Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Electromagnetic scattering theory
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Algorithms for Electromagnetic Scattering Analysis of Electrically Large Structures
DEFF Research Database (Denmark)
Borries, Oscar Peter
Accurate analysis of electrically large antennas is often done using either Physical Optics (PO) or Method of Moments (MoM), where the former typically requires fewer computational resources but has a limited application regime. This study has focused on fast variants of these two methods......, by several authors, been dismissed as being too memory intensive. In the present work, we demonstrate for the first time that by including a range of both novel and previously presented modifications to the standard MLFMM implementation, HO MLFMM can achieve both memory reduction and significant speed...... band. Accelerating PO is an entirely different matter. A few authors have discussed applying the Fast-PO technique to far fields, achieving relative errors of 0.1%−1% for moderately sized scatterers. For near-fields, the state-of-the-art implementation of Fast-PO has several difficulties, in particular...
Rigorous coupled-wave analysis of electromagnetic scattering from lamellar grating with defects.
Watanabe, Koki; Pištora, Jaromír; Nakatake, Yoshimasa
2011-12-05
This paper proposes a spectral-domain approach to the electromagnetic scattering problem of lamellar grating with defects. The fields in imperfectly periodic structures have continuous spectra in the wavenumber space, and the main problem of the spectral-domain approach is connected to the discretization scheme on the wavenumber. The present approach introduces the pseudo-periodic Fourier transform to consider the discretization scheme in the Brillouin zone. This transformation also makes it possible to apply the conventional grating formulations to the problems of imperfectly periodic structures. The present formulation is based on the rigorous coupled-wave analysis with the help of pseudo-periodic Fourier transform.
Kiani, M.; Abdolali, A.; Safari, M.
2018-03-01
In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.
Plasma scattering of electromagnetic radiation
Sheffield, John
1975-01-01
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge
Source-model technique analysis of electromagnetic scattering by surface grooves and slits.
Trotskovsky, Konstantin; Leviatan, Yehuda
2011-04-01
A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data. © 2011 Optical Society of America
Li, Ping
2014-05-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
Scattering of light and other electromagnetic radiation
Kerker, Milton
1969-01-01
The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan
Parallel QR Decomposition for Electromagnetic Scattering Problems
National Research Council Canada - National Science Library
Boleng, Jeff
1997-01-01
This report introduces a new parallel QR decomposition algorithm. Test results are presented for several problem sizes, numbers of processors, and data from the electromagnetic scattering problem domain...
Sayed, Sadeed Bin
2014-07-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.
Directory of Open Access Journals (Sweden)
A. Mirala
2016-09-01
Full Text Available This paper introduces a MATLAB-based Graphical User Interface (GUI which could help electromagnetics engineers and researchers who are interested in designing layered media for various applications. The paper begins with presenting the analysis method the program employs, continues by encountering specific considerations and techniques of implementation, and ends with providing different numerical examples. These examples show good efficiency of the program for analysis of diverse problems.
Electromagnetic scattering from buried objects
International Nuclear Information System (INIS)
Brock, B.C.; Sorensen, K.W.
1994-10-01
Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations
Directory of Open Access Journals (Sweden)
Diego Tami
2018-01-01
Full Text Available We discuss three sets of heuristic coefficients used in uniform theory of diffraction (UTD to characterize the electromagnetic scattering in realistic urban scenarios and canonical examples of diffraction by lossy conducting wedges using the three sets of heuristic coefficients and the Malyuzhinets solution as reference model. We compare not only the results of the canonical models but also their implementation in real outdoor scenarios. To predict the coverage of mobile networks, we used propagation models for outdoor environments by using a 3D ray-tracing model based on a brute-force algorithm for ray launching and a propagation model based on image theory. To evaluate each set of coefficients, we analyzed the mean and standard deviation of the absolute error between estimates and measured data in Ottawa, Canada; Valencia, Spain; and Cali, Colombia. Finally, we discuss the path loss prediction for each set of heuristic UTD coefficients in outdoor environment, as well as the comparison with the canonical results.
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
DEFF Research Database (Denmark)
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
for solving this problem is based on shape optimization and isogeometric analysis. One of the major di±culties we face to make these methods work together is the need to maintain a valid parametrization of the computational domain during the optimization. Our approach to generating a domain parametrization......We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.
Directory of Open Access Journals (Sweden)
P. A. Preobrazhensky
2017-02-01
Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.
Electromagnetic scattering from random media
Field, Timothy R
2009-01-01
- ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi
2013-09-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.
Scattering by an electromagnetic radiation field
Bini, D.; Geralico, A.
2012-02-01
Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term à la Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle’s rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin (1)/(2) and electromagnetic (spin 1) fields, is studied too.
Electromagnetic and gravitational scattering at Planckian energies
International Nuclear Information System (INIS)
Das, S.; Majumdar, P.
1994-11-01
The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude. (author). 20 refs
Fortney, Joseph C.
1991-12-01
This paper investigates the scattering from impedance strips and impedance-loaded conducting strips. The impedance strips are analyzed using Senior's impedance half plane formulation. Once the primary diffraction from the impedance half plane is presented, it is used to develop multiple diffraction mechanisms on an impedance strip. The scattering from impedance-loaded strips are analyzed using Maliuzhinets' impedance wedge formulation. The primary diffraction mechanism from an impedance wedge is used to develop the multiple diffractions on an impedance double wedge. The multiple diffractions on both types of strips are developed using the Extended Spectral Ray Method. Sample calculations are made for impedance strips and impedance-loaded strips for a large purely capacitive impedance, a large purely inductive impedance, a large real impedance, and a small real impedance. Measurements are made for impedance strips and impedance loaded strips and are used to compare against predictions. The impedance materials used are two magnetic radar absorbing materials and two resistive materials.
DGTD Analysis of Electromagnetic Scattering from Penetrable Conductive Objects with IBC
Li, Ping
2015-10-16
To avoid straightforward volumetric discretization, a discontinuous Galerkin time-domain (DGTD) method integrated with the impedance boundary condition (IBC) is presented in this paper to analyze the scattering from objects with finite conductivity. Two situations are considered: i) the skin depth is smaller than the thickness of the conductive volume; ii) the skin depth is larger than the thickness of a thin conductive sheet. For the first situation, a surface impedance boundary condition (SIBC) is employed, wherein the surface impedance usually exhibits a complex relation with the frequency. To incorporate the SIBC into DGTD, the surface impedance is firstly approximated by rational functions in the Laplace domain using the fast relaxation vector-fitting (FRVF) technique. Via inverse Laplace transform, the time-domain DGTD matrix equations can be obtained conveniently in integral form with respect to time t. For the second situation, a transmission IBC (TIBC) is used to include the transparent effects of the fields. In the TIBC, the tangential magnetic field jump is related with the tangential electric field via the surface conductivity. In this work, a specifically designed DGTD algorithm with TIBC is developed to model the graphene up to the terahertz (THz) band. In order to incorporate the TIBC into DGTD without involving the time-domain convolution, an auxiliary surface polarization current governed by a first order differential equation is introduced over the graphene. For open-region scattering problems, the DGTD algorithm is further hybridized with the time-domain boundary integral (TDBI) method to rigorously truncate the computational domain. To demonstrate the accuracy and applicability of the proposed algorithm, several representative examples are provided.
Robust optimization in electromagnetic scattering problems
Bertsimas, Dimitris; Nohadani, Omid; Teo, Kwong Meng
2007-04-01
In engineering design, the physical properties of a system can often only be described by numerical simulation. Optimization of such systems is usually accomplished heuristically without taking into account that there are implementation errors that lead to very suboptimal, and often, infeasible solutions. We present a robust optimization method for electromagnetic scattering problems with large degrees of freedom and report on results when this technique is applied to optimization of aperiodic dielectric structures. The spatial configuration of 50 dielectric scattering cylinders is optimized to match a desired target function such that the optimal arrangement is robust against placement and prototype errors. Our optimization method inherently improves the robustness of the optimized solution with respect to relevant errors and is suitable for real-world design of materials with unconventional electromagnetic functionalities, as relevant to nanophotonics.
Scattering by an electromagnetic radiation field
Bini, Donato; Geralico, Andrea
2014-01-01
Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the elect...
Electromagnetic wave scattering by aerial and ground radar objects
Sukharevsky, Oleg I
2014-01-01
Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur
Electromagnetic scattering from large steady breaking waves
Energy Technology Data Exchange (ETDEWEB)
Coakley, D.B.; Haldeman, P.M.; Morgan, D.G.; Nicolas, K.R.; Penndorf, D.R.; Wetzel, L.B.; Weller, C.S. [David Taylor Model Basin, Naval Surface Warfare Center Carderock Div., West Bethesda, MD (United States)
2001-05-01
A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering. (orig.)
Electromagnetic Scattering in Micro- and Nanostructured Materials
DEFF Research Database (Denmark)
de Lasson, Jakob Rosenkrantz
is the interaction of light with matter, in the forms of semiconductors and metals in the two cases, and fundamental understanding of the interactions is important to optimize technological designs. To address this, we in the present thesis develop a formalism for determining the electric field in a homogeneous...... and the electromagnetic Green’s tensor and uses an expansion of the field on spherical wavefunctions. Addition theorems for these are extensively used, and all parts of the formalism are expressed analytically. With the formalism, we show that the simpler approach of modeling the spherical scatterers as polarizable...
Coherent scattering of electromagnetic radiation by a polarized particle system
International Nuclear Information System (INIS)
Agre, M.Ya.; Rapoport, L.P.
1996-01-01
The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
Topics in electromagnetic, acoustic, and potential scattering theory
Nuntaplook, Umaporn
the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.
Time-reversal of electromagnetic scattering for small scatterer classification
International Nuclear Information System (INIS)
Smith, J Torquil; Berryman, James G
2012-01-01
Time-reversal operators, or the alternatively labelled, but equivalent, multistatic response matrix methods, are used to show how to determine the number of scatterers present in an electromagnetic scattering scenario that might be typical of UneXploded Ordinance (UXO) detection, classification and removal applications. Because the nature of the target UXO application differs from that of many other common inversion problems, emphasis is placed here on classification and enumeration rather than on detailed imaging. The main technical issues necessarily revolve around showing that it is possible to find a sufficient number of constraints via multiple measurements (i.e. using several distinct views at the target site) to solve the enumeration problem. The main results show that five measurements with antenna pairs are generally adequate to solve the classification and enumeration problems. However, these results also demonstrate a need for decreasing noise levels in the multistatic matrix as the number n of scatterers increases for the intended practical applications of the method. (paper)
Left-right splitting for electromagnetic scattering in 3D
Spivack, M; Sillence, C; 10.1049/ip-smt:20040945
2004-01-01
The left-right splitting method and its application to electromagnetic scattering by large 3D scatterers are described. Exact numerical solutions to the governing integral equations can be prohibitively expensive for large scatterers. Under the assumption that energy is predominantly forward-scattered, the solution is expressed as a series of terms, each of which is rapidly and efficiently evaluated. In many cases only one or two terms are needed, and the formulation provides additional physical insight.
Scattering of electromagnetic waves by a traversable wormhole
Directory of Open Access Journals (Sweden)
B. Nasr Esfahani
2005-09-01
Full Text Available Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.
Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation
Apostol, M.
2017-11-01
The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.
Modeling of Electromagnetic Scattering from Ships
1985-09-06
Pierson [89] (and noise-current modeling by Rice [90]). It allows the intuitive interpretation that 71(t) is made up of an infinite number of randomly...SCATTERER. C Y =Y-COOPDINATE OF THF SCATTEBER. C PST =S!4TP ROTAT!ON ANGLE. C SCTNUF =INDEX TO THE SCATTERFPS (I). c FIRST =FTRST-PASS FlAG. C =.T PUF . FOR...Gravity Waves," in Advances in Geophysics 2, 93, H.E. Landsberg, ed. (Academic Press, New York, 1955). 90. S.O. Rice , "Mathematical Analysis of
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-04-06
Breinbjerg and A.D. Yaghjian, “Permittivity and Permeability for Floquet-Bloch Space Harmonics in Infinite 1D Magneto -Dielectric Periodic Structures...Scattering-matrix theory has seen an increased popularity in the areas of electromagnetic, acous- tic, and elastic scattering [5], [6]. In particular
On scattering of electromagnetic waves by a wormhole
International Nuclear Information System (INIS)
Kirillov, A.A.; Savelova, E.P.
2012-01-01
We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.
On scattering of electromagnetic waves by a wormhole
Energy Technology Data Exchange (ETDEWEB)
Kirillov, A.A., E-mail: ka98@mail.ru [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation); Savelova, E.P. [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation)
2012-04-20
We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.
Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation
International Nuclear Information System (INIS)
Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun
2015-01-01
A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)
Collective scattering of electromagnetic waves from a relativistic magnetized plasma
International Nuclear Information System (INIS)
Lu Quankang
1998-01-01
Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
stems and leaves, which are expected to far outnumber those scatterers composing the main trunks. The accuracy of the analytical solver is assessed by...which are expected to far outnumber those scatterers composing the main trunks. Furthermore, tree and scene generation for the analytical solver...primitives into cylinders of desired sizes, global translation, and scaling, etc.) is carried out before the entire model is passed on to the scattering
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Path integral approach to electron scattering in classical electromagnetic potential
International Nuclear Information System (INIS)
Xu Chuang; Feng Feng; Li Ying-Jun
2016-01-01
As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. (paper)
Solution of electromagnetic scattering problems using time domain techniques
Britt, Charles L.
1989-01-01
New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.
Weak-electromagnetic interference in polarized eD scattering
International Nuclear Information System (INIS)
Prescott, C.Y.
1992-09-01
Observation of parity non-conservation in deep-inelastic scattering of polarized electrons from deuterium was reported in an experiment at SLAC in 1978. The events at SLAC and elsewhere leading to the successful search for parity non-conservation in the electromagnetic processes are described
DEFF Research Database (Denmark)
Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.
2002-01-01
A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...... efficient than the MoM/SIBC method, proving that the proposed novel combination is a powerful and advantageous computational tool....
Photophoresis and the scattering of electromagnetic radiation
International Nuclear Information System (INIS)
Ipser, J.R.
1985-09-01
Electron-microscope photographs of soot lend support to the picture in which a soot particle is modeled as a collection of chains of small carbon spheres. The soot particle itself is typically considerably larger than the small carbon spheres making up the chains. Thus the soot particles might have a size approx.0.1 - 1 μm while the small carbon spheres might have a size approx.0.03 μm in typical situations. Further, measurements of the density of soot yield values much less than that of normal carbon, indicating that an individual soot particle has a rather small filling factor, i.e., the fraction of the volume of the particle tht is occupied by chains. If a soot particle is taken to be a sphere partially filled with carbon chains, what are its scattering and absorption properties. Several workers have adopted the view that the net scattering and absorption properties can be determined simply by summing the cross-sections for the individual small carbon spheres. We feel that such a procedure cannot be valid in general because it neglects coherence effects among the various randomly located scatterers within the soot particle. It appears that in a first rough approximation the scattering and absorption properties of soot can be determined by estimating the effective dielectric constant of a soot sphere
Stimulated brillouin scattering of electromagnetic waves in a dusty plasma
International Nuclear Information System (INIS)
Salimullah, M.; Sen, A.
1991-08-01
The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs
Depolarization and Scattering of Electromagnetic Waves. Appendices.
1986-06-30
ely th quasi-specular terme iszpoT- gb l tes o.r i4 retoroed beeoue th Lb. ’ .s1ot. Is let. 12 it is sbown that the sap - ksigbly ii~l - d eps lar...Cbeltun and Xeo~be (Plet. 61 etablished a new 4;hading is elsa of ourt. identically the model for altimeoter Os’ vs wind speed by sap - spocalar-point...and theory for scatter and produce the ame result rises rsar) through the gravity-wave diaper - s the apsoslar-peist model across the ci1n relation: k
Electromagnetic Radiation Analysis
1978-04-10
A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to
Stimulated Brillouin scattering of electromagnetic Alfven waves in a plasma
International Nuclear Information System (INIS)
Sharma, R.R.; Sharma, R.C.; Sharma, O.P.
1981-01-01
The phenomenon of stimulated Brillouin scattering of electromagnetic Alfven waves in a plasma is investigated by employing fluid model approach. The low frequency nonlinearity of ion acoustic wave arises through the ponderomotive force on ions and high frequency nonlinearity arises through the equation of continuity. For a typical isothermal plasma (Tsub(e)/Tsub(i)approx.=10), Alfven wave frequency ω 0 approx.=10 6 rad. sec -1 , the threshold for this instability in a uniform plasma is approx.= milliwatt cm -2 . Above the threshold, the growth rate for forward and back scatterings are approx.=10 -3 rad.sec -1 and approx.=10 -4 rad.sec. -1 , respectively. (author)
Scattering and attenuation of electromagnetic waves by partly charged particles
Zhou, Jùn; Dou, X.; Xie, Li
2018-02-01
The scattering of electromagnetic waves (EMWs) by partly charged particles is investigated by Mie theory. For particles much smaller than the wavelength of EMW, the scattering properties are significantly affected by the net surface charges but are not affected by the location of charged area, and the extinction cross section and scattering cross section, as well as the signal attenuation due to charged particles, monotonously increase with the size of charged area and reach maximum when the particle is overall charged, as the surface charge densities is within several hundred μC/m2. Moreover, given the distribution of particle sizes a closer agreement between the theory and measurement of signal attenuation due to charged sand/dust storms can be achieved by taking the charges into consideration and assuming all particles have the same size of charged area and surface charge density in theory calculations.
