue to evolve as new ideas are tried and new techniques become available. This report is a review of the underlying processes, a discussion of the application to electromagnetic calorimetry, discussions of some scaling laws and approximations that serve to guide designs of experimental devices, and examples where these principles are put to work. 13 references, 10 figures, 2 tables

  7. Electromagnetic shower development and applications to sampling calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.Y.

    1984-07-01

    The application of electromagnetic theory to particle interactions is an old subject which represented one of the early successes in the study of particle interactions and fundamental forces. The ability to describe properties of electron, positron, and photon interactions has led to applications in numerous experimental devices used in high energy experiments. The subject is now considered to be relatively mature, but applications continue to evolve as new ideas are tried and new techniques become available. This report is a review of the underlying processes, a discussion of the application to electromagnetic calorimetry, discussions of some scaling laws and approximations that serve to guide designs of experimental devices, and examples where these principles are put to work. 13 references, 10 figures, 2 tables.

  8. Reweighting Parton Showers

    CERN Document Server

    Bellm, Johannes; Richardson, Peter; Siódmok, Andrzej; Webster, Stephen

    2016-01-01

    We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm. We demonstrate the feasibility of this approach using example physical distributions. Implementations are available for both the parton-shower modules in the Herwig 7 event generator.

  9. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  10. Shower library technique for fast simulation of showers in calorimeters of the H1 experiment

    International Nuclear Information System (INIS)

    Raičević, N.; Glazov, A.; Zhokin, A.

    2013-01-01

    Fast simulation of showers in calorimeters is very important for particle physics analysis since shower simulation typically takes significant amount of the simulation time. At the same time, a simulation must reproduce experimental data in the best possible way. In this paper, a fast simulation of showers in two calorimeters of the H1 experiment is presented. High speed and good quality of shower simulation is achieved by using a shower library technique in which the detector response is simulated using a collection of stored showers for different particle types and topologies. The library is created using the GEANT programme. The fast simulation based on shower library is compared to the data collected by the H1 experiment

  11. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  12. EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers. Version 3

    International Nuclear Information System (INIS)

    Ford, R.L.; Nelson, W.R.

    1978-06-01

    A code to simulate almost any electron--photon transport problem conceivable is described. The report begins with a lengthy historical introduction and a description of the shower generation process. Then the detailed physics of the shower processes and the methods used to simulate them are presented. Ideas of sampling theory, transport techniques, particle interactions in general, and programing details are discussed. Next, EGS calculations and various experiments and other Monte Carlo results are compared. The remainder of the report consists of user manuals for EGS, PEGS, and TESTSR codes; options, input specifications, and typical output are included. 38 figures, 12 tables

  13. What is a parton shower?

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2017-05-01

    We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α k s for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α k s parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.

  14. What is a parton shower?

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2017-05-15

    We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α{sup k}{sub s} for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α{sup k}{sub s} parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.

  15. Meteor showers an annotated catalog

    CERN Document Server

    Kronk, Gary W

    2014-01-01

    Meteor showers are among the most spectacular celestial events that may be observed by the naked eye, and have been the object of fascination throughout human history. In “Meteor Showers: An Annotated Catalog,” the interested observer can access detailed research on over 100 annual and periodic meteor streams in order to capitalize on these majestic spectacles. Each meteor shower entry includes details of their discovery, important observations and orbits, and gives a full picture of duration, location in the sky, and expected hourly rates. Armed with a fuller understanding, the amateur observer can better view and appreciate the shower of their choice. The original book, published in 1988, has been updated with over 25 years of research in this new and improved edition. Almost every meteor shower study is expanded, with some original minor showers being dropped while new ones are added. The book also includes breakthroughs in the study of meteor showers, such as accurate predictions of outbursts as well ...

  16. Measurement of shower development and its Moliere radius with a four-plane LumiCal test set-up

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Benhammou, Y.; Borysov, O.; Borysova, M.; Kananov, S.; Levy, A.; Levy, I.; Rosenblat, O. [Tel Aviv University, Tel Aviv (Israel); Abusleme, A. [Pontificia Universidad Catolica de Chile, Santiago (Chile); Afanaciev, K.; Ignatenko, A. [Belarusian State University, NC PHEP, Minsk (Belarus); Bortko, L.; Hempel, M.; Henschel, H.; Karacheban, O.; Lange, W.; Leonard, J.; Lohmann, W.; Schuwalow, S. [DESY, Zeuthen (Germany); Bozovic-Jelisavcic, I.; Lukic, S.; Pandurovic, M.; Smiljanic, I. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Chelkov, G.; Gostkin, M.; Kotov, S.; Kozhevnikov, D.; Kruchonok, V.; Smolyanskiy, P.; Zhemchugov, A. [JINR, Dubna (Russian Federation); Daniluk, W.; Krupa, B.; Lesiak, T.; Moszczynski, A.; Pawlik, B.; Wojton, T.; Zawiejski, L. [IFJ PAN, Krakow (Poland); Dannheim, D.; Elsener, K.; Klempt, W.; Kotula, J.; Kulis, S.; Nuiry, F.X.; Sailer, A. [CERN, Geneva (Switzerland); Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.; Terlecki, P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S. [ISS, Bucharest (Romania); Ishikawa, A.; Yamamoto, H. [Tohoku University, Sendai (Japan); Schumm, B. [University of California, Santa Cruz (United States); Uggerhoj, U.I.; Wistisen, T.N. [Aarhus University, Aarhus (Denmark)

    2018-02-15

    A prototype of a luminometer, designed for a future e{sup +}e{sup -} collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moliere radius has been determined to be 24.0 ± 0.6 (stat.) ± 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation. (orig.)

  17. QGSJET-II: physics, recent improvements, and results for air showers

    Directory of Open Access Journals (Sweden)

    Ostapchenko S.

    2013-06-01

    Full Text Available Modeling of high energy hadronic and nuclear interactions by the QGSJET-II generator is discussed. Recent updates related to the treatment of nonlinear effects inthe interaction dynamics and to the model calibration with new LHC data are described. A special attention is devoted to the predictions of the new model version forcharacteristics of extensive air showers initiated by high energy cosmic rays. In particular, an improved description of charge exchange processes in pion collisionsis discussed and the respective enhancement of the shower muon content is analyzed.

  18. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, IL (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [CERN, Geneva (Switzerland); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, MI (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Caloba, L [COPPE/EE/UFRJ, Rio de Janeiro (Brazil)

    2010-04-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  19. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.; Caloba, L.

    2010-01-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  20. Electromagnetic cascades produced by gamma-quanta with the energy Eγ=100-3500 MeV

    International Nuclear Information System (INIS)

    Slowinski, B.

    1990-01-01

    Fluctuations of the electron ionization loss (IL) in electromagnetic showers produced by gamma-quanta of energy E γ between 100 and 3500 MeV have been studied using pictures of the 180 l xenon bubble chamber of ITEP (Moscow). The distribution of the standard deviation σ A of the part A of the IL released along the shower axis and in its lateral direction was obtained and found to be approximately independent of Eγ at Eγ≥500 MeV when expressed as a fuction of A and normalized to maximum value of the σ A in the case of the lateral shower development. The relative spread of the average longitudinal and lateral e.m. shower dimensions are discussed too. 18 refs.; 4 figs

  1. A neural method for determining electromagnetic shower positions in laterally segmented calorimeters

    International Nuclear Information System (INIS)

    Roy, A.; Ray, A.; Mitra, T.; Roy, A.

    1995-01-01

    A method based on a neural network technique is proposed to calculate the coordinates of an incident photon striking a laterally segmented calorimeter and depositing shower energies in different segments. The technique uses a multilayer perceptron trained by back-propagation implemented through standard gradient descent followed by conjugate gradient algorithms and has been demonstrated with GEANT simulations of a BAF2 detector array. The position resolution results obtained by using this method are found to be substantially better than the first moment method with logarithmic weighting. (orig.)

  2. Search for neutrino generated air shower candidates with energy ≥ 1019 eV and Zenith angle θ

    Science.gov (United States)

    Knurenko, Stanislav; Petrov, Igor; Sabourov, Artem

    2017-06-01

    The description of the methodology and results of searching for air showers generated by neutral particles such as high energy gamma quanta and astroneutrinos are presented. For this purpose, we conducted a comprehensive analysis of the data: the electron, the muon and the EAS Cerenkov light, and their response time in scintillation and Cherenkov detectors. Air showers with energy more than 5·1018 eV and zenith angle θ ≥ 55∘ are selected and analyzed. Search results indicate a lack of air shower events formed by gamma-rays or high-energy neutrinos, but it does not mean that such air showers do not exist in nature; for example, experiments that recorded showers having a marked low muon content, i.e., "Muonless", are likely to be candidates for showers produced by neutral primary particles.

  3. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  4. An analytic initial-state parton shower

    International Nuclear Information System (INIS)

    Kilian, W.

    2011-12-01

    We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)

  5. An analytic initial-state parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Germany). Dept. Physik; Reuter, J.; Schmidt, S.; Wiesler, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-12-15

    We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)

  6. Analytic calculation of radio emission from parametrized extensive air showers: A tool to extract shower parameters

    Science.gov (United States)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.

  7. New meteor showers – yes or not?

    Science.gov (United States)

    Koukal, Jakub

    2018-01-01

    The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.

  8. EGS4, Electron Photon Shower Simulation by Monte-Carlo

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of program or function: The EGS code system is one of a chain of three codes designed to solve the electromagnetic shower problem by Monte Carlo simulation. This chain makes possible simulation of almost any electron-photon transport problem conceivable. The structure of the system, with its global features, modular form, and structured programming, is readily adaptable to virtually any interfacing scheme that is desired on the part of the user. EGS4 is a package of subroutines plus block data with a flexible user interface. This allows for greater flexibility without requiring the user to be overly familiar with the internal details of the code. Combining this with the macro facility capabilities of the Mortran3 language, this reduces the likelihood that user edits will introduce bugs into the code. EGS4 uses material cross section and branching ratio data created and fit by the companion code, PEGS4. EGS4 allows for the implementation of importance sampling and other variance reduction techniques such as leading particle biasing, splitting, path length biasing, Russian roulette, etc. 2 - Method of solution: EGS employs the Monte Carlo method of solution. It allows all of the fundamental processes to be included and arbitrary geometries can be treated, also. Other minor processes, such as photoneutron production, can be added as a further generalization. Since showers develop randomly according to the quantum laws of probability, each shower is different. We again are led to the Monte Carlo method. 3 - Restrictions on the complexity of the problem: None noted

  9. On electromagnetic radiation of ultrarelativistic electrons in crystals

    International Nuclear Information System (INIS)

    Podgoretskij, M.I.

    1977-01-01

    Electromagnetic radiation is considered caused by ultrarelativistic channeling electrons moving inside cylindrical regions formed with nuclear heat oscillations of a crystal lattice. An energy asymmetry is predicted for electrons and positrons, generated by γ-quanta falling to a crystal along the crystallographic axes. A possible connection of the above mentioned radiation with the anomalous multiphoton Schein showers is discussed

  10. Ultra-high energy cosmic rays: analysis of extensive air showers and their associated electromagnetic signal in the MHz domain

    International Nuclear Information System (INIS)

    Revenu, B.

    2012-01-01

    In this HDR (accreditation to supervise research) report, the author proposes a review of the present results in the field of ultra-high energy cosmic rays. After a presentation of some results about the Fermi mechanism to accelerate cosmic rays, the author more particularly addresses the reconstruction of air showers, and the search for sources. He also addresses the radio signal emitted by air shower secondary positrons and electrons. He proposes an overview of the present knowledge on the basis of present experiments. Data show that the electric field is mainly due to the influence of the Earth magnetic field which acts on electrons and positrons, but more recently, the contribution due to electrons in excess seems to appear in data. The author reports the last advances in the field of simulation of the electric field, with notably the prediction of new signal produced by the disappearance of the air shower during its absorption by the soil [fr

  11. Characterization of an Electromagnetic Calorimeter for the Proposed International Linear Collider

    International Nuclear Information System (INIS)

    Frey, Merideth; Wellesley Coll.; SLAC

    2006-01-01

    The International Linear Collider (ILC) is part of a new generation of accelerators enabling physicists to gain a deeper understanding of the fundamental components of the universe. The proposed ILC will accelerate positrons and electrons towards each other with two facing linear colliders, each twenty kilometers long. Designing and planning for the future accelerator has been undertaken as a global collaboration, with groups working on several possible detectors to be used at the ILC. The following research at the Stanford Linear Accelerator Center (SLAC) pertained to the design of an electromagnetic calorimeter. The energy and spatial resolution of the calorimeter was tested by using computer simulations for proposed detectors. In order to optimize this accuracy, different designs of the electromagnetic calorimeter were investigated along with various methods to analyze the data from the simulated detector. A low-cost calorimeter design was found to provide energy resolution comparable to more expensive designs, and new clustering algorithms offered better spatial resolution. Energy distribution and shape characteristics of electromagnetic showers were also identified to differentiate various showers in the calorimeter. With further research, a well-designed detector will enable the ILC to observe new realms of physics

  12. Performance of prototypes for the ALICE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Allen, J.; Awes, T.; Badala, A.; Baumgart, S.; Bellwied, R.; Benhabib, L.; Bernard, C.; Bianchi, N.; Blanco, F.; Bortoli, Y.; Bourdaud, G.; Bourrion, O.; Boyer, B.; Bruna, E.; Butterworth, J.; Caines, H.; Calvo Diaz Aldagalan, D.; Capitani, G.P.; Carcagno, Y.; Casanova Diaz, A.

    2010-01-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4x4 array of final design modules showed an energy resolution of about 11%/√(E(GeV))+1.7% with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5mm+5.3mm/√(E(GeV)). For an electron identification efficiency of 90% a hadron rejection factor of >600 was obtained.

  13. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    Science.gov (United States)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  14. Limits for the fluxes of non-conventional particles in muon showers underground

    International Nuclear Information System (INIS)

    Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.

    1975-01-01

    A search for non-conventional massive particles was carried out with the Mt. Cappuccini spark chamber array, by a study of the interactions initiated in the chamber absorbers. Neither an excess of large electro-magnetic cascades, nor an excess of large-angle scattering events was found. Likewise no difference was seen between the interaction features of prompt and of delayed shower particles. The estimated upper limits of the underground fluxes are not or barely consistent with the assumptions of the mandela or passive X-particle hypotheses; zero fluxes appear most likely. (orig./BJ) [de

  15. Lightning induced inappropriate ICD shock: an unusual case of electromagnetic interference.

    Science.gov (United States)

    Anderson, Daniel R; Gillberg, Jeffrey M; Torrey, Jeffrey W; Koneru, Jayanthi N

    2012-06-01

    An unusual case of electromagnetic interference is presented. As a result of a lightning shock to a Shower House, our patient received two shocks. An elucidation of the different mechanisms for the two shocks is presented. ©2010, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  16. Microprocessor-based data acquisition system for extensive air shower studies

    International Nuclear Information System (INIS)

    Mazumdar, G.K.D.; Kalita, P.M.; Bordoloi, T.C.; Pathak, K.M.

    1989-01-01

    Studies on electromagnetic radiation from large extensive air showers (Esub(p) ≥> 10 16 eV) have been of recent importance in the investigation of properties of EAS in problems involving mass composition, arrival time, radio emission. Cerenkov radiation etc. Such studies need fast electronic circuitry preferably for digitisation. A microprocessor based data acquisition system having scintillation counters, PA, MA, Pd, S/H and control unit has been developed and is being used in the EAS studies at Gauhati University Cosmic Ray Research Laboratory. Description of the different units along with their functioning and method of standardisation is presented in this paper. (author). 3 figs

  17. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  18. Timing performance of the CMS electromagnetic calorimeter and prospects for the future

    CERN Document Server

    Bornheim, Adolf

    2014-01-01

    The CMS electromagnetic calorimeter (ECAL) is made of 75,848 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as timing measurements from the data collected in proton-proton collisions with high energy electrons and photons. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The timing resolution achieved with the data collected in proton-proton collisions at the LHC is discussed. We present how precision timing is used in current physics measurements and discuss studies of subtle calorimetric effects, such as the timing response of different crystals belonging to the same electromagnetic shower. In addition, we present prospects for th...

  19. Results on reuse of reclaimed shower water

    Science.gov (United States)

    Verostko, Charles E.; Garcia, Rafael; Pierson, Duane L.; Reysa, Richard P.; Irbe, Robert

    1986-01-01

    The Waste Water Recovery System that has been used in conjunction with a microgravity whole body shower to test a closed loop shower water reclamation system applicable to the NASA Space Station employs a Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem. Attention is given to the suitability of a Space Shuttle soap for such crew showers, the effects of shower water on the entire system, and the purification qualities of the recovered water. The chemical pretreatment of the shower water for microorganism control involved activated carbon, mixed ion exchange resin beds, and iodine bactericide dispensing units. The water was recycled five times, demonstrating the feasibility of reuse.

  20. Performance of prototypes for the ALICE electromagnetic calorimeter

    CERN Document Server

    Allen, J; Badala, A; Baumgart, S; Bellwied, R; Benhabib, L; Bernard, C; Bianchi, N; Blanco, F; Bortoli, Y; Bourdaud, G; Bourrion, O; Boyer, B; Bruna, E; Butterworth, J; Caines, H; Calvo Diaz Aldagalan, D; Capitani, G P; Carcagno, Y; Casanova Diaz, A; Cherney, M; Conesa Balbastre, G; Cormier, T M; Cunqueiro Mendez, L; Delagrange, H; Del Franco, M; Dialinas, M; Di Nezza, P; Donoghue, A; Elnimr, M; Enokizono, A; Estienne, M; Faivre, J; Fantoni, A; Fichera, F; Foglio, B; Fresneau, S; Fujita, J; Furget, C; Gadrat, S; Garishvili, I; Germain, M; Giudice, N; Gorbunov, Y; Grimaldi, A; Guardone, N; Guernane, R; Hadjidakis, C; Hamblen, J; Harris, J W; Hasch, D; Heinz, M; Hille, P T; Hornback, D; Ichou, R; Jacobs, P; Jangal, S; Jayananda, K; Klay, J L; Knospe, A G; Kox, S; Kral, J; Laloux, P; LaPointe, S; La Rocca, P; Lewis, S; Li, Q; Librizzi, F; Madagodahettige Don, D; Martashvili, I; Mayes, B; Milletto, T; Muccifora, V; Muller, H; Muraz, J F; Nattrass, C; Noto, F; Novitzky, N; Odyniec, G; Orlandi, A; Palmeri, A; Pappalardo, G S; Pavlinov, A; Pesci, W; Petrov, V; Petta, C; Pichot, P; Pinsky, L; Ploskon, M; Pompei, F; Pulvirenti, A; Putschke, J; Pruneau, C A; Rak, J; Rasson, J; Read, K F; Real, J S; Reolon, A R; Riggi, F; Riso, J; Ronchetti, F; Roy, C; Roy, D; Salemi, M; Salur, S; Sharma, M; Silvermyr, D; Smirnov, N; Soltz, R; Sparti, V; Stutzmann, J.-S; Symons, T J.M; Tarazona Martinez, A; Tarini, L; Thomen, R; Timmins, A; van Leeuwen, M; Vieira, R; Viticchie, A; Voloshin, S; Wang, D; Wang, Y; Ward, R M

    2010-01-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A $4\\times4$ array of final design modules showed an energy resolution of about 11% /$\\sqrt{E(\\mathrm{GeV})}$ $\\oplus$ 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm $\\oplus$ 5.3 mm /$\\sqrt{E \\mathrm{(GeV)}}$. For an electron identification efficiency of 90% a hadron rejection factor of $>600$ was obtained.

  1. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  2. A simple method of shower localization and identification in laterally segmented calorimeters

    International Nuclear Information System (INIS)

    Awes, T.C.; Obenshain, F.E.; Plasil, F.; Saini, S.; Young, G.R.; Sorensen, S.P.

    1992-01-01

    A method is proposed to calculate the first and second moments of the spatial distribution of the energy of electromagnetic and hadronic showers measured in laterally segmented colorimeters. The technique uses a logarithmic weighting of energy fraction observed in the individual detector cells. It is fast and simple requiring no fitting or complicated corrections for the position or angle of incidence. The method is demonstrated with GEANT simulations of a BGO detector array. The position resolution results and the e/π separation results are found to be equal or superior to those obtained with more complicated techniques. (orig.)

  3. Scaling analysis of meteorite shower mass distributions

    DEFF Research Database (Denmark)

    Oddershede, Lene; Meibom, A.; Bohr, Jakob

    1998-01-01

    Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude......; the observed scaling exponents vary from shower to shower. Half of the analyzed showers show a single scaling region while the orther half show multiple scaling regimes. Such an analysis can provide knowledge about the fragmentation process and about the original meteoroid. We also suggest to compare...... the observed scaling exponents to exponents observed in laboratory experiments and discuss the possibility that one can derive insight into the original shapes of the meteoroids....

  4. Observation and analysis of cosmic electromagnetic cascades detected in lead photoemulsion chamber of the Brazil-Japan cooperation, exposed in Monte Chacaltaya, Bolivia (altitude 5200m, air pressure 550 gr.cm-2)

    International Nuclear Information System (INIS)

    Bastos, C.A.

    1971-04-01

    The cosmic gamma radiations in the photoemulsion chamber for Brazil-Japan Cooperation are studied. These radiations reproduces the electromagnetic component of extensive air showers at the begining of its development through the atmosphere. The gamma radiations, which is 0 Π meson decay products emitted in nuclear interaction, are detected by electromagnetic cascades which are developed when they reach the photoemulsion chamber. Cosmic gamma radiations is a set of parallel electromagnetic cascades proceeding from nuclear interactions. The information about high energy nuclear interactions making possible to study the structure of extensive air showers at the beginning of its development and multiple meson production are obtained. (M.C.K.) [pt

  5. Novel method for detecting the hadronic component of extensive air showers

    International Nuclear Information System (INIS)

    Gromushkin, D. M.; Volchenko, V. I.; Petrukhin, A. A.; Stenkin, Yu. V.; Stepanov, V. I.; Shchegolev, O. B.; Yashin, I. I.

    2015-01-01

    A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS component were determined

  6. Occurrence of Legionella in UK household showers.

    Science.gov (United States)

    Collins, Samuel; Stevenson, David; Bennett, Allan; Walker, Jimmy

    2017-04-01

    Household water systems have been proposed as a source of sporadic, community acquired Legionnaires' disease. Showers represent a frequently used aerosol generating device in the domestic setting yet little is known about the occurrence of Legionella spp. in these systems. This study has investigated the prevalence of Legionella spp. by culture and qPCR in UK household showers. Ninety nine showers from 82 separate properties in the South of England were sampled. Clinically relevant Legionella spp. were isolated by culture in 8% of shower water samples representing 6% of households. Legionella pneumophila sg1 ST59 was isolated from two showers in one property and air sampling demonstrated its presence in the aerosol state. A further 31% of showers were positive by Legionella spp. qPCR. By multi-variable binomial regression modelling Legionella spp. qPCR positivity was associated with the age of the property (p=0.02), the age of the shower (p=0.01) and the frequency of use (p=0.09). The concentration of Legionella spp. detected by qPCR was shown to decrease with increased frequency of use (p=0.04) and more frequent showerhead cleaning (p=0.05). There was no association between Legionella spp. qPCR positivity and the cold water supply or the showerhead material (p=0.65 and p=0.71, respectively). Household showers may be important reservoirs of clinically significant Legionella and should be considered in source investigations. Simple public health advice may help to mitigate the risk of Legionella exposure in the domestic shower environment. Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.

  7. Final state dipole showers and the DGLAP equation

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-01-01

    We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.

  8. A measurement of the muon number in showers using inclined events detected at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Rodriguez G.

    2013-06-01

    Full Text Available The average muon content of measured showers with zenith angles between 62∘ and 80∘ detected at the Pierre Auger Observatory is obtained as a function of shower energy using a reconstruction method specifically designed for inclined showers and the hybrid character of the detector. The reconstruction of inclined showers relies on a comparison between the measured signals at ground and reference patterns at ground level from which an overall normalization factor is obtained. Since inclined showers are dominated by muons this factor gives the relative muon size. It can be calibrated using a subsample of showers simultaneously recorded with the fluorescence detector (FD and the surface detector (SD which provides an independent calorimetric measurement of the energy. The muon size obtained for each shower becomes a measurement of the relative number of muons with respect to the reference distributions. The precision of the measurement is assessed using simulated events which are reconstructed using exactly the same procedure. We compare the relative number of muons versus energy as obtained to simulations. Proton simulations with QGSJETII show a factor of 2.13 ± 0.04(stat ± 0.11(sys at 1019eV without significant variations in the energy range explored between 4 × 1018eV to 7 × 1019eV. We find that none of the current shower models, neither for proton nor for iron primaries, are able to predict as many muons as are observed.

  9. Space charge in ionization detectors and the NA48 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Chollet, J.C.; Cirilli, M.; Cogan, J.; Costantini, F.; Crepe, S.; Cundy, D.; Fantechi, R.; Fayard, L.; Fischer, G.; Formica, A.; Frabetti, P.L.; Funk, W.; Gianoli, A.; Giudici, S.; Gonidec, A.; Gorini, B.; Govi, G.; Iconomidou-Fayard, L.; Kekelidze, V.; Kubischta, W.; Luitz, S.; Mannelli, I.; Martini, M.; Mikulec, I.; Norton, A.; Ocariz, J.; Schinzel, D.; Sozzi, M.; Tatishvili, G.; Tkatchev, A.; Unal, G.; Velasco, M.; Vossnack, O.; Wahl, H.

    1999-01-01

    The subject of space charge due to positive ions slowly moving in parallel plate ionization chambers is considered. A model for the degradation of the detector response is developed, with particular emphasis on electromagnetic calorimeters.The topics discussed include: (a) the stationary; (b) the time dependent cases; (c) the limit of very large space charge; (d) the electric field dependence of the electron drift velocity; (e) the effect of longitudinal development of showers; (f) the behaviour of the average reductions of response; (g) the non-uniformity of response for different positions of the shower axis inside the cell defined by the electrodes. The NA48 calorimeter is used as application and for comparison of results

  10. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  11. Testing the Effectiveness of Therapeutic Showering in Labor.

    Science.gov (United States)

    Stark, Mary Ann

    : Therapeutic showering is a holistic nursing intervention that is often available and supports physiologic labor. The purpose of this study was to compare the effectiveness of therapeutic showering with usual care during active labor. Research questions were as follows: Are there significant differences between women who showered 30 minutes during active labor and those who received usual labor care in anxiety, tension, relaxation, pain, discomfort, and coping? Is there a difference in use of obstetric interventions between groups? A convenience sample of healthy low-risk women in active labor was recruited (N = 32). A pretest posttest control group repeated-measures design was used. Participants were randomized to treatment group (n = 17), who showered for 30 minutes, or to control group (n = 14) who received usual labor care. Women evaluated pain, discomfort, anxiety, tension, coping, and relaxation at enrollment, again 15 minutes after entering the shower or receiving usual care, then again 30 minutes after entering the shower or receiving usual care. Chart reviews after delivery recorded obstetric interventions. The showering group had statistically significant decreases in pain, discomfort, anxiety and tension, and significant increase in relaxation. There were no differences in use of obstetric interventions. Therapeutic showering was effective in reducing pain, discomfort, anxiety, and tension while improving relaxation and supporting labor in this sample.

  12. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  13. Analytic calculation of radio emission from parametrized extensive air showers : A tool to extract shower parameters

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the

  14. EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers. Version 3. [EGS, PEGS, TESTSR, in MORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Ford, R.L.; Nelson, W.R.

    1978-06-01

    A code to simulate almost any electron--photon transport problem conceivable is described. The report begins with a lengthy historical introduction and a description of the shower generation process. Then the detailed physics of the shower processes and the methods used to simulate them are presented. Ideas of sampling theory, transport techniques, particle interactions in general, and programing details are discussed. Next, EGS calculations and various experiments and other Monte Carlo results are compared. The remainder of the report consists of user manuals for EGS, PEGS, and TESTSR codes; options, input specifications, and typical output are included. 38 figures, 12 tables. (RWR)

  15. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    Science.gov (United States)

    Stanev, T.; Vankov, Kh.; Petrov, S.; Elbert, J. W.

    The angular distribution of electrons with threshold energies of 20 MeV (the lowest energy at which electrons radiate Cerenkov photons in the air) are considered. The results are based on Monte Carlo calculations of the development of electromagnetic cascades. A set of showers with energy thresholds equals 20 MeV and primary photon energies equals 10, 20, 30, and 100 GeV is simulated. Information about the particle properties (energy, angle, and radial displacement) is provided at each radiation length of depth. The electrons are at much smaller angles to the shower axis than were those of Messel and Crawford (1970); this explains the discrepancy in angular distribution of Cerenkov light in air between the two.

  16. Use of a neutrino detector for muon identification by the CYGNUS air-shower array

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; DeLay, R.S.; Lu, X.Q.; Yodh, G.B. (Univ. of California, Irvine (United States)); Burman, R.L.; Cady, D.R.; Lloyd-Evans, J.; Nagle, D.E.; Sandberg, V.D.; Sena, A.J. (Los Alamos National Lab., NM (United States)); Chang, C.Y.; Dingus, B.L.; Gupta, S.; Goodman, J.A.; Haines, T.J.; Krakauer, D.A.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States)); Potter, M.E.; Thompson, T.N. (Univ. of California, Irvine (United States) Los Alamos National Lab., NM (United States))

    1992-01-01

    The muon content of extensive air showers observed by the CYGNUS experiment are measured by a well-shielded apparatus originally used for accelerator neutrino detection. Primary identification and counting of muons relies on a 44 m{sup 2} array of multiwire proportional counters that has operated continously since the experiment's inception to the present time. During the experiment's first 20 months, the central detector, consisting of flash-tube chambers, was used for high-resolution reconstruction of muon trajectories for a limited subsample of air showers. The ability to distinguish individual muons in the tracking device enabled verification and calibration of the muon counting by the proportional-counter system. The tracking capability was also used to verify the systematic pointing accuracy of the extensive air-shower arrival direction, as determined, as determined by the CYGNUS array, to better than 0.5{sup 0}. (orig.).

  17. The CDF Central Electromagnetic Calorimeter for Proton - Anti-proton Collision Experiment at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Teruki [Univ. of Tsukuba (Japan)

    1986-06-01

    The CDF central electromagnetic calorimeter modules were calibrated with test beam and cosmic ray muons. It is found that (a) the modules are identical to each other by 1 % on the response map and (b) the uncertaity on the measurement of the energy of showering particle is better than 1.1 % in the 85 % of whole area.

  18. Depth Distribution Of The Maxima Of Extensive Air Shower

    Science.gov (United States)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  19. Parton distribution functions in the context of parton showers

    International Nuclear Information System (INIS)

    Nagy, Zoltán; Soper, Davison E.

    2014-01-01

    When the initial state evolution of a parton shower is organized according to the standard “backward evolution” prescription, ratios of parton distribution functions appear in the splitting probabilities. The shower thus organized evolves from a hard scale to a soft cutoff scale. At the end of the shower, one expects that only the parton distributions at the soft scale should affect the results. The other effects of the parton distributions should have cancelled. This means that the kernels for parton evolution should be related to the shower splitting functions. If the initial state partons can have non-zero masses, this requires that the evolution kernels cannot be the usual (MS)-bar kernels. We work out what the parton evolution kernels should be to match the shower evolution contained in the parton shower event generator DEDUCTOR, in which the b and c quarks have non-zero masses.

  20. Cosmic Rays and Extensive Air Showers

    CERN Document Server

    Stanev, Todor

    2010-01-01

    We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.

  1. Spatial structure of extensive air showers near the axis

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, E N; Gal' perin, M D; Glemba, P Ya [AN SSSR, Moscow. Inst. Yadernykh Issledovanij; Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1978-07-01

    The spatial structure of the extensive air showers has been investigated. The tests have been staged on the 400 scintillation counter installation. It has been shown, that spatial distribution of the extensive air showers in the vicinity of the axis does not vary in case of the Nsub(e) electron number showers in the 10/sup 5/-10/sup 6/ range. The share of the showers having a clear-cut multicore structure is approximately 3% with Nsub(e) >= 2x10/sup 5/.

  2. Effects of massive photons from the dark sector on the muon content in extensive air showers

    Czech Academy of Sciences Publication Activity Database

    Ebr, Jan; Nečesal, Petr

    2013-01-01

    Roč. 725, 4-5 (2013), s. 185-189 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LA08016 Institutional support: RVO:68378271 Keywords : dark matter * bremsstrahlung * extensive air shower * muon production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.019, year: 2013

  3. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  4. Personnel protective equipment total-encapsulating suit decontamination study using shower systems

    International Nuclear Information System (INIS)

    Menkhaus, D.E.

    1991-01-01

    This report documents an experimental evaluation, conducted at the Idaho National Engineering Laboratory, of a shower-based decontamination station for personnel wearing a Level A, total- encapsulating, chemical-protective suit. The decontamination station is used by personnel when egressing a dry, dusty environment contaminated with transuranic radionuclides. This system has the potential to minimize the risk of spreading the contaminants to clean areas. Two types of shower systems were evaluated, a drench shower and a multi-nozzle shower. A total-encapsulating suit, worn by personnel. was contaminated with soil containing 239 Pu. Pre- shower and post-shower contamination samples were collected and visual observations were made to evaluate the ability of the shower system to remove the contaminated dust and to obtain baseline data useful in designing a shower-based personnel decontamination system. 12 figs., 7 tabs

  5. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  6. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  7. Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Mescheryakov, G; Moissenz, P; Petrosian, A; Sergeyev, S; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Senchishin, V; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2007-01-01

    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are...

  8. IAU Meteor Data Center-the shower database: A status report

    Science.gov (United States)

    Jopek, Tadeusz Jan; Kaňuchová, Zuzana

    2017-09-01

    Currently, the meteor shower part of Meteor Data Center database includes: 112 established showers, 563 in the working list, among them 36 have the pro tempore status. The list of shower complexes contains 25 groups, 3 have established status and 1 has the pro tempore status. In the past three years, new meteor showers submitted to the MDC database were detected amongst the meteors observed by CAMS stations (Cameras for Allsky Meteor Surveillance), those included in the EDMOND (European viDeo MeteOr Network Database), those collected by the Japanese SonotaCo Network, recorded in the IMO (International Meteor Organization) database, observed by the Croatian Meteor Network and on the Southern Hemisphere by the SAAMER radar. At the XXIX General Assembly of the IAU in Honolulu, Hawaii in 2015, the names of 18 showers were officially accepted and moved to the list of established ones. Also, one shower already officially named (3/SIA the Southern iota Aquariids) was moved back to the working list of meteor showers. At the XXIX GA IAU the basic shower nomenclature rule was modified, the new formulation predicates ;The general rule is that a meteor shower (and a meteoroid stream) should be named after the constellation that contains the nearest star to the radiant point, using the possessive Latin form;. Over the last three years the MDC database was supplemented with the earlier published original data on meteor showers, which permitted verification of the correctness of the MDC data and extension of bibliographic information. Slowly but surely new database software options are implemented, and software bugs are corrected.

  9. The cosmic ray primary composition between $10^{15}$ and $10^{16}$ ev from Extensive Air Showers electromagnetic and TeV muon data

    CERN Document Server

    Aglietta, M; Ambrosio, M; Antolini, R; Antonioli, P; Arneodo, F; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bergamasco, L; Bernardini, P; Bertaina, M; Bilokon, H; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Castagnoli, C; Castellina, A; Cecchini, S; Cei, F; Chiarella, V; Chiavassa, A; Choudhary, B C; Cini, G; Coutu, S; Cozzi, M; D'Ettorre-Piazzoli, B; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Di Sciascio, G; Erriquez, O; Favuzzi, C; Forti, C; Fulgione, W; Fusco, P; Galeotti, P; Ghia, P L; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iacovacci, M; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Mannocchi, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Morello, C; Mufson, S; Musser, J; Navarra, G; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Saavedra, O; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Stamerra, A; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Trinchero, G C; Vakili, M; Valchierotti, S; Vallania, P; Vernetto, S; Vigorito, C; Walter, C W; Webb, R; 10.1016/j.astropartphys.2003.10.004

    2004-01-01

    The cosmic ray primary composition in the energy range between 10/sup 15/ and 10/sup 16/ eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10/sup 5/ m/sup 2/ collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m/sup 2/ effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N/sub e/) measured by EAS-TOP and the muon number (N /sub mu /) recorded by MACRO, The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees . The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N/sub mu /-N/sub e/ studies. The measurement leads to a primary composition becoming hea...

  10. An analytic parton shower. Algorithms, implementation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian

    2012-06-15

    The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)

  11. An analytic parton shower. Algorithms, implementation and validation

    International Nuclear Information System (INIS)

    Schmidt, Sebastian

    2012-06-01

    The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)

  12. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    Directory of Open Access Journals (Sweden)

    Aspasia Efthimiadou

    2014-01-01

    Full Text Available The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  13. The radio emission pattern of air showers as measured with LOFAR—a tool for the reconstruction of the energy and the shower maximum

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, Gia

    2015-01-01

    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and

  14. Fine-granularity electromagnetic calorimeter using plastic scintillator strip-array

    International Nuclear Information System (INIS)

    Nagano, A.; Yamauchi, S.; Matsunaga, H.; Kim, S.; Matsumoto, T.; Sekiguchi, K.; Uchida, N.; Yamada, Y.; Yamamoto, S.; Evtoukhovitch, P.; Fujii, Y.; Garutti, E.; Iba, S.; Itoh, S.; Kajino, F.; Kalinnikov, V.; Kallies, W.; Kanzaki, J.; Kawagoe, K.; Kishimoto, S.; Miyata, H.; Mzavia, D.; Nakajima, N.; Nakamura, R.; Ono, H.; Samoilov, V.; Sanchez, A.L.C.; Takeshita, T.; Tamura, Y.; Tsamalaidze, Z.

    2006-01-01

    For the future linear collider calorimetry, fine-granularity is indispensable for energy measurements based on particle flow algorithm, which could achieve better energy resolution for jets than the conventional method. To explore the possibility for such a calorimeter using scintillator, an electromagnetic calorimeter test module, made of scintillator-strips and lead plates, was constructed and tested with test beams. Performance of the test module is presented in this article, in terms of the shower profile studies as well as energy and spatial measurements

  15. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    International Nuclear Information System (INIS)

    Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P.

    2008-01-01

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution (η) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10 19.5 eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis

  16. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Inoue, N.; Miyazawa, K. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Vankov, H.P. [Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy, Sofia (Bulgaria)

    2008-01-15

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution ({eta}) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10{sup 19.5}eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis.

  17. A method to measure the γ-ray content in VHE cosmic ray showers

    International Nuclear Information System (INIS)

    Cresti, M.; Peruzzo, L.; Pesci, A.; Saggion, A.; Sartori, G.; Angelini, F.; Bedeschi, F.; Bellazzini, R.; Bertolucci, E.; Chiarelli, G.; Mariotti, M.; Massai, M.M.; Menzione, A.; Smith, D.A.; Stefanini, A.; Zetti, F.; Scribano, A.; Bartoli, B.; Budinich, M.; Liello, F.; Milotti, E.; Biral, A.R.P.; Chinellato, J.A.; Turtelli, A.; Luksys, M.

    1991-01-01

    An experimental technique is presented to determine the effectiveness of methods to tag photon initiated air showers and reject hadron initiated ones. The technique is based on the rate reduction in the Moon direction. With a photon energy threshold below or equal to 1 TeV, with an angular resolution of a few mrad and being insensitive to visible light, the proposed CLUE detector allows a wide and original physics program. In particular the direct measurement of the fraction of primary photons in the continuum of the cosmic ray flux is feasible with adequate statistics in a few months of data taking. (orig.)

  18. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  19. Study of position resolution and electron-hadron separation of electromagnetic calorimeter with a silicon structure

    International Nuclear Information System (INIS)

    Gorodnichev, V.B.; Kachanov, V.A.; Khodyrev, V.Yu.; Kurchaninov, L.L.; Rykali, V.V.; Solovianov, V.L.; Ukhalov, M.N.

    1993-01-01

    The maximum shower silicon strip detectors embedded in a module of sandwich-type electromagnetic calorimeter have been tested. The position resolution at different depths of the silicon structure has been measured. The results on electron-hadron separation obtained as a byproduct in this study are presented, and possibility of their improvement is discussed. 8 refs., 10 figs., 1 tab

  20. What the radio signal tells about the cosmic-ray air shower

    Directory of Open Access Journals (Sweden)

    Werner Klaus

    2013-06-01

    Full Text Available The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution of the electrons in the shower core. This complements the information obtained from surface, fluorescence, and muon detectors and is very useful in getting a comprehensive picture of an air shower.

  1. A method for reconstruction of electromagnetic shower parameters in a calorimeter with a rectangular cellular structure

    International Nuclear Information System (INIS)

    Chernov, N.I.; Ososkov, G.A.; Russakovich, N.A.; Velev, G.

    1989-01-01

    The Shower Hodoscopic Detector (SHD) is an important part of the HYPERON detector, as well as many other up-to-date detectors. It is a calorimeter with rectangular cells. In the present paper we consider a model of the distribution of energy release in the SHD cells and propose analytical solution of the problem of fitting the model distribution to experimental data. The corresponding programme is included in the HYPERON software and allows one to raise the rate of the data processing 8-9 times with about 10% reliability increase. 8 refs.; 8 figs

  2. CAMS newly detected meteor showers and the sporadic background

    Science.gov (United States)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  3. Parton shower evolution with subleading color

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2012-02-01

    Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)

  4. Parton shower evolution with subleading color

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2012-02-15

    Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N{sub c}{sup 2}, where N{sub c}=3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)

  5. Electron shower transverse profile measurement

    International Nuclear Information System (INIS)

    Lednev, A.A.

    1993-01-01

    A method to measure the shower transverse profile is described. Calibration data of the lead-glass spectrometer GAMS collected in a wide electron beam without any additional coordinate detector are used. The method may be used for the measurements in both cellular- and projective-type spectrometers. The results of measuring the 10 GeV electron shower profile in the GAMS spectrometer, without optical grease between the lead-glass radiators and photomultipliers, are approximated with an analytical function. The estimate of the coordinate accuracy is obtained. 5 refs., 8 figs

  6. Evaluation of water content in rock mass by electromagnetic and resistivity tomography. Denjiha, hiteiko tomography ni yoru ganban no gansui jotai hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, T; Inoue, M; Matsumoto, K [Kajima Corp., Tokyo (Japan)

    1993-10-31

    As a method to evaluate the rock mass, electromagnetic tomography and resistivity tomography were tested on the original site. The electromagnetic tomography can tomographically analyze the propagation velocity and initial amplitude damping. The resistivity tomography uses a finite element method from the initial resistivity distribution model and finally gives a model which is nearly equal to the actual resistivity distribution. Both the above tomographic analyses can detect the crushed spot as a low velocity, high damping and low resistivity spot. However, the electromagnetic tomography could detect finer structure than the resistivity tomography. The water content of rock mass was evaluated from the damping coefficient which was given by the amplitude damping tomography of electromagnetic wave. If it is compared with the water content which is given by the dielectric constant of velocity tomography, there partially exists discrepancy between both, because the damping coefficient contains information on cracks which disperse and reflect the electromagnetic wave. Between the resistivity and porosity, there exists a known experimental formula, which was satisfied by the presently given resistivity. 9 refs., 10 figs.

  7. Modelling of radio emission from cosmic ray air showers

    Science.gov (United States)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  8. Microwave detection of air showers with MIDAS

    Czech Academy of Sciences Publication Activity Database

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Boháčová, Martina; Bonifazi, C.; Carvalho, W.R.; de Mello Neto, J.R.T.; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; d´Orfeuil, B.R.; Santos, E.M.; Wayne, S.; Williams, C.; Zas, E.

    2012-01-01

    Roč. 662, Sup. 1 (2012), "S118"-"S123" ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502 Keywords : MIDAS (Microwave Detector of Air Showers) * extensive air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.142, year: 2012

  9. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  10. Statistical modeling in phenomenological description of electromagnetic cascade processes produced by high-energy gamma quanta

    International Nuclear Information System (INIS)

    Slowinski, B.

    1987-01-01

    A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)

  11. The implication of charged particle lateral distribution function for extensive air shower studies

    International Nuclear Information System (INIS)

    Fomin, Yu.A.; Kalmykov, N.N.; Kempa, J.; Kulikov, G.V.; Sulakov, V.P.

    2008-01-01

    The knowledge of charged particle lateral distribution function (LDF) is of prime importance in extensive air shower (EAS) investigations. This function is necessary for the determination of the total number of particles as well as some other classification parameters. The Nishimura-Kamata-Greisen (NKG) function is being actively employed by many researchers in spite of the fact that it was derived under rather crude assumptions (in so-called B Approximation of the electromagnetic cascade theory). Our paper discusses the dependence of the EAS size spectrum on the LDF form adopted and compares two LDFs: the traditional NKG-function and the scaling function suggested recently. Prominence is given to the EAS MSU data but the results of other EAS arrays (AGASA, Yakutsk and KASCADE) are also considered

  12. Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas

    International Nuclear Information System (INIS)

    Mori, W.B.; Decker, C.D.; Leemans, W.P.

    1993-01-01

    The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results

  13. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  14. Fully NLO Parton Shower in QCD

    International Nuclear Information System (INIS)

    Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.

    2011-01-01

    The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)

  15. Delayed hadrons in air showers observed in Chacaltaya

    International Nuclear Information System (INIS)

    Kakimoto, Fumio

    1984-01-01

    Bolivian Air Shower Joint Experiment group has studied high energy interaction by measuring the aspect of vertical growth of air showers of 10 16 eV or more at Mt. Chacaltaya Space Physics Observatory at 5200 m above sea level and atmospheric depth of 550 g/cm 2 . The aspect of vertical growth of electrons from about 100 g/cm 2 to about 400 g/cm 2 of atmospheric depth obtained by the measured results of the time of arrival distribution of air Cherenkov radiation at Mt. Chacaltaya agreed with the one predicted from the enhanced 1/2 power of E model. Since the vertical growth of electrons and muons in about 10 17 eV air showers from the atmospheric apex was difficult to give the unified explanation with known interaction models, the University of Tokyo group has proposed a two-component model for air shower growth. If this second component is formed from heavy particles or heavy quantum state as parents, it should be observed as the component which arrives later in air shower. Thus, the measurement and experiment on the delayed hadrons in air showers have been started. In this paper, the experiment, analysis and results are reported. It is clear that the parent particles which caused such a phenomenon were not pions which were multiply generated by the interaction generally known. Therefore, an exact simulating calculation must be performed and compared with the experimental results to obtain the final conclusion from the measured results of this time. (Wakatsuki, Y.)

  16. Three-dimensional parametrization of photon-initiated high energy showers

    International Nuclear Information System (INIS)

    De Angelis, A.

    1988-01-01

    A three-dimensional parametrization of photon-initiated showers in a homogeneous absorber is presented. The form, suggested by a model assimilating the transverse shower development to a random walk process, displays a simple scaling with the primary energy, and is very suitable for numerical integration. The parameters are explicitly calculated for the case of showers in SF5 lead glass, and the results are compared with the explicit simulation by GEANT3.11. Fields of application are investigated. (orig.)

  17. Shower reconstruction in the CLUE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Bastieri, D.; Bigongiari, C. E-mail: bigongiari@pd.infn.it; Ciocci, M.A.; Cosulich, D.; Cresti, M.; Dokoutchaeva, V.; Kartashov, D.; Liello, F.; Malakhov, N.; Mariotti, M.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Peruzzo, L.; Piccioli, A.; Pegna, R.; Rosso, F.; Sacco, R.; Saggion, A.; Sartori, G.; Sartori, P.; Sbarra, C.; Scribano, A.; Smogailov, E.; Stamerra, A.; Turini, N

    2001-04-01

    The CLUE experiment studies primary cosmic rays (E{>=}2 TeV) by detecting UV (190-230 nm) Cherenkov light produced by atmospheric showers. Since atmospheric absorption in the UV range is higher than in the visible range, CLUE cannot apply algorithms normally used in IACT experiments to determine primary cosmic-ray direction. In this paper, we present a new method developed by CLUE. The algorithm performances were evaluated using simulated showers. Preliminary results of the source analysis using this new method are shown.

  18. Shower reconstruction in the CLUE experiment

    International Nuclear Information System (INIS)

    Bartoli, B.; Bastieri, D.; Bigongiari, C.; Ciocci, M.A.; Cosulich, D.; Cresti, M.; Dokoutchaeva, V.; Kartashov, D.; Liello, F.; Malakhov, N.; Mariotti, M.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Peruzzo, L.; Piccioli, A.; Pegna, R.; Rosso, F.; Sacco, R.; Saggion, A.; Sartori, G.; Sartori, P.; Sbarra, C.; Scribano, A.; Smogailov, E.; Stamerra, A.; Turini, N.

    2001-01-01

    The CLUE experiment studies primary cosmic rays (E≥2 TeV) by detecting UV (190-230 nm) Cherenkov light produced by atmospheric showers. Since atmospheric absorption in the UV range is higher than in the visible range, CLUE cannot apply algorithms normally used in IACT experiments to determine primary cosmic-ray direction. In this paper, we present a new method developed by CLUE. The algorithm performances were evaluated using simulated showers. Preliminary results of the source analysis using this new method are shown

  19. Systematic improvement of parton showers with effective theory

    International Nuclear Information System (INIS)

    Baumgart, Matthew; Marcantonini, Claudio; Stewart, Iain W.

    2011-01-01

    We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1→2 and 1→3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.

  20. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  1. Microwave detection of air showers with MIDAS

    International Nuclear Information System (INIS)

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d’Orfeuil, B.

    2012-01-01

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20 ° ×10 ° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  2. What the radio signal tells about the cosmic-ray air shower

    NARCIS (Netherlands)

    Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus

    2013-01-01

    The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution

  3. Influence of diffractive interactions on cosmic ray air showers

    International Nuclear Information System (INIS)

    Luna, R.; Zepeda, A.; Garcia Canal, C.A.; Sciutto, S.J.

    2004-01-01

    A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non-negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed

  4. Lethal carbon monoxide toxicity in a concrete shower unit.

    Science.gov (United States)

    Heath, Karen; Byard, Roger W

    2018-05-23

    A 47-year-old previously-well woman was found dead on the floor of a shower cubicle on a property in rural South Australia. The impression of the attending doctor and police was of collapse due to natural disease. Although there was significant stenosing coronary artery atherosclerosis found at autopsy, cherry pink discoloration of tissues prompted measurement of the blood carboxyhemoglobin level which was found to be 55%. The source of the gas was a poorly-maintained hot water heater that was mounted on the inside wall of the shower. Construction of the shower using an impermeable concrete rain water tank had caused gas accumulation when the water heater malfunctioned. Had lethal carbon monoxide exposure not been identified others using the same shower unit would also have been at risk.

  5. Hadron shower profile and direction measurements in a segmented calorimeter

    International Nuclear Information System (INIS)

    Auchincloss, P.; Blair, R.; Haber, C.

    1982-01-01

    Recently a test measurement was made to see how well the direction of the shower induced by neutrino interactions could be determined in the lab-E detector at Fermilab. While the calorimeter in lab-E has very coarse sampling compared to the detectors described at this workshop, the method used to sample the shower could be employed in other more finely segmented detectors. The shower angle resolution obtained (36 mr.FWHM) is largely constrained by the sampling. In this test pulse heights in 2mm. steps across the hadron shower at five points along the shower were recorded. This was done with 20 wires and 20 fast ADC's. A standard MWPC system intended to accomplish the same task would have required about 250 wires and 250 ADC channels. This considerable saving in system complexity should be possible for any system where finely segmented pulse height measurements are required

  6. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  7. JASA: A prototype water-Cerenkov air-shower detector

    International Nuclear Information System (INIS)

    Berley, D.; Dion, C.; Goodman, J.A.; Haines, T.J.; Kwok, P.W.; Stark, M.J.; Svoboda, R.C.; Ferguson, H.; Hoffman, C.M.; Horch, E.; Ellsworth, R.W.; Delay, R.S.; Lu, X.; Yodh, G.B.

    1991-01-01

    A small pilot experiment to examine the use of the water-Cerenkov technique for air shower detection was installed near the center of the CYGNUS air shower array. Preliminary results showing general agreement with simulations are presented. Thus, the technique promises to offer significant advances for VHE-UHE γ-ray astronomy

  8. Response of the CALICE Si-W Electromagnetic Calorimeter Physics Prototype to Electrons

    CERN Document Server

    Adloff, C.; Repond, J.; Yu, J.; Eigen, G.; Hawkes, C.M.; Mikami, Y.; Miller, O.; Watson, N.K.; Wilson, J.A.; Goto, T.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Krim, M.; Benyamna, M.; Boumediene, D.; Brun, N.; Carloganu, C.; Gay, P.; Morisseau, F.; Blazey, G.C.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Lima, G.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; D'Ascenzo, N.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Gottlicher, P.; Jung, T.; Karstensen, S.; Korbel, V.; Lucaci-Timoce, A.-I.; Lutz, B.; Meyer, N.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Groll, M.; Haller, J.; Heuer, R.-D.; Richter, S.; Samson, J.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kim, E.J.; Baek, N.I.; Kim, D-W.; Lee, K.; Lee, S.C.; Kawagoe, K.; Tamura, Y.; Bowerman, D.A.; Dauncey, P.D.; Magnan, A.-M.; Yilmaz, H.; Zorba, O.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Faucci Giannelli, M.; Green, M.G.; Salvatore, F.; Bedjidian, M.; Kieffer, R.; Laktineh, I.; Bailey, D.S.; Barlow, R.J.; Kelly, M.; Thompson, R.J.; Danilov, M.; Tarkovsky, E.; Baranova, N.; Karmanov, D.; Korolev, M.; Merkin, M.; Voronin, A.; Frey, A.; Lu, S.; Prothmann, K.; Simon, F.; Bouquet, B.; Callier, S.; Cornebise, P.; Fleury, J.; Li, H.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Ruan, M.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J-C.; Gaycken, G.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Rouge, A.; Vanel, J-Ch.; Videau, H.; Park, K-H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Belmir, M.; Nam, S.W.; Park, I.H.; Yang, J.; Chai, J.-S.; Kim, J.-T.; Kim, G.-B.; Kang, J.; Kwon, Y.-J.

    2009-01-01

    A prototype Silicon-Tungsten electromagnetic calorimeter (ECAL) for an International Linear Collider (ILC) detector was installed and tested during summer and autumn 2006 at CERN. The detector had 6480 silicon pads of dimension 1x1 cm^2. Data were collected with electron beams in the energy range 6 to 45 GeV. The analysis described in this paper focuses on electromagnetic shower reconstruction and characterises the ECAL response to electrons in terms of energy resolution and linearity. The detector is linear to within approximately the 1% level and has a relative energy resolution of (16.6 +- 0.1)/ \\sqrt{E(GeV}) + 1.1 +- 0.1 (%). The spatial uniformity and the time stability of the ECAL are also addressed.

  9. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  10. QCD parton showers and NLO EW corrections to Drell-Yan

    CERN Document Server

    Richardson, P; Sapronov, A A; Seymour, M H; Skands, P Z

    2012-01-01

    We report on the implementation of an interface between the SANC generator framework for Drell-Yan hard processes, which includes next-to-leading order electroweak (NLO EW) corrections, and the Herwig++ and Pythia8 QCD parton shower Monte Carlos. A special aspect of this implementation is that the initial-state shower evolution in both shower generators has been augmented to handle the case of an incoming photon-in-a-proton, diagrams for which appear at the NLO EW level. The difference between shower algorithms leads to residual differences in the relative corrections of 2-3% in the p_T(mu) distributions at p_T(mu)>~50 GeV (where the NLO EW correction itself is of order 10%).

  11. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  12. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  13. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Directory of Open Access Journals (Sweden)

    Thierry Bore

    2016-04-01

    Full Text Available Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  14. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  15. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  16. New measurements and analysis of high-energy muons in cosmic ray extensive air showers

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Ghose, B.; Murkherjee, N.; Sanyal, S.; Chaudhuri, N.; Chhetri, R.; Basak, D.K.

    1991-01-01

    Cosmic ray air shower structure measurements and measurement of density and energy of air shower muons of a wide energy range simultaneously in individual air showers by two magnet spectrographs are presented. The measured muon densities have been used to compare with some of the previous measurements on muon densities in air showers of nearly the same size. The measured muon densities have also been applied for distinguishing between various interaction models and between light and heavier air shower primaries. In the air shower size range 10 4 -10 6 particles the present measurements do not provide evidence for iron primaries and the different interaction models seem not to be distinguishable by air shower observations. (Author)

  17. On the theory of electromagnetic cascades in thin targets and photon multiplicity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Khokonov, M.Kh.

    2015-02-01

    The partial probabilities of different scenarios of electromagnetic shower processes are calculated in analytical form. It has been shown that these results are important for measurements of the photon multiplicities which occur during above 100 GeV electron radiation in oriented crystals or in the case of interaction of relativistic electrons with powerful Petawatt laser beams. Quantitative analysis of optimal experimental conditions has been performed. The results are applicable for above few GeV electrons and gamma quanta.

  18. Parton shower and NLO-matching uncertainties in Higgs boson pair production

    Science.gov (United States)

    Jones, Stephen; Kuttimalai, Silvan

    2018-02-01

    We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.

  19. Parton-shower uncertainties with Herwig 7: benchmarks at leading order

    Energy Technology Data Exchange (ETDEWEB)

    Bellm, Johannes; Schichtel, Peter [Durham University, Department of Physics, IPPP, Durham (United Kingdom); Nail, Graeme [University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Department of Physics, IPPP, Durham (United Kingdom); University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Siodmok, Andrzej [CERN, TH Department, Geneva (Switzerland); Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics in Cracow, Krakow (Poland)

    2016-12-15

    We perform a detailed study of the sources of perturbative uncertainty in parton-shower predictions within the Herwig 7 event generator. We benchmark two rather different parton-shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work. (orig.)

  20. Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order

    CERN Document Server

    Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej

    2016-01-01

    We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.