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-10-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Numerical simulations of electromagnetic scattering by Solar system objects
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Efficient Fixed-Offset GPR Scattering Analysis
DEFF Research Database (Denmark)
Meincke, Peter; Chen, Xianyao
2004-01-01
The electromagnetic scattering by buried three-dimensional penetrable objects, as involved in the analysis of ground penetrating radar systems, is calculated using the extended Born approximation. The involved scattering tensor is calculated using fast Fourier transforms (FFT's). We incorporate...... in the scattering calculation the correct radiation patterns of the ground penetrating radar antennas by using their plane-wave transmitting and receiving spectra. Finally, we derive an efficient FFT-based method to analyze a fixed-offset configuration in which the location of the transmitting antenna is different...
Li, Ping
2014-07-01
This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.
Macke, Andreas; Mishchenko, Michael I.
2015-01-01
The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015. This conference built on the great success of the previous meetings held in Amsterdam (1995), Helsinki(1997) [2], New York City(1998) [3], Vigo (1999),Halifax (2000), Gainesville (2002), Bremen (2003), Salobreña (2005), St. Petersburg (2006), Bodrum (2007), Hatfield (2008), Helsinki (2010), Taormina (2011), and Lille as well as the workshops held in Bremen (1996,1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" was published in1865 and has widely been acknowledged as one of the supreme achievements in the history of science. The conference was attended by136 scientists from 22 countries. The scientific program included two plenary lectures, 16 invited reviews, 88 contributed oral talks, and 70 poster presentations. The program and the abstracts of conference presentations are available at the conference website http://www.els-xv-2015.net/home.html. Following the well-established ELS practice and with Elsevier's encouragement, we solicited full-size papers for a topical issue of the Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT). The result of this collective effort is now in the reader's hands. As always, every invited review and regular paper included in this topical issue has undergone the same rigorous peer review process as any other manuscript published in the JQSRT.
Network representations of angular regions for electromagnetic scattering.
Directory of Open Access Journals (Sweden)
Vito G Daniele
Full Text Available Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields.
Energy Technology Data Exchange (ETDEWEB)
Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)
2017-03-26
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.
Richmond, J. H.
1974-01-01
Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.
Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range
International Nuclear Information System (INIS)
Astapenko, V. A.
2011-01-01
The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.
Numerical modeling of electromagnetic scattering in explosive granular media
Sundberg, Garth
Terahertz (THz) reflection and transmission spectroscopy is a promising new field with applications in imaging and illicit material detection. One particularly useful application is for the detection of improvised explosive devices (IEDs) which is a favorite weapon of global terrorists. Explosive materials have been shown to have a unique spectral signature in the THz band which can be used to identify the explosives. However, the initial measurements performed on the explosive samples do not account for the modulation of the spectral features by random scattering that will be prevalent with actual samples encountered in applications. The intent of this work is to characterize and quantify the effects of random scattering that may alter the spectral features. Specifically, the effect that a randomly rough surface and granular scattering has on the scattered THz wave (T-Rays) will be investigated and characterized using the Finite-Difference Time-Domain (FDTD) simulation method. The FDTD method is a natural choice for this work as it can handle complicated geometries (i.e., multiple scatterers, arbitrarily rough interfaces, etc.) arbitrary materials (i.e., dispersive media, etc.) and provides broadband frequency data with one simulation pass. First, the effect that the randomly rough surface of the sample explosive has on the extracted spectral signature will be studied using a Monte-Carlo analysis. Then the effect of the complex structure inside the explosive material (the granular scatterers) will be considered. Next, when the physics of the rough surface and granular scattering are understood, a robust method to extract the spectral signature from the reflected T-rays will be developed.
Simple Electromagnetic Analysis in Cryptography
Directory of Open Access Journals (Sweden)
Zdenek Martinasek
2012-07-01
Full Text Available The article describes the main principle and methods of simple electromagnetic analysis and thus provides an overview of simple electromagnetic analysis.The introductions chapters describe specific SPA attack used visual inspection of EM traces, template based attack and collision attack.After reading the article, the reader is sufficiently informed of any context of SEMA.Another aim of the article is the practical realization of SEMA which is focused on AES implementation.The visual inspection of EM trace of AES is performed step by step and the result is the determination of secret key Hamming weight.On the resulting EM trace, the Hamming weight of the secret key 1 to 8 was clearly visible.This method allows reduction from the number of possible keys for following brute force attack.
Scattering of Electromagnetic Waves by Many Nano-Wires
Directory of Open Access Journals (Sweden)
Alexander G. Ramm
2013-07-01
Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M = M (a. It is assumed that the points, xˆm, are distributed, so that N (∆ = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.
Theory and approach of information retrievals from electromagnetic scattering and remote sensing
Jin, Ya-Qiu
2006-01-01
Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.
Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach
International Nuclear Information System (INIS)
Chen, X; Zhong, Y
2008-01-01
Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method
Light scattering under conditions of nonstationary electromagnetically induced transparency
International Nuclear Information System (INIS)
Larionov, N V; Sokolov, I M
2007-01-01
The propagation of probe radiation pulses in ultracold atomic ensembles is studied theoretically under conditions of electromagnetically induced transparency. The pulse 'stopping' process is considered which takes place upon nonadiabatic switching off and subsequent switching on the control field. We analysed the formation of an inverted recovered probe radiation pulse, i.e. the pulse propagating in the direction opposite to the propagation direction before the pulse stopping. Based on this analysis, a scheme is proposed for lidar probing atomic or molecular clouds in which the probe pulse penetrates into a cloud over the specified depth, while information on the cloud state is obtained from the parameters of the inverted pulse. Calculations are performed for an ensemble of 87 Rb atoms. (fifth seminar in memory of d.n. klyshko)
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of
International Nuclear Information System (INIS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2018-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Formal analysis of electromagnetic optics
Khan-Afshar, Sanaz; Hasan, Osman; Tahar, Sofiène
2014-09-01
Optical systems are increasingly being used in safety-critical applications. Due to the complexity and sensitivity of optical systems, their verification raises many challenges for engineers. Traditionally, the analysis of such systems has been carried out by paper-and-pencil based proofs and numerical computations. However, these techniques cannot provide accurate results due to the risk of human error and inherent approximations of numerical algorithms. In order to overcome these limitations, we propose to use theorem proving (i.e., a computer-based technique that allows to express mathematical expressions and reason about their correctness by taking into account all the details of mathematical reasoning) as a complementary approach to improve optical system analysis. This paper provides a higher-order logic (a language used to express mathematical theories) formalization of electromagnetic optics in the HOL Light theorem prover. In order to demonstrate the practical effectiveness of our approach, we present the analysis of resonant cavity enhanced photonic devices.
Scattering of electromagnetic waves into plasma oscillations via plasma particles
International Nuclear Information System (INIS)
Lin, A.T.; Dawson, J.M.
1975-01-01
A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-07-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
Electromagnetic radiation of ultrarelativistic particles at scattering in excited medium
International Nuclear Information System (INIS)
Malyshevskij, V.S.
1990-01-01
The interaction between relativistic particles and a gaseous or condensed medium with a high density of nondegenerate excited quantum states involves the coherent conversion of atomic or molecular excitations into electromagnetic radiation
Isogeometric analysis and shape optimization in electromagnetism
DEFF Research Database (Denmark)
Nguyen, Dang Manh
In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...
Electromagnetic safety analysis during major disruption
International Nuclear Information System (INIS)
Gao Chunming; Wang Yafei; Chen Zhi; Feng Kaiming
2006-01-01
The electromagnetic safety analysis during major disruption is important for safety analysis of the CH HCSB TBM. In this paper, using finite element method, the electromagnetic safety analysis of the CH HCSB TBM is carried out in consideration of major disruption. First, the finite element models of the CH HCSB TBM and its sub-module are established; second, the distributions of the induced eddy currents and electromagnetic forces on the whole CH HCSB TBM module and its sub-module are calculated; third, the torquemoment on whole CH HCSB TBM module and its sub-module are calculated from the distributions of the electromagnetic forces. Comparing the maximum allowable values of the parameters of the materials with the calculated data, the electromagnetic safety of the CH HCSB TBM is investigated. (authors)
Electromagnetic Scattering of Finite and Infinite 3D Lattices in Polarizable Backgrounds
International Nuclear Information System (INIS)
Gallinet, Benjamin; Martin, Olivier J. F.
2009-01-01
A novel method is elaborated for the electromagnetic scattering from periodical arrays of scatterers embedded in a polarizable background. A dyadic periodic Green's function is introduced to calculate the scattered electric field in a lattice of dielectric or metallic objects. The method exhibits strong advantages: discretization and computation of the field are restricted to the volume of the scatterers in the unit cell, open and periodic boundary conditions for the electric field are included in the Green's tensor, and finally both near and far-fields physics are directly revealed, without any additional computational effort. Promising applications include the design of periodic structures such as frequency-selective surfaces, photonic crystals and metamaterials.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
Electromagnetic scattering by two concentric spheres buried in a stratified material.
Frezza, F; Mangini, F; Tedeschi, N
2015-02-01
In this paper, a rigorous method to analyze the electromagnetic scattering of an elliptically polarized plane wave by two concentric spheres buried in a dielectric stratified medium is presented. The interaction of the electromagnetic radiation with the stratified material is taken into account by means of the transfer matrix approach, in this way we can consider the stratified medium as an effective single interface. All the electromagnetic fields are expanded in series of spherical vector harmonics. The transmitted field through the stratified medium is obtained by means of the effective transmission coefficient. This field is scattered by the two concentric spheres, and the scattered field interacts again with the stratified material. The scattered-reflected and scattered-transmitted fields by the layered medium are computed by exploiting the plane-wave spectrum of the scattered field, considering the reflection and transmission of each elementary plane wave by the effective interface. The boundary conditions imposition on the spheres' surfaces leads to a linear system that returns the unknown coefficients of the problem. A numerical code has been implemented to compute the field over all the space. In order to compute the scattered fields, a truncation criterion has been proposed for the numerical evaluation of the series. Finally, to validate the presented method, comparisons between the results of the proposed code and the results of simulations with a software based on the finite element method have been implemented, showing very good agreement.
Plasma scattering of electromagnetic radiation theory and measurement techniques
Froula, Dustin H; Luhmann, Neville C Jr; Sheffield, John
2011-01-01
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of the
The electromagnetic calorimeter in JLab Real Compton Scattering Experiment
Energy Technology Data Exchange (ETDEWEB)
Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski
2007-04-16
A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.
Electromagnetic Scattered Field Evaluation and Data Compression Using Imaging Techniques
Gupta, I. J.; Burnside, W. D.
1996-01-01
This is the final report on Project #727625 between The Ohio State University and NASA, Lewis Research Center, Cleveland, Ohio. Under this project, a data compression technique for scattered field data of electrically large targets is developed. The technique was applied to the scattered fields of two targets of interest. The backscattered fields of the scale models of these targets were measured in a ra compact range. For one of the targets, the backscattered fields were also calculated using XPATCH computer code. Using the technique all scattered field data sets were compressed successfully. A compression ratio of the order 40 was achieved. In this report, the technique is described briefly and some sample results are included.
Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum
International Nuclear Information System (INIS)
Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.
1999-01-01
The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum
Relativistic contributions to the electromagnetic binding and scattering of pions by atoms
International Nuclear Information System (INIS)
Ruijgrok, Th.W.
1996-01-01
A relativistic two-particle theory is used for the calculation of the lowest order correction to the electromagnetic binding and scattering of a pion by an atom. The binding energy is found to be equal to the result obtained with the Klein-Gordon equation. The relativistic correction to the differential cross section, however, differs from the corresponding Klein-Gordon result. (author)
Scattering forces on magneto-dielectric particles and the electromagnetic momentum density
Directory of Open Access Journals (Sweden)
M. I. Marques
2013-09-01
Full Text Available In this paper we analyze the non-conservative forces on magneto-dielectric particles in special configurations where the scattering force is not proportional to the average value of the Poynting vector. Based on these results, we revisit the concept of electromagnetic momentum density.
Modelling Scattering of Electromagnetic Waves in Layered Media: An Up-to-Date Perspective
Directory of Open Access Journals (Sweden)
Pasquale Imperatore
2017-01-01
Full Text Available This paper addresses the subject of electromagnetic wave scattering in layered media, thus covering the recent progress achieved with different approaches. Existing theories and models are analyzed, classified, and summarized on the basis of their characteristics. Emphasis is placed on both theoretical and practical application. Finally, patterns and trends in the current literature are identified and critically discussed.
Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices
International Nuclear Information System (INIS)
Resendes, D.
1995-01-01
An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)
Mishchenko, Michael I.; Yurkin, Maxim A.
2017-01-01
Although the model of randomly oriented nonspherical particles has been used in a great variety of applications of far-field electromagnetic scattering, it has never been defined in strict mathematical terms. In this Letter we use the formalism of Euler rigid-body rotations to clarify the concept of statistically random particle orientations and derive its immediate corollaries in the form of most general mathematical properties of the orientation-averaged extinction and scattering matrices. Our results serve to provide a rigorous mathematical foundation for numerous publications in which the notion of randomly oriented particles and its light-scattering implications have been considered intuitively obvious.
Scattering of electromagnetic waves by a nonuniform cylindrical plasma in the eikonal approximation
International Nuclear Information System (INIS)
Sharma, S.K.; Dasgupta, B.
1987-01-01
The scattering of a uniform plane electromagnetic wave from an inhomogeneous cylindrical plasma in the presence of an axial static magnetic field is treated in the eikonal approximation. A simple expression is presented for the scattering function for ordinary wave scattering. This expression is expected to be a good approximation at small angles and for refractive indices close to unity (ω 2 >> ω 2 sub(p)). In order to show the accuracy of the eikonal approximation numerical comparisons with the exact results are presented for the simple model of homogeneous plasma. Implications of the eikonal results in the plasma diagnostics are discussed. (author)
Stimulated Brillouin scattering of an electromagnetic wave in weakly ...
Indian Academy of Sciences (India)
The importance of the laser–plasma interaction becomes an active field of research in the laser-fusion experiments, charged particle acceleration experiments, X-ray generation, propagation of EM waves in ionosphere etc. and the stimulated Bril- louin scattering (SBS) plays an important role in laser–plasma interaction as it.
Modelling of Electromagnetic Scattering by a Hypersonic Cone-Like Body in Near Space
Directory of Open Access Journals (Sweden)
Ji-Wei Qian
2017-01-01
Full Text Available A numerical procedure for analysis of electromagnetic scattering by a hypersonic cone-like body flying in the near space is presented. First, the fluid dynamics equation is numerically solved to obtain the electron density, colliding frequency, and the air temperature around the body. They are used to calculate the complex relative dielectric constants of the plasma sheath. Then the volume-surface integral equation method is adopted to analyze the scattering properties of the body plus the plasma sheath. The Backscattering Radar Cross-Sections (BRCS for the body flying at different speeds, attack angles, and elevations are examined. Numerical results show that the BRCS at a frequency higher than 300 MHz is only slightly affected if the speed is smaller than 7 Mach. The BRCS at 1 GHz would be significantly reduced if the speed is greater than 7 Mach and is continuously increased, which can be attributed to the absorption by the lossy plasma sheath. Typically, the BRCS is influenced by 5~10 dBm for a change of attack angle within 0~15 degrees, or for a change of elevation within 30~70 km above the ground.
XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.
2017-12-01
Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.
Parallel decomposition methods for the solution of electromagnetic scattering problems
Cwik, Tom
1992-01-01
This paper contains a overview of the methods used in decomposing solutions to scattering problems onto coarse-grained parallel processors. Initially, a short summary of relevant computer architecture is presented as background to the subsequent discussion. After the introduction of a programming model for problem decomposition, specific decompositions of finite difference time domain, finite element, and integral equation solutions to Maxwell's equations are presented. The paper concludes with an outline of possible software-assisted decomposition methods and a summary.
Pinheiro, F A; Martínez, A S
2001-01-01
We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...
Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Casal, Tania; Dall, Jørgen; Kusk, Anders; Nielsen, Ulrik; Corr, Hugh; Ginestet, Arnaud; Decerprit, Guillaume; Walker, Nick; Kristensen, Steen S.