  1. Catalogue of Meteor Showers and Storms in Korean History

    Directory of Open Access Journals (Sweden)

    Sang-Hyeon Ahn

    2004-03-01

    Full Text Available We present a more complete and accurate catalogue of astronomical records for meteor showers and meteor storms appeared in primary official Korean history books, such as Samguk-sagi, Koryo-sa, Seungjeongwon-ilgi, and Choson-Wangjo-Sillok. So far the catalogue made by Imoto and Hasegawa in 1958 has been widely used in the international astronomical society. The catalogue is based on a report by Sekiguchi in 1917 that is mainly based on secondary history books. We observed that the catalogue has a number of errors in either dates or sources of the records. We have thoroughly checked the primary official history books, instead of the secondary ones, in order to make a corrected and extended catalogue. The catalogue contains 25 records of meteor storms, four records of intense meteor-showers, and five records of usual showers in Korean history. We also find that some of those records seem to correspond to some presently active meteor showers such as the Leonids, the Perseids, and the ¥ç-Aquarids-Orionids pair. However, a large number of those records do not correspond to such present showers. This catalogue we obtained can be useful for various astrophysical studies in the future.

  2. The search for extended air showers at the Jicamarca Radio Observatory

    International Nuclear Information System (INIS)

    Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.

    2009-01-01

    This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.

  3. Comparison of methods for determining the centers of extensive air showers

    International Nuclear Information System (INIS)

    Poirier, J.; Funk, E.; Mikocki, S.; Rohrer, N.

    1987-01-01

    Monte Carlo techniques are used to generate extensive air shower data. Two methods of determining the core location of the shower have been investigated: the method of least squares and the method of maximizing the likelihood function. The likelihood function method gives a precision of shower center location two times better than the χ 2 method for small numbers of detected particles. (orig.)

  4. Effects of subleading color in a parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-12-01

    Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color (LC) approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. In the parton shower event generator DEDUCTOR, we have introduced a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. In this paper, we explore the differences in results between the LC approximation and the LC+ approximation. Numerical comparisons suggest that, for simple observables, the LC approximation is quite accurate. We also find evidence that for gap-between-jets cross sections neither the LC approximation nor the LC+ approximation is adequate.

  5. Nitrogen fluorescence in air for observing extensive air showers

    CERN Document Server

    Keilhauer, B; Fraga, M; Matthews, J; Sakaki, N; Tameda, Y; Tsunesada, Y; Ulrich, A

    2012-01-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of \\emph{Air Fluorescence Workshops} commenced in 2002. At the 8$^{\\rm{th}}$ Air Fluoresc...

  6. Optimizing the energy measurement of the ATLAS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lampl, W.

    2005-12-01

    This PhD-thesis addresses the calibration of the ATLAS electromagnetic calorimeter. ATLAS is a high-energy physics experiment at the Large Hadron Collider (LHC) which is currently under construction at CERN in Geneva. LHC and ATLAS are foreseen to start up in 2007. In summer 2004, an extensive beam-test was carried out. This means that individual detector modules are exposed to a particle beam of known energy in order to verify the detector performance. At this occasion, all ATLAS subdetectors where operated together for the first time. The thesis contains a comprehensive description of the ATLAS electromagnetic calorimeter, the reconstruction software and the test-beam experiment that was carried out at CERN in 2004. Furthermore, the physics of the electromagnetic shower is discussed in detail. Data from the test beam as well as a detailed Monte-Carlo simulation are used to develop a novel energy-reconstruction method for the ATLAS EM calorimeter that achieves an excellent energy resolution (sampling term ∼ 11 %) as well as a very good linearity (< 0.4 %). Data taken during the beam test is also used to verify the accuracy of the simulation and to test the new energy-reconstruction method. (author)

  7. A deep learning-based reconstruction of cosmic ray-induced air showers

    Science.gov (United States)

    Erdmann, M.; Glombitza, J.; Walz, D.

    2018-01-01

    We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.

  8. Modeling of the Atmospheric Response to the Leonid Meteor Showers

    National Research Council Canada - National Science Library

    McNeil, William

    1998-01-01

    ... showers of recent years. The model allows for ablation, deposition, diffusion and chemical dynamics, thereby permitting the computation of the modifications in the layers due to the showers in a self-consistent manner, based...

  9. Matching the Nagy-Soper parton shower at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Manfred [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University (Germany)

    2015-07-01

    We give a short review of the shower concept, first introduced by Nagy and Soper, that includes full quantum correlations in the shower evolution. We also state the current status of implementation of the publicly available shower program Deductor. However, the main focus of the talk is the matching of the shower at next-to-leading order within the MC rate at NLO formalism. Matching is necessary in order to increase the accuracy of theoretical predictions and to employ a hadronization model. We show first results using Deductor in conjunction with the Helac-NLO framework for top quark pair production in association with one hard jet.

  10. Electromagnetic calorimetry with lead fluoride crystals

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Korbel, V.; Meier, K.; Valkar, S.

    1993-10-01

    The properties of four PbF 2 crystals of size 21.21.175 mm 3 were studied with electron and pion beams in the energy range from 1 to 6 GeV. An energy resolution for electrons of 6.3%/√(E/GeV) was achieved with a 2x2 matrix of four PbF 2 crystals, which corresponds to 5.6%/√(E/GeV) when corrected for lateral leakage by Monte Carlo simulations. The deviation from linearity was smaller than 0.5%. The time resolution was found to be better than 0.6 ns. We studied also optical properties, radiation hardness, position resolution and spatial homogeneity. An efficient separation of electromagnetic and hadronic showers was achieved. (orig.)

  11. Cosmic ray air showers in the knee energy region

    Indian Academy of Sciences (India)

    The cosmic ray extensive air showers in the knee energy region have been studied by the North Bengal University array. The differential size spectra at different atmospheric depths show a systematic shift of the knee towards smaller shower size with the increase in atmospheric depth. The measured values of spectral ...

  12. Electromagnetic hypersensitivity (EHS) in the media - a qualitative content analysis of Norwegian newspapers.

    Science.gov (United States)

    Huiberts, Ashild; Hjørnevik, Mari; Mykletun, Arnstein; Skogen, Jens C

    2013-01-01

    Electromagnetic hypersensitivity (EHS) is a condition characterized by experiencing symptoms after perceived exposure to weak electromagnetic fields (EMFs). There is substantial debate concerning the aetiology of EHS, but experimental data indicate no association between EHS and actual presence of EMFs. Newspapers play a key role in shaping peoples' understanding of health-related issues. The aim of this study was to describe the content of newspaper articles concerning aetiology and treatment of EHS. Qualitative content analysis of newspaper articles. Norwegian newspaper articles were identified using a comprehensive electronic media archive. Norwegian newspaper articles published between 1 February 2006 and 11 August 2010. Statements coded according to source of information, whether it was pro or con scientific evidence on EHS aetiology, and type of intervention presented as treatment option for EHS. Of the statements concerning EHS aetiology (n = 196), 35% (n = 69) were categorized as pro evidence, 65% (n = 127) as con evidence. Of the statements about EHS interventions assessed, 78% (n = 99) were categorized as 'radiance reduction', 4% (n = 5) as 'complementary medicine', and 18% (n = 23) as 'other'. Cognitive behavioural therapy (CBT) and psychotropic drugs were never presented as possible treatment options for EHS. The newspaper media discourse of EHS aetiology and recommended treatment interventions is much in conflict with the current evidence in the field. The majority of statements concerning aetiology convey that EHS is related to the presence of weak EMFs, and radiance reduction as the most frequently conveyed measure to reduce EHS-related symptoms.

  13. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  14. Controlling inclusive cross sections in parton shower + matrix element merging

    International Nuclear Information System (INIS)

    Plaetzer, Simon

    2012-11-01

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  15. An in-premise model for Legionella exposure during showering events

    Science.gov (United States)

    An exposure model was constructed to predict the critical Legionella densities in an engineered water system that might result in infection from inhalation of aerosols containing the pathogen while showering. The model predicted the Legionella densities in the shower air, water ...

  16. Construction and Performance of a Liquid Argon Calorimeter for use in Experiment E-706 at the Fermi National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DeSoi, William Edward [Rochester U.

    1990-01-01

    The subject of this thesis is a liquid argon calorimeter developed by the E-706 collaboration. This device was used in measuring the energy content of showers produced by the interaction of nucleons with 530 GeV/c pions at the Fermi National Accelerator Laboratory. A description of the calorimeter's construction and design considerations precedes the analysis of its performance, which is the central topic to be discussed. The calorimeter was found to have an intrinsic energy for electromagnetic showers of 14.5%/$\\sqrt{E}$ and for hadronic showers a resolution of 183%/$\\sqrt{E}$. The position resolution of showers for the calorimeter was found to be 1.0 mm or better for energies greater than 2.0 GeV.

  17. A common understanding of several cosmic ray anomalies

    International Nuclear Information System (INIS)

    Yamdagni, N.

    1986-12-01

    A common understanding of several Cosmic ray anomalies points to a threshold in the electromagnetic shower development. Above the threshold, the electromagnetic shower frequently contains hadrons. This anomalous shower development can explain the muon signal from Cygnus X-3 observed by underground detectors. (author)

  18. The Effect of New Shower Facilities on Physical Activity Behaviors of Employees: A Quasi-experiment.

    Science.gov (United States)

    Nehme, Eileen K; Pérez, Adriana; Ranjit, Nalini; Amick, Benjamin C; Kohl, Harold W

    2017-02-01

    This quasi-experimental study assessed the effects of new workplace showers on physical activity behaviors in a sample of downtown employees in Austin, TX. The study design was quasi-experimental with 2 comparison groups. Data were collected via internet-based surveys before and 4 months after shower installation at 1 worksite. Differences across study groups in the ranks of change in past-week minutes of physical activity from baseline to follow-up were assessed. Adjusted odds ratios and 95% confidence intervals for reporting an increase of ≥10 min past-week physical activity and workday physical activity among those with new showers and existing showers relative to those with no showers were also assessed. No significant differences in changes in physical activity from baseline to follow-up across study groups were found. One-quarter of participants with new workplace showers and 46.9% of those with existing workplace showers at baseline reported ever using the showers. This prospective study did not find significant changes in employee physical activity 4 months after installation of worksite showers. Worksite shower users were highly active at baseline, suggesting a possible early adopter effect, with potential for diffusion. Future studies may benefit from longer exposure times and larger samples.

  19. Study on the performance of electromagnetic particle detectors of LHAASO-KM2A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Hou, Chao; Cao, Zhen [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, Jingfan; Feng, Cunfeng; Hanapia, Erlan [Shandong University, Jinan 250100 (China); Gong, Guanghua [Tsinghua University, Beijing 100083 (China); Liu, Jia [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Lv, Hongkui [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shaoru [Hebei Normal University, Shijiazhuang 050024 (China); Zhu, Chengguang [Shandong University, Jinan 250100 (China)

    2017-02-11

    The electromagnetic particle detectors (EDs) for one square kilometer detector array (KM2A) of large high altitude air shower observation (LHAASO) are designed to measure the densities and arrival times of secondary particles in extensive air showers (EASs). ED is a type of plastic scintillator detector with an active area of 1 m{sup 2}. This study investigates the design and performance of prototype ED. Approximately 20 photoelectrons are collected by the 1st dynode of a photomultiplier tube (PMT). The prototype ED exhibited good detection efficiency and time resolution. The detection for the wide dynamic particle density varying from 1 to 10 000 particles/m{sup 2} is realized with the design of the PMT divider for the readout of both the anode and 6th dynode. - Highlights: • Detailed description for the design of ED in LHAASO. • Good performances of prototype ED are obtained according to the measuring results. • Detailed studies on the factors which influence the properties of ED.

  20. Reweighting QCD matrix-element and parton-shower calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)

    2016-11-15

    We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)

  1. Monte-Carlo simulation of hadronic showers. Part 3: The ANI prototype calorimeter

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.; Mamidjanyan, E.A.; Sanossyan, Kh.N.

    1992-01-01

    Hadronic showers initiated by 0.5, 1, 2, 4, 5, 7, 10, 12, 15, 20, 22 and 30 eV incident protons in the ANI prototype calorimeter are simulated. The energy deposition (longitudinal and lateral) for these showers are calculated. Lateral shower profiles for 0.5, 5 and 20 TeV primary energies are presented and parametrized. The leakage from the calorimeter is estimated. 19 refs

  2. Monte-Carlo simulation of hadronic showers. Part 3: The ANI prototype calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Amatuni, Ts A; Mamidjanyan, E A; Sanossyan, Kh N

    1993-12-31

    Hadronic showers initiated by 0.5, 1, 2, 4, 5, 7, 10, 12, 15, 20, 22 and 30 eV incident protons in the ANI prototype calorimeter are simulated. The energy deposition (longitudinal and lateral) for these showers are calculated. Lateral shower profiles for 0.5, 5 and 20 TeV primary energies are presented and parametrized. The leakage from the calorimeter is estimated. 19 refs.

  3. Microwave detection of air showers with the MIDAS experiment

    International Nuclear Information System (INIS)

    Privitera, Paolo; Alekotte, I.; Alvarez-Muniz, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Reyes, L.C.; Rouille d'Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.

    2011-01-01

    Microwave emission from Extensive Air Showers could provide a novel technique for ultra-high energy cosmic rays detection over large area and with 100% duty cycle. We describe the design, performance and first results of the MIDAS (MIcrowave Detection of Air Showers) detector, a 4.5 m parabolic dish with 53 feeds in its focal plane, currently installed at the University of Chicago.

  4. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  5. Investigation of ionization losses of shower electrons in electron-photon shower developed in liquid xenon by gamma quanta in the energy range 1600-3400 MeV

    International Nuclear Information System (INIS)

    Okhrymenko, L.S.; Slowinski, B.; Strugalski, Z.; Sredniawa, B.

    1975-01-01

    Results of the investigation of differential distributions of ionization losses and the corresponding fluctuations for shower electrons in the longitudinal development of electron-photon showers produced by gamma-quanta of energies Esub(γ)=1600-3400 MeV in liquid xenon are given. A simple and convenient from the methodical point of view two-parametric function, approximating the observed distribution has been obtained. The independence of the fluctuations of ionization losses of shower electrons on the energy of gamma-quanta in the investigated interval of Esub(γ) values has been found

  6. Measurement of parton shower observables with OPAL

    Directory of Open Access Journals (Sweden)

    Fischer N.

    2016-01-01

    Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.

  7. Implementing NLO DGLAP evolution in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Höche, Stefan; Krauss, Frank; Prestel, Stefan

    2017-10-01

    We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.

  8. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  9. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    CERN Document Server

    Bilki, B.; Xia, L.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A. -I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J. -Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H.L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; van Doren, B.; Wilson, G.W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Antequera, J. Berenguer; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti Di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Poschl, R.; Raux, L.; Richard, F.; Pöschl, R.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-28

    Showers produced by positive hadrons in the highly granular CALICE scintillatorsteel analogue hadronic calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  10. The wavefront of the radio signal emitted by cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  11. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Marcin; Hameren, Andreas van; Kutak, Krzysztof; Sapeta, Sebastian [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Jung, Hannes [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); DESY, Hamburg (Germany); Serino, Mirko [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2018-02-15

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p{sub t} dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization. (orig.)

  12. The time development of hadronic showers and the T3B experiment

    International Nuclear Information System (INIS)

    Soldner, Christian

    2013-01-01

    The compact linear collider (CLIC) is a future linear e + e - collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as γγ→hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the T3B experiment (short for Tungsten Timing Test Beam) was designed and constructed. It is optimized to measure the time development and the contribution of delayed energy depositions within hadronic cascades. The T3B experiment consists of 15 scintillator cells assembled in a strip. The scintillation light generated within the cells is detected by novel silicon photomultiplier whose signal is read out with fast oscilloscopes providing a sampling rate of 1.25 GHz. This strip was positioned behind two different calorimeter prototypes of the CALICE collaboration which use a tungsten and steel (for comparison) absorber structure. T3B was part of the CALICE test beam campaign 2010/2011 carried out at the PS and SPS at CERN and acquired data on hadronic showers in an energy range of 2-300 GeV. A test beam optimized data acquisition software was developed from scratch. With the development and application of a novel waveform decomposition algorithm, the time of arrival of

  13. The time development of hadronic showers and the T3B experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soldner, Christian

    2013-06-06

    The compact linear collider (CLIC) is a future linear e{sup +}e{sup -} collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as {gamma}{gamma}{yields}hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the T3B experiment (short for Tungsten Timing Test Beam) was designed and constructed. It is optimized to measure the time development and the contribution of delayed energy depositions within hadronic cascades. The T3B experiment consists of 15 scintillator cells assembled in a strip. The scintillation light generated within the cells is detected by novel silicon photomultiplier whose signal is read out with fast oscilloscopes providing a sampling rate of 1.25 GHz. This strip was positioned behind two different calorimeter prototypes of the CALICE collaboration which use a tungsten and steel (for comparison) absorber structure. T3B was part of the CALICE test beam campaign 2010/2011 carried out at the PS and SPS at CERN and acquired data on hadronic showers in an energy range of 2-300 GeV. A test beam optimized data acquisition software was developed from scratch. With the development and application of a novel waveform decomposition algorithm

  14. Parton-shower matching systematics in vector-boson-fusion WW production

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Michael [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-05-15

    We perform a detailed analysis of next-to-leading order plus parton-shower matching in vector-boson-fusion WW production including leptonic decays. The study is performed in the Herwig 7 framework interfaced to VBFNLO 3, using the angular-ordered and dipole-based parton-shower algorithms combined with the subtractive and multiplicative-matching algorithms. (orig.)

  15. Water Use Patterns in Vietnamese Hotels: Modeling Toilet and Shower Usage

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2016-03-01

    Full Text Available Water saving is a key issue in rapidly developing countries, such as Vietnam, that face various water resource management challenges. This study investigated water-use patterns in a hotel in Ho Chi Minh City in Vietnam. It aimed to quantify the efficiency of water-saving devices through modeling toilet and shower usage patterns, including water consumption. The shift in hourly consumption of cold and hot water was also identified. Analysis revealed that, on average, a full toilet flush occurs 3.3 times/day, a half flush 3.0 times/day, water consumption due to shower usage is 48.1 L/day, showering time is 7.3 min/day and the shower water temperature is 37.7 °C. Shifting levels of hot and cold water use revealed high activity in the morning time and that there are two peaks, occurring in the morning and at night.

  16. What do we learn about hadronic interactions at ultrahigh energies from extensive air shower observations?

    International Nuclear Information System (INIS)

    Rebel, H.

    2002-01-01

    The interpretation of extensive air shower (EAS) observations needs a sufficiently accurate knowledge of the interactions driving the cascade development in the atmosphere. While the electromagnetic and weak interaction parts do not provide principal problems, the hadronic interaction is a subject of uncertainties and debates, especially in the ultrahigh energy region extending the energy limits of man made accelerators and experimental knowledge from collider experiments. Since the EAS development is dominantly governed by soft processes, which are presently not accessible to a perturbative QCD treatment, one has to rely on QCD inspired phenomenological interaction models, in particular on string-models based on the Gribov-Regge theory like QGSJET, VENUS and SYBILL. Recent results of the EAS experiments KASCADE are scrutinized in terms of such models used as generators in the Monte Carlo EAS simulation code CORSIKA. (author)

  17. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  18. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  19. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  20. Study of the hadron shower profiles with the ATLAS tile hadron calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Rusakovich, N.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Rumyantsev, V.S.; Nessi, M.

    1997-01-01

    The lateral and longitudinal profiles of the hadronic showers detected by ATLAS iron-scintillator tile hadron calorimeter with longitudinal tile configuration have been investigated. The results are based on 100 GeV pion beam data. Due to the beam scan provided many different beam impact locations with cells it is succeeded to obtain detailed picture of transverse shower behavior. The underlying radial energy densities for four depths and for overall calorimeter have been reconstructed. The three-dimensional hadronic shower parametrization has been suggested

  1. Lagrangian evaluation of convective shower characteristics in a convection-permitting model

    Directory of Open Access Journals (Sweden)

    Erwan Brisson

    2018-01-01

    Full Text Available Convection-permitting models (CPMs have proven their usefulness in representing precipitation on a sub-daily scale. However, investigations on sub-hourly scales are still lacking, even though these are the scales for which showers exhibit the most variability. A Lagrangian approach is implemented here to evaluate the representation of showers in a CPM, using the limited-area climate model COSMO-CLM. This approach consists of tracking 5‑min precipitation fields to retrieve different features of showers (e.g., temporal pattern, horizontal speed, lifetime. In total, 312 cases are simulated at a resolution of 0.01 ° over Central Germany, and among these cases, 78 are evaluated against a radar dataset. The model is able to represent most observed features for different types of convective cells. In addition, the CPM reproduced well the observed relationship between the precipitation characteristics and temperature indicating that the COSMO-CLM model is sophisticated enough to represent the climatological features of showers.

  2. New shower maximum trigger for electrons and photons at CDF

    International Nuclear Information System (INIS)

    Amidei, D.; Burkett, K.; Gerdes, D.; Miao, C.; Wolinski, D.

    1994-01-01

    For the 1994 Tevatron collider run, CDF has upgraded the electron and photo trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube spikes

  3. New shower maximum trigger for electrons and photons at CDF

    International Nuclear Information System (INIS)

    Gerdes, D.

    1994-08-01

    For the 1994 Tevatron collider run, CDF has upgraded the electron and photon trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube discharge

  4. Air shower measurements with LOFAR

    NARCIS (Netherlands)

    Horneffer, A.; Bähren, L.; Buitink, S.; Falcke, H.; Hörandel, J.R.; Kuijpers, J.; Lafebre, S.; Nigl, A.; Scholten, O.; Singh, K.

    2009-01-01

    Air showers from cosmic rays emit short, intense radio pulses. The Low Frequency Array (LOFAR) is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be

  5. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    Science.gov (United States)

    Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    Purpose The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Methods Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were randomized (1:1:1:1) to a (hot-to-) cold shower for 30, 60, 90 seconds or a control group during 30 consecutive days followed by 60 days of showering cold at their own discretion for the intervention groups. The primary outcome was illness days and related sickness absence from work. Secondary outcomes were quality of life, work productivity, anxiety, thermal sensation and adverse reactions. Results 79% of participants in the interventions groups completed the 30 consecutive days protocol. A negative binomial regression model showed a 29% reduction in sickness absence for (hot-to-) cold shower regimen compared to the control group (incident rate ratio: 0.71, P = 0.003). For illness days there was no significant group effect. No related serious advents events were reported. Conclusion A routine (hot-to-) cold shower resulted in a statistical reduction of self-reported sickness absence but not illness days in adults without severe comorbidity. Trial Registration Netherlands National Trial Register NTR5183 PMID:27631616

  6. A new way of air shower detection: measuring the properties of cosmic rays with LOFAR

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2015-01-01

    High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the

  7. Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming

    2016-12-15

    We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.

  8. Monte-Carlo simulation of hadronic showers. Part 1: Comparison with experiment

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.; Mamidjanyan, E.A.; Sanossyan, Kh.N.

    1992-01-01

    Hadronic showers are simulated by the MARS 10 code and compared with various experimental results obtained at high-energy accelerators. Good agreement between the experiment and the simulations is observed. MARS 10 is a fast and reliable instrument for numerical studies of the average characteristics of hadronic showers. 16 refs

  9. Efficacy of Warm Showers on Postpartum Fatigue Among Vaginal-Birth Taiwanese Women: A Quasi-Experimental Design.

    Science.gov (United States)

    Hsieh, Ching-Hsing; Chen, Chien-Lan; Chung, Feng-Fang; Lin, Su-Ying

    2017-05-01

    Postpartum fatigue is one of the most common complaints among women following childbirth. As a postpartum ritual practice, Taiwanese women refrain from taking showers while "doing the month." However, warm showers are the systemic application of moist heat, and they maintain physical hygiene, stimulate blood circulation, mitigate discomfort, and provide relaxation. As Taiwanese society becomes increasingly receptive to scientific and contemporary health care practice, more and more women choose to take warm showers after childbirth. The purpose of this study was to evaluate the efficacy of warm showers on postpartum fatigue among vaginal-birth women in Taiwan. This was a two-group quasi-experimental design. Women took showers in warm water with temperatures ranging between 40 °C and 43 °C for approximately 20 minutes. Postpartum women's fatigue is measured using the 10-item Postpartum Fatigue Scale (PFS). The intervention effect was analyzed using a generalized estimating equation (GEE) model. The study population consisted of 358 vaginal-birth postpartum Taiwanese women aged 20-43 years. Postpartum women who took warm showers showed improvements from their pretest to posttest mean scores of postpartum fatigue compared to postpartum women who did not take warm showers. Warm showers helped to reduce postpartum fatigue among vaginal-birth women during the study period. Nurses have the unique opportunity to provide the intervention to Taiwanese women who have vaginal birth to help them relieve postpartum fatigue with warm showers while "doing the month" without the taboo of no-showering customary practices in the early postpartum period.

  10. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  11. The CYGNUS extensive air-shower experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Delay, R.S.; Dion, G.M.; Lu, X.Q.; Vishwanath, P.R.; Yodh, G.B. (Univ. of California, Irvine (United States)); Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Gupta, S.; Krakauer, D.A.; Stark, M.J.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Burman, R.L.; Butterfield, K.; Cady, R.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Sinnis, C.; Stanislaus, S.; Thompson, T.N.; Wilkinson, C.A.; Zhang, W. (Los Alamos National Lab., NM (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States))

    1992-01-01

    The CYGNUS extensive air-shower experiment is described. The design criteria, construction and operation details, and performance characteristics are presented. A discussion of the data analysis techniques is given. Finally, several enhancements and improvements in the apparatus are described. (orig.).

  12. Application of an image intensifier to the study on hadrons in air shower, 4

    International Nuclear Information System (INIS)

    Tsushima, Itsuro; Kawasumi, Norio; Hashimoto, Katsumi; Machida, Masaharu

    1975-01-01

    As the apparatus for observing cosmic ray air shower, the particle detection apparatus combining spark chamber, scintillator and photomultiplier tube is frequently used, but the exact detection of particle number is impossible with it when particle density is large. The authors have carried out the experiment to measure nuclear active particles in air shower and to grasp the central part of air shower as energy flow by utilizing an image intensifier tube. On the roof of building S, a laboratory was built, and a core detector of 2 m x 2 m area, 13 AS detectors of 0.25 m 2 and an AS detector of 1 m 2 were installed. The gate of the II was opened by utilizing coincidence pulses, and the position and amount of scintillation in the core detector was taken into a camera through the II. The time of observation was 289 hours, and the time of II operation was 113 hours. Total number of air shower recorded was 218 cases, and the centers of 120 cases among them were determined in the AS detectors at four corners. The centers of 39 cases were within the area of the core detector. In the coincident counting of air shower and burst carried out in the present experiment, the total delay time from the arrival of air shower to the gate pulse actuating the II was 1.6 sec. The core of air shower of about 10 6 size and 1.3 age was caught by this method. The problems for future are the determination of core position for the air shower of smaller size, and the meaning of spot images of II. (Kako, I.)

  13. Extensive air showers

    CERN Document Server

    Rao, M V S

    1997-01-01

    Ultrahigh energy cosmic rays carry information about their sources and the intervening medium apart from providing a beam of particles for studying certain features of high energy interactions currently inaccessible at man-made accelerators. They can at present be studied only via the extensive air showers (EAS's) they generate while passing through the Earth's atmosphere, since their fluxes are too low for the experiments of limited capability flown in balloons and satellites. The EAS is generated by a series of interactions of the primary cosmic ray and its progeny with the atmospheric nucle

  14. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  15. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Berat, C.

    2013-01-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km 2 . Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported

  16. Radio detection of extensive air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Berat, C., E-mail: berat@lpsc.in2p3.fr [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38000 Grenoble (France)

    2013-08-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km{sup 2}. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported.

  17. A background-free detector for cosmic ray showers in the atmosphere

    International Nuclear Information System (INIS)

    Menzione, A.; Angelini, F.; Bedeschi, F.; Bellazzini, R.; Bertolucci, E.; Chiarelli, G.; Mariotti, M.; Massai, M.M.; Smith, D.A.; Stefanini, A.; Zetti, F.; Anassontzis, E.; Resvanis, L.; Voulgaris, G.; Ypsilantis, T.; Tripp, R.; Torres, S.; Biral, A.R.P.; Chinellato, J.A.; Turtelli, A.; Bartoli, B.; Sinnis, G.; Weekes, D.; Cresti, M.; Peruzzo, L.; Pesci, A.; Saggion, A.; Sartori, G.; Luksys, M.; Chuang, K.W.; Kerrick, A.; O'Neil, T.J.; Tumer, T.; Zych, A.D.; Bicchi, P.; Meucci, M.; Moi, L.; Paoletti, R.; Rigato, M.; Scribano, A.; Budinich, M.; Liello, F.; Milotti, E.; Cence, R.J.; Hayes, C.; Hudson, J.; Kelley, L.; Learned, J.G.; Paluselli, D.; Stenger, V.J.

    1992-01-01

    A detector of new design is planned to detect Cherenkov light in high energy cosmic ray showers. It is based on the detection of the middle-UV radiation by TMAE photosensitive chambers, giving detailed imaging of the shower, combined with the beneficial background screening of the ozone in the upper atmosphere. This allows us to greatly improve the duty-cycle, the sensitivity and the range of observations with respect to traditional Cherenkov experiments in the visible. A further advantage is the achievable big angular aperture which makes it possible to search for new sources with an efficiency similar to extensive air shower experiments. Details of the technique and achievable physics goals are presented. (orig.)