2014-05-01
The electromagnetic (EM) propagation and scattering properties of the ice and its inclusions strongly affect radar reception signals in radio echo sounding of ice-sheets. In particular, those properties are very strongly dependent on the sensing frequency, with penetration depth rapidly decreasing with increasing frequency. Furthermore, the surface scattering signals, which mask the radar echoes from the depth, increases monotonically with frequency. In spite of those drawbacks, the recent interests in the use of P-band (435 MHz), as compared to the more established sensing frequencies at 60 and 150 MHz, are driven mainly by two reasons: (1) the use of a shorter wavelength improves the spatial selectivity of the sensor as a reasonably sized antenna system could generate narrow beams; (2) P-band is the lowest frequency band allocated for active sensing from space, potentially adequate for satellite-based sounding of ice-sheets. New datasets acquired by P-band radar sounders are becoming available, e.g. from the systems built by University of Kansas and ESA's POLARIS instrument built by Technical University of Denmark, thus opening a possibility to quantitatively compare the merits and drawback of ice sounding at P-band. This paper will report the result of the analysis carried out on the POLARIS data which were acquired over East Antarctica in Feb. 2011 in the frame of the Danish IceGrav 2011 campaign. More specifically, ice sounding measurements were performed over the areas of Dronning/Queen Maud Land and its coastal ice-shelves (e.g. Princess Astrid Coast and Fimbul ice-shelf), and Adelaide Island. Different ice types and regimes have been covered in order to build up a comprehensive catalogue of the ice electromagnetic properties. In addition to the POLARIS data, some in-situ data on the surface roughness, ice core data from EPICA and ice-shelf basal roughness data from an upward looking sonar experiment (Autosub Under Ice programme, 2005) have been gathered
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Chen, Guang-Yin
2016-02-10
The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface.
An analysis of scatter decomposition
Nicol, David M.; Saltz, Joel H.
1990-01-01
A formal analysis of a mapping method known as scatter decomposition (SD) is presented. SD divides an irregular domain into many equal-size pieces and distributes them modularly among processors. It is shown that, if a correlation in workload is a convex function of distance, then scattering a more finely decomposed domain yields a lower average processor workload variance; if the workload process is stationary Gaussian and the correlation function decreases linearly in distance to zero and then remains zero, scattering a more finely decomposed domain yields a lower expected maximum processor workload. Finally, if the correlation function decreases linearly across the entire domain, then (among all mappings that assign an equal number of domain pieces to each processor) SD minimizes the average processor workload variance. The dependence of these results on the assumption of decreasing correlation is illustrated with cases where a coarser granularity actually achieves better load balance.
Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena
Sirenko, Yuriy K
2010-01-01
Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...
Directory of Open Access Journals (Sweden)
Uğur YALÇIN
2004-02-01
Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.
Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: datorma1@upvnet.upv.es, E-mail: jsdehesa@upvnet.upv.es [Grupo de Fenomenos Ondulatorios, Departamento de IngenierIa Electronica, Universitat Politecnica de Valencia, Camino de Vera s/n (Edificio 7F), ES-46022 Valencia (Spain)
2011-09-15
A multiple scattering formulation of two-dimensional (2D) acoustic metamaterials is presented. This approach is comprehensive and can lead to frequency-dependent effective parameters (scalar bulk modulus and tensorial mass density), as it is possible to have not only positive or negative ellipsoidal refractive index, but also positive or negative hyperbolic refractive index. The correction due to multiple scattering interactions is included in the theory and it is demonstrated that its contribution is important only for lattices with high filling fractions. Since the surface fields on the scatterers are mainly responsible for the anomalous behavior of the resulting effective medium, complex scatterers can be used to engineer the frequency response. Anisotropic effects are also discussed within this formulation and some numerical examples are reported. A homogenization theory is also extended to electromagnetic wave propagation in 2D lattices of dielectric structures, where Mie resonances are found to be responsible for the metamaterial behavior.
Ulku, Huseyin Arda
2015-02-01
An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.
Mischenko, Michael I.; Travis, Larry D.; Cairns, Brian; Tishkovets, Victor P.; Dlugach, Janna M.; Rosenbush, Vera K.; Kiselev, Nikolai N.
2011-01-01
Following Keller(Proc Symp Appl Math 1962;13:227:46), we classify all theoretical treatments of electromagnetic scattering by a morphologically complex object into first- principle (or "honest" in Keller s terminology) and phenomenological (or "dishonest") categories. This helps us identify, analyze, and dispel several profound misconceptions widespread in the discipline of electromagnetic scattering by solitary particles and discrete random media. Our goal is not to call for a complete renunciation of phenomenological approaches but rather to encourage a critical and careful evaluation of their actual origin, virtues, and limitations. In other words, we do not intend to deter creative thinking in terms of phenomenological short-cuts, but we do want to raise awareness when we stray (often for practical reasons) from the fundamentals. The main results and conclusions are illustrated by numerically-exact data based on direct numerical solutions of the macroscopic Maxwell equations.
Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique
Seagar, Andrew
2016-01-01
This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...
International Nuclear Information System (INIS)
Barash, Yu.S.; Galaktionov, A.V.
1992-01-01
A general expression is found for superconducting fluctuation contribution to transverse permittivity c tr f (Ω, Q) of a standard massive isotopic metal near T c at Ω c and Qζ 0 0 is the coherence length at zero temperature, Q is the external electromagnetic field pulse), depending on frequency and wave vector. Differential cross section of magnetic scattering of neutrons near T c in the region of comparatively small angles is considered
Scattering of electromagnetic waves by counter-rotating vortex streets in plasmas
Energy Technology Data Exchange (ETDEWEB)
Guerra, R.; Mendonca, J.T. [Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal); Dendy, R.O. [UKAEA Government Division, Fusion (UKAEA---Euratom Fusion Association), Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shukla, P.K. [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
1996-03-01
The scattering of electromagnetic waves from counter-rotating vortex streets associated with nonlinear convective cells in uniform plasmas has been considered. The vortex street solution of the Navier{endash}Stokes or the Hasegawa{endash}Mima (and of the {open_quote}{open_quote}sinh-Poisson{close_quote}{close_quote}) equation is adopted as a scatterer. Assuming arbitrary polarization and profile function for the incident electromagnetic field, a compact expression for the scattering cross section has been obtained. Specific results for the differential cross section are obtained for the case in which the incident beam has a Gaussian profile and propagates as an ordinary mode. The results show that when the characteristic wavelength of the vortex street ({lambda}{sub {ital v}}=2{pi}/{ital a}) is larger than that of the incident electromagnetic wave ({lambda}{sub {ital i}}=2{pi}/{ital k}{sub {ital i}}), the differential cross section {ital d}{sigma}/{ital d}{Omega} has a very well-defined angular periodicity; in fact, it is a collection of Gaussians varying as exp[{minus}{ital f}({ital k}{sub {ital iw}}){sup 2}], where {ital w} is the waist and {ital f} is a function expressing a kind of {open_quote}{open_quote}Bragg condition.{close_quote}{close_quote} On the other hand, for {lambda}{sub {ital i}}{approx_gt}{lambda}{sub {ital v}} the incident electromagnetic beam is unable to distinguish the periodic structure of the vortex street. The effects of the vortex street as well as the incident beam parameters on the scattering cross section are examined. {copyright} {ital 1996 American Institute of Physics.}
International Nuclear Information System (INIS)
Anlauf, H.; Manakos, P.; Ohl, T.; Dahmen, H.D.; Mannel, T.
1991-09-01
We present the Monte Carlo event generator KRONOS for deep inelastic lepton hadron scattering at HERA. KRONOS focusses on the description of electromagnetic corrections beyond the existing fixed order calculations. (orig.)
National Research Council Canada - National Science Library
Cashman, John
2001-01-01
A rotating ensemble of bodies of arbitrary shape with angular periodicity scatters an electromagnetic wave to produce a spectrum of frequency components characteristic of the structure and its rotation...
Collective scattering of electromagnetic waves and cross-B plasma diffusion
International Nuclear Information System (INIS)
Gresillon, D.; Cabrit, B.; Truc, A.
1992-01-01
Magnetized plasmas occuring in nature as well as in fusion laboratories are oftenly irregularly shaked by magnetic field fluctuations. The so-called ''coherent scattering'' of electromagnetic wave from nonuniform, irregularly moving plasmas is investigated in the case where the scattering wavelength is large compared to the Debye length, but of the order of the irregularities correlation length. The scattered signal frequency spectrum is shown to be a transform of the plasma motion statistical characteristics. When the scattering wavelength is larger than the plasma motion correlation length, the frequency spectrum is shown to be of a lorentzian shape, with a frequency width that provides a direct measurement of the cross-B particle diffusion coefficient. This is illustrated by two series of recently obtained experimental results: radar coherent backscattering observations of the auroral plasma, and far infrared scattering from tokamak fusion plasma. Radar coherent backscattering shows the transition from Gauss to Lorentz scattered frequency spectra. In infrared Laser coherent scattering experiments from the Tore-Supra tokamak, a particular frequency line is observed to present a Lorentzian shape, that directly provides an electron cross-field diffusion coefficient. This diffusion coefficient agrees with the electron heat conductivity coefficient that is obtained from the observation of temperature profiles and energy balance. (Author)
Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism
International Nuclear Information System (INIS)
Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.
1999-01-01
A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet
Mishchenko, Michael I.; Dlugach, Janna M.; Zakharova, Nadezhda T.
2016-01-01
The numerically exact superposition T-matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration which consists of N identical spherical particles (with N 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V. The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasi-monochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10 bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasi-monochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.
Litvinenko, Alexander
2016-01-06
Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by balancing the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.
Litvinenko, Alexander
2015-01-07
Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.
Litvinenko, Alexander
2015-01-05
Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.
COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,
ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA
Lécureux, Marie; Enoch, Stefan; Deumié, Carole; Tayeb, Gérard
2014-10-01
Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering. The field of application and benefits of each method are studied and examples using the appropriate method are described.
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
Directory of Open Access Journals (Sweden)
Chen Gang
2018-02-01
Full Text Available An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.
Ohkawa, E.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Taniguchi, K.; Ashida, Y.
2009-12-01
The temperature of external materials of buildings rises when they are exposed to sunlight, and the room temperature rises too if the buildings’ external wall is in the sunlight. Therefore the crisis of electric power supply is frequently caused by air conditioning in midsummer. Recently, it has been experimentally confirmed that such temperature rising of such building materials may be suppressed when they are coated with paint including fine silicic spheres whose diameters are in micron to submicron scale. So we are able to reduce the energy consumption if room temperature is controlled not with any air conditioning but with these paints, and the heat island effects would be lowered. However, the mechanism of this temperature suppression has not been investigated. Experimental consideration of this paint has been done, but the mechanism how the paint controls the temperature rise has hardly been clarified theoretically. Since the best composition of the spheres and their best size are not understood well, it is necessary to theoretically clarify the controlling mechanism for the temperature rise to develop efficient paint. In this study, we aimed to find out the mechanism of the temperature suppression. When the electromagnetic wave at a frequency near eigenfrequencies of atoms, molecules or bindings enters the atoms or the molecules, they resonate and move intensely, and finally rise the temperature. Therefore, we presume that the temperature rise could be controlled if the electromagnetic waves around the eigenfrequencies could be removed. Here, we consider electromagnetic wave of light. Then we assumed that the electromagnetic waves in a certain range of frequencies were scattered to shield the radiated heat energy in the insolation and that the transmitted light through the paint layer is weakened. For verifying the hypotheses and finding the range of effective size, we used the Mie theory of a light scattering theory to calculate the intensity of scattered
Electromagnetic scattering by underground targets using the cylindrical-wave approach
Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe
2010-05-01
The electromagnetic detection of buried cylindrical targets, as structures encountered in the inspection of archaeological sites, or pipes, conduits, and tunnels, has been recently addressed in several works. The development of techniques for investigating cylindrical inhomogeneities embedded in a dielectric medium, is a challenging topic also in several other applications, including non-destructive evaluation and testing in civil engineering, and medical imaging. Ground-penetrating radars (GPRs) are extremely useful in probing subsurface targets through electromagnetic waves. These tools solve an inverse problem, to estimate the electromagnetic properties of a target from field measurements. Different algorithms are employed to post-process the collected experimental data: most of them need a fast and accurate forward solver, to perform repeated evaluations of the scattered field due to known targets, and to be used in combination with some optimization techniques. In this paper, we present an efficient spectral-domain method that we developed for the solution of the two-dimensional electromagnetic plane-wave forward scattering by a finite set of perfectly-conducting or dielectric cylinders, buried in a dielectric half-space or in a finite-thickness slab. The technique is called Cylindrical-Wave Approach (CWA), because the field scattered by the targets is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interfaces. Suitable reflected and transmitted cylindrical functions are defined; adaptive integration procedures of Gaussian type, together with acceleration algorithms, are employed for the numerical solution of the relevant spectral integrals. All the multiple-reflection phenomena are taken into account. The method may deal with both TM and TE polarization fields; it can be applied for arbitrary values of permittivity, radius, and depth, of the
A Center for the Analyses of Electromagnetic and Hadronic Scattering
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William [George Washington University, Washington, DC (United States)
2017-05-24
The GWU Institute for Nuclear Studies (GWINS) continued activities, and began new initiatives, within the context of a program of Hadronic Physics. The intense program of meson photoproduction measurements has resulted in an extensive set of observables that includes not only cross sections, but also polarization and double-polarization observables. Analysis of these new data contributes toward a resolution of a long-standing issue in baryon spectroscopy, namely, the “missing resonance" problem. The study of baryons containing two and three strange quarks (the Ξ and Ω states, respectively) has begun in order to solve this problem.
Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure
Xu, Yu-Lin
2016-01-01
Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of
Mishchenko, Michael I.
2017-10-01
The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.
Monte Carlo solution of the volume-integral equation of electromagnetic scattering
Peltoniemi, J.; Muinonen, K.
2014-07-01
Electromagnetic scattering is often the main physical process to be understood when interpreting the observations of asteroids, comets, and meteors. Modeling the scattering faces still many problems, and one needs to assess several different cases: multiple scattering and shadowing by the rough surface, multiple scattering inside a surface element, and single scattering by a small object. Our specific goal is to extend the electromagnetic techniques to larger and more complicated objects, and derive approximations taking into account the most important effects of waves. Here we experiment with Monte Carlo techniques: can they provide something new to solving the scattering problems? The electromagnetic wave equation in the presence of a scatterer of volume V and refractive index m, with an incident wave EE_0, including boundary conditions and the scattering condition at infinity, can be presented in the form of an integral equation EE(rr)(1+suski(rr) Q(ρ))-int_{V-V_ρ}ddrr' GG(rr-rr')suski(rr')EE(rr') =EE_0, where suski(rr)=m(rr)^2-1, Q(ρ)=-1/3+{cal O}(ρ^2)+{O'}(m^2ρ^2), {O}, and {O'} are some second- and higher-order corrections for the finite-size volume V_ρ of radius ρ around the singularity and GG is the dyadic Green's function of the form GG(RR)={exp(im kR)}/{4π R}[unittensor(1+{im}/{R}-{1}/{R^2})-RRRR(1+{3im}/{R}-{3}/{R^2})]. In general, this is solved by extending the internal field in terms of some simple basis functions, e.g., plane or spherical waves or a cubic grid, approximating the integrals in a clever way, and determining the goodness of the solution somehow, e.g., moments or least square. Whatever the choice, the solution usually converges nicely towards a correct enough solution when the scatterer is small and simple, and diverges when the scatterer becomes too complicated. With certain methods, one can reach larger scatterers faster, but the memory and CPU needs can be huge. Until today, all successful solutions are based on more or less
Wang, Hao; Liu, Pu; Ke, Yanlin; Su, Yunkun; Zhang, Lei; Xu, Ningsheng; Deng, Shaozhi; Chen, Huanjun
2015-01-27
Steering incident light into specific directions at the nanoscale is very important for future nanophotonics applications of signal transmission and detection. A prerequisite for such a purpose is the development of nanostructures with high-efficiency unidirectional light scattering properties. Here, from both theoretical and experimental sides, we conceived and demonstrated the unidirectional visible light scattering behaviors of a heterostructure, Janus dimer composed of gold and silicon nanospheres. By carefully adjusting the sizes and spacings of the two nanospheres, the Janus dimer can support both electric and magnetic dipole modes with spectral overlaps and comparable strengths. The interference of these two modes gives rise to the narrow-band unidirectional scattering behaviors with enhanced forward scattering and suppressed backward scattering. The directionality can further be improved by arranging the dimers into one-dimensional chain structures. In addition, the dimers also show remarkable electromagnetic field enhancements. These results will be important not only for applications of light emitting devices, solar cells, optical filters, and various surface enhanced spectroscopies but also for furthering our understanding on the light-matter interactions at the nanoscale.
The Dubna-Mainz-Taipei Dynamical Model for πN Scattering and π Electromagnetic Production
Yang, Shin Nan
Some of the featured results of the Dubna-Mainz-Taipei (DMT) dynamical model for πN scattering and π0 electromagnetic production are summarized. These include results for threshold π0 production, deformation of Δ(1232),and the extracted properties of higher resonances below 2 GeV. The excellent agreement of DMT model's predictions with threshold π0 production data, including the recent precision measurements from MAMI establishes results of DMT model as a benchmark for experimentalists and theorists in dealing with threshold pion production.
Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.