  18. Hadronic top-quark pair-production with one jet and parton showering

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, Peter [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2011-10-15

    We present a calculation of heavy-flavor production in hadronic collisions in association with one jet matched to parton shower Monte Carlo programs at next-to-leading order in perturbative QCD. Top-quark decays are included and spin correlations in the decay products are taken into account. The calculation builds on existing results for the radiative corrections to heavy-quark plus one jet production and uses the POWHEG BOX for the interface to the parton shower programs PYTHIA or HERWIG. A broad phenomenological study for the Large Hadron Collider and the Tevatron is presented. In particular we study - as one important sample application - the impact of the parton shower on the top-quark charge asymmetry. (orig.)

  19. Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Fliescher, Stefan, E-mail: fliescher@physik.rwth-aachen.de [3. Physikalisches Institut A, RWTH Aachen, University (Germany)

    2012-01-11

    AERA - the Auger Engineering Radio Array - is currently being set up at the southern site of the Pierre Auger Observatory. AERA will explore the potential of the radio-detection technique to cosmic ray induced air showers with respect to the next generation of large-scale surface detectors. As AERA is co-located with the low-energy enhancements of the Pierre Auger Observatory, the observation of air showers in coincidence with the Auger surface and fluorescence detector will allow to study the radio emission processes in detail and to calibrate the radio signal. Finally, the combined reconstruction of shower parameters with three independent techniques promises new insights into the nature of cosmic rays in the transition region from 10{sup 17} to 10{sup 19} eV. Besides the detection of coherent radiation in the MHz frequency range, the setups AMBER - Air-shower Microwave Bremsstrahlung Experimental Radiometer - and MIDAS - MIcrowave Detection of Air Showers - prepare to check the possibility to detect air showers due the emission of molecular bremsstrahlung in the GHz range at the Auger site. This article presents the status of the radio-detection setups and discusses their physics potential as well as experimental challenges. Special focus is laid on the first stage of AERA which is the startup to the construction of a 20 km{sup 2} radio array.

  20. Sensitivity of Pigment Content of Banana and Orchid Tissue Culture Exposed to Extremely Low Frequency Electromagnetic Fiel

    OpenAIRE

    Prihatini, Riry; Saleh, Norihan Mohamad

    2016-01-01

    Natural exposure of extremely low frequency electromagnetic field (ELF-EMF) occurs in the environment and acts as one of the abiotic factors that affect the growth and development of organisms. This study was conducted to determine the effect of ELF-EMF on the tissue cultured banana and slipper orchid chlorophyll content as one of the indicators in measuring plant photosynthetic capacity. Four days old banana (Musa sp. cv. Berangan) corm and seven days old slipper orchid (Paphiopedilum rothsc...

  1. Shower fractal dimension analysis in a highly-granular calorimeter

    CERN Document Server

    Ruan, M

    2014-01-01

    We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.

  2. Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Caratelli, David [Columbia U.

    2018-01-01

    This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel ! e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from 0 decay in the 30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.

  3. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  4. Summary report of neutral detector subgroup

    International Nuclear Information System (INIS)

    Akerlof, C.; Bensinger, J.; Donaldson, G.

    1977-01-01

    The advantages and disadvantages of calorimeters for use at ISABELLE are discussed including hadron calorimeters, liquid argon calorimeters, uranium scintillator calorimeters, electromagnetic shower detectors, and iron plate calorimeters. A calorimeter is described that is suitable for electromagnetic and hadronic events and is constructed with a front section of narrow Pb strips to start and develop the electromagnetic shower. A section of U towers to contain hadronic showers follows. This calorimeter would shield out U radioactivity and measure the energy and position of all particles except neutrinos and muons

  5. Heat recovery from shower water; Warmteterugwinning uit douchewater

    Energy Technology Data Exchange (ETDEWEB)

    Heidemans, J. [Hei-Tech, Emmen (Netherlands)

    2011-09-15

    With a payback period of several years, heat recovery from shower water in swimming pools but also in, for example, apartment buildings are an attractive form of energy saving. Possible are savings from 30 to 50% on energy, which is tested and proved by measurements in the heat exchanger of showers in a swimming pool in Denmark. [Dutch] Met een terugverdientijd van enkele jaren is warmteterugwinning uit douchewater in zwembaden maar ook in bijvoorbeeld sporthallen en appartementengebouwen een aantrekkelijke vorm van energiebesparing. Er kan een besparing worden gerealiseerd van 30 tot 50% op het energiegebruik van het douchewater. Metingen aan een douchewarmtewisselaar in een zwembad in Denemarken tonen dit aan.

  6. Modelling of an RF plasma shower

    NARCIS (Netherlands)

    Atanasova, M.; Carbone, E.A.D.; Mihailova, D.B.; Benova, E.; Degrez, G.; Mullen, van der J.J.A.M.

    2012-01-01

    A capacitive radiofrequency (RF) discharge at atmospheric pressure is studied by means of a time-dependent, two-dimensional fluid model. The plasma is created in a stationary argon gas flow guided through two perforated electrodes, hence resembling a shower. The inner electrode, the electrode facing

  7. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  8. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  9. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Czech Academy of Sciences Publication Activity Database

    Eigen, G.; Price, T.; Watson, N.K.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2016-01-01

    Roč. 11, Jul (2016), 1-37, č. článku P06013. ISSN 1748-0221 R&D Projects: GA MŠk LG14033; GA MŠk 7E12050 Institutional support: RVO:68378271 Keywords : hadron shower s * scintillator calorimeters * simulation of shower s Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  10. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    NARCIS (Netherlands)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-01-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving

  11. The Data Acquisition System of the Stockholm Educational Air Shower Array

    Science.gov (United States)

    Hofverberg, P.; Johansson, H.; Pearce, M.; Rydstrom, S.; Wikstrom, C.

    2005-12-01

    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server running a MySQL database. Air shower data can be visualised in real-time using a Java-applet client. It is also possible to query the database and manage detector stations from the client. In this paper, the design and performance of the system are described

  12. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Science.gov (United States)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  13. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory

  14. In vitro determination of skin decontamination efficacy using a water shower

    International Nuclear Information System (INIS)

    Reifenrath, W.G.

    1990-01-01

    The ability of a water shower to remove radioactivity from excised pig skin exposed to radiolabeled diisopropyl fluorophosphate and n-butyl 2-chloroethyl sulfide was determined. Skin samples were decontaminated 15 minutes after chemical exposures (1 mg/cm 2 ) and the distribution of radioactivity was determined 1 hour after decontamination. Compared to controls (no decontamination), shower decontamination reduced the evaporative loss of radioactivity from the skin surface after decontamination or reduced radioactive residues on the skin surface. Shower decontamination of skin at 15 minutes could not prevent penetration of radiolabel into the viable layers of skin or into fluid bathing the dermal surface of the skin, but was beneficial in reducing skin surface concentrations, which may lead to further exposure or contamination

  15. Monte-Carlo simulation of hadronic shower Part 2: The PION calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Amatuni, Ts A; Mamidjanyan, E A; Sanossyan, Kh N

    1993-12-31

    Hadronic showers for four energy intervals from 0,5 to 5 TeV have been simulated using the MARS 10 code and the experimental energy and angle distributions of cosmic ray hadrons incident on the PION iron-ionization calorimeter. The longitudinal energy depositions are compared with the experimental results and satisfactory agreement is observed. The average characteristics of hadronic showers initiated by 0,3, 0,5, 1, 2,5, 10 and 20 TeV incident protons, neutrons and pions are studied and parametrizations for the longitudinal and transverse shower profiles are obtained. A new formula for the lateral profile is proposed. The leakage and albedo from the PION calorimeter and the energy spectra of the leakage and albedo particles are also estimated. 29 refs.

  16. E143 experiment. Shower counter calibration

    International Nuclear Information System (INIS)

    Fonvieille, H.; Grenier, P.

    1994-01-01

    The calibration procedure for the shower counters used in the E143 experiment is described. It has been developed during january 1994 in view of being used for the quick analysis. The method is explained and the results obtained on a given run are presented. (author)

  17. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    Science.gov (United States)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  18. Necessity and effect of combating Legionella pneumophila in municipal shower systems.

    Directory of Open Access Journals (Sweden)

    Ragnhild Wiik

    Full Text Available The objective was to obtain research-based, holistic knowledge about necessity and effect of practiced measures against L. pneumophila in municipal shower systems in Stavanger, Norway. The effects of hot water treatment and membrane-filtering were investigated and compared to no intervention at all. The studies were done under real-world conditions. Additionally, a surveillance pilot study of municipal showers in Stavanger was performed. The validity of high total plate count (TPC as an indication of L. pneumophila was evaluated. A simplified method, named "dripping method", for detection and quantification of L. pneumophila was developed. The sensitivity of the dripping method is 5 colony-forming units of L. pneumophila/ml. The transference of L. pneumophila from shower water to aerosols was studied. Interviews and observational studies among the stakeholders were done in order to identify patterns of communication and behavior in a Legionella risk perspective. No substantial effects of the measures against L. pneumophila were demonstrated, except for a distally placed membrane filter. No significant positive correlation between TPC and L. pneumophila concentrations were found. L. pneumophila serogroup 2-14 was demonstrated in 21% of the 29 buildings tested in the surveillance pilot. Relatively few cells of L. pneumophila were transferred from shower water to aerosols. Anxiety appeared as the major driving force in the risk governance of Legionella. In conclusion, the risk of acquiring Legionnaires' disease from municipal shower systems is evaluated as low and uncertain. By eliminating ineffective approaches, targeted Legionella risk governance can be practiced. Risk management by surveillance is evaluated as appropriate.

  19. A shower look-up table to trace the dynamics of meteoroid streams and their sources

    Science.gov (United States)

    Jenniskens, Petrus

    2018-04-01

    Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.

  20. Interpretation of the cosmic-ray air shower signal in Askaryan radio detectors

    NARCIS (Netherlands)

    de Vries, Krijn D.; Buitink, Stijn; van Eijndhoven, Nick; Meures, Thomas; O'Murchadha, Aongus; Scholten, Olaf

    2017-01-01

    We discuss the radio emission from a cosmic-ray air shower propagating in air before it hits an air-ice boundary after which it completes its propagation inside the ice. The in-air emission, the in-ice emission, as well as the transition radiation from the shower crossing the boundary is considered.

  1. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  3. Matching fully differential NNLO calculations and parton showers

    International Nuclear Information System (INIS)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba

    2013-11-01

    We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.

  4. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  5. A Bayesian statistical method for particle identification in shower counters

    International Nuclear Information System (INIS)

    Takashimizu, N.; Kimura, A.; Shibata, A.; Sasaki, T.

    2004-01-01

    We report an attempt on identifying particles using a Bayesian statistical method. We have developed the mathematical model and software for this purpose. We tried to identify electrons and charged pions in shower counters using this method. We designed an ideal shower counter and studied the efficiency of identification using Monte Carlo simulation based on Geant4. Without having any other information, e.g. charges of particles which are given by tracking detectors, we have achieved 95% identifications of both particles

  6. The VENUS detector at TRISTAN

    International Nuclear Information System (INIS)

    Sugimoto, Shojiro

    1983-01-01

    The design of the VENUS detector is described. In this paper, emphasis is placed on the central tracking chamber and the electromagnetic shower calorimeters. Referring to computer simulations and test measurements with prototypes, the expected performance of our detector system is discussed. The contents are, for the most part, taken from the VENUS proposal /2/. (author)

  7. Comet showers and Nemesis, the death star

    International Nuclear Information System (INIS)

    Hills, J.G.

    1984-01-01

    The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed

  8. Radio morphing - towards a full parametrisation of the radio signal from air showers

    Science.gov (United States)

    Zilles, A.; Charrier, D.; Kotera, K.; Le Coz, S.; Martineau-Huynh, O.; Medina, C.; Niess, V.; Tueros, M.; de Vries, K.

    2017-12-01

    Over the last decades, radio detection of air showers has been established as a detection technique for ultra-high-energy cosmic-rays impinging on the Earth's atmosphere with energies far beyond LHC energies. Today’s second-generation of digital radio-detection experiments, as e.g. AERA or LOFAR, are becoming competitive in comparison to already standard techniques e.g. fluorescence light detection. Thanks to a detailed understanding of the physics of the radio emission in extensive air showers, simulations of the radio signal are already successfully tested and applied in the reconstruction of cosmic rays. However the limits of the computational power resources are easily reached when it comes to computing electric fields at the numerous positions requested by large or dense antenna arrays. In the case of mountainous areas as e.g. for the GRAND array, where 3D shower simulations are necessary, the problem arises with even stronger acuity. Therefore we developed a full parametrisation of the emitted radio signal on the basis of generic shower simulations which will reduce the simulation time by orders of magnitudes. In this talk we will present this concept after a short introduction to the concept of the radio detection of air-shower induced by cosmic rays.

  9. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    International Nuclear Information System (INIS)

    Apostolakis, J; Burkhardt, H; Ivanchenko, V N; Asai, M; Bagulya, A; Grichine, V; Brown, J M C; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Jacquemier, J; Guatelli, S; Incerti, S; Kadri, O; Maire, M; Urban, L; Pandola, L; Sawkey, D; Toshito, T; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed. (paper)

  10. Atmospheric showers reconstruction and air fluorescence measurement for the study of ultra-energetic cosmic rays in the framework of EUSO project

    International Nuclear Information System (INIS)

    Colin, Pierre

    2005-01-01

    The EUSO project (Extreme Universe Space Observatory) is an innovative concept to measure the UHECR (Ultra High Energy Cosmic ray) spectrum by observing from space the light (air fluorescence and Cerenkov radiation) produced in the atmosphere by EAS (Extensive Air Shower). After an overview of the scientific context and an EUSO project description, a reconstruction method of EAS seen from space is presented. This new method enable one to reconstruct the UHECR parameters (Energy, direction, X_m_a_x) using only the fluorescence signal shape (without extra information). This method is very efficient for the horizontal EAS. The second part of this thesis deals with the study and the measurement of the air fluorescence with the MACFLY experiment (Measurement of Air Cerenkov and Fluorescence Light Yield). After a state of the art on the air fluorescence knowledge, a model of FLY (Florescence Light Yield) proportional to the Energy released in air is proposed. The experiment MACFLY and the data analysis method are described in detail. The experiment is composed of two devices. The first (Macfly1) which measures the fluorescence produced by only one particle measure the FLY of electron of 1.5 MeV (radioactive source), 20 GeV and 50 GeV (CERN test beam). The second (Macfly2) which measure the fluorescence produced by an electromagnetic shower, was the first experiment to measure the shower age dependence of the FLY. The pressure dependence was also measured by the two devices. Thanks to a GEANT4 simulation program, we compare our measurements with the FLY models. The assumption of the proportionality between the FLY and the energy deposited has been checked. One finds the same result with Macfly1 and Macfly2. In the air at 950 hPa, 23 deg. C and 0% of moisture one obtains: FLY=19 ± 4 photons/MeV. (author) [fr

  11. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NARCIS (Netherlands)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-01-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio

  12. Liquid metal degassing in electromagnetic mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomov, A I; EHL' -FAVAKHRI, KAMAL' -ABD-RABU MOKHAMED [LENINGRADSKIJ POLITEKHNICHESKIJ INST. (USSR)

    1977-01-01

    Experimental results for laboratory and industrial conditions are presented showing the favourable effect of electromagnetic mixing on hot metal degassing process. It has been found that the intensity and duration of the mixing process increase with the degree of iron and steel degassing. Initiation of cavitation phenomena during hot metal electromagnetic mixing is intensified because of the presence of alien inclusions in the metal reducing the tensile strength of the liquid metal. This is the most substantial factor contributing to the gas content in the process of electromagnetic mixing.

  13. Systematic improvement of QCD parton showers

    CERN Document Server

    Winter, Jan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Zapp, Korinna

    2012-01-01

    In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron--positron collisions and by reporting on recent developments as accomplished within the Sherpa event generation framework.

  14. An electron-hadron separator for digital sampling calorimeters

    International Nuclear Information System (INIS)

    Winter, K. de; Geiregat, D.; Vilain, P.; Wilquet, G.; Bergsma, F.; Binder, U.; Burkard, H.; Capone, A.; Ereditato, A.; Flegel, W.; Grote, H.; Nieuwenhuis, C.; Oeveras, H.; Palladino, V.; Panman, J.; Piredda, G.; Winter, K.; Zacek, G.; Zacek, V.; Bauche, T.; Beyer, R.; Blobel, V.; Buesser, F.W.; Foos, C.; Gerland, L.; Niebergall, F.; Staehelin, P.; Tadsen, A.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Rosanov, A.; Lippich, W.; Nathaniel, A.; Staude, A.; De Pedis, D.; Di Capua, E.; Dore, U.; Loverre, P.F.; Rambaldi-Frenkel, A.; Santacesaria, R.; Zanello, D.

    1989-01-01

    A fast and effective algorithm for electromagnetic and hadronic shower separation has been developed for the digital sampling calorimeter of the CHARM II experiment. It is based on a generalization of the minimal spanning tree concept and can be easily applied to other existing calorimeters. In this particular application, which requires the highest efficiency for retaining electromagnetic showers, one gets, for 99% efficiency, a rejection factor of the order of 100 for hadronic showers. (orig.)

  15. Matching fully differential NNLO calculations and parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.

  16. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    NARCIS (Netherlands)

    Buijze, Geert A.; Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were

  17. The differences in delay times for air showers initiated by 100 TeV gamma rays and protons

    International Nuclear Information System (INIS)

    Mikocki, S.; Poirier, J.; Linsley, J.; Consiglio Nazionale delle Ricerche, Palermo; Wrotniak, A.; Maryland Univ., College Park

    1987-01-01

    The purpose of this study is to investigate whether there are any differences in the time delay distributions between showers initiated by gamma rays and by protons. The results of Monte Carlo calculations of atmospheric showers initiated by gamma rays and protons at an energy of 100 TeV show systematic differences. These differences are negligible at small distances from the core of the showers; at larger distances the effects become large. However, at large distances the particle densities are small at an energy of 100 TeV and the subsequent statistical fluctuations would make an identification of gamma-ray showers unreliable. However, these large effects should be included in corrections for the curvature of gamma-ray and proton shower fronts. (author)

  18. Study of a prototype electromagnetic calorimeter in the CALICE experiment under the Linear Collider International project

    International Nuclear Information System (INIS)

    Benyamna, Mustapha

    2010-01-01

    This thesis is conducted within the framework of the International Linear Collider and the international collaboration so called CALICE. This work focuses on a study of a prototype of the electromagnetic calorimeter. This prototype has been used in various test period at CERN, DESY and FNAL. The author presents two subjects of study: The first part is about the instrumentation for the resolution of the square event discovered during the taking data in 2006 at CERN. To explain the origin and solve the problem caused by crosstalk between peripherals pixels and the guard ring that surrounds the sensor, two studies were made: a simulation study using SILVACO software and a test bench to study several kinds of sensors. The second part of this thesis is a study on the identification of photons using estimators that are related to the parameters of the electromagnetic pattern of the shower. (author)

  19. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  20. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    Science.gov (United States)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-07-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  1. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    International Nuclear Information System (INIS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-01-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source

  2. Study of the lateral and temporal distributions of particles in the extensive air shower front

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I. M.; Mitrica, B.; Badea, A. F.; Rebel, H.; Haungs, A.; Sima, O.

    2004-01-01

    To understand the influence of the primary particle (mass and energy) on the development of the Extensive Air Showers (EAS) a study has been performed on simulated events. A number of showers have been simulated using CORSIKA simulation program for different primary particles (p, C, Fe) and different energies (5.62x10 16 and 10 17 eV). The arrival time distributions of particles arriving at ground (detector level) have been studied for different primary energies and masses. Arrival time quartiles have been calculated and compared for different primaries. Arrival time distributions for different distances to shower core and different threshold energies have been compared. To obtain information about the influence of the primary particle on the shape of the lateral distribution of detected shower particles, the simulated lateral density distribution has been approximated with a parametric Lateral Density Function (LDF). The interaction of the shower particles with the detectors has been simulated and the energy deposited in the detectors has been evaluated. This method was used for obtaining the reconstructed (equivalent to the experimental) lateral density distribution, afterwards approximated with the same LDF. To check the quality of the fit and to investigate the sensitivity to fitting conditions, the study was done for three radial ranges, 40-200 m, 350-650 m, 0-1000 m. The total number of particles in the shower front and the truncated number of particles (in the fitting range) have been reconstructed to be compared with the real number of particles from CORSIKA simulations and to investigate the potential use of these parameters in a multiparametric study of extensive air showers. (authors)

  3. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2014-01-15

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  4. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)

    2014-06-30

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  5. Ordering variable for parton showers

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  6. Measurement of photon showers in lead produced by electrons of 150 MeV

    International Nuclear Information System (INIS)

    Goeringer, H.; Eyss, H.J. von; Schoch, B.

    1976-01-01

    The photon energy spectra induced by 150 MeV electrons in lead were measured in the energy range from 40 MeV up to the primary electron energy. The target thickness was varied between 0.1 and 2.5 radiation lengths X 0 . The photons were analyzed by use of a technique based on deuteron photodisintegration. Differential and integral shower spectra are presented and compared with Monte Carlo calculations of Nagel and Messel et al., both interpolated to our primary energy of 150 MeV. The measured spectra show good agreement with these Monte Carlo calculations for the thickest target of 2.5X 0 and with calculated bremsstrahlung spectra for the thinnest target of 0.1X 0 . Considerable discrepancies, however, are found for medium target thicknesses in the range 0 . Around the shower maxima, the shower spectra are narrower and the maxima are shifted about 0.3-0.4X 0 to lower target thicknesses, furthermore the number of photons at the shower maxima are up to 50% higher than calculated. (Auth.)

  7. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J.; /Buenos Aires, CONICET; Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Buenos Aires, CONICET; Allen, J.; /New York U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U.; Anchordoqui, L.; /Wisconsin U., Milwaukee; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  8. QUANTITATIVE ESTIMATION OF VOLUMETRIC ICE CONTENT IN FROZEN GROUND BY DIPOLE ELECTROMAGNETIC PROFILING METHOD

    Directory of Open Access Journals (Sweden)

    L. G. Neradovskiy

    2018-01-01

    Full Text Available Volumetric estimation of the ice content in frozen soils is known as one of the main problems in the engineering geocryology and the permafrost geophysics. A new way to use the known method of dipole electromagnetic profiling for the quantitative estimation of the volumetric ice content in frozen soils is discussed. Investigations of foundation of the railroad in Yakutia (i.e. in the permafrost zone were used as an example for this new approach. Unlike the conventional way, in which the permafrost is investigated by its resistivity and constructing of geo-electrical cross-sections, the new approach is aimed at the study of the dynamics of the process of attenuation in the layer of annual heat cycle in the field of high-frequency vertical magnetic dipole. This task is simplified if not all the characteristics of the polarization ellipse are measured but the only one which is the vertical component of the dipole field and can be the most easily measured. Collected data of the measurements were used to analyze the computational errors of the average values of the volumetric ice content from the amplitude attenuation of the vertical component of the dipole field. Note that the volumetric ice content is very important for construction. It is shown that usually the relative error of computation of this characteristic of a frozen soil does not exceed 20% if the works are performed by the above procedure using the key-site methodology. This level of accuracy meets requirements of the design-and-survey works for quick, inexpensive, and environmentally friendly zoning of built-up remote and sparsely populated territories of the Russian permafrost zone according to a category of a degree of the ice content in frozen foundations of engineering constructions.

  9. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2009-12-15

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  10. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-12-01

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  11. Combining states without scale hierarchies with ordered parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, Stefan [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2017-09-15

    We present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. The resulting algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHC data. (orig.)

  12. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    Science.gov (United States)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  13. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  14. The angular distributions of charged secondaries in electromagnetic and hadronic extensive air showers at 10, 100, 1000 and 10 000 TeV

    International Nuclear Information System (INIS)

    Trzupek, A.; Mikocki, S.; Gress, J.; Kochocki, J.; Poirier, J.

    1991-01-01

    The angular distributions of secondary electrons and muons in extensive air showers (EAS) initiated by 10, 100, 1000 and 10 000 TeV gamma rays and protons are obtained with the aid of a new, hybrid Monte Carlo simulation method. In this method, a three-dimensional program is constructed out of two existing software codes: SHOWERSIM and EGS4. This procedure allows for fast, yet precise, calculations down to low secondary particle energies. The dependence of the angular distributions for different threshold energies is presented for 1000 TeV primary gamma ray and proton energy. (author)

  15. The lateral distribution of muons in showers at 40 mwe underground

    International Nuclear Information System (INIS)

    Bergamasco, L.; Castagnoli, C.; Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.; Freiburg Univ.

    1975-01-01

    The multiplicity distribution of muon showers at 40 mwe underground was studied with a 4 m 2 spark chamber telescope. The observed frequencies deviate systematically from those calculated with the 'standard' lateral distributions of Vernov or of Greisen. Agreement can be attained if an enhancement of the muon component at small shower sizes is assumed, in accordance with the assumptions of a two-component theory of cosmic ray origin. It is improved by introducing an age dependence of the lateral structure function. (orig.) [de

  16. The ARGUS electron-photon calorimeter. Pt. 1

    International Nuclear Information System (INIS)

    Drescher, A.; Graewe, B.; Hofmann, W.; Markees, A.; Matthiesen, U.; Pollmann, D.; Spengler, J.; Wegener, D.

    1982-05-01

    The performance of the ARGUS shower counters in detecting electromagnetic showers in the energy range 10...45 MeV is reported. When these results are considered with earlier measurements at GeV energies, it is seen that the device behaves almost like an ideal calorimeter over three decades in energy, with good linearity and a 1/√E dependence of the energy resolution. The detection threshold is at least as low as 10 MeV. Characteristics of low-energy electromagnetic showers, such as longitudinal shower profile and fraction of energy visible in the scintillator were measured, and are compared with results obtained from the EGS Monte-Carlo code. (orig)

  17. Fluctuation of shower front structure: measurements, Esub(p) approximately 1018 eV

    International Nuclear Information System (INIS)

    Barrett, M.L.; Watson, A.A.; Wild, P.; Wilson, J.G.

    1975-01-01

    The work of Watson and Wilson (1974) on the introduction of a parameter of shower-front development fluctuations has been extended using a purpose-built recording system yielding results over an increased distance range from the shower axis. An exhaustive study of possible spurious sources of the observed features has been undertaken, and none of significance have been identified. The values of the fluctuation parameter now given are considered well-established. (orig.) [de

  18. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  19. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Directory of Open Access Journals (Sweden)

    Corstanje Arthur

    2017-01-01

    Full Text Available The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n – 1 leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

  20. Using water to cool cattle: behavioral and physiological changes associated with voluntary use of cow showers.

    Science.gov (United States)

    Legrand, A; Schütz, K E; Tucker, C B

    2011-07-01

    Water is commonly used to cool cattle in summer either at milking or over the feed bunk, but little research has examined how dairy cows voluntarily use water separate from these locations. The objectives were to describe how and when dairy cattle voluntarily used an overhead water source separate from other resources, such as feed, and how use of this water affected behavioral and physiological indicators of heat stress. Half of the 24 nonlactating cattle tested had access to a "cow shower" composed of 2 shower heads activated by a pressure-sensitive floor. All animals were individually housed to prevent competition for access to the shower. Over 5 d in summer (air temperature=25.3±3.3°C, mean ± standard deviation), cattle spent 3.0±2.1 h/24h in the shower, but considerable variability existed between animals (individual daily values ranged from 0.0 to 8.2 h/24h). A portion of this variation can be explained by weather; shower use increased by 0.3h for every 1°C increase in ambient temperature. Cows preferentially used the shower during the daytime, with 89±12% of the time spent in the shower between 1000 and 1900 h. Respiration rate and skin temperature did not differ between treatments [53 vs. 61 breaths/min and 35.0 vs. 35.4°C in shower and control cows, respectively; standard error of the difference (SED)=5.6 breaths/min and 0.49°C]. In contrast, body temperature of cows provided with a shower was 0.2°C lower than control cows in the evening (i.e., 1800 to 2100h; SED=0.11°C). Cows with access to a shower spent half as much time near the water trough than control animals, and this pattern became more pronounced as the temperature-humidity index increased. In addition, cattle showed other behavioral changes to increasing heat load; they spent less time lying when heat load index increased, but the time spent lying, feeding, and standing without feeding did not differ between treatments. Cows had higher respiration rate, skin temperature, and body

  1. Reconstruction of extensive air showers using the MIDAS molecular Bremsstrahlung detector

    International Nuclear Information System (INIS)

    Castro, Andre Ramos de; Bonifazi, Carla; Santos, Edivaldo Moura; Soares, Elvis do Amaral; Mello Neto, Joao Ramos Torres de; Almeida, Rogerio Menezes de

    2011-01-01

    Full text: The weakly ionized plasma created in the atmosphere after the passage of an Extensive Air Shower (EAS) gives rise to the emission of continuous radiation known as Molecular Bremsstrahlung Radiation (MBR) as free electrons scatter off neutral nitrogen (and less frequently oxygen) molecules. The isotropic and unpolarized nature of MBR rises the possibility of an EAS detection similar to that using fluorescence telescopes to capture the ultraviolet light emitted by the ionized nitrogen molecules. The MBR emission, however, falls into the centimeter wavelength range, requiring the use of radio/microwave antennas instead of optical telescopes. In order to test the feasibility of the technique, the MIDAS (Microwave Detection of Air Showers) Collaboration has built a prototype detector where a parabolical reflector illuminates a multi-pixel camera of commercial TV satellite C-band (3.4-4.2 GHz) feeds. This work addresses the geometrical reconstruction of EAS induced by Ultra High Energy Cosmic Rays (UHECR) using the MIDAS detector. The reconstruction chain is similar to that currently applied to the Auger Fluorescence detector events. We have simulated the shower MBR emission assuming two different scenarios: coherent and incoherent emission, i.e., radiation intensity scaling quadratically and linearly with the energy of the primary particle. The MIDAS prototype detector's response is then simulated. Finally, given the simulated events in real data format, we reconstruct the shower's arrival direction, including direction uncertainties and estimate the expected rate of observed events. (author)

  2. Ultra-low temperature process by ion shower doping technique for poly-Si TFTs on plastics

    International Nuclear Information System (INIS)

    Kim, Jong-Man; Lim, Huck; Kim, Do-Young; Jung, Ji-Sim; Kwon, Jang-Yeon; Hong, Wan-Shick; Noguchi, Takashi

    2006-01-01

    An ion doping process was performed by using a basic ion shower system. After ion doping and subsequent activation of the dopants in the Si film by excimer laser annealing (ELA), we studied the crystallinity of the Si surface using UV-reflectance spectroscopy and the sheet resistance by using 4-point probe measurements. To prevent excessive temperature increase on the plastic substrate during ion shower doping, the plasma shower was applied in a series of short pulses. As a result, dopant ions were efficiently incorporated and were activated into the a-Si film on plastic substrate after ELA. The sheet resistance decreased with increase of actual doping time, which corresponds to the incorporated dose. Also, we confirmed a distinct relationship between the crystallinity and the sheet resistance. This work shows that pulsed ion shower doping is a promising technique for ultra-low-temperature poly-Si TFTs on plastic substrates.