1979-01-01
This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Du, Kui
2011-07-01
We consider electromagnetic scattering from two-dimensional (2D) overfilled cavities embedded in an infinite ground plane. The unbounded computational domain is truncated to a bounded one by using a transparent boundary condition (TBC) proposed on a semi-ellipse. For overfilled rectangular cavities with homogeneous media, another TBC is introduced on the cavity apertures, which produces a smaller computational domain. The existence and uniqueness of the solutions of the variational formulations for the transverse magnetic and transverse electric polarizations are established. In the exterior domain, the 2D scattering problem is solved in the elliptic coordinate system using the Mathieu functions. In the interior domain, the problem is solved by a finite element method. Numerical experiments show the efficiency and accuracy of the new boundary conditions.
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Lock, James A.
2017-11-01
The formulas of ray theory and Airy theory for scattering of an electromagnetic plane wave by a radially inhomogeneous sphere are obtained from the generalization of exact Lorenz-Mie wave scattering theory using the WKB approximation to determine the radial portion of the partial wave scalar radiation potential, carrying out a Debye series expansion of it, approximating the sum over partial waves by an integral over an associated impact parameter, and approximately evaluating the integral using either the method of stationary phase or mapping it into one of the phase integrals that describe optical caustics. Various features of the results are commented on, and the procedure is extended to the merging of two rainbows in a given Debye series channel in the context of the longitudinal cusp caustic.
Simplified expressions of the T-matrix integrals for electromagnetic scattering.
Somerville, Walter R C; Auguié, Baptiste; Le Ru, Eric C
2011-09-01
The extended boundary condition method, also called the null-field method, provides a semianalytic solution to the problem of electromagnetic scattering by a particle by constructing a transition matrix (T-matrix) that links the scattered field to the incident field. This approach requires the computation of specific integrals over the particle surface, which are typically evaluated numerically. We introduce here a new set of simplified expressions for these integrals in the commonly studied case of axisymmetric particles. Simplifications are obtained using the differentiation properties of the radial functions (spherical Bessel) and angular functions (associated Legendre functions) and integrations by parts. The resulting simplified expressions not only lead to faster computations, but also reduce the risks of loss of precision and provide a simpler framework for further analytical work.
Electromagnetic scattering of a vector Bessel beam in the presence of an impedance cone
Salem, Mohamed
2013-07-01
The electromagnetic field scattering of a vector Bessel beam in the presence of an infinite circular cone with an impedance boundary on its surface is considered. The impinging field is normal to the tip of the cone and is expanded in terms of vector spherical wave functions; a Kontorovich-Lebedev (KL) transform is employed to expand the scattered fields. The problem is reduced to a singular integral equation with a variable coefficient of the non-convolution type. The singularities of the spectral function are deduced and representations for the field at the tip of the cone as well as other regions are given together with the conditions of validity of these representations. © 2013 IEEE.
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
International Nuclear Information System (INIS)
Pinheiro, F.A.; Sampaio, L.C.; Martinez, A.S.
2001-01-01
We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos ω). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos ω) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significantly around the Curie-Weiss critical temperature, experiments should be done on the microwave region and the scatterers should be soft ferrites. Some aspects of such experiment are presented. (author)
Hoenders, B.J.
1982-01-01
The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.
Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor
Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi
2018-01-01
The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.
Karpunin, V. V.; Margulis, V. A.
2017-06-01
We have found an analytical expression for the absorption coefficient of electromagnetic radiation in a quantum channel with a parabolic confinement potential. The calculation has been performed using the second-order perturbation theory taking into account the scattering of a quasi-one-dimensional electron gas by ionized impurities. We have analyzed the dependences of the absorption coefficient on the frequency of the electromagnetic radiation and the magnetic field. The appearance of additional resonant peaks, which are caused by scattering by impurities, has been found.
Rothwell, Edward J
2009-01-01
Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem
International Nuclear Information System (INIS)
Pena-Rodriguez, O.; Perez, P.P.G.; Pal, U.
2011-01-01
In this paper, we present MieLab, a free computational package for simulating the scattering of electromagnetic radiation by multilayered spheres or an ensemble of particles with normal size distribution. It has been designed as a virtual laboratory, including a friendly graphical user interface (GUI), an optimization algorithm (to fit the simulations to experimental results) and scripting capabilities. The paper is structured in five different sections: the introduction is a perspective on the importance of the software for the study of scattering of light scattering. In the second section, various approaches used for modeling the scattering of electromagnetic radiation by small particles are discussed. The third and fourth sections are devoted to provide an overview of MieLab and to describe the main features of its architectural model and functional behavior, respectively. Finally, several examples are provided to illustrate the main characteristics of the software
Directory of Open Access Journals (Sweden)
Ovidio Peña-Rodríguez
2011-01-01
Full Text Available In this paper, we present MieLab, a free computational package for simulating the scattering of electromagnetic radiation by multilayered spheres or an ensemble of particles with normal size distribution. It has been designed as a virtual laboratory, including a friendly graphical user interface (GUI, an optimization algorithm (to fit the simulations to experimental results and scripting capabilities. The paper is structured in five different sections: the introduction is a perspective on the importance of the software for the study of scattering of light scattering. In the second section, various approaches used for modeling the scattering of electromagnetic radiation by small particles are discussed. The third and fourth sections are devoted to provide an overview of MieLab and to describe the main features of its architectural model and functional behavior, respectively. Finally, several examples are provided to illustrate the main characteristics of the software.
Electromagnetic Pulse Coupling Analysis of Electronic Equipment
Hong Lei; Qingying LI
2017-01-01
High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.
Optical scattering: measurement and analysis
National Research Council Canada - National Science Library
Stover, John C
2012-01-01
.... Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed...
Yu, Mei Ping; Han, Yi Ping; Cui, Zhi Wei; Chen, An Tao
2017-07-01
This study investigates the electromagnetic scattering of a high-order Bessel vortex beam by multiple dielectric particles of arbitrary shape based on the surface integral equation (SIE) method. In Cartesian coordinates, the mathematical formulas are given for characterizing the electromagnetic field components of an arbitrarily incident high-order Bessel vortex beam. By using the SIE, a numerical scheme is formulated to find solutions for characterizing the electromagnetic scattering by multiple homogeneous particles of arbitrary shape and a home-made FORTRAN program is written. The presented theoretical derivations as well as the home-made program are validated by comparing to the scattering results of a Zero-Order Bessel Beam by the Generalized Lorenz-Mie theory. From our simulations, the beam's order, half-cone angles, and the ways of particles' arrangement have a great influence upon the differential scattering cross section (DSCS) for multiple particles. Furthermore, for a better understanding of the scattering characteristic in three dimension (3-D) space, the 3-D distribution of the DSCS for different cases is presented. It is anticipated that these results can be helpful to understand the scattering mechanisms of a high-order Bessel vortex beam on multiple dielectric particles of arbitrary shape.
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
Desmal, Abdulla
2014-07-01
A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST algorithms minimize a cost function weighted between measurement-data misfit and a zeroth/first-norm penalty term and therefore promote "sharpness" in the solution. Consequently, when applied to domains with sharp variations, discontinuities, or sparse content, the proposed framework is more efficient and accurate than the "classical" BIM that minimizes a cost function with a second-norm penalty term. Indeed, numerical results demonstrate the superiority of the IST-BIM over the classical BIM when they are applied to sparse domains: Permittivity and conductivity profiles recovered using the IST-BIM are sharper and more accurate and converge faster. © 1963-2012 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)
2015-10-15
A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.
Optical scattering measurement and analysis
Stover, John C
2012-01-01
Newly included are scatter models for pits and particles as well as the use of wafer scanners to locate and size isolated surface features. New sections cover the multimillion-dollar wafer scanner business, establishing that microroughness is the noise, not the signal, in these systems. Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed. These new capabilities are now supported by a series of international standards, and a new chapter reviews t
Simulation of electromagnetic scattering through the E-XFEL third harmonic cavity module
Joshi, N.Y; Shiliang, L; Baboi, N
2017-01-01
The European XFEL (E-XFEL) is being fabricated in Hamburg to serve as an X-ray Free Electron Laser light source. The electron beam will be accelerated through linacs consisting of 1.3GHz superconducting cavities along a length of 2.1km. In addition, third harmonic cavities will improve the quality of the beam by line arising the ﬁeld proﬁle and hence reducing the energy spread. There are eight 3.9GHz cavities within a single module AH1 of E-XFEL. The beam-excited electromagnetic(EM) ﬁeld in these cavities can be decomposed into a series of eigenmodes. These modes are, in general, not cut-oﬀ between one cavity and the next, as they are able to couple to each other through out the module. Here for the ﬁrst time, we evaluate components of the scattering matrix for module AH1. This is a computation ally expensive system, and hence we employ a Generalized Scattering Matrix(GSM)technique to allow rapid computation with reduced memory requirements. Veriﬁcation is provided on reduced structures, which are...
A generalized Debye source approach to electromagnetic scattering in layered media
International Nuclear Information System (INIS)
O’Neil, Michael
2014-01-01
The standard solution to time-harmonic electromagnetic scattering problems in homogeneous layered media relies on the use of the electric field dyadic Green's function. However, for small values of the governing angular frequency ω, evaluation of the electric field using this Green's function exhibits numerical instability. In this short note, we provide an alternative approach which is immune from this low-frequency breakdown as ω → 0. Our approach is based on the generalized Debye source representation of Maxwell fields. Using this formulation, the electric and magnetic fields gracefully decouple in the static limit, a behavior similar to that of the classical Lorenz-Debye-Mie representation of Maxwell fields in spherical geometries. We derive extensions of both the generalized Deybe source and Lorenz-Debye-Mie representations to planar geometries, as well as provide equations for the solution of scattering from a perfectly conducting half-space and in layered media using a Sommerfeld-like approach. These formulas are stable as ω tends to zero, and offer alternatives to the electric field dyadic Green's function
Taflove, A.; Umashankar, K. R.
1987-01-01
The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.
Stoja, Endri; Hoxha, Julian; Domnori, Elton; Pajewski, Lara; Frezza, Fabrizio
2017-04-01
In this study the electromagnetic field scattered by a buried object is obtained by use of a commercial full-wave frequency-domain solver which implements the Finite Element Method (FEM). The buried object is supposed to have different simple shapes and material composition such as a cylinder or cylindrical shell modelling for example a void in concrete or a poly-vinyl chloride (PVC) pipeline, respectively. Material properties available in literature are correctly modelled by data interpolation. The model is excited by a linearly-polarized plane wave impinging normally on the interface between air and soil/cement half-space. Comparison with simulation data provided by another simulator implementing the finite-difference time domain (FDTD) technique in the case of a simple buried perfect electric cylinder allows for FEM data validation. We further study the properties and the spatial variation of the scattered fields in different contexts by varying the geometrical and material properties of the model relative to the impinging wave characteristics. The aim is to clearly determine the conditions under which detection is possible. Moreover, by application of signal processing techniques to scattered field data, the position, shape, and object orientation recognition problems are considered. Results from different DSP algorithms are compared with the goal to find the best performing one relative to the context. Performance is evaluated in terms of detection success and resolving ability. The use of ground penetrating radar (GPR) techniques in the field of Civil Engineering offers inspection capabilities in the structure with no destructive intervention. Acknowledgement This abstract is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar", www.GPRadar.eu, www.cost.eu.
Ramm, Alexander G
2013-01-01
The behavior of acoustic or electromagnetic waves reflecting off, and scattering from, intercepted bodies of any size and kind can make determinations about the materials of those bodies and help in better understanding how to manipulate such materials for desired characteristics. This book offers analytical formulas which allow you to calculate acoustic and electromagnetic waves, scattered by one and many small bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small bodies are derived. These results and formulas are new and not available in the works of other authors. In particular, the theory developed in this book is different from the classical work of Rayleigh on scattering by small bodies: not only analytical formulas are derived for the waves scattered by small bodies of an arbitrary shape, but the amplitude of the scattered waves is much larger, of the order O(a 2-k), than in Rayleigh scattering, where the or...
Fouda, Ahmed E.
Time-reversal (TR) was originated in acoustics as a technique for re-focusing waves around their source location. Under certain conditions, the wave equation is invariant under TR, therefore, waves emanated from a source or scattered from a passive target, and recorded by a transceivers array, will retrace their forward path and automatically focus at the source/target location if back propagated in a time-reversed (last-in first-out) fashion from that array. Focusing resolution of time-reversed back propagation in rich scattering environments beats that in free space, yielding what is known as 'superresolution'. Moreover, under ultrawideband (UWB) operation, TR exhibits the distinctive property of 'statistical stability', which makes it an attractive technique for imaging in disordered media whose characteristics are not known deterministically (random media). Over the past few years, TR has been exploited in a variety of electromagnetic sensing and imaging applications such as ground penetrating radar, breast cancer detection, nondestructive testing, and through-wall imaging. In addition, TR has been extensively applied in UWB wireless communication providing myriad of advantages including reduced receiver complexity, power saving, increased system capacity, and enhanced information secrecy. In this work, we introduce new TR-based signal processing techniques for imaging, tracking, and communicating with targets/users embedded in rich scattering environments. We start by demonstrating, both numerically and experimentally, the statistical stability of UWB TR imaging in inhomogeneous random media, under different combinations of random medium parameters and interrogating signal properties. We examine conditions under which frequency decorrelation in random media provides a more effective 'self-averaging' and therefore better statistical stability. Then, we devise a technique for detecting and tracking multiple moving targets in cluttered environments based on
A rigorous analysis of high-order electromagnetic invisibility cloaks
Energy Technology Data Exchange (ETDEWEB)
Weder, Ricardo [Department of Mathematics and Statistics, University of Helsinki, PO Box 68 (Gustaf Hallstromin katu 2b) FI-00014 (Finland)], E-mail: weder@servidor.unam.mx
2008-02-15
There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al that are based on the transformation approach. They obtained their results using first-order transformations. In recent papers, Hendi et al and Cai et al considered invisibility cloaks with high-order transformations. In this paper, we study high-order electromagnetic invisibility cloaks in transformation media obtained by high-order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite-energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks cannot be detected in any scattering experiment with electromagnetic waves in high-order transformation media, and in particular in the first-order transformation media of Pendry et al. We also prove that the high-order invisibility cloaks, as well as the first-order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects cannot leave the concealed regions and vice versa, the electromagnetic waves outside the cloaked objects cannot go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals.
International Nuclear Information System (INIS)
Sugaya, Reiji
1989-01-01
General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)
Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film
International Nuclear Information System (INIS)
Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen
2011-01-01
The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))
Scattering of electromagnetic waves by an non-uniform cylindrical plasma
International Nuclear Information System (INIS)
Faugeras, P.E.
1966-12-01
The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10 11 and 10 15 e/cm 3 . Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [fr
Surface analysis with low energy ion scattering
International Nuclear Information System (INIS)
Taglauer, E.; Heiland, W.
1976-01-01
Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de
Numerical electromagnetic frequency domain analysis with discrete exterior calculus
Chen, Shu C.; Chew, Weng Cho
2017-12-01
In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.
Singh, Keshev
. So, this study is focused on biomass, which is one of the main parameter of crop and related with dielectric. Scattering coefficient at X-band showed strong sensitivity to different growth cycle of potato. The soil effect on scattering coefficient was prominent at steeper incidence angle (less than 40 degree) where as potato plant effects are more dominant at higher incidence angle (more than 40 degree). The microwave response of potato is polarization dependent and is more prominent for VV-Pol than HH-Pol at every stages of growth of potato and this strong polarization dependence can play a strong role for crop discrimination. The dependency of scattering coefficient on biomass is statistically checked by the linear regression analysis and results of regression analysis confirm the experimental results i.e., scattering coefficient increases as the biomass increases in the potato crop. The best angle to observe and retrieve the biomass by scattering coefficient is 55 degree and 60 degree incidence angles for HH-Pol and VV-Pol respectively. The regression results also revealed that scattering coefficient is positively correlated with soil moisture for both like pols. This result follows many earlier findings. The best incidence angle to compute the potato covered soil moisture from scattering coefficient is 35 degree and 30 degree for HH- and VV-Pol respectively. The HH- pol has edge over VV-pol for observing the potato the covered soil moisture. This approach provides a new direction to understand the potato scattering at X-band for remote sensing.
Dynamic stimulated Brillouin scattering analysis
DEFF Research Database (Denmark)
Djupsöbacka, A.; Jacobsen, Gunnar; Tromborg, Bjarne
2000-01-01
We present a new simple analysis - including the effect of spontaneous emission - of the (dynamic) influence of SBS on the detected receiver eye diagram. It applies in principle for general types of modulation formats such as the digital formats of ASK, FSK, and PSK. The analysis is formulated fo...
Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara
2017-04-01
The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced
Recent improvements in Thomson scattering data analysis
International Nuclear Information System (INIS)
Tillack, M.S.; Lazarus, E.A.