  3. Test results on reuse of reclaimed shower water - A summary

    Science.gov (United States)

    Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.

    1989-01-01

    Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.

  4. An air shower array for LOFAR: LORA

    NARCIS (Netherlands)

    Thoudam, S.; Aar, G. V.; Akker, M. V. D.; Bähren, L.; Corstanje, A.; Falcke, H.; Hörandel, J. R.; Horneffer, A.; James, C.; Mevius, M.; Scholten, O.; Singh, K.; Ter Veen, S.

    2011-01-01

    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are

  5. Formation and past evolution of the showers of 96P/Machholz complex

    Science.gov (United States)

    Abedin, Abedin; Wiegert, Paul; Janches, Diego; Pokorný, Petr; Brown, Peter; Hormaechea, Jose Luis

    2018-01-01

    In this work we model the dynamical evolution of meteoroid streams of comet 96P/Machholz, and the largest member of the Marsden sunskirters, comet P/1999 J6. We simultaneously fit the characteristics of eight meteor showers which have been proposed to be linked to the complex, using observations from a range of techniques - visual, video, TV and radar. The aim is to obtain a self-consistent scenario of past capture of a large comet into a short-period orbit, and its subsequent fragmentation history. Moreover, we also aim to constrain the dominant parent of these showers. The fit of our simulated shower characteristics to observations is consistent with the scenario of a capture of a proto-comet 96P/Machholz by Jupiter circa 20000 BCE, and a subsequent major breakup around 100-950 CE which resulted in the formation of the Marsden group of comets. We find that the Marsden group of comets are not the immediate parents of the daytime Arietids and Northern and Southern δ-Aquariids, as previously suggested. In fact, the hypothesis that the Northern δ-Aquariids are related to the Marsden group of comets is not supported by this study. The bulk of the observational characteristics of all eight showers can be explained by meteoroid ejection primarily from comet 96P/Machholz between 10000 BCE and 20000 BCE. Assuming the Marsden group of comets originated between 100 CE-950 CE, we conclude that sunskirting comets contribute mainly to the meteoroid stream near the time of the peak of the daytime Arietids, Southern δ-Aquariids, κ-Velids. Finally, we find that the meteor showers identified by Babadzhanov and Obrubov (1992) as the α-Cetids, the Ursids and Carinids correspond to the daytime λ-Taurids, the November ι-Draconids or December α-Draconids and the θ-Carinids.

  6. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Dembinski, Hans Peter

    2009-01-01

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  7. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans Peter

    2009-12-03

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  8. Do cosmic ray air showers initiate lightning? : A statistical analysis of cosmic ray air showers and lightning mapping array data

    NARCIS (Netherlands)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-01-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow,

  9. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  10. Cascades from nu_E above 1020 eV

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape alters the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.

  11. Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process

    International Nuclear Information System (INIS)

    Yanagida, Nobuyoshi; Koide, Hiroo

    2006-01-01

    To reduce tensile residual stress in a welded region, we developed a new welding method that applies a water-shower behind the welding torch. When this method is applied to welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of interpass temperature on the residual stress. And we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, specimens welded with or without water shower cooling were manufactured. Residual stresses of the specimens were experimentally measured. It was found that tensile residual stresses were generated on the surface of the welds and those were reduced in the case that the water-shower was applied. These measurement results agree well with the FEM analyses. It can therefore be concluded that the water-shower cooling during welding is appropriate for reducing tensile residual stress in austenitic stainless steel welding. (author)

  12. Survey costs associated with the replacement of electric showers for solar heaters

    International Nuclear Information System (INIS)

    Belchior, Fernando Nunes; Araujo, Jose Euripedes de

    2010-01-01

    This paper aims to explain the benefits of replacing electric shower for solar water heaters, and a consequent drop in peak demand for electric power generation and residential consumption in the economy. For this, will be shown the lifting of solar radiation per square meter in Brazil, studied in 250 locations, the most representative in terms of solar energy in this country. The costs presented are associated with replacement of 5 million, 10 million and 20 million electric showers. (author)

  13. Top-pair production and decay at NLO matched with parton showers

    International Nuclear Information System (INIS)

    Campbell, John M.; Ellis, R. Keith; Nason, Paolo; Re, Emanuele

    2015-01-01

    We present a next-to-leading order (NLO) calculation of tt¯ production in hadronic collisions interfaced to shower generators according to the POWHEG method. We start from an NLO result from previous work, obtained in the zero width limit, where radiative corrections to both production and decays are included. The POWHEG interface required an extension of the POWHEG BOX framework, in order to deal with radiation from the decay of resonances. This extension is fully general (i.e. it can be applied in principle to any process considered in the zero width limit), and is here applied for the first time. In order to perform a realistic simulation, we introduce finite width effects using different approximations, that we validated by comparing with published exact NLO results. We have interfaced our POWHEG code to the PYTHIA8 shower Monte Carlo generator. At this stage, we dealt with novel issues related to the treatment of resonances, especially with regard to the initial scale for the shower that needs to be set appropriately. This procedure affects, for example, the fragmentation function of the b quark, that we have studied with particular attention. We believe that the tool presented here improves over previous generators for all aspects that have to do with top decays, and especially for the study of issues related to top mass measurements that involve B hadrons or b jets. As a result, the work presented here also constitutes a first step towards a fully consistent matching of NLO calculations involving intermediate resonances decaying into coloured particles, with parton showers

  14. Summing threshold logs in a parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2016-05-01

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  15. Evidence for a Standardized Preadmission Showering Regimen to Achieve Maximal Antiseptic Skin Surface Concentrations of Chlorhexidine Gluconate, 4%, in Surgical Patients.

    Science.gov (United States)

    Edmiston, Charles E; Lee, Cheong J; Krepel, Candace J; Spencer, Maureen; Leaper, David; Brown, Kellie R; Lewis, Brian D; Rossi, Peter J; Malinowski, Michael J; Seabrook, Gary R

    2015-11-01

    To reduce the amount of skin surface bacteria for patients undergoing elective surgery, selective health care facilities have instituted a preadmission antiseptic skin cleansing protocol using chlorhexidine gluconate. A Cochrane Collaborative review suggests that existing data do not justify preoperative skin cleansing as a strategy to reduce surgical site infection. To develop and evaluate the efficacy of a standardized preadmission showering protocol that optimizes skin surface concentrations of chlorhexidine gluconate and to compare the findings with the design and methods of published studies on preoperative skin preparation. A randomized prospective analysis in 120 healthy volunteers was conducted at an academic tertiary care medical center from June 1, 2014, to September, 30, 2014. Data analysis was performed from October 13, 2014, to October 27, 2014. A standardized process of dose, duration, and timing was used to maximize antiseptic skin surface concentrations of chlorhexidine gluconate applied during preoperative showering. The volunteers were randomized to 2 chlorhexidine gluconate, 4%, showering groups (2 vs 3 showers), containing 60 participants each, and 3 subgroups (no pause, 1-minute pause, or 2-minute pause before rinsing), containing 20 participants each. Volunteers used 118 mL of chlorhexidine gluconate, 4%, for each shower. Skin surface concentrations of chlorhexidine gluconate were analyzed using colorimetric assay at 5 separate anatomic sites. Individual groups were analyzed using paired t test and analysis of variance. Preadmission showers using chlorhexidine gluconate, 4%. The primary outcome was to develop a standardized approach for administering the preadmission shower with chlorhexidine gluconate, 4%, resulting in maximal, persistent skin antisepsis by delineating a precise dose (volume) of chlorhexidine gluconate, 4%; duration (number of showers); and timing (pause) before rinsing. The mean (SD) composite chlorhexidine gluconate

  16. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    Science.gov (United States)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-12-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving towards the Earth's surface at the speed of light. The electric fields that exists in thunderclouds induces electric currents in the plasma cloud that emit radio waves. The radio footprint for intensity, linear and circular polarization thus contains the finger print of the atmospheric electric fields along the path of the air shower.Here we report on the analysis of many cosmic-ray radio footprints as have been measured at LOFAR, a dense array of simple radio antennas (several thousands of dual-polarized antennas) primarily developed for radio-astronomy observations. We show that this method can be used to determine the charge structure in thunderclouds and discuss the accuracy of the method. We have observed seasonal dependencies.

  17. The time development of hadronic showers and the T3B experiment

    CERN Document Server

    Soldner, Christian

    The compact linear collider (CLIC) is a future linear e+e- collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as gamma gamma -> hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the...

  18. A parton shower based on factorization of the quantum density matrix

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    We present rst results from a new parton shower event generator, DEDUCTOR. Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, DEDUCTOR implements only a standard spin-averaged treatment of spin in parton splittings. Although DEDUCTOR implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we can compare to the generator PYTHIA. The algorithms used incorporate a virtuality based shower ordering parameter and massive initial state bottom and charm quarks.

  19. Sunshine and light showers

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Sunshine and light showers are forecast for the Oscar winning actor Cate Blanchett as she increasingly greens her lifestyle. She is installing solar panels to power her Sydney home and has cut her showers back to a maximum of four minutes to help save water in drought-stricken Australia. And that is only a beginning, for she is also greening her main place of work, is campaigning on solar power and climate change, and has committed to other changes in her life to save energy and water. Blanchett - who sprang to fame in the title role of the film Elisabeth ten years ago - learned conservation when growing up in Melbourne in the 1970s from her grandmother who had lived through the Great Depression and, as a result, insisted in recycling and on letting nothing go to waste. She grew up to win an Oscar for her role in Martin Scorsese's The Aviator, amid a host of other top awards, and was spurred into environmental activism by reading about her country's growing water crisis. She says: 'As I see it, there is no greater challenge we face as a species than dealing with climate change and its effects. I care about it because of my children. I want to safeguard their future. It is an inescapable problem, but also provides us with an opportunity to change for the better. To change the way we consume, the way we think, and the way we behave. By assuming responsibility, we protect and respect the generations behind us.' Together with her husband, playwright Andrew Upton, she has started by setting out to 'greenovate' their home: powering it with solar energy, using natural air flows rather than air conditioning to cool it, and recycling grey water. The couple also plan to extend the improvements to the Sydney Theatre Company, where they are joint artistic directors, with the aim of running off-grid for a whole season. 'I really love a refreshing shower,' she says, but has installed a timer to stop them after four minutes. Indeed she tries to make them even shorter

  20. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Hasankiadeh, Q. Dorosti; Falcke, H.; Horandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a

  1. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  2. Monte-Carlo simulation for the showers in the DELPHI (LEP) hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Tkachev, L.G.

    1984-01-01

    Monte-Carlo simulation for shower formation is performed for a hadron calorimeter consisting of iron layers with inserted plastic streamer tubes. It is shown that the dead zone effect localized on anode wires in the places of streamer formation changes essentially both the calorimeter response and the effective transversal size of the shower. The response variation with the value and direction of the magnetic field corresponding to DELPHI hadron calorimeter achieves 2O%, which causes the necessity of additional calorimeter calibration in the magnetic field

  3. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  4. Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters

    Science.gov (United States)

    Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin

    2018-01-01

    Physicists at the Large Hadron Collider (LHC) rely on detailed simulations of particle collisions to build expectations of what experimental data may look like under different theoretical modeling assumptions. Petabytes of simulated data are needed to develop analysis techniques, though they are expensive to generate using existing algorithms and computing resources. The modeling of detectors and the precise description of particle cascades as they interact with the material in the calorimeter are the most computationally demanding steps in the simulation pipeline. We therefore introduce a deep neural network-based generative model to enable high-fidelity, fast, electromagnetic calorimeter simulation. There are still challenges for achieving precision across the entire phase space, but our current solution can reproduce a variety of particle shower properties while achieving speedup factors of up to 100 000 × . This opens the door to a new era of fast simulation that could save significant computing time and disk space, while extending the reach of physics searches and precision measurements at the LHC and beyond.

  5. The ultimate air shower observatory

    International Nuclear Information System (INIS)

    Jones, L.W.

    1981-01-01

    The possibility of constructing an international air shower observatory in the Himalayas is explored. A site at about 6500 m elevation (450 g/cm 2 ) would provide more definitive measurements of composition and early interaction properties of primaries above 10 16 eV than can be achieved with existing arrays. By supplementing a surface array with a Fly's Eye and muon detectors, information on the highest energy cosmic rays may be gained which is not possible in any other way. Potential sites, technical aspects, and logistical problems are explored

  6. Electromagnetic De-Shaling of Coal

    NARCIS (Netherlands)

    De Jong, T.P.R.; Mesina, M.B.; Kuilman, W.

    2003-01-01

    The efficiency with which an electromagnetic sensor array is able to distinguish density and ash content of coal and shale mixtures was determined experimentally. The investigated sensor was originally designed for automatic metal detection and sorting in industrial glass recycle processing, where

  7. Summing threshold logs in a parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)

    2016-10-05

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  8. Expected Increase of Activity of Eta Aquariids Meteor Shower

    Science.gov (United States)

    Kulikova, N. V.; Chepurova, V. M.

    2018-04-01

    Analysis of the results of modeling disintegration of Comet 1P/Halley after its flare in 1991 has allowed us to predict an increase of the activity of the associated Eta Aquariids meteor shower in April-May 2018.

  9. Geomagnetic oriented electromagnetic radiation in the ionosphere

    International Nuclear Information System (INIS)

    Benton, C.U.; Fowles, H.M.; Goen, P.K.

    1976-08-01

    Strong bursts of electromagnetic radiation were observed in the ionosphere during the Waso rocket Electromagnetic Pulse (EMP) experiment. The pulses have a frequency content from below 20 MHz to above 70 MHz. They vary in duration between 5 μs and 2 ms and in peak-amplitudes of 2 mV/m to greater than 200 mV/m. These pulses show a high degree of geomagnetic correlation and are of unknown origin

  10. Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s

    International Nuclear Information System (INIS)

    Fegan, David J.

    2012-01-01

    During the 1960s, a small but vibrant community of cosmic ray physicists, pioneered novel optical methods of detecting extensive air showers (EAS) in the Earth's atmosphere with the prime objective of searching for point sources of energetic cosmic γ-rays. Throughout that decade, progress was extremely slow. Attempts to use the emission of optical Cherenkov radiation from showers as a basis for TeV gamma-ray astronomy proved difficult and problematical, given the rather primitive light-collecting systems in use at the time, coupled with a practical inability to reject the overwhelming background arising from hadronic showers. Simultaneously, a number of groups experimented with passive detection of radio emission from EAS as a possible cheap, simple, stand-alone method to detect and characterise showers of energy greater than 10 16 eV. By the end of the decade, it was shown that the radio emission was quite highly beamed and hence the effective collection area for detection of high energy showers was quite limited, diminishing the effectiveness of the radio signature as a stand-alone shower detection channel. By the early 1970s much of the early optimism for both the optical and radio techniques was beginning to dissipate, greatly reducing research activity. However, following a long hiatus both avenues were in time revived, the optical in the early 1980s and the radio in the early 2000s. With the advent of digital logic hardware, powerful low-cost computing, the ability to perform Monte Carlo simulations and above all, greatly improved funding, rapid progress became possible. In time this work proved to be fundamental to both High Energy γ-ray Astronomy and Neutrino Astrophysics. Here, that first decade of experimental investigation in both fields is reviewed.

  11. Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s

    Energy Technology Data Exchange (ETDEWEB)

    Fegan, David J., E-mail: david.fegan@ucd.ie [School of Physics, University College Dublin, Dublin 4 (Ireland)

    2012-01-11

    During the 1960s, a small but vibrant community of cosmic ray physicists, pioneered novel optical methods of detecting extensive air showers (EAS) in the Earth's atmosphere with the prime objective of searching for point sources of energetic cosmic {gamma}-rays. Throughout that decade, progress was extremely slow. Attempts to use the emission of optical Cherenkov radiation from showers as a basis for TeV gamma-ray astronomy proved difficult and problematical, given the rather primitive light-collecting systems in use at the time, coupled with a practical inability to reject the overwhelming background arising from hadronic showers. Simultaneously, a number of groups experimented with passive detection of radio emission from EAS as a possible cheap, simple, stand-alone method to detect and characterise showers of energy greater than 10{sup 16} eV. By the end of the decade, it was shown that the radio emission was quite highly beamed and hence the effective collection area for detection of high energy showers was quite limited, diminishing the effectiveness of the radio signature as a stand-alone shower detection channel. By the early 1970s much of the early optimism for both the optical and radio techniques was beginning to dissipate, greatly reducing research activity. However, following a long hiatus both avenues were in time revived, the optical in the early 1980s and the radio in the early 2000s. With the advent of digital logic hardware, powerful low-cost computing, the ability to perform Monte Carlo simulations and above all, greatly improved funding, rapid progress became possible. In time this work proved to be fundamental to both High Energy {gamma}-ray Astronomy and Neutrino Astrophysics. Here, that first decade of experimental investigation in both fields is reviewed.

  12. New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Roganova, T. M.; Fedorova, G. F. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2017-03-15

    New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpret data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.

  13. A discrimination technique for extensive air showers based on multiscale, lacunarity and neural network analysis

    International Nuclear Information System (INIS)

    Pagliaro, Antonio; D'Ali Staiti, G.; D'Anna, F.

    2011-01-01

    We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. In the present work the method is discussed and applied to a set of fully simulated vertical showers, in the experimental framework of ARGO-YBJ, to obtain hadron to gamma primary separation. We show that the presented approach gives very good results, leading, in the 1-10 TeV energy range, to a clear improvement of the discrimination power with respect to the existing figures for extended shower detectors.

  14. Triple collinear emissions in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Höche, Stefan; Prestel, Stefan

    2017-10-01

    A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.

  15. Extensive Air Showers High Energy Phenomena and Astrophysical Aspects - A Tutorial, Reference Manual and Data Book

    CERN Document Server

    Grieder, Peter K.F

    2010-01-01

    Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compi...

  16. The time structure of hadronic showers in calorimeters with gas and scintillator readout

    Energy Technology Data Exchange (ETDEWEB)

    Goecke, Philipp [Max-Planck-Institut fuer Physik, Munich (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The focus of the CALICE collaboration is R and D of highly granular calorimeters. One of the possible applications is in a future TeV-scale linear e{sup +}e{sup -} collider for precision SM studies and for direct and indirect the search of new physics. For the hadronic sampling calorimeters subsystem, several absorbers and active material technologies are being investigated. In this frame, two similar experiments have been conducted to study the time structure of hadronic showers: FastRPC uses resistive plate chambers technology for the active layers whereas T3B is based on scintillating tiles coupled to SiPMs. The high sampling frequency of the readout, coupled to deep memory buffers, allows to carefully investigate the intrinsic time structure of hadronic showers with its prompt and delayed components. This study presents a detailed GEANT4 Montecarlo simulation of the FastRPC and T3B setups. It is aimed to reproduce test beam data acquired at CERN SPS where the setups were installed after 5λ of instrumented tungsten-based calorimeter prototypes. The main focus of the simulation lies on the physical processes involved in the time development of an hadronic showers, to asses the discrepancy that emerged in data for the two setups in the intermediate time range of 10 - 50 ns of shower development that can be explained with the neutron interactions in the medium.

  17. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Georgios Atreidis

    2017-01-01

    Full Text Available The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  18. The determination of parameters of shower initiated in imaging calorimeter by electrons and protons

    International Nuclear Information System (INIS)

    Borisov, S.V.; Voronov, S.A.; Karelin, A.V.; Koldobskij, S.A.; Runtso, M.F.

    2010-01-01

    In this work the report on several methods of shower axis reconstruction and methods of search for the starting point of the shower are presented. They were developed for 'thin' sampling imaging calorimeters. For this purpose we used a Monte-Carlo simulation of interaction of electrons and protons with a silicon-tungsten calorimeter of PAMELA satellite-borne experiment. After some adaptation, these methods could be applied for different types of calorimeters

  19. Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal V, A.; Schroeder, F.G. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Haungs, A.; Huege, T. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Kernphysik, Karlsruhe (Germany)

    2018-02-15

    The South Pole, which hosts the IceCube Neutrino Observatory, has a complete and around-the-clock exposure to the Galactic Center. Hence, it is an ideal location to search for gamma rays of PeV energy coming from the Galactic Center. However, it is hard to detect air showers initiated by these gamma rays using cosmic-ray particle detectors due to the low elevation of the Galactic Center. The use of antennas to measure the radio footprint of these air showers will help in this case, and would allow for a 24/7 operation time. So far, only air showers with energies well above 10{sup 16} eV have been detected with the radio technique. Thus, the energy threshold has to be lowered for the detection of gamma-ray showers of PeV energy. This can be achieved by optimizing the frequency band in order to obtain a higher level of signal-to-noise ratio. With such an approach, PeV gamma-ray showers with high inclination can be measured at the South Pole. (orig.)

  20. Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Science.gov (United States)

    Beisenova, A.; Boos, E.; Haungs, A.; Sadykov, T.; Salihov, N.; Shepetov, A.; Tautayev, Y.; Vildanova, L.; Zhukov, V.

    2017-06-01

    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two - mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016.

  1. Hadronic shower development in iron-scintillator tile calorimetry

    Czech Academy of Sciences Publication Activity Database

    Amaral, P.; Amorim, A.; Anderson, K.; Lokajíček, Miloš; Němeček, Stanislav

    2000-01-01

    Roč. 443, - (2000), s. 51-70 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : ATLAS Iron-Scintillator * hadron calorimeter * shower parametrisation * calorimetry * computer data analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.964, year: 2000

  2. Producing EGS4 shower displays with the Unified Graphics System

    International Nuclear Information System (INIS)

    Cowan, R.F.

    1990-01-01

    The EGS4 Code System has been coupled with the SLAC Unified Graphics System in such a manner as to provide a means for displaying showers on UGS77-supported devices. This is most easily accomplished by attaching an auxiliary subprogram package (SHOWGRAF) to existing EGS4 User Codes and making use of a graphics display or a post-processor code called EGS4PL. SHOWGRAF may be used to create shower displays directly on interactive IBM 5080 color display devices, supporting three-dimensional rotations, translations, and zoom features, and providing illustration of particle types and energies by color and/or intensity. Alternatively, SHOWGRAF may be used to record a two-dimensional projection of the shower in a device-independent graphics file. The EGS4PL post-processor may then be used to convert this file into device-dependent graphics code for any UGS77-supported device. Options exist within EGS4PL that allow for two-dimensional translations and zoom, for creating line structure to indicate particle types and energies, and for optional display of particles by type. All of this is facilitated by means of the command processor EGS4PL EXEC together with new options (5080 and PDEV) with the standard EGS4IN EXEC routine for running EGS4 interactively under VM/SP. 6 refs

  3. Parton showers with quantum interference

    CERN Document Server

    Nagy, Zoltan

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.

  4. Parton showers with quantum interference

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations

  5. Integration of basic electromagnetism and engineering technology

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand...... theoretical course contents have been reduced to a core of fundamental principles. These are combined with the study of magnetic properties of materials closely related to manufacturer's data sheets. To enhance the understanding of these fundamentals, practical topics from engineering technology are included...... and their application in technology students get a more comprehensive understanding of electromagnetism, and they are able to apply the physical principles to problems they encounter later in their careers...

  6. Extensive air showers accompanied by γ-ray families with summationE/sub γ//sub ,//sub H/≥10 TeV and general extensive air showers

    International Nuclear Information System (INIS)

    Fukushima, Y.; Hamayasu, C.; Mitsumune, T.

    1989-01-01

    Extensive air showers (EAS's) accompanied by families of high-energy cascade showers were observed at Mt. Norikura (738 g cm/sup -2/). 99 families of γ-ray- and hadron-origin showers with total energies summationE/sub γ//sub ,//sub H/≥10 TeV were obtained. The success rate of the combination between families and EAS's reaches to almost 90% (87 events). The families are associated with young EAS's, with mean age parameter s∼0.7, whose sizes distribute widely over three orders of magnitude up to 10 8 . The size spectrum of the family-associated EAS's coincides with the general EAS's in the size region above 5 x 10 6 but the former drops rapidly from the latter below this critical size. From the absolute intensity of summationE/sub γ//sub ,//sub H/ spectrum the proton fraction in the primary cosmic rays is deduced to be (14 +- 5)%, with an error of one standard deviation, in the primary energies (5 x 10/sup 14/)--10/sup 16/ eV, in comparison with a Monte Carlo simulation assuming an adequate interaction model. This agrees with the result obtained by the work with other mountain data and is also compatible with the result inferred from the size spectrum gap between the family-associated EAS's and the general EAS's in the region below the critical size

  7. Preliminary results from the Chicago air shower array and the Michigan muon array

    International Nuclear Information System (INIS)

    Krimm, H.A.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Mascarenhas, N.C.; McKay, T.A.; Mueller, D.; Newport, B.J.; Ong, R.A.; Rosenberg, L.J.; Wiedenbeck, M.E.; Green, K.D.; Matthews, J.; Nitz, D.; Sinclair, D.; van der Velde, J.C.

    1991-01-01

    The Chicago Air Shower Array (CASA) is a large area surface array designed to detect extensive air showers (EAS) produced by primaries with energy ∼100 TeV. It operates in coincidence with the underground Michigan Muon Array (MIA). Preliminary results are presented from a search for steady emission and daily emission from three astrophysical sources: Cygnus X-3, Hercules X-1, and the Crab nebula and pulsar. There is no evidence for a significant signal from any of these sources in the 1989 data

  8. Evaluation of clustering algorithms at the < 1 GeV energy scale for the electromagnetic calorimeter of the PADME experiment

    Science.gov (United States)

    Leonardi, E.; Piperno, G.; Raggi, M.

    2017-10-01

    A possible solution to the Dark Matter problem postulates that it interacts with Standard Model particles through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A’. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. One of the key roles of the experiment will be played by the electromagnetic calorimeter, which will be used to measure the properties of the final state recoil γ. The calorimeter will be composed by 616 21×21×230 mm3 BGO crystals oriented with the long axis parallel to the beam direction and disposed in a roughly circular shape with a central hole to avoid the pile up due to the large number of low angle Bremsstrahlung photons. The total energy and position of the electromagnetic shower generated by a photon impacting on the calorimeter can be reconstructed by collecting the energy deposits in the cluster of crystals interested by the shower. In PADME we are testing two different clustering algorithms, PADME-Radius and PADME-Island, based on two complementary strategies. In this paper we will describe the two algorithms, with the respective implementations, and report on the results obtained with them at the PADME energy scale (< 1 GeV), both with a GEANT4 based simulation and with an existing 5×5 matrix of BGO crystals tested at the DAΦNE BTF.

  9. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    Science.gov (United States)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  10. Small changes in the atmospheric electric field from extensive air showers. [E > 10/sup 16/ eV

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G; Dardo, M [Turin Univ. (Italy); Pavese, P; Piano, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1977-05-28

    The authors present data on small changes in the atmospheric electric field related to the passage of extensive air showers initiated by primary particles of energy >=10/sup 16/ eV. Such changes were detected by electrometric methods in conjunction with a particle shower array.