1980-04-01
A new profile analysis package for use with the Thomson scattering data on ISX-B has recently been implemented. The primary feature of this package is a weighted least squares fitting of temperature and density data to generate a representative curve, as opposed to the previous hand-fitting technique. The changes will automate the manner in which data are transmitted and manipulated, without affecting the calculational techniques previously used. The computer programs have also been used to estimate the sensitivity of various plasma quantities to the accuracy of the Thomson scattering data
Electromagnetic Compatibility in Railways Analysis and Management
Ogunsola, Ade
2013-01-01
A railway is a complex distributed engineering system: the construction of a new railway or the modernisation of a existing one requires a deep understanding of the constitutive components and their interaction, inside the system itself and towards the outside world. The former covers the various subsystems (featuring a complex mix of high power sources, sensitive safety critical systems, intentional transmitters, etc.) and their interaction, including the specific functions and their relevance to safety. The latter represents all the additional possible external victims and sources of electromagnetic interaction. EMC thus starts from a comprehension of the emissions and immunity characteristics and the interactions between sources and victims, with a strong relationship to electromagnetics and to system modeling. On the other hand, the said functions are achieved and preserved and their relevance for safety is adequately handled, if the related requirements are well posed and managed throughout the process f...
The scattering of electromagnetic pulses by a slit in a conducting screen
Ackerknecht, W. E., III; Chen, C.-L.
1975-01-01
A direct method for calculating the impulse response of a slit in a conducting screen is presented which is derived specifically for the analysis of transient scattering by two-dimensional objects illuminated by a plane incident wave. The impulse response is obtained by assuming that the total response is composed of two sequences of diffracted waves. The solution is determined for the first two waves in one sequence by using Green's functions and the equivalence principle, for additional waves in the sequence by iteration, and for the other sequence by a transformation of coordinates. The cases of E-polarization and H-polarization are considered.
International Nuclear Information System (INIS)
Bell, T.F.; Ngo, H.D.
1990-01-01
Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
The report is the second in a series of investigations into the diffraction of electromagnetic radiation by apertures in conducting screens. Herein...is presented a technique for obtaining the fields everywhere for plane electromagnetic radiation incident obliquely on a slotted conducting plane. The
Directory of Open Access Journals (Sweden)
Fabrizio Consoli
2013-07-01
Full Text Available The Single Bunch Selector (SBS will be used on the Spiral2 linear accelerator to reduce the rate of high energy bunches reaching the target with, in principle, no residual particles from the suppressed bunches. For this purpose, a pulsed electromagnetic wave will travel along the 100 Ω microstrip meander line electrode of the SBS. In this work we describe the broadband accurate characterization of the electrode electromagnetic features. The method applied here leads to the analytical determination of complex characteristic impedance, propagation constant, and group velocity from a measurement of the 50 Ω scattering parameters on the meander transmission line. Particular care is given to the de-embedding phase of the transitions required to connect the meander electrode to the measurement device.
International Nuclear Information System (INIS)
Kriegsmann, G.A.
1976-01-01
In this paper we apply the method of geometrical optics to study the scattering of plane electromagnetic waves off a cylindrically confined cold plasma. For simplicity, we assume two types of incident polarization. In both cases scalar second order elliptic partial differential equations describe the fields. These problems are studied in the asymptotic limit aω/c→infinity (where a is the radius of the cylinder, ω is the frequency of the incident plane wave, and c is the velocity of light in free space). We furthermore assume a quadratic plasma density. This allows us to calculate explicitly the rays, amplitudes, caustics, and other features which arise in the geometrical optics approach. The assumed density also gives rise to the interesting cutoff and resonance phenomenon. Thus the amplification of the electromagnetic fields is observed. This phenomenon may have applications in laser fusion
Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen
1991-01-01
The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.
Scattering of Electromagnetic Radiation by Dimers of Two Finite Dielectric Cylinders
Kovtun-Kuzhel, V. A.; Ponyavina, A. N.
2017-07-01
We performed a numerical simulation of the scattering phase function for scattering of light by dimers of dielectric cylinders of finite length, using the volume integral equation formalism. We have studied the dependence of the scattering phase function on the optical and geometric parameters of the individual cylinders and their relative positions. We show that electrodynamic interaction between the cylinders leads to a substantial difference between the angular distribution of radiation scattered by this system and the angular distribution of radiation scattered by two cylinders with no electrodynamic coupling.
Energy Technology Data Exchange (ETDEWEB)
Madrangeas, V. [Faculte des Sciences de Limoges, 87 (France); Nicolas, L. [Ecole Centrale de Lyon, 69 (France)
2001-07-01
This book is a reedition of a special issue (2001, vol. 4) of the journal 'Revue Internationale de Genie Electrique'. It brings together 11 selected papers among the hundred presented at the Numelec 2000 conference devoted to the analysis, modeling and optimization of electromagnetic fields. Content: a new hysteresis model for oriented grains sheets, inverse problem modeling of ferromagnetic sheets, adaptative approximation of objective functions using diffuse elements method, application of generic algorithms for the localizing of a magnetic dipole, optimization of an active shielding, mixed symbolic and numerical model for the dimensioning of converters, resolution of differential equations for the study of power electronic circuits, large problems resolution using boundary integrals method, gradient-type optimization methodology for the dimensioning of electrical devices, currents and reconnection torque amplitudes of a self-primed asynchronous machine, bi-static scattering of electromagnetic waves from sea surface and snowy-covered surfaces. (J.S.)
Numerical model of electromagnetic scattering off a subterranean 3-dimensional dielectric
International Nuclear Information System (INIS)
Dease, C.G.; Didwall, E.M.
1983-08-01
As part of the effort to develop On-Site Inspection (OSI) techniques for verification of compliance to a Comprehensive Test Ban Treaty (CTBT), a computer code was developed to predict the interaction of an electromagnetic (EM) wave with an underground cavity. Results from the code were used to evaluate the use of surface electromagnetic exploration techniques for detection of underground cavities or rubble-filled regions characteristic of underground nuclear explosions
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
FEM Analysis on Electromagnetic Processing of Thin Metal Sheets
Directory of Open Access Journals (Sweden)
PASCA Sorin
2014-10-01
Full Text Available Based on finite element analysis, this paper investigates a possible new technology for electromagnetic processing of thin metal sheets, in order to improve the productivity, especially on automated manufacturing lines. This technology consists of induction heating process followed by magnetoforming process, both applied to metal sheet, using the same tool coil for both processes.
Hasar, Ugur Cem; Barroso, Joaquim J; Sabah, Cumali; Kaya, Yunus; Ertugrul, Mehmet
2012-12-17
We apply a complete uncertainty analysis, not studied in the literature, to investigate the dependences of retrieved electromagnetic properties of two MM slabs (the first one with only split-ring resonators (SRRs) and the second with SRRs and a continuous wire) with single-band and dual-band resonating properties on the measured/simulated scattering parameters, the slab length, and the operating frequency. Such an analysis is necessary for the selection of a suitable retrieval method together with the correct examination of exotic properties of MM slabs especially in their resonance regions. For this analysis, a differential uncertainty model is developed to monitor minute changes in the dependent variables (electromagnetic properties of MM slabs) in functions of independent variables (scattering (S-) parameters, the slab length, and the operating frequency). Two complementary approaches (the analytical approach and the dispersion model approach) each with different strengths are utilized to retrieve the electromagnetic properties of various MM slabs, which are needed for the application of the uncertainty analysis. We note the following important results from our investigation. First, uncertainties in the retrieved electromagnetic properties of the analyzed MM slabs drastically increase when values of electromagnetic properties shrink to zero or near resonance regions where S-parameters exhibit rapid changes. Second, any low-loss or medium-loss inside the MM slabs due to an imperfect dielectric substrate or a finite conductivity of metals can decrease these uncertainties near resonance regions because these losses hinder abrupt changes in S-parameters. Finally, we note that precise information of especially the slab length and the operating frequency is a prerequisite for accurate analysis of exotic electromagnetic properties of MM slabs (especially multiband MM slabs) near resonance regions.
Q-space analysis of scattering by particles: A review
International Nuclear Information System (INIS)
Sorensen, Christopher M.
2013-01-01
This review describes and demonstrates the Q-space analysis of light scattering by particles. This analysis involves plotting the scattered intensity versus the scattering wave vector q=(4π/λ)sin(θ/2) on a double log plot. The analysis uncovers power law descriptions of the scattering with length scale dependent crossovers between the power laws. It also systematically describes the magnitude of the scattering and the interference ripple structure that often underlies the power laws. It applies to scattering from dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggregates and irregularly shaped particles such as dusts. The benefits of Q-space analysis are that it provides a simple and comprehensive description of scattering in terms of power laws with quantifiable exponents; it can be used to differentiate scattering by particles of different shapes, and it yields a physical understanding of scattering based on diffraction. -- Highlights: ► Angular scattering functions for spheres show power laws versus the wave vector q. ► The power laws uncover patterns involving length scales and functionalities. ► Similar power laws appear in scattering from aggregates and irregular particles. ► Power laws provide a comprehensive and quantitative description of scattering
Kim, Man; Lee, Joo-Yul; Kwon, Sik-Chol; Kim, Dongsoo; Kim, In-Gon; Choi, Yong
2006-11-01
Nickel mesh, as one of the most efficient electromagnetic interference (EMI) shielding materials, has been widely adopted in electronic devices such as plasma display panel (PDP). In this study, the nickel mesh sheet was continuously produced in industrial scale by a unique electrochemical process and which microstructure was analyzed by small-angle neutron scattering and field-emission scanning electron microscopy. The precision nickel mesh sheet was well formed by continuous electro-forming equipment with a rotating patterned cathode, soluble/insoluble anode and multiple stage of rolling wheels. Neutron diffraction analysis and morphology observation showed that the nickel mesh formed by electro-deposition process has less defects for industrial applications.
International Nuclear Information System (INIS)
Kim, Man; Lee, Joo-Yul; Kwon, Sik-Chol; Kim, Dongsoo; Kim, In-Gon; Choi, Yong
2006-01-01
Nickel mesh, as one of the most efficient electromagnetic interference (EMI) shielding materials, has been widely adopted in electronic devices such as plasma display panel (PDP). In this study, the nickel mesh sheet was continuously produced in industrial scale by a unique electrochemical process and which microstructure was analyzed by small-angle neutron scattering and field-emission scanning electron microscopy. The precision nickel mesh sheet was well formed by continuous electro-forming equipment with a rotating patterned cathode, soluble/insoluble anode and multiple stage of rolling wheels. Neutron diffraction analysis and morphology observation showed that the nickel mesh formed by electro-deposition process has less defects for industrial applications
International Nuclear Information System (INIS)
Al-Khamiesi, I.M.; Kerimov, B.K.
1988-01-01
Second Born approximation corrections to electron scattering by nuclei with arbitrary spin are considered. Explicit integral expressions for the charge, magnetic dipole and interference differential cross sections are obtained. Magnetic and interference relative corrections are then investigated in the case of backward electron scattering using shell model form factors for nuclear targets 9 Be, 10 B, and 14 N. To understand exponential growth of these corrections with square of the electron energy K 0 2 , the case of electron scattering by 6 Li is considered using monopole model charge form factor with power-law asymptotics. 11 refs., 2 figs. (author)
Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki
2018-05-01
To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.
Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki
2018-01-05
To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model. Copyright © 2018 Elsevier B.V. All rights reserved.
A vectorial description of electromagnetic scattering by large bodies of spherical shape
International Nuclear Information System (INIS)
Bourrely, C.; Lemaire, T.; Chiappetta, P.; Centre National de la Recherche Scientifique, 13 - Marseille
1989-10-01
We present a new method to obtain a vectorial solution of Helmholtz equation for large homogeneous scatterers having a cylindrical symmetry and a shape approximately spherical. Limitations of the method for arbitrarily shaped particles are discussed
Albella, Pablo; Shibanuma, Toshihiko; Maier, Stefan A
2015-12-10
High refractive index dielectric nanoparticles show high promise as a complementary nanophotonics platform due to compared with plasmonic nanostructures low absorption losses and the co-existence of magnetic and electric resonances. Here we explore their use as resonantly enhanced directional scatterers. We theoretically demonstrate that an asymmetric dimer of silicon nanoparticles shows tuneable directional scattering depending on the frequency of excitation. This is due to the interference between electric and magnetic dipoles excited in each nanoparticle, enabling directional control of the scattered light. Interestingly, this control can be achieved regardless of the polarization direction with respect to the dimer axis; however, difference in the polarization can shift the wavelengths at which the directional scattering is achieved. We also explore the application of such an asymmetric nanoantenna as a tuneable routing element in a nanometer scale, suggesting applications in optical nanocircuitry.
Gasiewski, A. J.; Jackson, D. M.
1992-01-01
W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.
Directory of Open Access Journals (Sweden)
Zhe Song
2017-01-01
Full Text Available The fast and accurate numerical analysis for large-scale objects and complex structures is essential to electromagnetic simulation and design. Comparing to the exploration in EM algorithms from mathematical point of view, the computer programming realization is coordinately significant while keeping up with the development of hardware architectures. Unlike the previous parallel algorithms or those implemented by means of parallel programming on multicore CPU with OpenMP or on a cluster of computers with MPI, the new type of large-scale parallel processor based on graphics processing unit (GPU has shown impressive ability in various scenarios of supercomputing, while its application in computational electromagnetics is especially expected. This paper introduces our recent work on high performance computing based on GPU/CPU heterogeneous platform and its application to EM scattering problems and planar multilayered medium structure, including a novel realization of OpenMP-CUDA-MLFMM, a developed ACA method and a deeply optimized CG-FFT method. With fruitful numerical examples and their obvious enhancement in efficiencies, it is convincing to keep on deeply investigating and understanding the computer hardware and their operating mechanism in the future.
Directory of Open Access Journals (Sweden)
I.A. Kuznetsova
2014-03-01
Full Text Available The magnetic dipole absorption cross section of spherical shaped metal particle was calculated in terms of kinetic approach. The particle considered was placed in the field of plane electromagnetic wave. The model of boundary conditions taking into account the dependence of the reflectivity coefficient both on the surface roughness parameter and on the electrons incidence angle was investigated. The results obtained were compared with theoretical computation results for model of combined diffusion-specular boundary conditions of Fuchs.
Jiang, Li; You, Tingting; Yin, Penggang; Shang, Yang; Zhang, Dongfeng; Guo, Lin; Yang, Shihe
2013-04-07
Surface-enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid (4-MBA) have been investigated on the surface of Cu2O nanospheres. The SERS signals were believed to originate from the static chemical enhancement, resonant chemical enhancement and electromagnetic enhancement. The coupling between the adsorbates and the semiconductor, evidenced by the shift in absorption spectrum of modified Cu2O and the enhancement of non-totally symmetric modes of the 4-MBA and 4-mercaptopyridine (4-MPY) molecules, were invoked to explain the experimental results. Furthermore, simulations were employed to investigate the nature of the enhancement mechanisms operative between the molecules and the semiconductor. Density functional theory (DFT) calculations suggested a charge transfer (CT) transition process between the molecules and the Cu2O nanospheres. Three-dimensional finite-difference time domain (3D-FDTD) simulations were conducted to map out the electromagnetic field around the Cu2O nanospheres. The experimental and simulation results have revealed the promise of the Cu2O nanospheres as a good SERS substrate and the prospect of using the SERS substrate as a valuable tool for in situ investigation and assay of the adsorption behavior on semiconductor surfaces.
Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial
Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2018-04-01
In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres
Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli
2017-09-01
CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.
The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.
Gomez, Luis J; Yucel, Abdulkadir C; Michielssen, Eric
2018-03-01
An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed. The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities. The validity, applicability, and efficiency of the ICVSIE are demonstrated by EM analysis of transcranial magnetic stimulation, magnetic resonance imaging, and neuromuscular electrical stimulation. Unlike previous integral equations, the ICVSIE is stable regardless of the electric permittivities of the tissue or frequency of operation, providing an application-agnostic computational framework for EM-biomedical analysis. Use of the general purpose and robust ICVSIE permits streamlining the development, deployment, and safety analysis of EM-biomedical technologies.
International Nuclear Information System (INIS)
Gorini, Sandro
2014-01-01
This thesis is concerned with modelling electromagnetic and hadronic processes in the low-energy regime, employing a manifestly lorentz-invariant chiral effective field theory with dynamical vector mesons. This effective theory serves as an approximation of the more fundamental quantum chromodynamics at low energies. Focusing on power counting and renormalization, a consistent description of different processes up to approximately 1GeV is possible. The key ingredient of the power counting is a large-N c argument, which implies an equivalent treatment of Goldstone bosons (pions) and resonances (rho and omega mesons). A suitable renormalization scheme is the complex-mass scheme (a generalization of the extended on-mass-shell scheme) which - combined with the BPHZ renormalization method (named after Bogoliubov, Parasiuk, Hepp, and Zimmermann) - yields a powerful framework for the computation of quantum corrections in chiral effective theories. All calculations contain contributions up to and including fourth chiral order at the one-loop level. Analyzed quantities are, besides others, the vector form factor of the pion in the timelike region and real Compton scattering (respectively photon fusion) in the neutral and charged channels. In addition, virtual Compton scattering off the pion, embedded into electron-positron annihilation, is discussed. Furthermore, experimental data of various observables are used to extract the values of all contributing low-energy coupling constants. The developed methods - especially the technical implementations - are of very general nature and, therefore, straightforward to adapt to additional problems in low-energy quantum chromodynamics.
Chui, S. T.; Chen, Xinzhong; Liu, Mengkun; Lin, Zhifang; Zi, Jian
2018-02-01
We study the response of a conical metallic surface to an external electromagnetic (em) field by representing the fields in basis functions containing the integrable singularity at the tip of the cone. A fast analytical solution is obtained by the conformal mapping between the cone and a round disk. We apply our calculation to the scattering-type scanning near-field optical microscope (s-SNOM) and successfully quantify the elastic light scattering from a vibrating metallic tip over a uniform sample. We find that the field-induced charge distribution consists of localized terms at the tip and the base and an extended bulk term along the body of the cone far away from the tip. In recent s-SNOM experiments at the visible and infrared range (600 nm to 1 μ m ) the fundamental of the demodulated near-field signal is found to be much larger than the higher harmonics whereas at THz range (100 μ m to 3 mm) the fundamental becomes comparable to the higher harmonics. We find that the localized tip charge dominates the contribution to the higher harmonics and becomes larger for the THz experiments, thus providing an intuitive understanding of the origin of the near-field signals. We demonstrate the application of our method by extracting a two-dimensional effective dielectric constant map from the s-SNOM image of a finite metallic disk, where the variation comes from the charge density induced by the em field.
Electromagnetic two-dimensional analysis of trapped-ion eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Kim, D.; Rewoldt, G.
1984-11-01
A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.
Coupled electromagnetic and structural finite element analysis of a superconducting dipole model
International Nuclear Information System (INIS)
Hirtenfelder, F.
1996-01-01
Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance
Energy Technology Data Exchange (ETDEWEB)
Schoenborn, B P [ed.
1976-01-01
Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.
2017-03-06
technique. This method is a substitute for a former “ polar -integration” algorithm [16, 24, 25] for integra- 1We believe this example reveals the true power...same accuracy levels as the polar -integration approach, but it does not require use of a complex polar integration or otherwise specialized algorithm ...solution on surfaces given in formats derived from Computer Aided Design, also known as CAD, and it has lead to new solvers for problems of Scattering
Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars
Martínez Ledesma, M.; Diaz, M. A.
2017-12-01
The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.
Transient electromagnetic analysis in tokamaks using TYPHOON code
International Nuclear Information System (INIS)
Belov, A.V.; Duke, A.E.; Korolkov, M.D.; Kotov, V.L.; Kukhtin, V.P.; Lamzin, E.A.; Sytchevsky, S.E.
1996-01-01
The transient electromagnetic analysis of conducting structures in tokamaks is presented. This analysis is based on a three-dimensional thin conducting shell model. The finite element method has been used to solve the corresponding integrodifferential equation. The code TYPHOON has been developed to calculate transient processes in tokamaks. Calculation tests and the code verification have been carried out. The calculation results of eddy current and force distibution and a.c. losses for different construction elements for both ITER and TEXTOR tokamaks magnetic systems are presented. (orig.)
Analysis of electron elastic scattering at high momentum
International Nuclear Information System (INIS)
Bellicard, J.B.
Limits in the analysis of electron elastic scattering experiments using phenomenological models are recalled. Two new analysis methods (Sick and Negele models) where model dependence is reduced, are developed. Preliminary results on an electron scattering experiment on 58 Ni at high momentum, recently performed at Saclay, are presented [fr
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Scattering analysis of LOFAR pulsar observations
Geyer, M.; Karastergiou, A.; Kondratiev, V. I.; Zagkouris, K.; Kramer, M.; Stappers, B. W.; Grießmeier, J.-M.; Hessels, J. W. T.; Michilli, D.; Pilia, M.; Sobey, C.
2017-09-01
We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190 MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant τ, associated with scattering by a single thin screen, has a power-law dependence on frequency τ ∝ ν-α, with indices ranging from α = 1.50 to 4.0, despite simplest theoretical models predicting α = 4.0 or 4.4. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency-dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical τ versus DM relation and consider how our results support a frequency dependence of α. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.
Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2018-01-01
The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.
Low and high frequency asymptotics acoustic, electromagnetic and elastic wave scattering
Varadan, VK
2013-01-01
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2003-01-01
An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...
DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD
Directory of Open Access Journals (Sweden)
PETRICA POPOV
2016-06-01
Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.
Causal Analysis of Databases Concerning Electromagnetism and Health
Alonso-Stenberg, Kristian; Lloret-Climent, Miguel; Nescolarde-Selva, Josué Antonio
2016-01-01
In this article, we conducted a causal analysis of a system extracted from a database of current data in the telecommunications domain, namely the Eurobarometer 73.3 database arose from a survey of 26,602 citizens EU on the potential health effects that electromagnetic fields can produce. To determine the cause-effect relationships between variables, we represented these data by a directed graph that can be applied to a qualitative version of the theory of discrete chaos to highlight causal c...
Causal Analysis of Databases Concerning Electromagnetism and Health
Directory of Open Access Journals (Sweden)
Kristian Alonso-Stenberg
2016-12-01
Full Text Available In this article, we conducted a causal analysis of a system extracted from a database of current data in the telecommunications domain, namely the Eurobarometer 73.3 database arose from a survey of 26,602 citizens EU on the potential health effects that electromagnetic fields can produce. To determine the cause-effect relationships between variables, we represented these data by a directed graph that can be applied to a qualitative version of the theory of discrete chaos to highlight causal circuits and attractors, as these are basic elements of system behavior.
Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.
Di Simone, Alessio
2016-06-25
Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.
Validation of MCNP4A for repository scattered radiation analysis
International Nuclear Information System (INIS)
Haas, M.N.; Su, S.
1998-02-01
Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions
Chen, Wei; Guo, Li-xin; Li, Jiang-ting
2017-04-01
This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.
Electromagnetic analysis of control element drive mechanism for KSNP
International Nuclear Information System (INIS)
Kim, H. M.; Kim, I. G.; Kim, I. Y.
2002-01-01
The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve
International Nuclear Information System (INIS)
Freiv, A V; Roshchupkin, S P
2008-01-01
The possibility of amplification of electromagnetic radiation is theoretically studied in the scattering of a quasi-classical electron by an ion in a field of linearly polarized waves of medium intensity. An expression for the total cross-section (the gain coefficient) for the wide interval of values of the adiabaticity parameter is obtained. It is shown that the wave amplification takes place in the range of values of adiabaticity parameter greater than 2 and can be sufficiently large
Scattering analysis of LOFAR pulsar observations
Geyer, M.; Karastergiou, A.; Kondratiev, V.I.; Zagkouris, K.; Kramer, M.; Stappers, B. W.; Grießmeier, J.M.; Hessels, J. W. T.; Michilli, D.; Pilia, M.; Sobey, C.
2017-01-01
We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190 MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse
Design and analysis of electromagnetic interference filters and shields
McDowell, Andrew Joel
Electromagnetic interference (EMI) is a problem of rising prevalence as electronic devices become increasingly ubiquitous. EMI filters are low pass filters intended to prevent the conducted electric currents and radiated electromagnetic fields of a device from interfering with the proper operation of other devices. Shielding is a method, often complementary to filtering, that typically involves enclosing a device in a conducting box in order to prevent radiated EMI. This dissertation includes three chapters related to the use of filtering and shielding for preventing electromagnetic interference. The first chapter deals with improving the high frequency EMI filtering performance of surface mount capacitors on printed circuit boards (PCBs). At high frequencies, the impedance of a capacitor is dominated by a parasitic inductance, thus leading to poor high frequency filtering performance. Other researchers have introduced the concept of parasitic inductance cancellation and have applied this concept to improving the filtering performance of volumetrically large capacitors at frequencies up to 100 MHz. The work in this chapter applies the concept of parasitic inductance cancellation to much smaller surface mount capacitors at frequencies up to several gigahertz. The second chapter introduces a much more compact design for applying parasitic inductance cancellation to surface mount capacitors that uses inductive coupling between via pairs as well as coplanar traces. This new design is suited for PCBs having three or more layers including solid ground and/or power plane(s). This design is demonstrated to be considerably more effective in filtering high frequency noise due to crosstalk than a comparable conventional shunt capacitor filter configuration. Finally, chapter 3 presents a detailed analysis of the methods that are used to decompose the measure of plane wave shielding effectiveness into measures of absorption and reflection. Textbooks on electromagnetic
Assessment of reverberation time by two measurement systems for room electromagnetics analysis
DEFF Research Database (Denmark)
Bamba, Aliou; Joseph, Wout; Plets, David
2011-01-01
A closed room environment is viewed as a lossy cavity, characterized by possibly a line of sight (LOS) component and diffuse scattering parts from walls and internal obstacles. A theory used in acoustics and reverberation chambers is applied for the electromagnetics case, and main issues related...
Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX
Ohta, K.; Yoshikawa, M.; Yasuhara, R.; Chikatsu, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakasima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Minami, T.
2016-11-01
We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
DEFF Research Database (Denmark)
Wang, Yun; Wu, Qiuwei
2014-01-01
This paper analysis the electromagnetic transient response characteristics of DFIG under symmetrical and asymmetrical cascading grid fault conditions considering phaseangel jump of grid. On deriving the dynamic equations of the DFIG with considering multiple constraints on balanced and unbalanced...... conditions, phase angel jumps, interval of cascading fault, electromagnetic transient characteristics, the principle of the DFIG response under cascading voltage fault can be extract. The influence of grid angel jump on the transient characteristic of DFIG is analyzed and electromagnetic response...
Hang, Su; Xue-tao, Weng
2017-11-01
At present, there are some researches in the thermal analysis of electromagnetic absorbers. The heating principle of electromagnetic absorber magnetic circuit is analysed, and the finite element method is used to numerically solve the temperature field in the working process of electromagnetic vibration absorber. The magnetic circuit simulation model of electromagnetic vibration absorber is established in Comsol Multiphysics finite element analysis software. And the grid Division, simulation analysis of the vibration absorber magnetic circuit structure of the internal temperature distribution, you can get the vibration absorber magnetic circuit in the working process of the temperature field of two-dimensional distribution graphics and magnetic circuit structure of different parts of the temperature rise contrast chart. The conclusion provides some theoretical reference for the design and research of electromagnetic active vibration absorber.
International Nuclear Information System (INIS)
Arrington, John; Sick, Ingo
2007-01-01
The extraction of the strangeness form factors from parity-violating elastic electron-proton scattering is sensitive to the electromagnetic form factors at low Q 2 . We provide parametrizations for the form factors and uncertainties, including the effects of two-photon exchange corrections to the extracted electromagnetic form factors. We study effect of the correlations between different form factors, in particular as they impact the parity-violating asymmetry and the extraction of the strangeness form factors. We provide a prescription to extract the strangeness form factors from the asymmetry that provides an excellent approximation of the full two-photon correction. The corrected form factors are also appropriate as input for other low-Q analyses, although the effects of correlations and two-photon exchange corrections may be different
Modern Electromagnetic Scattering
2013-08-10
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Physics Colorado School of Mines Golden, Colorado 80401 8. PERFORMING ORGANIZATION ...this section, a physically intuitive derivation of the SCV approximation is presented. The derivation is organized as follows. First, we imagine a...Am + Am)Hm(kN+2a) = (Bm +Bm) Jm(kN+1a) + CmHm(kN+2a), (6.6a) 96 DmJ ′m(kN+2a) + (Am + Am)H ′m(kN+2a) = kN+1 kN+2 [ (Bm +Bm) J ′m(kN+1a) + CmH ′m(kN
Analysis of Simulated Aircraft Lightning Strikes and Their Electromagnetic Effects
National Research Council Canada - National Science Library
Gruden, James
2001-01-01
To survive the intense electromagnetic fields associated with a lightning strike, proper design of aircraft electrical control systems requires knowledge of the transient current pulse associated with a lightning strike...
Single particle analysis with a 3600 light scattering photometer
International Nuclear Information System (INIS)
Bartholdi, M.F.
1979-06-01
Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells
Analysis of an Active Control Damper Using Electromagnetic Fluid
長屋, 幸助; 武田, 定彦; 井開, 重男; 永井, 健一; 松本, 康臣; 塩野, 二朗
1989-01-01
This paper proposes an active control damper using an electromagnetic fluid, and presents an expression for obtaining the damping coefficient of the damper. The damping coefficient has been obtained by using the solution of the equation for the electromagnetic fluid which includes both Navier-Stokes' equation and Maxwell's equation. Numerical calculations have been carried out for some sample problems, and the effects of sizes of the damper and the magnetic flux density on the damping coeffic...
Electromagnetic Analysis of Ring Earth Electrode for Wind Turbine
Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki
Lightning protection of wind power generation is becoming an important public issue. Japan in particular suffers from frequent and heavy lightning strikes, such as the notorious “winter lightning” found in coastal areas of the Sea of Japan. Also, it is important to understand the “impedance characteristics” of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC, TR61400-24, recommends a “ring earth electrode” however, this concept has not been fully clarified, especially its transient behavior during a lightning strike remains unresolved. To confirm the effect of a ring earth electrode, this report presents an electromagnetic transient analysis on a foundation and ring earth electrode of a wind power generator using a Finite Difference Time Domain (FDTD) method. The results show that the ring earth electrode provides a low steady resistance with little inductive potential rise. Thus, it is confirmed that the ring earth electrode provides effective lightning protection of wind turbines.
Scattering analysis of periodic structures using finite-difference time-domain
ElMahgoub, Khaled; Elsherbeni, Atef Z
2012-01-01
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor
An analysis of heavy ion scattering amplitudes
International Nuclear Information System (INIS)
Marty, C.
1979-01-01
A heurisht method is derived for the analysis of light heavy ion systems. It consists in splitting an oscillatory amplitude into subamplitudes each of them being smooth, at least in modulus. Applications are given
Advantages of neutron scattering for biological structure analysis
International Nuclear Information System (INIS)
Schoenborn, B.P.
1975-01-01
The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated
Directory of Open Access Journals (Sweden)
T. R. Robinson
Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.
Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation
In-situ soil carbon analysis using inelastic neutron scattering
In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...
Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis
International Nuclear Information System (INIS)
Cussen, L.D.; Goossens, D.J.
2002-01-01
The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature
Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis
Cussen, L D
2002-01-01
The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature.
National Research Council Canada - National Science Library
Barton, John
2000-01-01
Theoretical procedures were developed, computer programs were written, and demonstration calculations were performed investigating the modeling and predicted performance of the photothermal modulation of Mie scattering (PMMS...
Electromagnetic topology: Characterization of internal electromagnetic coupling
Parmantier, J. P.; Aparicio, J. P.; Faure, F.
1991-01-01
The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.
Scattering analysis of point processes and random measures
International Nuclear Information System (INIS)
Hanisch, K.H.
1984-01-01
In the present paper scattering analysis of point processes and random measures is studied. Known formulae which connect the scattering intensity with the pair distribution function of the studied structures are proved in a rigorous manner with tools of the theory of point processes and random measures. For some special fibre processes the scattering intensity is computed. For a class of random measures, namely for 'grain-germ-models', a new formula is proved which yields the pair distribution function of the 'grain-germ-model' in terms of the pair distribution function of the underlying point process (the 'germs') and of the mean structure factor and the mean squared structure factor of the particles (the 'grains'). (author)
Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation
Ruffer, R
2003-01-01
The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as...
Complex analysis of electromagnetic machines for vibro-impact technologies
Neyman, L. A.; Neyman, V. Yu
2017-10-01
For the implementation of high-energy impulse technologies of mechanical shock methods of secondary rock destruction, electromagnetic machines of vibro-impact action are of particular interest. Linear synchronous electromagnetic impact machine designs as a part of progress trend are considered where the head reciprocal motion is synchronized with 50 Hz power source pulses frequency applied to a winding or a system of windings. On the basis of identified differences of the head forced mechanical oscillation processes, merits and demerits of the work cycles of single or two-winding synchronous machine design variants are analyzed. Synchronous electromagnetic machines of a new design and principles of their control in a work cycle are presented. The specific half-wave interleaving of voltages applied to the windings allows reducing current amplitude and the influence of the impact drive on the power grid. To improve forced oscillation mode stability and precision, the new engineering solutions improving machines performances and exploitation conditions are proposed.
Eldridge-Thomas, Buffy; Rubin, G James
2013-01-01
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged
Nuclear structure investigations with electromagnetic probes
International Nuclear Information System (INIS)
Drechsel, D.
1987-01-01
This paper is related to the study of electromagnetic interactions, current of hadronic systems, deep inelastic scattering, quasifree scattering, low energy theorems and electromagnetic reactions above pion threshold. (A.C.A.S.) [pt
Centers of structures in electromagnetism--a critical analysis
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1982-01-01
Some principles for finding reference points or centers of structures in electromagnetism are outlined. It is pointed out that the centers which are found depend on arbitrary choices. Since some of the principles are based on Friis's transmission formula and the radar equation, these are given...
Vulnerability analysis of the wireless infrastructures to intentional electromagnetic interference
van de Beek, G.S.