  11. Efficacy of a shower cream and a lotion with skin-identical lipids in healthy subjects with atopic dry skin.

    Science.gov (United States)

    Berardesca, Enzo; Mortillo, Susan; Cameli, Norma; Ardigo, Marco; Mariano, Maria

    2018-05-10

    Atopic dermatitis is a chronic, pruritic inflammatory skin disease that adversely affects quality of life. The current study evaluates the efficacy of a shower cream and a lotion, each with skin-identical lipids and emollients, in the treatment of atopic dry skin of subjects with a history of atopic condition. In all, 40 healthy females with clinically dry skin on the lower legs were enrolled in the study and underwent 4 weeks of daily use of the shower cream and 2 additional weeks of both the shower cream and the body lotion. Subjects were evaluated at day 0, week 4, and week 6. Skin barrier function was assessed by Tewameter ® , skin hydration by Corneometer ® , smoothness and desquamation by Visioscan ® , and stratum corneum architecture by reflectance confocal microscopy (RCM). The investigator assessed the degree of dryness, roughness, redness, cracks, tingling and itch, and subjective self-assessment evaluated the perception of skin soothing, smoothness, and softness. Skin barrier function and skin moisture maintenance were significantly improved using the shower cream. The lotion with physiological lipids, together with the shower cream, also improved skin barrier function and moisture. Both the shower cream and the body lotion reduced clinical dryness, roughness, redness, cracks, tingling and itch, according to the dermatologist, and increased soothing, smoothness, and softness, according to the subjects of the study. The combination of a shower cream and a lotion with physiological lipids efficiently restores skin barrier function and increases skin hydration, becoming an effective skin-care option for patients with atopic dry skin. © 2018 Wiley Periodicals, Inc.

  12. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Science.gov (United States)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  13. Arrival-time distribution of muons in extensive air showers at energies of 1017 eV to 1018 eV

    International Nuclear Information System (INIS)

    Blake, P.R.; Mann, D.M.; Nash, W.F.; O'Connell, B.; Strutt, R.B.

    1982-01-01

    The results of measurements of the rise-time of muon scintillator responses recorded from extensive air showers detected at Haverah Park are described. A high-speed storage oscilloscope recording system has been used to study both the average characteristics of muon time spreads and the fluctuations in arrival-time distributions between individual showers. The average muon time spreads are found to be a function of core distance, zenith angle and muon threshold energy. There is evidence that velocity delays are an important contribution to the muon rise-times for detectors with threshold energies < approximately 500 MeV. Significant fluctuations in the muon time spreads between individual showers are found. The average characteristics of the muon arrival-time distributions are also compared with the shower computer simulations. (author)

  14. Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

    Science.gov (United States)

    Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.

    2018-03-01

    The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

  15. Systematic investigation of the electromagnetic filtering effect as a tool for achieving the compensation condition in silicon hadron calorimetry

    International Nuclear Information System (INIS)

    Borchi, E.; Bosetti, M.; Lamarche, F.; Leroy, C.; Paludetto, R.; Pensotti, S.; Penzo, A.; Rancoita, P.G.; Rattaggi, M.; Salvato, G.; Terzi, G.; Vismara, L.

    1993-01-01

    In a calorimeter with silicon readout, the use of a combination of low-Z (Fe) and high-Z (Pb) materials as absorbers allows the transformation of the electron energy distribution of the incident showers in two media with different critical energies via the filtering effect. As a result, the visible electromagnetic energy and consequently the value of the e/mip ratio can be substantially reduced as a function of the thickness of the high-Z (Pb) material present in the absorber. Measurements of this effect for a set of Si/Fe+Pb calorimeter configurations are presented and discussed. The filtering effect makes possible the achievement of the compensation condition. (orig.)

  16. QED radiative correction for the single-W production using a parton shower method

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Tobimatsu, K.; Munehisa, T.

    2001-01-01

    A parton shower method for the photonic radiative correction is applied to single W-boson production processes. The energy scale for the evolution of the parton shower is determined so that the correct soft-photon emission is reproduced. Photon spectra radiated from the partons are compared with those from the exact matrix elements, and show a good agreement. Possible errors due to an inappropriate energy-scale selection or due to the ambiguity of the energy-scale determination are also discussed, particularly for the measurements on triple gauge couplings. (orig.)

  17. Risk Factors for Intracranial Haemorrhage in Accidents Associated with the Shower or Bathtub.

    Directory of Open Access Journals (Sweden)

    Thomas C Sauter

    Full Text Available There has been little research on bathroom accidents. It is unknown whether the shower or bathtub are connected with special dangers in different age groups or whether there are specific risk factors for adverse outcomes.This cross-sectional analysis included all direct admissions to the Emergency Department at the Inselspital Bern, Switzerland from 1 January 2000 to 28 February 2014 after accidents associated with the bathtub or shower. Time, age, location, mechanism and diagnosis were assessed and special risk factors were examined. Patient groups with and without intracranial bleeding were compared with the Mann-Whitney U test.The association of risk factors with intracranial bleeding was investigated using univariate analysis with Fisher's exact test or logistic regression. The effects of different variables on cerebral bleeding were analysed by multivariate logistic regression.Two hundred and eighty (280 patients with accidents associated with the bathtub or shower were included in our study. Two hundred and thirty-five (235 patients suffered direct trauma by hitting an object (83.9% and traumatic brain injury (TBI was detected in 28 patients (10%. Eight (8 of the 27 patients with mild traumatic brain injuries (GCS 13-15, (29.6% exhibited intracranial haemorrhage. All patients with intracranial haemorrhage were older than 48 years and needed in-hospital treatment. Patients with intracranial haemorrhage were significantly older and had higher haemoglobin levels than the control group with TBI but without intracranial bleeding (p<0.05 for both.In univariate analysis, we found that intracranial haemorrhage in patients with TBI was associated with direct trauma in general and with age (both p<0.05, but not with the mechanism of the fall, its location (shower or bathtub or the gender of the patient. Multivariate logistic regression analysis identified only age as a risk factor for cerebral bleeding (p<0.05; OR 1.09 (CI 1.01;1.171.In patients

  18. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Ulrich [The Ohio State Univ., Columbus, OH (United States)

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implemented in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas

  19. A silicon pad shower maximum detector for a Shashlik calorimeter

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new luminosity monitor of the DELPHI detector, STIC (Small angle TIle Calorimeter), was built using a Shashlik technique. This technique does not provide longitudinal sampling of the showers, which limits the measurement of the direction of the incident particles and the e-π separation. For these reasons STIC was equipped with a Silicon Pad Shower Maximum Detector (SPSMD). In order to match the silicon detectors to the Shashlick read out by wavelength shifter (WLS) fibers, the silicon wafers had to be drilled with a precision better than 10μm without damaging the active area of the detectors. This paper describes the SPSMD with emphasis on the fabrication techniques and on the components used. Some preliminary results of the detector performance from data taken with a 45GeV electron beam at CERN are presented. (orig.)

  20. The Roland Maze Project - school-based extensive air shower network

    International Nuclear Information System (INIS)

    Feder, J.; Jedrzejczak, K.; Karczmarczyk, J.; Lewandowski, R.; Swarzynski, J.; Szabelska, B.; Szabelski, J.; Wibig, T.

    2006-01-01

    We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Lodz. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented

  1. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  2. Association between meteor showers and asteroids using multivariate criteria

    Science.gov (United States)

    Dumitru, B. A.; Birlan, M.; Popescu, M.; Nedelcu, D. A.

    2017-10-01

    Context. Meteoroid streams are fragments of matter produced by comets or asteroids which intersects the orbit of Earth. Meteor showers are produced when Earth intersects these streams of matter. The discoveries of active asteroids and extinct comets open a new view of the relation between these objects as possible parent bodies at the origin of meteor showers. Aims: The aim of this work is to identify the asteroids that can produce or re-populate meteoroid streams by determining the similarity of their orbits and orbital evolution over 10 000 yr. Methods: The identification was carried out by evaluating several well known D-criteria metrics, the orbits being taken from the IAU Meteor Data Center database and from IAU Minor Planet Center. Finally, we analyzed the physical properties and the orbital stability (in the Lyapunov time sense) of the candidates as well as their possible relationship with meteorites. Results: 206 near-Earth asteroids (NEAs) were associated as possible parent bodies with 28 meteor showers, according to at least two of the criterion used. 50 of them satisfied all the criteria. Notable finds are: binary asteroid 2000UG11 associated with Andromedids (AND), while the tumbling asteroid (4179)Toutatis could be associated with October Capricornids (OCC). Other possible good candidates are 2004TG10, 2008EY5, 2010CF55, 2010TU149 and 2014OY1. These objects have low albedo, therefore can be primitive objects. Asteroid 2007LW19 which is a fast rotator and most probably has monolithic structure and so its physical characteristic does not support the association found based on the dynamical criteria.

  3. The cosmic-ray energy spectrum above 1016 eV measured with the LOFAR radboud air shower array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Trinh, T. N G; Van Kessel, L.

    2015-01-01

    The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out

  4. Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization

    OpenAIRE

    Ellis, John; Geiger, Klaus; Kowalski, Henryk

    1996-01-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic $ep$ collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, an...

  5. SENSITIVITY OF PIGMENT CONTENT OF BANANA AND ORCHID TISSUE CULTURE EXPOSED TO EXTREMELY LOW FREQUENCY ELECTROMAGNETIC FIEL

    Directory of Open Access Journals (Sweden)

    Riry Prihatini

    2017-01-01

    Full Text Available Natural exposure of extremely low frequency electromagnetic field (ELF-EMF occurs in the environment and acts as one of the abiotic factors that affect the growth and development of organisms. This study was conducted to determine the effect of ELF-EMF on the tissue cultured banana and slipper orchid chlorophyll content as one of the indicators in measuring plant photosynthetic capacity. Four days old banana (Musa sp. cv. Berangan corm and seven days old slipper orchid (Paphiopedilum rothschildianum cultures were exposed to 6 and 12 mT ELF-EMF generated by controllable ELF-EMF built up machine for 0.5, 1, 2 and 4 hours. After exposure, the banana and orchid cultures were incubated at 25° C for 8 and 16 weeks, respectively. The results showed that the ELF-EMF exposure had different effects on banana and slipper orchid cultures though both plant species belong to monocotyledon. The highest increase in chlorophyll content on banana was resulted by the high intensity and long duration of ELF-EMF exposure (12 mT for 4 hours, whereas on slipper orchid the modest and short duration of ELF-EMF exposure produced the most excessive chlorophyll content. Different ELF-EMF exposures (12 mT for 4 hours and 6 mT for 30 minutes had potential to be applied on each plant to improve in vitro plant (banana and slipper orchid, respectively growth. The increased chlorophyll and carotene/xanthophyll content on banana indicated that the banana was more tolerant to ELF-EMF exposure compared to slipper orchid. 

  6. Calculations of the longitudinal and lateral distributions of the energy deposition of 100-500 MeV electrons in some materials

    International Nuclear Information System (INIS)

    Maas, R.; Hurkmans, A.

    1979-10-01

    The authors give either practical approximations or typical worst cases of the calculations on electromagnetic showers. The transition curve, that is the longitudinal development of the shower, is treated semi-empirically. The radial development of the shower at the position of the shower maximum is also considered. It is shown that the r.m.s. radius of this distribution can be calculated in a simple way, independent of the incident energy of the electron. (Auth.)

  7. Detection of ultraviolet Cherenkov light from high energy cosmic ray atmospheric showers: A field test

    International Nuclear Information System (INIS)

    Bartoli, B.; Peruzzo, L.; Sartori, G.; Bedeschi, F.; Bertolucci, E.; Mariotti, M.; Menzione, A.; Ristori, L.; Stefanini, A.; Zetti, F.; Scribano, A.; Budinich, M.; Liello, F.

    1991-01-01

    We present the results of a test with a prototype apparatus aimed to detect the ultraviolet Cherenkov light in the wavelenght range 2000-2300A, emitted by high energy cosmic ray showers. The system consists of a gas proportional chamber, with TMAE vapour as the photosensitive element, placed on the focal plane of a 1.5 m diameter parabolic mirror. The test was done during the summer of 1989 with cosmic ray showers seen in coincidence with the EAS-TOP experiment, an extended atmospheric shower charged particle array now being exploited at Campo Imperatore, 1900 m above sea level, on top of the Gran Sasso underground Laboratory of INFN. The results were positive and show that a full scale ultraviolet Cherenkov experiment with good sensitivity, angular resolution and virtually no background from moonlight or even daylight can be envisaged. (orig.)

  8. Electromagnetic foundations of solar radiation collection a technology for sustainability

    CERN Document Server

    Sangster, Alan J

    2014-01-01

    This text seeks to illuminate, mainly for the electrical power engineers of the future, the topic of large scale solar flux gathering schemes, which arguably represent the major source of renewable power available. The aim of the content is to impart, from an electromagnetic perspective, a deep and sound understanding of the topic of solar flux collection, ranging from the characteristics of light to the properties of antennas. To do this five chapters are employed to provide a thorough grounding in relevant aspects of electromagnetism and electromagnetic waves including optics, electromagneti

  9. Cooperative observations of air showers in Tasmania looking for anisotropies in 1013 - 1014 eV primaries (COALA project)

    International Nuclear Information System (INIS)

    Fenton, A.G.; Fenton, K.B.; Humble, J.E.

    1981-01-01

    Observations of cosmic ray air showers (median primary energy: 5.10 13 eV) in Tasmania have been planned to start during 1981. The observations will be carried out through collaboration of the Hobart and Nagoya groups, in order to catch cosmic ray flows in a somewhat stereoscopic manner with simultaneous observations in the northern hemisphere (Mt. Norikura). The air shower array consists of 18 unit trays of 4 m 2 proportional counters deployed over an area of 20 m x 160 m. The shower frequency in a fundamental coincidence mode is expected to be about 16,000 events per hour

  10. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  11. Simple ADC unit for cosmic ray air shower experiments

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, G C; Ghosh, B; Ghoshdastidar, M R; Sengupta, S K; Chaudhuri, N [North Bengal Univ., Darjeeling (India). Dept. of Physics

    1982-02-01

    The design of a new low cost analog-to-digital converter system is described. It is based upon the method of linearising the charging process of a storage condenser and is controlled by logic gates. Its tested characteristics have been found to be reliable for application in cosmic ray air shower experiments.

  12. Results from Pion-Carbon Interactions Measured by NA61/SHINE for Improved Understanding of Extensive Air Showers

    CERN Document Server

    Herve, Alexander

    2015-07-21

    The interpretation of extensive air shower measurements, produced by ultra-high energy cosmic rays, relies on the correct modeling of the hadron-air interactions that occur during the shower development. The majority of hadronic particles are produced at equivalent beam energies below the TeV range. NA61/SHINE is a fixed target experiment using secondary beams produced at CERN at the SPS. Hadron-hadron interactions have been recorded at beam momenta between 13 and 350 GeV/c with a wide-acceptance spectrometer. In this contribution we present measurements of the spectra of charged pions and the $\\rho^0$ production in pion-carbon interactions, which are essential for modeling of air showers.

  13. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  14. Development of a shower exposure model for benzene : background work for potential recommended update to the recently derived drinking water guidelines

    International Nuclear Information System (INIS)

    Knafla, A.L.; Carey, J.

    2009-01-01

    Chloroform exposure was first identified in showers. Shower exposures were then examined for other volatile substances. This presentation discussed the development of a shower exposure model for benzene and included background work for potential recommended updates to the recently derived drinking water guidelines. Specifically, the presentation addressed the relevance for oil and gas sites and the influence on the drinking water guideline. Issues and limitation with Health Canada's Khrisnan model were identified. The advantages of an alternate model development were also presented. Model structure was examined with particular reference to how model exposures are modelled and the risk associated with taking showers with impacted water. Two general types of models were discussed, notably the simple model used to estimate exposures and the integrated physiologically-based pharmacokinetic model. The relevance of the drinking water guideline revision to the petroleum industry was addressed. It was concluded that future water quality guidelines will likely incorporate shower exposures. tabs., figs.

  15. Lessons from Monte Carlo simulations of the performance of a dual-readout fiber calorimeter

    CERN Document Server

    Akchurin, N; Cardini, A; Cascella, M; De Pedis, D; Ferrari, R; Fracchia, S; Franchino, S; Fraternali, M; Gaudio, G; Genova, P; Hauptman, J; La Rotonda, L; Lee, S; Livan, M; Meoni, E; Pinci, D; Policicchio, A; Saraiva, J G; Scuri, F; Sill, A; Venturelli, T; Wigmans, R

    2014-01-01

    The RD52 calorimeter uses the dual-readout principle to detect both electromagnetic and hadronic showers, as well as muons. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on detailed, GEANT4 based Monte Carlo simulations of the performance of this instrument. The results of these simulations are compared in great detail to measurements that have been carried out and published by the DREAM Collaboration. This comparison makes it possible to understand subtle details of the shower development in this unusual particle detector. It also allows for predictions of the improvement in the performance that may be expected for larger detectors of this type. These studies also revealed some inadequacies in the GEANT4 simulation packages, especially for hadronic showers, but also for the Cherenkov signals from electromagnetic showers.

  16. Electromagnetic radiation properties of foods and agricultural products

    International Nuclear Information System (INIS)

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index

  17. Comparison of the Physical Properties of Showers that the Satisfaction of Shower Feeling among Users in Three Asian Countries

    Directory of Open Access Journals (Sweden)

    Minami Okamoto

    2015-07-01

    Full Text Available The purpose of this study was to construct a scheme that makes it possible to compare the relationship between water usage, satisfaction, and physical properties in three countries. The physical properties of the shower were measured using physical properties testing apparatus of water-saving standard or scheme for showerheads issued in several water-saving countries and data for users satisfaction evaluation was acquired through bathing experiments. In this paper, we analyzed the result from Taiwanese and Vietnamese individuals to compare them to of Japanese subjects analyzed in the previous study. We compared the physical properties of showers assessed low in satisfaction by Taiwanese, Vietnamese and Japanese subjects. It was assumed that spray pattern tends to decrease satisfaction when the water volume ratio within 100 mm and 150 mm of a measuring device is located a 450 mm distance from the showerhead is low, and that, because all three countries showed the same value, it was imagined that there were no differences in the water volume ratio of high-satisfaction showerheads among three countries. On the other hand, the values of Spray Force-per-Hole, Temperature Drop, and Spray Angle were different among three countries. We speculated that these differences are affected respectively by ethnic differences in pain tolerance, thermoregulatory response and bathing habit.

  18. Biological Effects of Weak Electromagnetic Field on Healthy and Infected Lime (Citrus aurantifolia Trees with Phytoplasma

    Directory of Open Access Journals (Sweden)

    Fatemeh Abdollahi

    2012-01-01

    Full Text Available Exposure to electromagnetic fields (EMF has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls.

  19. High-precision measurements of extensive air showers with the SKA

    NARCIS (Netherlands)

    Huege, T.; Bray, J. D.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H.; Haungs, A.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schröder, F. G.; Zilles, A.

    2015-01-01

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's

  20. Long-Term Continuous Double Station Observation of Faint Meteor Showers

    Czech Academy of Sciences Publication Activity Database

    Vítek, S.; Páta, P.; Koten, Pavel; Fliegel, K.

    2016-01-01

    Roč. 16, č. 9 (2016), 1493/1-1493/10 ISSN 1424-8220 R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : faint meteor shower * meteoroid * CCD camera Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.677, year: 2016

  1. Reconstruction of showers at TeV energy by the CLUE Experiment and its application to recent data

    International Nuclear Information System (INIS)

    Bartoli, B.; Cresti, M.; Mariotti, M.; Peruzzo, L.; Sacco, R.; Saggion, A.; Sartori, G.; Sbarra, C.; Bigongiari, C.; Cocca, E.; Lucchesi, D.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Scribano, A.; Stamerra, A.; Turini, N.; Zetti, F.; Liello, F.

    1999-01-01

    The CLUE UV Cerenkov telescope array has started to take data with 8 telescopes in January 1998. The UV Cerenkov images obtained by the CLUE experiment are very different with respect to the visible case, and a new method for reconstructing the shower direction has been worked out. The shower reconstruction is shown and an application to recent data is given

  2. Reconstruction of showers at TeV energy by the CLUE Experiment and its application to recent data

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Cresti, M.; Mariotti, M.; Peruzzo, L.; Sacco, R.; Saggion, A.; Sartori, G.; Sbarra, C.; Bigongiari, C.; Cocca, E.; Lucchesi, D.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Scribano, A.; Stamerra, A.; Turini, N.; Zetti, F.; Liello, F

    1999-03-01

    The CLUE UV Cerenkov telescope array has started to take data with 8 telescopes in January 1998. The UV Cerenkov images obtained by the CLUE experiment are very different with respect to the visible case, and a new method for reconstructing the shower direction has been worked out. The shower reconstruction is shown and an application to recent data is given.

  3. Investigating the physics performance of air shower universality at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Ariel; Schulz, Alexander; Roth, Markus [Karlsruhe Institute of Technology (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Recent updates to the air shower universality reconstruction of surface detector data at the Pierre Auger Observatory have reduced the bias and improved the resolution of mass-sensitive variables: the depth of shower maximum and the relative number of muons. For better-informed studies of a possible anisotropy in the arrival direction of ultra-high-energy cosmic rays, a quantification of the power of these parameters to separate a proton-like signal from background is presented. The analysis is furthered with an outlook to the detector's overall sensitivity to a proton-like signal as well as a projection of our ability to distinguish between different astrophysical flux scenarios.

  4. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  5. Angular distributions for the charged components in a cascade shower induced by 350 MeV electrons

    International Nuclear Information System (INIS)

    Kobayashi, S.; Itoh, H.; Murakami, A.; Muto, T.

    1978-01-01

    The angular distributions of secondary electrons contained in a cascade shower are studied by using a streamer chamber. The primary electrons with energy of about 350 MeV are incident on a lead converter of various thickness. The angular data are analyzed for the number of electrons in a shower, and for the converter thickness. The obtained distributions show a systematic agreement with the Monte Carlo calculations presented by Messel and Crawford. (Auth.)

  6. Updates on the most recent results in dual readout calorimetry

    International Nuclear Information System (INIS)

    Cascella, M.

    2011-01-01

    The Dual REAdout Method (DREAM) consists in comparing the scintillation and Cherenkov light generated in the shower development process. By comparing the two, the electromagnetic fraction of the hadronic shower can be measured event-by-event, to eliminate the effects of fluctuations in this fraction. In this paper the DREAM fiber calorimeter and its successor, the newDREAM prototype that is currently under construction, will be described. We will also report on the efforts to study the Cherenkov component of the output of high-Z crystals and to realize a dual-readout electromagnetic section that can achieve outstanding electromagnetic resolution whit out compromising the hadronic resolution.

  7. Clan properties in parton showers

    International Nuclear Information System (INIS)

    Ugoccioni, R.; Giovannini, A.; Lupia, S.

    1994-01-01

    By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)

  8. Clan properties in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy))

    1994-11-01

    By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)

  9. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  10. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  11. Optimization of an FPGA Trigger Based on an Artificial Neural Network for the Detection of Neutrino-Induced Air Showers

    Science.gov (United States)

    Szadkowski, Zbigniew; Głas, Dariusz; Pytel, Krzysztof; Wiedeński, Michał

    2017-06-01

    Neutrinos play a fundamental role in the understanding of the origin of ultrahigh-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, the very low rate of events potentially generated by neutrinos is a significant challenge for detection techniques and requires both sophisticated algorithms and high-resolution hardware. Air showers initiated by protons and muon neutrinos at various altitudes, angles, and energies were simulated in CORSIKA and the Auger OffLine event reconstruction platforms, giving analog-to-digital convertor (ADC) patterns in Auger water Cherenkov detectors on the ground. The proton interaction cross section is high, so proton “old” showers start their development early in the atmosphere. In contrast to this, neutrinos can generate “young” showers deeply in the atmosphere relatively close to the detectors. Differences between “old” proton and “young” neutrino showers are visible in attenuation factors of ADC waveforms. For the separation of “old” proton and “young” neutrino ADC traces, many three-layer artificial neural networks (ANNs) were tested. They were trained in MATLAB (in a dedicated way -only “old” proton and “young” neutrino showers as patterns) by simulated ADC traces according to the Levenberg-Marquardt algorithm. Unexpectedly, the recognition efficiency is found to be almost independent of the size of the networks. The ANN trigger based on a selected 8-6-1 network was tested in the Cyclone V E FPGA 5CEFA9F31I7, the heart of prototype front-end boards developed for testing new algorithms in the Pierre Auger surface detectors.

  12. arXiv NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    CERN Document Server

    Heinrich, G.; Kerner, M.; Luisoni, G.; Vryonidou, E.

    2017-08-21

    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.

  13. Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Trinh, T.N.G.; van Kessel, L.

    2016-01-01

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent

  14. Energy determination of cosmic ray showers in surface arrays using signal inference at a single distance from the core

    Energy Technology Data Exchange (ETDEWEB)

    Ros, G. [Space Plasmas and AStroparticle Group, Dpto. Fisica, Universidad de Alcala Ctra, Madrid-Barcelona km. 33, Alcala de Henares E-28871 (Spain)], E-mail: germanrosmagan@yahoo.es; Medina-Tanco, G. [Instituto de Ciencias Nucleares, UNAM, Circuito Exteriror S/N, Ciudad Universitaria, Mexico D. F. 04510 (Mexico); Peral, L. del [Space Plasmas and AStroparticle Group, Dpto. Fisica, Universidad de Alcala Ctra, Madrid-Barcelona km. 33, Alcala de Henares E-28871 (Spain); D' Olivo, J.C. [Instituto de Ciencias Nucleares, UNAM, Circuito Exteriror S/N, Ciudad Universitaria, Mexico D. F. 04510 (Mexico); Arqueros, F. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Fisica, Universidad Complutense de Madrid, Ciudad Universitaria 28040, Madrid (Spain); Rodriguez-Frias, M.D. [Space Plasmas and AStroparticle Group, Dpto. Fisica, Universidad de Alcala Ctra, Madrid-Barcelona km. 33, Alcala de Henares E-28871 (Spain)

    2009-09-21

    In most high energy cosmic ray surface arrays, the primary energy is currently determined from the value of the lateral distribution function at a fixed distance from the shower core, r{sub 0}. The value of r{sub 0} is mainly related to the geometry of the array and is, therefore, considered as fixed independently of the shower energy or direction. We argue, however, that the dependence of r{sub 0} on energy and zenith angle is not negligible. Therefore, in the present work we propose a new characteristic distance, which we call r{sub opt}, specifically determined for each individual shower, with the objective of optimizing the energy reconstruction. This parameter may not only improve the energy determination, but also allow a more reliable reconstruction of the shape and position of rapidly varying spectral features. We show that the use of a specific r{sub opt} determined on a shower-to-shower basis, instead of using a fixed characteristic value, is of particular benefit in dealing with the energy reconstruction of events with saturated detectors, which are in general a large fraction of all the events detected by an array as energy increases. Furthermore, the r{sub opt} approach has the additional advantage of applying the same unified treatment for all detected events, regardless of whether they have saturated detectors or not.

  15. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  16. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  17. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  18. An optimized method for the reconstruction of the direction of air showers for scintillator arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H.; Prahl, J.; Arqueros, F.; Bradbury, S.; Cortina, J.; Deckers, T.; Eckmann, R.; Feigl, E.; Fernandez, J.; Fonseca, V.; Funk, B.; Gebauer, J.; Gonzalez, J.C.; Haustein, V.; Heinzelmann, G.; Holl, I.; Kirstein, O.; Kornmeyer, H.; Krennrich, F.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Petry, D.; Plaga, R.; Prosch, C.; Rauterberg, G.; Rhode, W.; Samorski, M.; Sanchez, J.A.; Schmele, D.; Sooth, R.N.; Stamm, W.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M. [Hamburg Univ. (Germany). 2. Inst. fuer Experimentalphys.]|[Universidad Complutense, Facultad de Ciencias Fisicas, Ciudad Universitaria, E-28040 Madrid (Spain)]|[Max Planck Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany)]|[Universitaet Kiel, Institut fuer Kernphysik, Olshausenstr. 40, D-24118 Kiel (Germany)]|[Universitaet Wuppertal, Fachbereich Physik, Gaussstr.20, D-42097 Wuppertal (Germany)

    1996-12-11

    An optimized method is presented for the reconstruction of air shower directions for scintillator arrays. The method takes into account that both the expectation value and the spread of the measured arrival times not only depend on the distance of a counter from the shower axis, but also on the number of particles registered in that counter. It also takes into account that the distributions of the measured arrival times are not Gaussian. For showers recorded with the HEGRA scintillator array above the threshold energy of E{sub thres}= 20 TeV the mean angular resolution obtained with this method is left angle {sigma}{sup {theta}}{sub 63%} right angle =1.0 {sup circle}, and above a threshold E{sub thres}= 50 TeV it is left angle {sigma}{sup {theta}}{sub 63%} right angle =0.6 {sup circle}. Comparing the new procedure with the HEGRA standard procedure the angular resolution has improved on average by a factor of 1.33. The mis-pointing has been determined with an accuracy of 0.15 {sup circle}. The method is developed using experimental data. (orig.).