2016-01-01
Contemporary society is greatly dependent upon a set of critical infrastructures (CIs) providing security and quality of life. Electronic systems control the safety-critical functioning of most CIs, and these electronic systems are susceptible to electromagnetic interference (EMI). A threat to the
Czech Academy of Sciences Publication Activity Database
Artemyeva, Z.; Žigová, Anna; Kirillova, N.; Šťastný, Martin; Holubík, O.; Podrázský, V.
2017-01-01
Roč. 63, č. 13 (2017), s. 1838-1851 ISSN 0365-0340 Institutional support: RVO:67985831 Keywords : land use * aggregate stability * organo-clay complexes * dynamic light scattering * phase analysis light scattering * color coordinates Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.137, year: 2016
Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation
International Nuclear Information System (INIS)
Ruffer, R.; Teillet, J.
2003-01-01
The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)
Fractal analysis of scatter imaging signatures to distinguish breast pathologies
Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.
2013-02-01
Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.
International Nuclear Information System (INIS)
Yamashita, H.; Marinova, I.; Cingoski, V.
2002-01-01
These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics
An analysis of the electromagnetic field in multi-polar linear induction system
International Nuclear Information System (INIS)
Chervenkova, Todorka; Chervenkov, Atanas
2002-01-01
In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)
Integral equation methods for electromagnetics
Volakis, John
2012-01-01
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo
Development of Spectrometer Software for Electromagnetic Radiation Measurement and Analysis
International Nuclear Information System (INIS)
Mohd Idris Taib; Noor Ezati Shuib; Wan Saffiey Wan Abdullah
2013-01-01
This software was under development using LabVIEW to be using with StellarNet Spectrometer system. StellarNet Spectrometer was supplied with SpectraWiz operating software that can measure spectral data for real-time spectroscopy. This LabVIEW software was used to access real-time data from SpectraWiz dynamic link library as hardware interfacing. This software will acquire amplitude of every electromagnetic wavelength at periodic time. In addition to hardware interfacing, the user interface capabilities of software include plotting of spectral data in various mode including scope, absorbance, transmission and irradiance mode. This software surely can be used for research and development in application, utilization and safety of electromagnetic radiation, especially solar, laser and ultra violet. Of-line capabilities of this software are almost unlimited due to availability of mathematical and signal processing function in the LabVIEW add on library. (author)
Design and Analysis of an Electromagnetic Thrust Bearing
Banerjee, Bibhuti; Rao, Dantam K.
1996-01-01
A double-acting electromagnetic thrust bearing is normally used to counter the axial loads in many rotating machines that employ magnetic bearings. It essentially consists of an actuator and drive electronics. Existing thrust bearing design programs are based on several assumptions. These assumptions, however, are often violated in practice. For example, no distinction is made between maximum external loads and maximum bearing forces, which are assumed to be identical. Furthermore, it is assumed that the maximum flux density in the air gap occurs at the nominal gap position of the thrust runner. The purpose of this paper is to present a clear theoretical basis for the design of the electromagnetic thrust bearing which obviates such assumptions.
Gravitational Bhabha scattering
International Nuclear Information System (INIS)
Santos, A F; Khanna, Faqir C
2017-01-01
Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)
Collective Thomson scattering data analysis for Wendelstein 7-X
DEFF Research Database (Denmark)
Abramovic, I.; Pavone, A.; Svensson, J.
2017-01-01
Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated...... into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report...... on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis....
Pegarkov, A. I.
2001-07-01
Within the framework of the nonadiabatic approach developed in the preceding paper, the resonance scattering, resonance Raman scattering, and resonance fluorescence are studied in detail for diatomic and triatomic molecules, and polyatomic symmetric and antisymmetric top molecules, which interact with the field of short-wavelength radiation with a wavelength λ ≥ Å and an intensity up to 1014 W/cm2. The coherent excitations of high-lying Rydberg and autoionizing states are taken into account. Analytical expressions for calculating the tensors and cross sections of the above processes are derived.
EDDYTRAN program system for eddy current, electromagnetic force and structural analysis
International Nuclear Information System (INIS)
Kameari, A.; Nikura, S.
1983-01-01
A computer program system (EDDYTRAN), which is applicable to torus structures of magnetic fusion devices, has been developed to calculate the eddy current, electromagnetic force and structural analysis. The program system is designed to perform the following functions sequentially: 1) generation of model mesh and other data such as electromagnetic and mechanical properties of finite elements and boundary conditions, 2) calculations of eddy currents and electromagnetic forces, 3) transformation of the resultant force to load data fit to the structural analysis program, 4) structural analysis and 5) post-processing of the results. The EDDYTRAN utilizes the EDDYCUFF (EDDY CUrrent, magnetic Field and electromagnetic Force) program and the NASTRAN (NASA STRuctural ANalysis) program. Here, the EDDYCUFF program which has been developed by the authors is a generalized computer program to calculate transient eddy currents, resultant magnetic fields and electromagnetic forces in the conductive components. This paper describes the outline of the EDDYTRAN program system and preliminary results obtained through the application to the Tokamak reactor design which was performed for the Japan Atomic Energy Research Institute
Analysis on Electromagnetic Interference for Power Plane-Battery Management System (PP-BMS Enclosure
Directory of Open Access Journals (Sweden)
Yanpeng SUN
2014-11-01
Full Text Available Finite Difference Time Domain (FDTD is applied to study the characteristics of electromagnetic interference for power plane-battery management system (PP-BMS enclosure, for modeling the coupling of an incident electromagnetic pulse (EMP with a conducting wire through a BMS enclosure and aperture on it. Simulation and analysis are done by radius of the wires, incidence angles of EMP in the conditions of different polarized direction, and different annular apertures in consideration. The simulation result shows that interference of the electromagnetic coupling into the PP-BMS enclosure can be affected in different degrees by above factors. At low frequency, the larger the radius of the wire penetrated into the PP-BMS enclosure, the more interference is coupled into the BMS enclosure from electromagnetic field. Also, the electromagnetic energy coupled by penetrated wire when incident wave radiates aslant is more than the coupling energy when incident wave radiates the target vertically in the condition of vertical polarized direction of electric field, and less in the condition of horizontally polarized direction of electric field. Furthermore, in the case of the same aperture area, the coupling electromagnetic energy into the circular annular aperture is smaller than that into the rectangular and the square ones.
Analysis of electromagnetic valve with spring at the joint of plunger and plug
International Nuclear Information System (INIS)
Zakharenkov, N V; Zakharenkov, V V
2017-01-01
Widespread use of electromagnetic valves in the engineering fields makes urgent the problems which are aimed to improve efficiency by optimization of their design. The paper aims to examine of efficiency of the electromagnetic valves with an accumulative spring at the joint in the kinematic chain with a plunger and a plug. To achieve the primary goal, the two problems are formulated and considered: analysis of the electromagnetic valve by considering its operation as separate phases; experimental investigation of the valves and comparison of electromagnetic characteristics of the valves having an accumulative spring with the same characteristics of classical electromagnetic valves. The design and principle of valves with an accumulative spring operation are considered. The dynamic equations of electromagnetic valves with an accumulative spring, which are took into account a pressure drop while the valve is opened, are stated. The equation for accumulative spring stiffness that is proportional to the given resistant force created by the pressure of fluid is written. The results of experimental investigation of the valves with an accumulative spring show that current in a coil is linear for all values of operating environment pressure. The power demand can be reduced by using an accumulative spring. (paper)
Directory of Open Access Journals (Sweden)
Lan-Wei Guo
2015-01-01
Full Text Available A highly efficient and robust scheme is proposed for analyzing electromagnetic scattering from electrically large arbitrary shaped conductors in a half space. This scheme is based on the electric field integral equation (EFIE with a half-space Green’s function. The precorrected fast Fourier transform (p-FFT is first extended to a half space for general three-dimensional scattering problems. A novel enhanced dual threshold incomplete LU factorization (ILUT is then constructed as an effective preconditioner to improve the convergence of the half-space EFIE. Inspired by the idea of the improved electric field integral operator (IEFIO, the geometrical-optics current/principle value term of the magnetic field integral equation is used as a physical perturbation to stabilize the traditional ILUT perconditioning matrix. The high accuracy of EFIE is maintained, yet good calculating efficiency comparable to the combined field integral equation (CFIE can be achieved. Furthermore, this approach can be applied to arbitrary geometrical structures including open surfaces and requires no extra types of Sommerfeld integrals needed in the half-space CFIE. Numerical examples are presented to demonstrate the high performance of the proposed solver among several other approaches in typical half-space problems.
Gedney, Stephen D.; Mittra, Raj
1990-01-01
The enhancement of the computational efficiency of the body of revolution (BOR) scattering problem is discused with a view to making it practical for solving large-body problems. The problem of EM scattering by a perfectly conducting BOR is considered, although the methods can be extended to multilayered dielectric bodies as well. Typically, the generation of the elements of the moment method matrix consumes a major portion of the computational time. It is shown how this time can be significantly reduced by manipulating the expression for the matrix elements to permit efficient FFT computation. A technique for extracting the singularity of the Green function that appears within the integrands of the matrix diagonal is also presented, further enhancing the usefulness of the FFT. The computation time can thus be improved by at least an order of magnitude for large bodies in comparison to that for previous algorithms.
The Analysis of Pulse Electromagnetic Field Effect on Solution Conductivity
Mahardiono, Novan Agung; Fakhrurroja, Hanif; Luvita, V; Cahyaningsih, Sudaryati
2016-01-01
This paper presents the observation of magnetization process variables influence the conductivity of a solution of FeSO4, MnSO4, MgCl2 and CaCl2. Some of the survey results reveal that there has been a decline in the rate of particle formation FeSO4, MnSO4, MgCl2 and CaCl2 of the ions in the hard water sample magnetized. The research method in this paper is to test the conductivity of a solution of FeSO4, MnSO4, MgCl2 and CaCl2 before and after a given pulse electromagnetic field with a conc...
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
Directory of Open Access Journals (Sweden)
Chao Wan
2012-01-01
Full Text Available The history of methods for the electromagnetic scattering by an anisotropic sphere has been reviewed. Two main methods, angular expansion method and T-matrix method, which are widely used for the anisotropic sphere, are expressed in Cartesian coordinate firstly. The comparison of those and the further exploration on the scattering field are illustrated afterwards. Based on the most general form concluded by variable separation method, the coupled electric field and magnetic field of radial anisotropic sphere can be derived. By simplifying the condition, simpler case of uniaxial anisotropic media is expressed with confirmed coefficients for the internal and external field. Details of significant phenomenon are presented.
Uysal, Ismail E.
2015-10-26
Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.
Directory of Open Access Journals (Sweden)
Ren He
2015-01-01
Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
Directory of Open Access Journals (Sweden)
Ciurys Marek Pawel
2017-12-01
Full Text Available Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network – converter - BLDC motor was carried out.
Mochalov, Vladimir; Mochalova, Anastasia
2017-10-01
The paper considers a developing software-hardware complex «Sensor signal analysis network» for distributed and time synchronized analysis of electromagnetic radiations. The areas of application and the main features of the complex are described. An example of application of the complex to monitor natural electromagnetic radiation sources is considered based on the data recorded in VLF range. A generalized functional scheme of stream analysis of signals by a complex functional node is suggested and its application for stream detection of atmospherics, whistlers and tweaks is considered.
Directory of Open Access Journals (Sweden)
Mochalov Vladimir
2017-01-01
Full Text Available The paper considers a developing software-hardware complex «Sensor signal analysis network» for distributed and time synchronized analysis of electromagnetic radiations. The areas of application and the main features of the complex are described. An example of application of the complex to monitor natural electromagnetic radiation sources is considered based on the data recorded in VLF range. A generalized functional scheme of stream analysis of signals by a complex functional node is suggested and its application for stream detection of atmospherics, whistlers and tweaks is considered.
A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William John [George Washington Univ., Washington, DC (United States); Strakovsky, Igor I. [George Washington Univ., Washington, DC (United States); Workman, Ronald L. [George Washington Univ., Washington, DC (United States)
2015-08-31
The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilities and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental γ - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of π0, η, 2π0, π0η, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to
Quaternion analysis of generalized electromagnetic fields in chiral media
International Nuclear Information System (INIS)
Bisht, P. S. . Email. ps_bisht123@rediffmail.com
2007-01-01
The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)
Analysis of beam plasma instability effects on incoherent scatter spectra
Directory of Open Access Journals (Sweden)
M. A. Diaz
2010-12-01
Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.
Analysis of elastic scattering at low momentum transfer
International Nuclear Information System (INIS)
Pumplin, J.
1991-11-01
A method for analyzing high energy elastic scattering data is described, which improves on previous methods to extract σ tot , σ el , B, and ρ=ReM(0)/ImM(0) from experiment by properly allowing for the curvature of 1ndσ/dt with t. The method is used to make a critical analysis of data at √s=19.4, 546, and 1800 GeV. It is found that previous analyses systematically underestimate the forward slope B. The large value of ρ obtained by UA4 at √s=546 GeV is shown to be doubtful. The method described here should aid in the analysis of forthcoming data from UA4/2 and E710. (orig.)
2011-06-01
shape of a scatterer from re ected acoustic waves, using a Banach space setting and the Lagrangian approach. The shape Hessian is then analyzed in both H...corresponding to the inverse problem of inferring the shape of a scatterer from reflected acoustic waves, using a Banach space setting and the...compact embeddings in Hölder and Sobolev spaces . These tools allow us to state the shape derivatives in a Banach space setting, and then to analyze the
SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry
International Nuclear Information System (INIS)
Disney, R.K.; Vogtman, S.E.
1987-01-01
1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total
Computer techniques for electromagnetics
Mittra, R
1973-01-01
Computer Techniques for Electromagnetics discusses the ways in which computer techniques solve practical problems in electromagnetics. It discusses the impact of the emergence of high-speed computers in the study of electromagnetics. This text provides a brief background on the approaches used by mathematical analysts in solving integral equations. It also demonstrates how to use computer techniques in computing current distribution, radar scattering, and waveguide discontinuities, and inverse scattering. This book will be useful for students looking for a comprehensive text on computer techni
Inelastic neutron scattering analysis of the molecular motions in adrenaline
International Nuclear Information System (INIS)
Padureanu, I.; Aranghel, Dorina; Brzozowski, R.; Kozlov, Zh. A; Semenov, V.A.
2004-01-01
The paper presents an experimental study of the molecular motions in adrenaline by means of the inelastic neutron scattering. A high resolution and luminosity time of flight spectrometer was used to measure the molecular incoherent neutron scattering function S inc (Q,ℎω) at room temperature. This function is further used to obtain a complete vibration spectrum G(ℎω) in the low and intermediate frequency region. The experimental analysis of G(ℎω) allowed a very clear determination of the excitation located at the following energy transfers: ℎω = 0.16 meV; 3.58 meV; 5.20 meV; 8.62 meV; 11.40 meV; 15.05 meV; 21.84 MeV; 32.66 meV; 40.84 meV; 66.68 meV; 115.22 meV. Except the mode at 0.16 meV which could be assigned to the proton tunneling along the hydrogen bound, the ratio of the other frequencies ω n /ω n-1 within the experimental errors is found to be closed to a value between √2 and √3. (authors)
The analysis of multiple scattering in SANS and USANS measurements
International Nuclear Information System (INIS)
Bertram, W.K.
2003-01-01
Full text: Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) are widely used to investigate the micro- and nano-structure of condensed matter. However, measurements on materials such as cements, clays etc. are often affected by multiple scattering. If a substantial number of neutrons experience more than one scattering event within a sample, the result is broadening of the angular distribution profile. Often samples cannot be made thin enough to guarantee single scattering and even in cases where it is possible to make thin samples, surface effects can sometimes lead to results that are not representative of the bulk material. In addition, for many SANS measurements there is no reliable method for determining whether or not a sample is thin enough to produce mainly single scattering. Even SANS measurements from samples with different thicknesses may not reveal the presence or otherwise of multiple scattering. We will show that the problems presented by multiple scattering can often be overcome by using USANS measurements. USANS data from different thickness samples often allow us to quantify the effects from multiple scattering. Rather than trying to eliminate multiple scattering from SANS and USANS experiments, it is more advantageous to use multiple scattering to extract information from these measurements that would otherwise be impossible, or at least more difficult, to obtain
Tong, Shu-Hui; Liu, Yi-Ting; Liu, Yang
2013-02-01
To investigate the association between paternal exposure to occupational electromagnetic radiation and the sex ratio of the offspring. We searched various databases, including PubMed, Embase, Cochrane Library, OVID, Bioscience Information Service (BIOSIS), China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Database, for the literature relevant to the association of paternal exposure to occupational electromagnetic radiation with the sex ratio of the offspring. We conducted a meta-analysis on their correlation using Stata 11.0. There was no statistically significant difference in the sex ratio between the offspring with paternal exposure to occupational electromagnetic radiation and those without (pooled OR = 1.00 [95% CI: 0.95 -1.05], P = 0.875). Subgroup analysis of both case-control and cohort studies revealed no significant difference (pooled OR = 1.03 [95% CI: 0.99 -1.08], P = 0.104 and pooled OR = 0.98 [95% CI: 0.99 -1.08], P = 0.186, respectively). Paternal exposure to occupational electromagnetic radiation is not correlated with the sex ratio of the offspring.