  19. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  20. An optimized method for the reconstruction of the direction of air showers for scintillator arrays

    International Nuclear Information System (INIS)

    Krawczynski, H.; Prahl, J.; Arqueros, F.; Bradbury, S.; Cortina, J.; Deckers, T.; Eckmann, R.; Feigl, E.; Fernandez, J.; Fonseca, V.; Funk, B.; Gebauer, J.; Gonzalez, J.C.; Haustein, V.; Heinzelmann, G.; Holl, I.; Kirstein, O.; Kornmeyer, H.; Krennrich, F.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Petry, D.; Plaga, R.; Prosch, C.; Rauterberg, G.; Rhode, W.; Samorski, M.; Sanchez, J.A.; Schmele, D.; Sooth, R.N.; Stamm, W.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M.

    1996-01-01

    An optimized method is presented for the reconstruction of air shower directions for scintillator arrays. The method takes into account that both the expectation value and the spread of the measured arrival times not only depend on the distance of a counter from the shower axis, but also on the number of particles registered in that counter. It also takes into account that the distributions of the measured arrival times are not Gaussian. For showers recorded with the HEGRA scintillator array above the threshold energy of E thres = 20 TeV the mean angular resolution obtained with this method is left angle σ θ 63% right angle =1.0 circle , and above a threshold E thres = 50 TeV it is left angle σ θ 63% right angle =0.6 circle . Comparing the new procedure with the HEGRA standard procedure the angular resolution has improved on average by a factor of 1.33. The mis-pointing has been determined with an accuracy of 0.15 circle . The method is developed using experimental data. (orig.)

  1. Clinical assessment, design and performance testing of mobile shower commodes for adults with spinal cord injury: an exploratory review.

    Science.gov (United States)

    Friesen, Emma; Theodoros, Deborah; Russell, Trevor

    2013-07-01

    The purpose of this article is to explore evidence concerning clinical assessment, design and performance testing of mobile shower commodes used by adults with spinal cord injury (SCI). Searches of electronic databases, conference proceedings and key journals were undertaken with no restriction on language or study design. Keywords included spinal cord injury, lesion, sanichair, sanitary chair, shower chair, bowel chair and commode. A total of 20 publications were included in this review. Common approaches to clinical assessments were questionnaires and observational analysis to assess bowel care routines, function and skin integrity. Design features addressed access for bowel care, postural support, transfers, stability, use in wet environments and skin integrity. Objective performance measures addressed requirements for static stability, backward-sloping seat angles, arm supports and seat materials. Evidence reviewed was of low methodological quality and lacking in validated instruments to guide clinical practice. Further high-quality research is needed to identify bathing, showering and personal hygiene tasks affecting mobile shower commodes use and to develop validated clinical assessment tools. Performance testing to published standards is also needed.

  2. Photocatalytic Treatment of Shower Water Using a Pilot Scale Reactor

    Directory of Open Access Journals (Sweden)

    Yash Boyjoo

    2012-01-01

    Full Text Available Treatment of shower water deserves special consideration for reuse not only because of its low pollutant loading but also because it is produced in large quantities. In this study, a pilot scale study of photocatalytic degradation of impurities in real shower water was performed in a 31 L volume reactor using titanium dioxide as the photocatalyst. The reactor was operated in a continuous slurry recirculation mode. Several operational parameters were studied including the slurry initial pH, catalyst concentration, air flow rate, and slurry recirculation rate. Up to 57% of total organic carbon (TOC elimination was obtained after 6 hours of treatment (for 3.0 slurry initial pH, 0.07 gL−1 catalyst concentration, 1.8 Lmin−1 air flow rate, and 4.4 Lmin−1 slurry recirculation rate. This study showed that photocatalysis could be successfully transposed from bench scale to pilot scale. Furthermore, the ease of operation and the potential to use solar energy make photocatalysis an attractive prospect with respect to treatment of grey water.

  3. Further investigation on the performance of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan

    2008-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In the previous model we presented [Qi Xiaoni, Liu Zhenyan, Li Dandan. Performance characteristics of a shower cooling tower. Energy Convers Manage 2007;48(1):193-203.], three critical assumptions were made to reduce the complexity and computational time, which can also reduce the models' accuracy. Accurate modelling of the operating process is a determining factor both for designing the shower cooling tower (SCT) and for optimising its operation. In this paper, we derive a new model without applying the three assumptions. According to the condition of the outlet air, the governing equations consider two cases, including the supersaturated and unsaturated states. This model is used to predict the performance of a full scale SCT located in China with different conditions for validation. The differences in the heat and mass transfer analyses of the two models are described at different atmospheric conditions

  4. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    International Nuclear Information System (INIS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-01-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  5. The mass composition of cosmic rays measured with LOFAR

    NARCIS (Netherlands)

    Hörandel, Jörg R.; Bonardi, A.; Buitink, S.; Corstanje, A.; Falcke, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Winchen, T.

    2017-01-01

    High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30

  6. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, C.O.A.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhofer, A.; Felis, I.; Folger, F.; Fusco, L.A.; Galata, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zuniga, J.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6∘ for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with

  7. The air shower maximum probed by Cherenkov effects from radio emission

    NARCIS (Netherlands)

    de Vries, Krijn D.; Scholten, Olaf; Werner, Klaus

    Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in

  8. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Pierre Auger Collaboration, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade

  9. Physics and Beam Monitoring with Forward Shower Counters (FSC) in CMS

    CERN Document Server

    Bell, Alan James; Hall-Wilton, Richard; Veres, Gabor Istvan; Khoze, Valery; Albrow, Michael; Mokhov, Nikolai; Rakhno, Igor; Brucken, Erik; Lamsa, Jerry; Lauhakangas, Rauno; Orava, Risto; Debbins, Paul; Norbeck, Edwin; Onel, Yasar; Schmidt, Ianos; Grachov, Oleg; Murray, Michael; Gronberg, Jeffrey; Hollar, Jonathan; Snow, Gregory R; Sobol, Andrei; Samoylenko, Vladimir; Penzo, Aldo

    2010-01-01

    We propose to add forward shower counters, FSC, to CMS along the beam pipes, with 59 m $\\lesssim z \\lesssim$ 140 m. These will detect showers from very forward particles with $7 \\lesssim \\eta \\lesssim 11$ interacting in the beam pipe and surrounding material. They increase the total rapidity coverage of CMS to nearly $\\Delta\\Omega = 4\\pi$, thus detecting most of the inelastic cross section $\\sigma_{inel}$, including low mass diffraction. They will help increase our understanding of all high cross section processes, which is important for understanding the ``underlying event'' backgrounds to most physics searches. To the extent that the luminosity is well known, they may (together with all of CMS) provide the best measurement of $\\sigma_{inel}$ at the LHC. They are most useful when the luminosity per bunch crossing is still low enough to provide single (no pile-up) collisions. They will allow measurements of single diffraction: $p+p\\rightarrow p \\oplus X$ (where $\\oplus$ means a rapidity gap) for lower mass...

  10. Results of fractal analysis of the Kiel extensive air shower data

    International Nuclear Information System (INIS)

    Kempa, J.; Samorski, M.

    1998-01-01

    For years there has been a problem in cosmic ray studies of how to distinguish individual extensive air showers (EAS) originating from primary protons, heavy nuclei or primary photons. In this paper results of experimental data obtained from the fractal analysis of particle density distributions in individual EAS detected in the range of shower sizes N e between 1.4x10 5 -5x10 6 by the old Kiel experiment are presented. The Lipschitz-Hoelder exponent distributions of EAS detected by the Kiel experiment are discussed. The examples of EAS most probably originating from primary protons, heavy nuclei and high-energy gamma-rays are presented. The lateral distributions of charged particle densities at small distances, angular and size spectra and the mass composition of primary cosmic ray particles around the 'knee' of the energy spectrum are discussed. The Monte Carlo simulation data illustrating the problem of interest are also shown. (author)

  11. MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; et al.

    2017-12-20

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  12. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  13. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  14. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  15. Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment

    Science.gov (United States)

    Richardson, Matthew; Privitera, Paolo

    2017-01-01

    Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.

  16. Use of plastic scintillators for particle density measuring and their influence in the characterization of extensive atmospheric showers

    International Nuclear Information System (INIS)

    Biral, A.R.P.; Chinellato, J.A.; Fauth, A.C.; Kemp, E.; Oliveira, M.A. Leigui de; Manganote, E.J.T.; Nogima, H.; Rigitano, R.C.; Santos, L.G. dos; Silva, E.L.F.; Silva, N. Mengoti; Souza Junior, M.C.; Tamura, E.; Turtelli Junior, A.

    1994-01-01

    The use of plastic scintillators for particle density measuring and their influence in the characterization of extensive atmospheric showers has been studied.Using a experimental system coupled with a plastic scintillator detector with a 'streamer' tubes module, single muon events were selected through tracks rebuilding. The influence of those distributions in the determination of particle density and extensive atmospheric showers fundamental parameters were also studied. 10 refs., 2 figs

  17. Shower characteristics of particles with momenta up to 100 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    AUTHOR|(CDS)2073690

    2015-01-01

    We present a study of showers initiated by 1–100 GeV positrons, pions, kaons, and protons in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were taken at the CERN PS and SPS. The analysis includes measurements of the calorimeter response to each particle type and studies of the longitudinal and radial shower development. The results are compared to several Geant4 simulation models.

  18. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    International Nuclear Information System (INIS)

    Ferri, Federico

    2012-01-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalise the ECAL response to the changes measured by the monitoring system. These include low energy diphoton resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This paper describes how the monitoring system is operated, how the corrections are obtained, and the resulting ECAL performance.

  19. Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang, E-mail: chenxg83@zju.edu.cn

    2015-11-15

    The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400–800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<−5 dB and −10 dB. For RN samples, the maximum bandwidth for −5 dB and −10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400–800 for EM absorption is 1.5–2.0 mm, with maximum RL of between −28.9 and −68.4 dB, bandwidth of 6.7–13 GHz for RL<−5 dB and 3.2–6.2 GHz for RL<−10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400–800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers. - Highlights: • RN400–800 samples are potential light-weight electromagnetic absorbers. • Carbon and SiC are considered as dominating contributions for the dielectric loss. • Magnesiumothermic reduction extends the EM wave absorption potential of RHN.

  20. Simulation of the time structure of Extensive Air Showers with CORSIKA initiated by various primary particles at Alborz-I observatory level

    Science.gov (United States)

    Bahmanabadi, Mahmud; Moghaddam, Saba Mortazavi

    2018-05-01

    A detailed simulation of showers with various zenith angles in atmosphere produced by different primary particles including gamma, proton, carbon, and iron at Alborz-I observatory level (35∘43‧N, 51∘20‧E, 1200 m a.s.l= 890 gcm-2), in the energy range 3 × 1013 eV-3 × 1015 eV, has been performed by means of the CORSIKA Monte Carlo code. The aim of this study is to examine the time structure of secondary particles in Extensive Air Showers (EAS) produced by the different primary particles. For each primary particle, the distribution of the mean values of the time delays of secondary particles relative to the first particle hitting the ground level in each EAS, = , and the distribution of their mean standard deviations, in terms of distance from the shower core are obtained. The mean thickness and profile of showers as a function of their energy, primary mass, and zenith angle is described.

  1. Spatial distribution function of electron-photon shower particles for different values of Esub(0)/. beta. in isothermal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, I P; Osipova, L N; Roganova, T M; Fedorova, G F [Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki

    1982-12-01

    Results of calculations of the spatial distribution function (SDF) of electron-photon shower particles for different values of the parameter E/sub 0//..beta.. in an isothermal atmosphere are given. Consideration of finiteness of the parameter E/sub 0//..beta.. leads to narrowing of SDF two times at E/sub 0//..beta.. approximately 10-100 as compared with the Nishimura, Kamata, Greisen SDF (E/sub 0//..beta.. = infinity). Atmosphere inhomogeneity results in SDF broadening in comparison with SDFsub(hom) (E/sub 0//..beta..) calculated for homogeneous atmosphere. SDFsub(inhom) (E/sub 0//..beta..) and SDFsub(hom) (E/sub 0//..beta..) depend on E/sub 0//..beta.. differently which is attributed to different contributions of shower prehistory to SDF formation. The larger is E/sub 0//..beta.., the wider is cascade curve and the higher is the effect of shower prehistory.

  2. Longitudinal development of air-shower electrons studied from the arrival time distributions of atmospheric Cerenkov light measured at 5200 m above sea level

    International Nuclear Information System (INIS)

    Inoue, N.; Kaneko, T.; Yoshii, H.

    1985-01-01

    The longitudinal development of electrons in extensive air showers before the maximum has been studied by measuring the arrival time distributions of atmospheric Cerenkov light from air showers, with primary energies in the range 6 x 10 15 to 2 x 10 17 eV, in the Chacaltaya air-shower array. These arrival time distributions are consistent with those calculated using a model of particle interactions which contain Feynman scaling in the fragmentation region, an Esup(1/2) multiplicity law in the pionisation region and a rising cross section for primary protons. Such a model also reproduces the arrival time distributions of Cerenkov light measured in the Akeno air-shower array as described in the preceding paper, which implies a very fast development before the maximum and a slow development after the maximum. (author)

  3. The Effect of a Non-Isotropic Flux of Very High Energy Cosmic Rays on the values of Mean Shower Maxima

    International Nuclear Information System (INIS)

    Davoudifar, Pantea; Tabari, Keihanak Rowshan

    2015-01-01

    In our previous works we described a statistical method to interpret the results of extensive air shower simulations. For an isotropically distributed flux of cosmic rays, we used this method to deduce diagrams of mean values of shower maxima versus energy decades. To have a more realistic result, we considered the effect of a non-isotropic flux of cosmic rays at different energy ranges. This effect was considered as a weight factor deduced from a set of observed data. We discussed about the effect of this weight factor on our final resulted diagrams of mean shower maxima and for different interaction models compared the resulted distributions of very high energy cosmic ray's mass composition

  4. Cooperative observations of air showers in Tasmania looking for anisotropies in 10 to the 13th - 10 to the 14th eV primaries /COALA project/

    Science.gov (United States)

    Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Jacklyn, R. M.; Vrana, A.; Murakami, K.; Fujii, Z.; Yamada, T.; Sakakibara, S.; Fujimoto, K.; Ueno, H.; Nagashima, K.; Kondo, I.

    Observations of cosmic ray air showers in Tasmania beginning in 1981 are discussed. The shower array consists of 18 unit trays of 4-sq m proportional counters deployed over an area of 20 m x 160 m, and showers around a median primary energy of 5 x 10 to the 13th are to be observed. The observations are carried out in order to catch cosmic ray flows in a stereoscopic manner with simultaneous observations in the northern hemisphere, and the shower frequency in a fundamental coincidence mode is expected to be about 16,000 events per year.

  5. Composition sensitivity of the Auger observatory through inclined showers

    International Nuclear Information System (INIS)

    Ave, M.; Watson, A.A.; Hinton, J.A.; Vazquez, R.A.; Zas, E.

    2003-01-01

    We report a calculation of the expected rate of inclined air showers induced by ultra high-energy cosmic rays to be obtained by the Auger Southern Observatory assuming different mass compositions. We describe some features that can be used to distinguish photons at energies as high as 10 20 eV. The discrimination of photons at such energies will help to test some models of the origin of ultrahigh-energy cosmic rays

  6. The AMY experiment: Microwave emission from air shower plasmas

    Directory of Open Access Journals (Sweden)

    Alvarez-Muñiz J.

    2016-01-01

    Full Text Available You The Air Microwave Yield (AMY experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  7. A study of the use of lead fluoride for electromagnetic calorimetry

    International Nuclear Information System (INIS)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.; Weingarten, A.B.; Anderson, D.F.; Ramberg, E.J.; Kuno, Y.; Macdonald, J.A.; Konaka, A.; Hutcheon, D.A.

    1992-01-01

    A study has been made on the properties of lead fluoride as a Cherenkov material for use in electromagnetic calorimetry. A prototype calorimeter module consisting of a 5 x 5 array of 2.1 x 2.1 x 18.5 cm 3 crystals has been built and tested in a test beam at the Brookhaven AGS. Results are given on energy resolution, shower size and e/π separation for electrons and pions in the range from 1--4 GeV. The light output has been measured to give approx-gt 1000 photoelectrons per MeV in good quality crystals, and to provide useful signals down to as low as 32 MeV. Measurements were also made on radiation damage in lead fluoride using 60 Co gamma rays and high energy ionizing particles, as well as on thermoluminescence after irradiation. It was found that only modest damage occurs up to a level of ∼ 30 Krad in large, calorimeter size crystals, and that the damage can be easily removed by optical bleaching

  8. Shower development of particles with momenta from 10 to 100 GeV in the CALICE Scintillator-Tungsten HCAL

    CERN Document Server

    Lucaci-Timoce, A

    2013-01-01

    We present a study of the showers initiated by high momentum (10 ≤ pbeam ≤ 100 GeV) electrons, pions and protons in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were taken at the CERN SPS in 2011. The analysis includes measurements of the calorimeter response to each particle type and studies of the longitudinal and radial shower development. The results are compared to several GEANT4 simulation models.

  9. Microscopic analysis on showers recorded as single core on X-ray films

    International Nuclear Information System (INIS)

    Amato, N.M.; Arata, N.; Maldonado, R.H.C.

    1983-01-01

    Cosmic-ray particles recorded as single dark spots on X-ray films with use of the emulsion chamber data of Brazil-Japan Collaboration are studied. Some results of microscopic analysis of such single-core-like showers on nuclear emulsion plates are reported. (Author) [pt

  10. Early versus delayed post-operative bathing or showering to prevent wound complications.

    Science.gov (United States)

    Toon, Clare D; Sinha, Sidhartha; Davidson, Brian R; Gurusamy, Kurinchi Selvan

    2015-07-23

    Many people undergo surgical operations during their life-time, which result in surgical wounds. After an operation the incision is closed using stiches, staples, steri-strips or an adhesive glue. Usually, towards the end of the surgical procedure and before the patient leaves the operating theatre, the surgeon covers the closed surgical wound using gauze and adhesive tape or an adhesive tape containing a pad (a wound dressing) that covers the surgical wound. There is currently no guidance about when the wound can be made wet by post-operative bathing or showering. Early bathing may encourage early mobilisation of the patient, which is good after most types of operation. Avoiding post-operative bathing or showering for two to three days may result in accumulation of sweat and dirt on the body. Conversely, early washing of the surgical wound may have an adverse effect on healing, for example by irritating or macerating the wound, and disturbing the healing environment. To compare the benefits (such as potential improvements to quality of life) and harms (potentially increased wound-related morbidity) of early post-operative bathing or showering (i.e. within 48 hours after surgery, the period during which epithelialisation of the wound occurs) compared with delayed post-operative bathing or showering (i.e. no bathing or showering for over 48 hours after surgery) in patients with closed surgical wounds. We searched The Cochrane Wounds Group Specialised Register (30th June 2015); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); The Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; the metaRegister of Controlled Trials (mRCT) and the International Clinical Trials Registry Platform (ICTRP). We considered all randomised trials conducted in patients who had undergone any surgical procedure and had surgical closure of

  11. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  12. Dipole showers and automated NLO matching in Herwig++

    International Nuclear Information System (INIS)

    Plaetzer, Simon; Gieseke, Stefan

    2011-09-01

    We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing POWHEG- and MC rate at NLO-type matching to next-to-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator HERWIG++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching. (orig.)

  13. Dipole showers and automated NLO matching in Herwig++

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gieseke, Stefan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik

    2011-09-15

    We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing POWHEG- and MC rate at NLO-type matching to next-to-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator HERWIG++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching. (orig.)

  14. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    OpenAIRE

    A. Aab, P..A.; Aglietta, M.; Samarai, I..A.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.

    2017-01-01

    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of prima...

  15. Optical observations of enhanced activity of the 2005 Draconid meteor shower

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Spurný, Pavel; Štork, Rostislav

    2007-01-01

    Roč. 466, č. 2 (2007), s. 729-735 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030502; GA ČR GA205/05/0543 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteor shower s * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  16. ''Anomalous'' air showers from point sources: Mass limits and light curves

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.

    1993-01-01

    We describe a method to obtain upper limits on the mass of the primaries of air showers associated with point sources. One also obtains the UHE pulse shape of a pulsar if its period is observed in the signal. As an example, we analyze the data obtained during a recent burst of Hercules-X1

  17. On the Impact of Tsallis Statistics on Cosmic Ray Showers

    Directory of Open Access Journals (Sweden)

    M. Abrahão

    2016-01-01

    Full Text Available We investigate the impact of the Tsallis nonextensive statistics introduced by intrinsic temperature fluctuations in p-Air ultrahigh energy interactions on observables of cosmic ray showers, such as the slant depth of the maximum Xmax and the muon number on the ground Nμ. The results show that these observables are significantly affected by temperature fluctuations and agree qualitatively with the predictions of Heitler model.

  18. An overview of landmine detection with emphasis on electromagnetic approaches

    Science.gov (United States)

    Das, Yogadhish

    2003-04-01

    Human suffering caused by antipersonnel landmines left over from previous conflicts has only recently received significant public exposure. However, considerable amount of research on how to detect and deal with buried landmines has been carried out at least since the second world war. The research has encompassed a wide range of technologies and large sums of money have been spent. Despite these efforts there is still no operationally satisfactory solution, especially to the detection problem. This lack of success is attributable to the difficulty of the problem and the high degree of effectiveness demanded of any proposed solution. The many landmine detection approaches can be divided into two broad categories: (1)approaches primarily aimed at detecting the casing of the landmine (physical properties of its explosive content may also have some influence) and (2)approaches aimed at directly detecting the explosive contents. Examples of techniques belonging to the first group are electromagnetic induction, ground probing radar and other high frequency electromagnetic techniques, acoustics and other mechanical techniques, and infrared. Trace explosive vapour detection, thermalneutron activation and nuclear quadrupole resonance are examples of the second group. Following a brief introduction to nature of the landmine problem and the many technologies that have been explored to solve it, the presentation will focus on some of the detection approaches based on electromagnetic techniques. In particular, the state of the art in electromagnetic induction detection will be reviewed and required future research and development in this area will be presented.

  19. Gamma-ray astronomy by the air shower technique: performance and perspectives

    International Nuclear Information System (INIS)

    Cronin, J.W.

    1996-01-01

    The techniques for γ-ray astronomy at energies ≥10 TeV using air shower detectors are discussed. The results, based on a number of large arrays, are negative, with no point sources being identified. While the contributions to γ-ray astronomy so far have been only upper limits, these arrays in the future will make significant progress in the understanding of cosmic rays in the energy range 10 13 eV to 10 16 eV. Also, contributions to solar physics are being made by observations of shape and time dependence of the shadow of the Sun as observed in cosmic rays. For the advancement of γ-ray astronomy a greater sensitivity is required in the energy region of 10 TeV. A number of promising techniques to accomplish a greater sensitivity are discussed. They include the enlargement of the Tibet array at 4300 meters altitude, the array of open photomultipliers at La Palma (AIROBICC), which views the shower by the Cherenkov photons produced in the atmosphere, and the instrumentation of a pond at Los Alamos with photomultipliers (Milagro)

  20. Gamma-ray astronomy by the air shower technique: performance and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, J.W. [Chicago, Univ. of Chicago (United States). Dept. of Phisycs and Enrico Fermi Inst.

    1996-11-01

    The techniques for {gamma}-ray astronomy at energies {>=}10 TeV using air shower detectors are discussed. The results, based on a number of large arrays, are negative, with no point sources being identified. While the contributions to {gamma}-ray astronomy so far have been only upper limits, these arrays in the future will make significant progress in the understanding of cosmic rays in the energy range 10{sup 13} eV to 10{sup 16} eV. Also, contributions to solar physics are being made by observations of shape and time dependence of the shadow of the Sun as observed in cosmic rays. For the advancement of {gamma}-ray astronomy a greater sensitivity is required in the energy region of 10 TeV. A number of promising techniques to accomplish a greater sensitivity are discussed. They include the enlargement of the Tibet array at 4300 meters altitude, the array of open photomultipliers at La Palma (AIROBICC), which views the shower by the Cherenkov photons produced in the atmosphere, and the instrumentation of a pond at Los Alamos with photomultipliers (Milagro).

  1. Detecting the (quasi-) two-body decays of /τ leptons in short-baseline neutrino oscillation experiments

    Science.gov (United States)

    Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N. W.; Musser, J.; Rosenfeld, C.; Stanton, N. R.; Thun, R.; Tzanakos, G. S.; Verebryusov, V.; Vishnyakov, V.

    1999-05-01

    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large- Δm 2 domain of ν μ→ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π0→ γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ.

  2. Detecting the (quasi-) two-body decays of τ leptons in short-baseline neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N.W.; Musser, J.; Rosenfeld, C.; Stanton, N.R.; Thun, R.; Tzanakos, G.S.; Verebryusov, V.; Vishnyakov, V.

    1999-01-01

    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large-Δm 2 domain of ν μ →ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π 0 →γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ

  3. GREX/COVER-PLASTEX: an experiment to analyze the space-time structure of extensive air showers produced by primary cosmic rays of 1015 eV

    International Nuclear Information System (INIS)

    Agnetta, G.; Ambrosio, M.; Beaman, J.; Barbarino, G.C.; Biondo, B.; Catalano, O.; Colesanti, L.; Dali, G.; Guarino, F.; Lauro, A.; Lloyd-Evans, J.; Mangano, A.; Popova, L.; Watson, A.A.

    1995-01-01

    A novel experimental installation is described in which the traditional method of detecting extensive air showers with scintillation counters is significantly extended by the addition of limited streamer tube hodoscopes (LST) and layers of resistive plate counters (RPC). Runs with the scintillator array, GREX, at Haverah Park have demonstrated the power of the LST hodoscopes to determine the direction of arrival of muons, electrons and photons in air showers while the RPC system permits the relative arrival time of individual particles and the temporal thickness and structure of the shower disc to be obtained. The potential of these technical advances for studying the longitudinal profile of air showers produced by primaries of about 1000 TeV is briefly discussed. First measurements of thickness and time profile of EAS front are also reported. (orig.)

  4. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  5. Comparison of invasive and non-invasive electromagnetic methods in soil water content estimation of a dike model

    International Nuclear Information System (INIS)

    Preko, Kwasi; Scheuermann, Alexander; Wilhelm, Helmut

    2009-01-01

    Water infiltration through a dike model under controlled flooding and drainage conditions was investigated using the gravimetric soil water sampling technique and electromagnetic techniques, in particular ground penetrating radar (GPR) applied in different forms, time domain reflectometry with intelligent microelements (TRIME-TDR) and spatial-time domain reflectometry (S-TDR). The experiments were conducted on the model in two phases. In the first phase, the model was flooded with varying water levels between 0 and 1.25 m above the waterproof base of the model. In the second phase, the characteristics of the temporal water content changes were investigated over a period of 65 days as the flood water drained off from the 1.25 m level. The dike model was constructed with soil of the texture class loamy sand. The aim of the experiment was to investigate whether GPR-based invasive and non-invasive methods were able to quantitatively observe and correctly monitor temporal changes in the volumetric water content (VWC) within embankment dams. The VWC values from the various techniques corresponded very well, especially with low VWC values. A comparison with the VWC of gravimetric soil water sampling showed a satisfactory reproducibility. Characteristic discrepancies were recorded with higher values of the VWC. Under saturated conditions only the invasive methods were able to produce reasonable values of the VWC. After the release of the highest flood level, the drainage phase could be characterized by two invasive methods based on the TDR and GPR techniques

  6. A wide dynamic range experiment to measure high energy γ-showers in air by detecting Cherenkov light in the middle ultraviolet

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Belforte, S.; Bellettini, G.; Bertolucci, E.; Cervelli, F.; Chiarelli, G.; Dell'Orso, M.; Giannetti, P.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Zetti, F.; Pisa Univ.

    1988-01-01

    An experiment to study high energy γ rays from localized cosmic sources is described. A number of Al mirrors reflects the Cherenkov light emitted by the showers into photosensitive gas chambers on the mirror focal plane. The use of gas chambers with large active areas allows a sensitivity superior to existing experiments to be reached. Pad readout gives the required angular accuracy. The chamber is sensitive to the middle ultraviolet Cherenkov light produced by the showers in the atmosphere. Since the ozone in the upper atmosphere absorbs the direct ultraviolet light from any outer source, the lower level atmosphere provides a large dark volume in which the Cherenkov radiation from the showers can be isolated. (orig.)

  7. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  8. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  9. The Hisparc cosmic ray experiment : data acquisition and reconstruction of shower direction

    NARCIS (Netherlands)

    Fokkema, D.; Fokkema, D.

    2012-01-01

    The field of cosmic ray physics is a century old and an exciting area of research. When cosmic ray particles enter our atmosphere they collide with air molecules creating new high-energy particles. These particles participate in further collisions and the entire process is known as an air shower.

  10. The program of a fast calorimeter simulation and some its application to investigate Higgs and Z0-boson effective mass resolution at LHC energies

    International Nuclear Information System (INIS)

    Bumazhnov, V.A.

    1994-01-01

    A fast program simulating a response of electromagnetic and hadronic calorimeters with projection geometry to a hard event produced at LHC energies has been written. This program takes into account transverse sizes of a shower in a calorimeter and uses the lateral shower profile parametrization. It is shown that a realistic jet-finding algorithm gives the main contribution to the effective mass resolution of Z-boson decaying into hadron jets detected with electromagnetic and hadronic calorimeters. Higgs and Z 0 -boson mass and width dependences on calorimeter granularity have been obtained. 19 refs., 15 figs., 3 tabs

  11. Reconstruction of the muon production depth with ground array data based on the TTC (Time-Track Complementarity approach

    Directory of Open Access Journals (Sweden)

    Valore L.

    2013-06-01

    Full Text Available The muon longitudinal profile along the shower axis depends on the nature of the primary particle and primary hadronic interaction with air nuclei. The measurement of muonic component inside showers generated by Very High Energy Cosmic Rays provides a very powerful tool for sensing high energy interactions between cosmic ray particles and air molecules. Fundamental parameters such as the interaction cross section, inelasticity, hadron production and multiplicity can be measured by comparing the development of shower electromagnetic component with that of muonic component. Since 1992 a method has been developed to combine the muon arrival direction in a ground based array for cosmic ray detection with their arrival delay with respect to the shower core. This combination permits to select high energy muons weakly scattered in the atmosphere and to reconstruct their height of production with good accuracy. In this paper we discuss the possibility to realize a “dual” apparatus able to detect both electromagnetic and muonic component at primary energies greater than 1017eV.

  12. Fixed-target particle fluxes and radiation levels at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The author calculates the charged particle fluxes and radiation doses from minimum ionizing particles (MIP), electromagnetic showers, and hadronic showers, in a fixed-target experiment at the SSC. This work follows the work of Groom, essentially boosting his results into the laboratory frame. The radiation in dense matter, such as a calorimeter, is produced by several sources: electromagnetic showers, hadronic showers, and minimum ionizing particles. The author does not consider other sources of radiation such as beam halo, a dependent effects, and low energy neutrons from secondary sources. Nor does he consider the effects of magnetic fields. Low energy neutrons have been shown to be an important source of radiation for collider experiments at the SSC. In fixed-target experiments, where the spectrometer is more open and where most detector elements are far away from secondary particle dumps, these sources are not as important. They are also very much detector and experimental hall dependent. Hence the results presented here are only a lower limit of the estimated radiation dose

  13. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  14. On the formation of meteor showers of comet Halley

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, J.V.; Pushkarev, A.N.; Hajduk, A.

    1987-01-01

    The orbits of test particles ejected from the nucleus of Halley comet at its perihelion passage in 1910 with different velocities are studied for the next three passages of the comet up to 2134 taking into consideration perturbations from all planets. Some characteristics of the stream formation are presented. The calculations show that the return of the comet to its perihelion cannot produce an immediate influence on the activity of its meteor showers. (author). 2 figs., 1 tab., 13 refs

  15. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  16. Shower reconstruction in TUNKA-HiSCORE

    Energy Technology Data Exchange (ETDEWEB)

    Porelli, Andrea; Wischnewski, Ralf [DESY-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2015-07-01

    The Tunka-HiSCORE detector is a non-imaging wide-angle EAS cherenkov array designed as an alternative technology for gamma-ray physics above 10 TeV and to study spectrum and composition of cosmic rays above 100 TeV. An engineering array with nine stations (HiS-9) has been deployed in October 2013 on the site of the Tunka experiment in Russia. In November 2014, 20 more HiSCORE stations have been installed, covering a total array area of 0.24 square-km. We describe the detector setup, the role of precision time measurement, and give results from the innovative WhiteRabbit time synchronization technology. Results of air shower reconstruction are presented and compared with MC simulations, for both the HiS-9 and the HiS-29 detector arrays.

  17. The development of simulation and atmospheric shower reconstruction tools for the study of future Cherenkov Imaging telescopes

    International Nuclear Information System (INIS)

    Sajjad, S.

    2007-09-01

    The future of ground based gamma-ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. The design of IACT systems and the optimisation of their parameters requires an understanding of the atmospheric showers as well as dedicated tools for the simulation of telescope systems and the evaluation of their performance. The first part of this dissertation deals with atmospheric showers, the various properties of the Cherenkov light they emit and their simulation. The second part presents the tools we have developed for the simulation of imaging atmospheric Cherenkov telescopes and the characteristics of the shower images obtained by them. The third part of this thesis contains a presentation of the tools developed for the reconstruction of the source position in the sky, core position on the ground and energy of the gamma-rays as well as ideas for gamma-hadron separation. In the end, we use these tools to study two large arrays of telescopes at two altitudes and evaluate their performance for gamma-ray detection. (author)

  18. On a spatial distribution function of electron-photon shower particles for different values of Esub(0)/#betta# in isothermal atmosphere

    International Nuclear Information System (INIS)

    Ivanenko, I.P.; Osipova, L.N.; Roganova, T.M.; Fedorova, G.F.

    1982-01-01

    Results of calculations of scape distribution function (SDF) of electron-photon shower particles for different values of a parameter E 0 /#betta# in isothermal atmosphere are given. Consideration of finiteness of the parameter E 0 /#betta# leads to narrowing of SDF two times at E 0 /#betta# approximately 10-100 as compared with the Nishimura, Kamata, Greisen SDF (E 0 /#betta# = infinity). Atmosphere inhomogeneity results in SDF broadening in comparison with SDFsub(hom) (E 0 /#betta#) calculated for homogeneous atmosphere. SDFsub(inhom) (E 0 /#betta#) and SDFsub(hom) (E 0 /#betta#) depend on E 0 /#betta# differently which is attributed to different contributions of shower prehistory to SDF formation. The larger is E 0 /#betta# the wider is cascade curve and the higher is the effect of shower prehistory

  19. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  20. The Time Structure of Hadronic Showers in Calorimeters with Scintillator and with Gas Readout

    CERN Document Server

    Szalay, Marco

    2015-02-13

    Hadronic showers are characterized by a rich particle structure in the spatial as well as in the time domain. The prompt component comes from relativistic fragments that deposit energy at the ns scale, while late components are associated predominantly with neutrons in the cascade. To measure the impact of these late components, two experiments, based on gaseous and plastic active layers with steel and tungsten absorbers, were set up. The different choice for the material of the active layers produces distinct responses to neutrons, and consequently to late energy depositions. After discussing the technical aspects of these systems, we present a comparison of the signals, read out with fast digitizers with deep buffers, and provide detailed information of the time structure of hadronic showers over a long sampling window.

  1. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F; Fernandez-Varea, J M; Baro, J; Sempau, J

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  2. Magnetic reversal spurts: Rain gauges for comet showers

    International Nuclear Information System (INIS)

    Lutz, T.M.

    1988-01-01

    Abrupt increases in the rate of magnetic reversals (magnetic reversal spurts) were first studied by many others. They hypothesized that spurts result from increased turbulence in the earth's core dynamo during episodes of intense bolide bombardment of the earth. Mechanisms for creating episodes of intense bombardment of the earth involve gravitational perturbation of the Oort cloud of comets, either by a hidden planet, a solar companion, or massive matter in the galactic plane. Herein, the time variation in reversal rate is analyzed using methods of statistical density estimation. A smooth, continuous estimate of reversal rate is obtained using an adaptive kernel method, in which the kernel width is adjusted as a function of reversal rate. The estimates near the ends of the data series (at 165 my ago and the present) are obtained by extending the data by reflection. The results show that the reversal spurts are not associated demonstrably with extinctions or well-dated impacts. If the spurts do record episodes of intense bombardment of the earth, then the mass extinctions do not, in general, occur at times of impacts. Furthermore, the large impact craters seen are not obviously related to the spurts, suggesting that the craters may have been caused by bolides of a different nature and with a different temporal pattern. However, the most simple explanation seems to be that the spurts do not record comet showers, either because the recording mechanism suggested by Muller and Morris is not effective or because comet showers are not triggered in the ways considered by Hut et al

  3. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  4. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  5. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    International Nuclear Information System (INIS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Perez, E.; Salazar, H.; Villasenor, L.

    2005-01-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla (19 - bar N, 90 - bar W, 800g/cm 2 ) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86m 2 cross-section and 12 liquid scintillator detectors of 1m 2 distributed in a square grid with a detector spacing of 20m over an area of 4000m 2 . We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays

  6. The Field Shower Wastewater Recycling System: Development of a Program of Instruction and Preliminary Analysis of Its Potential Health Implications.

    Science.gov (United States)

    1987-02-01

    U.S. Army forces in the European, Korean, and Viet Nam Theaters. Recycling shower water in areas such as those described above is not necessary and...project. Signature Figure 3. Bather affidavit. 0. Contaminants Army field conditions do not restrict the types of cosmetic and health care products a...other toiletries used in the showering process * Topically applied cosmetic and health care products, such as antiperspirants, aftershave lotions

  7. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    International Nuclear Information System (INIS)

    Tadevosyan, V; Mkrtchyan, H; Asaturyan, A; Mkrtchyan, A; Zhamkochyan, S

    2012-01-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm 2 will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  8. Theoretical analysis and numerical simulation of electromagnetic parameters of Fe-C coaxial single fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei, E-mail: cslggncl@163.com [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Zhu, Xukun; Kuang, Jiacai [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); Yi, Shihe; Cheng, Haifeng [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Guo, Zhanhu; He, Qingliang [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    Highlights: • Theoretical formula and calculation results of effective permeability and effective permittivity of the Fe-C coaxial fiber are obtained based on the Maxwell equation. • The coaxial fiber has stronger anisotropy and better electromagnetic dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. • Greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers. - Abstract: Based on the Maxwell equation, the electromagnetic model in the coaxial fiber was described. The interaction with electromagnetic wave was analysed and the theoretical formula of axial permeability (μ{sub ∥}), axial permittivity (ε{sub ∥}), radial permeability (μ{sub ⊥}) and radial permittivity (ε{sub ⊥}) of Fe-C coaxial fiber were derived, and the demagnetization factor (N) of fibrous material was revised. Calculation results indicate that the composite fiber has stronger anisotropy and better EM dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. These properties can be enhanced through increasing aspect ratio and carbon content. The μ{sub ‖} is 5.18-4.46i, μ{sub ⊥} is 2.58-0.50i, ε{sub ∥} is 7.63-6.97i, and ε{sub ⊥} is 1.98-0.15i when the electromagnetic wave frequency is 5 GHz with the outer diameter of 0.866 μm, inner diameter of 0.500 μm, and length of 20 μm. The maximum of the imaginary part of μ{sub ∥} and ε{sub ∥} are much larger than that of μ{sub ⊥} and ε{sub ⊥} when the structural parameters change, and the maximum of μ{sub ∥} and ε{sub ∥} can reach 6.429 and 23.59. Simulation results show that greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers.

  9. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  10. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Francis, K.; Repond, J.; Marčišovský, Michal; Šícho, Petr; Vrba, Václav; Zálešák, Jaroslav

    2011-01-01

    Roč. 654, č. 1 (2011), s. 97-109 ISSN 0168-9002 R&D Projects: GA MŠk LA09042; GA MŠk LA08032 Grant - others:EC(XE) RII3-CT-2006-026126 Institutional research plan: CEZ:AV0Z10100502 Keywords : lepton collider * electromagnetic calorimeter * embedded electronics * fake hits Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://arxiv.org/pdf/arXiv:1102.3454v2

  11. 50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems

    Directory of Open Access Journals (Sweden)

    A. M. Eleuteri

    2009-01-01

    Full Text Available Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.

  12. Electromagnetic emission from terrestrial lightning in the 0.1-30 MHz frequency range

    Science.gov (United States)

    Karashtin, A. N.; Gurevich, A. V.

    Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the lightning discharge. It is shown that lightning can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand lightning discharges showed that • Short wave radio emission of lightning consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between lightning discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between lightning pulses at least at the initial stage. • Each lightning discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different lightning discharges while the polarity was the same in any individual lightning. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. Lightning discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.

  13. Instrumentation development for an array of water Cherenkov detectors for extensive air shower experiments

    Science.gov (United States)

    Sheidaei, F.; Bahmanabadi, M.; Keivani, A.; Samimi, J.

    2009-11-01

    A new small array of Cherenkov detectors has been deployed in Tehran, 1200 m above sea level. This array contains four tanks of distilled water with a diameter of 64 cm and a height of 130 cm. The effective area of each tank is about 1382 cm2. They are used to detect air showers and to record the arrival time of the secondary particles. We have collected about 640 000 extensive air showers (EAS) in 8298 h of observation time from November 2006 to October 2007. The distribution of air showers in zenith and azimuth angles has been studied and a cosnθ distribution with n = 6.02 ± 0.01 was obtained for the zenith angle distribution. An asymmetry has been observed in the azimuthal distribution of EAS of cosmic rays due to geomagnetic field. The first and second amplitudes of the asymmetry are AI = 0.183 ± 0.001 and AII = 0.038 ± 0.001. Since the recent results are in good agreement with our previous results of scintillation detectors, and tanks of distilled water are cheaper, we prefer to use them instead of scintillators in a future larger array. By simulation, we have improved the size of the detectors to yield the highest efficiency. The best dimensions for each tank with a photomultiplier tube in the center of its lid are 40 cm in diameter and 60 cm in height.

  14. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Messina, S.; Scholten, O.; van den Berg, A.M.

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS)

  15. Parton showers in a phenomenological context

    International Nuclear Information System (INIS)

    Bengtsson, M.

    1987-08-01

    Models for generating multiple parton final states, based on the Altarelli-Parisi equations, are presented. Algorithms are described for applications in e + e - physics, leptoproduction and hadron physics. The two latter cases are somewhat special since composite objects are present in the initial state. Constraints from structure function evolution are properly taken into account. The scheme in leptoproduction is made selfconsistent in the sense that parton shower evolution does not affect the measurable structure functions. The scheme developed in e + e - allows for a number of different features which are not given directly in this approach, i.e. matching onto matrix elements, coherence effects, argument in α s , implementation of kinematics etc. These options are systematically studied, using Lund string fragmentation for hadronization, and compared with experimental data. A note on α s determinations in hadron-hadron collisions is also included. (author)

  16. Bremsstrahlung scattering calculations for the beam stops and collimators in the APS insertion-device beamlines

    International Nuclear Information System (INIS)

    Job, P.K.; Haeffner, D.R.; Shu, D.

    1994-12-01

    Bremsstrahlung is produced in the APS storage ring by the interaction of positrons with the residual gas molecules in the vacuum chamber of the storage ring. The bremsstrahlung production causes a serious challenge in shielding the insertion-device beamlines because the entire straight section (15 meters) is in the line of sight of the beamline. The radiation emerges in a narrow cone tangential to the beam path with the characteristic emission angle 1/γ, where γ is E/mc 2 which is the ratio of the kinetic energy to the rest mass for the positrons. This high-energy gamma radiation has an approximate 1/E spectrum with the maximum energy extending up to the particle energy (7 GeV for the APS). Bremsstrahlung, being high-energy photons, produces an electromagnetic shower when it encounters the beamline elements. A beamline element not thick enough to fully contain an electromagnetic shower can cause considerable scatter of the high-energy bremsstrahlung radiation. The low-energy component of the bremsstrahlung can also be scattered and create high dose rates in the first-optical and white-beam enclosures. The fully developed electromagnetic shower will have a photon spectrum almost independent of the material. The electromagnetic showers in the high-Z materials can also produce photoneutrons. This note reports the summary of EGS4 calculations performed on bremsstrahlung scattering from different beamline components in a typical APS insertion-device beamline. The related recommendations for shielding are also given. The shielding criterion adopted is a total dose rate of 2.5μSv/h (0.25 mrem/h) at 30 cm from the shield

  17. Performance of fine grained photon position detector using proportional tubes

    International Nuclear Information System (INIS)

    Artemiev, V.; Galaktionov, Y.; Gordeev, A.; Gorodkov, Y.; Kamishkov, Y.; Lubimov, V.; Plyaskin, V.; Pojidaev, V.; Shevchenko, V.; Shumilov, E.; Bamberger, A.; Fuchs, M.; Giesen, G.; Heck, W.; Ludwig, J.; Marx, R.; Mocken, T.; Runge, K.; Skodzek, E.; Weber, H.C.; Weltin, A.; Wuelker, M.

    1984-01-01

    As part of the NA24 experiment at the CERN-SPS a photon position detector serves to separate direct photons from abundantly produced π 0 decay photons: electromagnetic showers are measured with an energy- and position-resolution sufficiently good to give a two-gamma resolving power of 1.2 cm. The shower detector covers 3 x 3 m 2 and consists of 12 layers of triangular proportional tubes (7.73 mm pitch) sandwiched with lead (altogether 9.6 X 0 ). For eight layers the analog information is provided by an ADC system. Ambiguities are resolved by the digital information of four additional layers inclined by 45 0 . Prototypes were built in order to test gas mixtures and electronics. The electromagnetic shower development in the PPD and the prototypes are reproduced by Monte Carlo calculations. The homogeneity of the PPD has been checked by calibration measurements. (orig.)

  18. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  19. Resonant scattering and charm showers in ultrahigh-energy neutrino interactions

    Science.gov (United States)

    Wilczek, F.

    1985-01-01

    Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.

  20. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  1. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  2. The arrival time distribution of muons in extensive air showers

    International Nuclear Information System (INIS)

    Van der Walt, D.J.

    1984-01-01

    An experiment was done to investigate the lateral dependence of the muon arrival time distribution in extensive air showers at small core distances. In the present experiment the muon arrival time distribution was investigated by measuring the relative arrival times between single muons in five fast Cerenkov detectors beneath 500g/cm 2 of concrete and at an atmospheric depth of 880g/cm 2 . It is shown that, although it is not possible to determine the arrival time distribution as such, it is possible to interpret the relative arrival times between muons in terms of the differences between the order statistics of a sample drawn from the arrival time distribution. The relationship between the arrival time distribution of muons relative to the first detected muon and the muon arrival time distribution is also derived. It was found that the dispersion of the muon arrival time distribution does not increase significantly with increasing core distance between 10m and 60m from the core. A comparison with theoretical distributions obtained from model calculations for proton initiated showers indicate that 1. the mean delay of muons with respect to the first detected muon is significantly larger than that expected from the model and 2. the observed dispersion is also significantly larger than the predicted dispersion for core distances between 10m and 60m

  3. A monitor system for end cap shower counter of Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Man; Xia Xiaomi; Lai Yuanfen; Cheng Baosen; Li Jin

    1993-01-01

    To keep a large-scale detector system running in a correct condition and to obtain some correct parameters, it is necessary to have a monitor system monitoring the detector system operation in real time. In the paper, the structure of End Cap Shower Counter monitor system of Beijing Spectrometer is described. Some properties of this monitor system and the real-time monitoring results during operation of Beijing Spectrometer are given

  4. A computerised recording and monitoring system for extensive air shower experiments

    International Nuclear Information System (INIS)

    Naranan, S.; Rao, M.V.S.; Sivaprasad, K.; Subramaniam, P.B.

    1975-01-01

    A digital computer, TDC-12, with a memory capacity of 8 K 12-bit words and memory cycle time of 2 μs has been installed at the Cosmic Ray Laboratory at Kolar Gold Fields, India for real time operation with the KGF Air Shower Experiment. The computer system records the selected events and monitors and calibrates all the 90 detectors of various types in real time. (orig./WL) [de

  5. Preliminary Screening a Potential AChE Inhibitor in Thai Golden Shower (Leguminosae mimosoideae Extracts

    Directory of Open Access Journals (Sweden)

    Jakkaphun Nanuam

    2013-07-01

    Full Text Available Pesticides are used to control pests of agriculture products in many countries including Thailand. Since they can exert harmful effects not only on target pests but also on other useful organisms, alternative agents are investigated. We studied the capacity of the Thai golden shower (Leguminosae mimosoideae extracts (root and pod to inhibit acetyl cholinestarese (AChE in the golden apple snail (Pomacea canaliculata as a pest representative. The results showed that the percentage of AChE inhibition increased with increasing in exposure times. The inhibition expressed the same trend in both male and female apple snails. AChE inhibition was higher in extracts from root than from pod. Chromatography-Mass Spectrometer (GC-MS chromatograms demonstrated anthraquinone, an AChE inhibitor, in extracts of golden shower. Our data indicate that a potential AChE inhibitor tends to accumulate more in the root part than in the pod.

  6. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    Science.gov (United States)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  7. An EAS event observed in the early stage of development

    Science.gov (United States)

    Barroso, S. L. C.; Beggio, P. C.; de Carvalho, A. O.; Chinellato, J. A.; Mariano, A.; de Oliveira, R.; Shibuya, E. H.; Brazil-Japan Collaboration of Chacaltaya Emulsion Chamber Experiment

    2008-01-01

    Since 1969 the experiments of Brazil-Japan Collaboration showed the occurrence of a series of events, showing a region with a high concentration of electromagnetic particles, surrounded by isolated and/or groups of showers. These events were named "halo events" or "super-families". Currently, we have more than a dozen of such events. The first of them, due to its aspect, was named "Andromeda". We present here the main characteristics of a similar halo event, named C21S087I075. It has a halo region with many high energy showers in its border. Other small energy showers spread over the central and surrounding blocks (S088, S100, S101, I074). These isolated showers, classified as of hadronic or electromagnetic origin, present a fractional energy distribution compatible with that of a Centauro candidate event (C16S087I037), reported at this symposium [S.L.C. Barroso, P.C. Beggio, J.A. Chinellato, A.O. Carvalho, A. Mariano, R. Oliveira, E.H. Shibuya, in this issue of XIV ISVHECRI]. Moreover, the lateral distribution in the halo region is similar to that observed in other 3 halo events.

  8. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  9. DCT Trigger in a High-Resolution Test Platform for the Detection of Very Inclined Showers in Pierre Auger Surface Detectors

    Science.gov (United States)

    Szadkowski, Zbigniew; Wiedeński, Michał

    2017-06-01

    We present first results from a trigger based on the discrete cosine transform (DCT) operating in new front-end boards with a Cyclone V E field-programmable gate array (FPGA) deployed in seven test surface detectors in the Pierre Auger Test Array. The patterns of the ADC traces generated by very inclined showers (arriving at 70° to 90° from the vertical) were obtained from the Auger database and from the CORSIKA simulation package supported by the Auger OffLine event reconstruction platform that gives predicted digitized signal profiles. Simulations for many values of the initial cosmic ray angle of arrival, the shower initialization depth in the atmosphere, the type of particle, and its initial energy gave a boundary on the DCT coefficients used for the online pattern recognition in the FPGA. Preliminary results validated the approach used. We recorded several showers triggered by the DCT for 120 Msamples/s and 160 Msamples/s.

  10. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D.; Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T.; Bruijn, R.; Melis, K.; Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A.; Caramete, L.; Pavalas, G.E.; Popa, V.; Celli, S.; Chiarusi, T.; Circella, M.; Sanchez-Losa, A.; Coleiro, A.; Deschamps, A.; Hello, Y.; Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M.; Donzaud, C.; Eberl, T.; El Bojaddaini, I.; Moussa, A.; Elsaesser, D.; Kadler, M.; Kreter, M.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F.; Gay, P.; Giordano, V.; Glotin, H.; Haren, H. van; Kouchner, A.; Van Elewyck, V.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Lefevre, D.; Leonora, E.; Loucatos, S.; Vallage, B.; Marinelli, A.; Mele, R.; Vivolo, D.; Migliozzi, P.; Organokov, M.; Pradier, T.; Schuessler, F.; Stolarczyk, T.; Tayalati, Y.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 "c"i"r"c"l"e for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E"2 . Φ"9"0"% = 4.9 . 10"-"8 GeV . cm"-"2 . s"-"1 . sr"-"1 is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E"-"2 spectrum and neutrino flavour equipartition at Earth. (orig.)

  11. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [LAM, Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, 077125, Bucharest, Magurele (Romania); Celli, S. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN, Sezione di Bari, Bari (Italy); Coleiro, A. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Deschamps, A.; Hello, Y. [CNRS, IRD, Observatoire de la Cote d' Azur, Geoazur, UCA, Sophia Antipolis (France); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Eberl, T. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Clermont Universite, BP 10448, Clermont-Ferrand (France); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (France); Institut Universitaire de France, Paris (France); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kouchner, A.; Van Elewyck, V. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (FR); Leonora, E. [INFN, Sezione di Catania, Catania (IT); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (FR); Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN, Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN, Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN, Sezione di Napoli, Naples (IT); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Tayalati, Y. [University Mohammed V in Rabat, Faculty of Sciences, Rabat (MA)

    2017-06-15

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 {sup circle} for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E{sup 2} . Φ{sup 90%} = 4.9 . 10{sup -8} GeV . cm{sup -2} . s{sup -1} . sr{sup -1} is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E{sup -2} spectrum and neutrino flavour equipartition at Earth. (orig.)

  12. Reconstruction of the characteristics of gamma showers and contribution to the data analysis of the experiment Celeste

    International Nuclear Information System (INIS)

    Herault, N.

    2000-04-01

    The detection of high energy gamma radiation is an important tool for the study of violent events occurring somewhere in the galaxies and produced by pulsars or active nuclei. Since the beginning of the nineties, a new technology is used: the ground-based detection of Cerenkov light emitted by the air shower issuing from very high energy gamma radiation. Celeste (Cerenkov low energy sampling and timing experiment) is the last of a series of experiments: Asgat, Themistocle and Cat, that have been performed on the site of the decommissioned solar plant Themis. Alike Asgat and Themistocle, Celeste is based on the same method of parting the light wave front but uses the important 54 m 2 surface mirrors of the ancient solar plant to collect it. The processing of the different accurate moments at which the Cerenkov light has reached each mirror allows the reconstruction of the tail of the shower. This installation is expected to collect more Cerenkov light and to allow physicists to reach the 30 to 300 GeV energy range that has been till now largely unexplored in gamma astronomy. The first chapter is dedicated to the various methods for detecting gamma radiation, either satellite on-board experiments or ground-based detection systems. The second chapter presents the experiment Celeste and explains how this experiment could bring new information about astrophysical concerns. The third chapter deals with the detailed technical description of the installation, especially the optical and electronic systems. The fourth chapter is dedicated to the reconstruction of gamma showers, the determination of their direction is a delicate problem. The fifth chapter presents the characteristics of the background noise coming from hadronic showers. The sixth chapter is dedicated to the calibration of the detector and it gives its first preliminary results. (A.C.)

  13. Experimental studies of the acoustic detection of particle showers

    International Nuclear Information System (INIS)

    Sulak, L.R.; Bowen, T.; Pifer, B.

    1977-01-01

    The scale and characteristics required of a detector that will measure ultrahigh-energy cosmic ray neutrino interactions have been studied in detail. Results obtained to date in observing acoustic signals from hadronic showers both at Brookhaven National Laboratory (BNL) and Harvard University are reported. It is suggested that ultrasonic particle detection is possible, currently down to the level of 10 14 eV. This simple, inexpensive technique may be ideal for observing the secondaries produced in a massive (10 9 ton) neutrino detector. Three experimental tests were performed to determine if showers produce detectable sonic signals as recently predicted. One at the 200-MeV linac at BNL used heavily ionizing protons stopping in water (range = 30 cm) with total energy depositions between 10 19 and 20 21 eV and deposition times ranging from 3 μs to 200 μs. The diameter of the beam was fixed at 6 cm (a characteristic time of 30 μs). A similar test was done at the 160-MeV cyclotron at Harvard, where the energy deposition could be decreased to 10 15 eV. A third test was done with minimum ionizing protons from the 28-GeV fast extracted beam at BNL. As in the BNL linac test, the beam could not be tuned below energy depositions of 10 19 . Typically 3 x 10 11 protons traversed 30 cm of water during a deposition time of 2 μs with a beam diameter variable between 5 and 20 cm

  14. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  16. Improving the angular resolution of existing air shower arrays by adding a thin layer of lead

    International Nuclear Information System (INIS)

    Poirier, J.; Mikocki, S.

    1987-01-01

    Calculations show that placing a thin sheet of lead above conventional extensive air shower counters yields an additional signal which is earlier in time. This will improve the array's angular resolution. (orig.)

  17. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  18. Pseudorapidity distribution of shower particles in 24Mg-emulsion collisions at 4.5 A GeV/c

    International Nuclear Information System (INIS)

    Meng Cairong; Li Xiaolin; Duan Maiying

    2004-01-01

    The pseudorapidity distribution of shower particles produced in the 24 Mg-emulsion collisions at 4.5 A GeV/c is reported in this paper. The dependences of the distribution width and the peak position on the target size are observed. The pseudorapidity distribution of shower particles for the events with low target multiplicity (light target) is narrower than that with high target multiplicity (heavy target). The maximum probability pseudorapidity for light target is greater than that for heavy target. The experimental data is analyzed by using the cylinder model suggested by Liu et al. The Monte Carlo results based on Liu's cylinder model are approximately in agreement with the experimental tendency and fluctuation. (author)

  19. Transition effect of extensive air showers in thick scintillators

    International Nuclear Information System (INIS)

    Lidvanskij, A.S.; Navarra, Dzh.; Chernyaev, A.V.

    1985-01-01

    Transition effect of extensive air showers has been measured by means of the ''Kover'' facility of the Baksan neutrino laboratory. The transition effect represents the ratio of ''scintillation'' particle density detected with detectors and particle density under the facility concrete roof (21 gxcm -2 ). Measurement results are compared with data obtained by means of the program of electron-photon cascade gaming. Good agreement of experimental and calculational data has been obtained. It follows from the data in the paper that the transition effect for one scintillator in the absence of roof can be produced by the gaming rather reliably

  20. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...