Electromagnetic structure of nuclei
International Nuclear Information System (INIS)
Arnold, R.G.
1986-07-01
A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs
Fingerprint elements scatter analysis on ancient chinese Ru porcelains samples
International Nuclear Information System (INIS)
Gao Zhengyao; Wang Jie; Chen Xiande
1997-01-01
Altogether 28 samples, mainly including glazes and bodies of ancient Chinese Ru porcelain, were analyzed by NAA technique and the contents of 36 elements were compared. The scatter analysis for nine fingerprint-elements indicates that almost all ancient Chinese Ru porcelain samples had nearly identical and long-term stable source of raw materials although they were fired in different kilns, at varying time and with distinct colors, and moreover, the source of raw materials for modern Ru porcelain seems to approach that for ancient one. The close provenance relation between ancient Jun porcelain and ancient Ru porcelain is also preliminarily verified. The glaze material of Jingdezhen white porcelain is totally different from all other samples. It shows that the former came from a separate source
Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys
DEFF Research Database (Denmark)
Meincke, Peter
2007-01-01
A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering calculat......A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...
F4E studies for the electromagnetic analysis of ITER components
Energy Technology Data Exchange (ETDEWEB)
Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Cau, F.; Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università Federico II di Napoli, Napoli (Italy); Juirao, J. [Numerical Analysis TEChnologies S.L. (NATEC), c/ Marqués de San Esteban, 52 Entlo D Gijón (Spain)
2014-10-15
Highlights: • Several ITER components have been analyzed from the electromagnetic point of view. • Categorization of DINA load cases is described. • VDEs, MDs and MFD have been studied. • Integral values of forces and moments components versus time have been computed for all the ITER components under study. - Abstract: Fusion for Energy (F4E) is involved in a relevant number of activities in the area of electromagnetic analysis in support of ITER general design and EU in-kind procurement. In particular several ITER components (vacuum vessel, blanket shield modules and first wall panels, test blanket modules, ICRH antenna) are being analyzed from the electromagnetic point of view. In this paper we give an updated description of our main activities, highlighting the main assumptions, objectives, results and conclusions. The plasma instabilities we consider, typically disruptions and VDEs, can be both toroidally symmetric and asymmetric. This implies that, depending on the specific component and loading conditions, FE models we use span from a sector of 10 up to 360° of the ITER machine. The techniques for simulating the electromagnetic phenomena involved in a disruption and the postprocessing of the results to obtain the loads acting on the structures are described. Finally we summarize the typical loads applied to different components and give a critical view of the results.
Fast analysis of multi-static scattering problems with compressive sensing technique
Chai, Shui-Rong; Guo, Li-Xin; Li, Ke; Meng, Xiao; Li, Long
2017-11-01
In this paper, the compressive sensing (CS) is introduced to the electromagnetic multi-static scattering problems for the purpose of reducing computation runtimes. During the simulations, the CS paradigm is worked as an incident angle reduction tool. The scattered fields generated by all excitations in one scattering angle are treated as the signal of interest, which is under sampled directly based on the CS theory. And then the measurement of the scattered fields is converted to the measurement of the induced currents and the excitations by the Huygens principle and the relationships between the induced currents and the excitations. By solving the measured matrix equation with the fast multipole method (FMM), one can get the measurement of the scattered fields. Finally, the orthogonal matching pursuit (OMP) is utilized to reconstruct the original scattered fields by solving an optimal ℓ1 norm equation. Numerical simulations demonstrate that, if the interpolation is not taken into account, the introduction of CS can save significantly while maintaining sufficient accuracy.
Sound extinction by fish schools: forward scattering theory and data analysis.
Raveau, M; Feuillade, C
2015-02-01
A model used previously to study collective back scattering from fish schools [Feuillade et al., J. Acoust. Soc. Am. 99(1), 196-208 (1996)], is used to analyze the forward scattering properties of these objects. There is an essential physical difference between back and forward scattering from fish schools. Strong frequency dependent interference effects, which affect the back scattered field amplitude, are absent in the forward scattering case. This is critically important for data analysis. There is interest in using back scattering and transmission data from fish schools to study their size, the species and abundance of fish, and fish behavior. Transmission data can be processed to determine the extinction of the field by a school. The extinction of sound depends on the forward scattering characteristics of the school, and data inversion to provide information about the fish should be based upon a forward scattering paradigm. Results are presented of an analysis of transmission data obtained in September 1995 during an experiment performed in the Gulf of Lion in the Mediterranean Sea [Diachok, J. Acoust. Soc. Am. 105(4), 2107-2128 (1999)]. The analysis shows that using forward scattering leads to significantly larger estimates of fish abundance than previous analysis based upon back scattering approaches.
Electromagnetic Shielding Effectiveness Analysis of Nanoreinforced Polymer Composites
National Research Council Canada - National Science Library
Lozano, Karen; Fuentes, Arturo
2007-01-01
The team conducted dielectric analysis of samples to promote a better understanding of the mechanisms involved in changes in dielectric structure of microstructures exposed to varying frequency fields and temperatures...
Higher-order techniques in computational electromagnetics
Graglia, Roberto D
2016-01-01
Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.
Statistical analysis concerning broad band measurements of radio frequency electromagnetic fields
International Nuclear Information System (INIS)
Lubritto, C.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.; Petraglia, A.; Pinto, G.; Romano, G.
2002-01-01
Electromagnetic fields (EMF) actually represents one of the most common and the fastest growing environmental factors influencing human life. The care of the public community for the so called electromagnetic pollution is continually increasing because of the booming use of mobile phones over the past decade in business, commerce and social life. Moreover the incumbent third generation mobile systems will increase the use of all communication technologies, including fax, e-mail and Internet accesses. This extensive use has been accompanied by public debate about possible adverse effects on human health. In particular there are concerns related to the emission of radiofrequency radiation from the cellular phones and from base stations. Due to this very fast and wide development of cellular telephony more and more data are becoming available from monitoring, measuring and predicting electromagnetic fields as requested by the laws in order to get the authorization to install antenna and apparatus size of the database is such consistent that statistics have been carried out with a high degree of confidence: in particular in this paper statistical analysis has been focussed on data collected during about 1000 check measurements of electromagnetic field values performed by a private company in 167 different located in almost all Italian regions. One of the aim set consist in to find the most critical factors for the measurements, besides the field conformation: position in space, logistic conditions, technology employed, distance from the centre of the antenna, etc. The first step of the study deals with the building of a database fulfilled with information relevant to the measurements. In a second step, by means of appropriate statistical procedures, the electromagnetic field is evaluated and then the different measurement procedures are critically reviewed
Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere
Pechal, Radim
2011-01-01
Title: Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere Author: Radim Pechal Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Lubomír Přech, Dr. Supervisor's e-mail address: Abstract: The thesis introduces into basic knowledge of waves in plasma, especially waves in the Earth's magnetosphere. There are mentioned some space projects focused on chorus waves. The second part of this thesis is a la...
Towards the results of global analysis of data on nucleon electromagnetic structure
International Nuclear Information System (INIS)
Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.
1991-01-01
Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs
Coupled Analytical-Finite Element Methods for Linear Electromagnetic Actuator Analysis
Directory of Open Access Journals (Sweden)
K. Srairi
2005-09-01
Full Text Available In this paper, a linear electromagnetic actuator with moving parts is analyzed. The movement is considered through the modification of boundary conditions only using coupled analytical and finite element analysis. In order to evaluate the dynamic performance of the device, the coupling between electric, magnetic and mechanical phenomena is established. The displacement of the moving parts and the inductor current are determined when the device is supplied by capacitor discharge voltage.
International Nuclear Information System (INIS)
Chu, J; Chang, X L; Zhao, M; Man, M H; Wei, M; Yuan, L
2013-01-01
With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of b ioelectrical immunity . So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.
Im, Hyungbin; Bae, Dae Sung; Chung, Jintai
2012-04-01
This paper presents a design sensitivity analysis of dynamic responses of a BLDC motor with mechanical and electromagnetic interactions. Based on the equations of motion which consider mechanical and electromagnetic interactions of the motor, the sensitivity equations for the dynamic responses were derived by applying the direct differential method. From the sensitivity equation along with the equations of motion, the time responses for the sensitivity analysis were obtained by using the Newmark time integration method. The sensitivities of the motor performances such as the electromagnetic torque, rotating speed, and vibration level were analyzed for the six design parameters of rotor mass, shaft/bearing stiffness, rotor eccentricity, winding resistance, coil turn number, and residual magnetic flux density. Furthermore, to achieve a higher torque, higher speed, and lower vibration level, a new BLDC motor was designed by applying the multi-objective function method. It was found that all three performances are sensitive to the design parameters in the order of the coil turn number, magnetic flux density, rotor mass, winding resistance, rotor eccentricity, and stiffness. It was also found that the torque and vibration level are more sensitive to the parameters than the rotating speed. Finally, by applying the sensitivity analysis results, a new optimized design of the motor resulted in better performances. The newly designed motor showed an improved torque, rotating speed, and vibration level.
A Data Analysis Center for Electromagnetic and Hadronic Interaction
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William John [George Washington Univ., Washington, DC (United States). Inst. for Nuclear Studies; Strakovsky, Igor I. [George Washington Univ., Washington, DC (United States). Inst. for Nuclear Studies; Workman, Ronald L. [George Washington Univ., Washington, DC (United States). Inst. for Nuclear Studies
2015-05-31
The GW Data Analysis Center (DAC) has made significant progress in its program to enhance and expand the partial-wave and multipole analyses of fundamental reactions, while maintaining and expanding each associated database. These efforts provide guidance to national and international experimental and theoretical efforts, and are an important link between theory and experiment. Our principal goals are focused on baryon and meson physics programs and related topics.
QCD analysis of polarized deep inelastic scattering data
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Boettcher, Helmut
2010-05-15
A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of {alpha}{sub s}(M{sub z}{sup 2}) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of {alpha}{sub s} is studied. We obtain {alpha}{sub s}{sup NLO}(M{sub Z}{sup 2})=0.1132 {sub -0.0095}{sup +0.0056}. The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g{sub 1}(x,Q{sup 2}) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)
International Nuclear Information System (INIS)
Jayaswal, B.; Mazumder, S.
1998-09-01
Small-angle scattering data from strong scattering systems, e.g. porous materials, cannot be analysed invoking single scattering approximation as specimen needed to replicate the bulk matrix in essential properties are too thick to validate the approximation. The presence of multiple scattering is indicated by invalidity of the functional invariance property of the observed scattering profile with variation of sample thickness and/or wave length of the probing radiation. This article delineates how non accounting of multiple scattering affects the results of analysis and then how to correct the data for its effect. It deals with an algorithm to extract single scattering profile from small-angle scattering data affected by multiple scattering. The algorithm can process the scattering data and deduce single scattering profile in absolute scale. A software package, SIMSAS, is introduced for executing this inversion step. This package is useful both to simulate and to analyse multiple small-angle scattering data. (author)
Directory of Open Access Journals (Sweden)
S. Lalléchère
2012-10-01
Full Text Available This paper deals with the advanced integration of uncertainties in electromagnetic interferences (EMI and electromagnetic compatibility (EMC problems. In this context, the Monte Carlo formalism may provide a reliable reference to proceed to statistical assessments. After all, other less expensive and efﬁcient techniques have been implemented more recently (the unscented transform and stochastic collocation methods for instance and will be illustrated through uncertain EMC problems. Finally, we will present how the use of sensitivity analysis techniques may offer an efﬁcient complement to rough statistical or stochastic studies.
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Sayed, Sadeed Bin
2016-11-02
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
Transputer networks for the on-line analysis of fine-grained electromagnetic calorimeter data
International Nuclear Information System (INIS)
Girotto, G.L.; Lanceri, L.; Scuri, F.; Zoppolato, E.
1994-01-01
Transputer networks, designed to perform parallel computations, are well suited for data acquisition, on-line analysis and second level trigger tasks in high energy physics experiments. Some simple algorithms for the analysis of fine-grained electromagnetic calorimeter data were implemented on two types of transputer networks and tested on real and simulated data from a silicon-tungsten calorimeter. Results are presented on the processing speed, measured in a test setup, and extrapolations to a full size detector and data acquisition system are discussed. ((orig.))
An Approach for Effect Analysis of Electromagnetic Pulse in Operating NPPs
Energy Technology Data Exchange (ETDEWEB)
Ryu, Ho Sun; Ye, Song Hae; Kim, Minyi; Lee, Euijong [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
Recently, there is a growing Electromagnetic Pulse (EMP) threat caused by North Korea’s nuclear weapons and unmanned aerial vehicles (UAVs). KHNP CRI is currently conducting a research project that will evaluate the safety of domestic nuclear power plants (NPPs) against EMP effects and prepare safety measures to counter vulnerable points. We will instead use simulation tools to evaluate the electromagnetic shielding ability and the conductivity of cables through vulnerable points in NPPs. Through a study of electromagnetic simulation techniques and tools, this paper suggests a simulation method for analysis of EMP effects in operating NPPs. Although 3D tools are relatively accurate, is difficult to use only 3D tools to simulate EMP effects for huge and complex structures such as NPPs. It is more efficient in terms of cost and time to use a 3D tool and an EMT tool for the simulation of such structures. We have compared the advantages and disadvantages of various methods and have selected the most appropriate tools; we will proceed in our next paper with the simulation of EMP effects.
Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.
Shifman, Yair; Leviatan, Yehuda
2004-03-01
Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.
Proton and neutron electromagnetic form factors and uncertainties
Ye, Zhihong; Arrington, John; Hill, Richard J.; Lee, Gabriel
2018-02-01
We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q2 and high-Q2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.
New development in nanostructure analysis by smaller-angle neutron scattering instrument of J-PARC
International Nuclear Information System (INIS)
Suzuki, Jun-ichi; Shinohara, Takenao; Takata, Shin-ichi; Oku, Takayuki; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; Otomo, Toshiya; Sugiyama, Masaaki
2008-01-01
The technique of small-angle neutron scattering has been used to study structures of size between about 1 nm and 10 μm in materials and life sciences. This article introduces the smaller-angle neutron scattering instrument projected in J-PARC, which will produce new development in nanostructure analysis. (author)
Mendes, Albert C. R.; Abreu, Everton M. C.; Neto, Jorge Ananias; Takakura, Flavio I.
2016-01-01
In the present paper we will discuss the Faddeev-Jackiw symplectic approach in the analysis of a charged compressible fluid immersed in a higher-derivative electromagnetic field theory. We have obtained the full set of constraints directly from the zero-mode eigenvectors. Besides, we have computed the Dirac brackets for the dynamic variables of the compressible fluid. Finally, as a result of the coupling between the charged compressible fluid and the electromagnetic field we have calculated t...
Energy Technology Data Exchange (ETDEWEB)
Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)
2013-10-16
Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
Computational Electromagnetics
Rylander, Thomas; Bondeson, Anders
2013-01-01
Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...
Analysis of materials in ducts by Compton scattering
International Nuclear Information System (INIS)
Gouveia, M.A.G.; Lopes, R.T.; Jesus, E.F.O. de; Camerini, C.S.
2000-01-01
This work presents the use of the Compton Scattering Technique as essay, for materials characterization in petroleum ducts. The essay have been accomplished in laboratory ambit, so that the presented results should be analyzed so that the system can come to be used in the field. The inspection was performed using Compton Scattering techniques, with two detectors aligned, in an angle of 90 degrees with a source of Cs-137 with energy of 662 keV. The results demonstrated the good capacity of the system to detect materials deposited in petroleum ducts during petroleum transportation. (author)
International Nuclear Information System (INIS)
Yokoyama, Hideaki
2009-01-01
Grazing incident small angle scattering has been used for the analysis of surface and thin film structures. X-ray in particular is widely used for such analysis and called grazing incident small angle X-ray scattering (GISAXS). However, a very limited number of studied has been done using grazing incident small angle neutron scattering (GISANS) primarily due to low intensity of neutron beam. The arising JPARC neutron source will enable us to use GISANS to analyze thin film structures of softmatter. This report provides a basic concept of GISAS using an example of the analysis of nanocellular thin films fabricated by block copolymer template with supercritical carbon dioxide (BSTSC). (author)
Manipulating scattering features by metamaterials
Directory of Open Access Journals (Sweden)
Lu Cui
2016-01-01
Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.
Electromagnetic neutron-atom interactions
International Nuclear Information System (INIS)
Sears, V.F.
1986-01-01
In the collision of a neutron with an atom there exists, in addition to the strong interaction with the nucleus and the magnetic dipole interaction with the magnetic electrons, a number of secondary electromagnetic interactions. The latter interactions include the spin-orbit (or Schwinger) interaction, the Foldy interaction, the nuclear magnetic dipole interaction, and interactions arising from the electric polarizability and the finite intrinsic charge radius of the neutron. We present in this paper a comprehensive review of the electromagnetic neutron-atom interactions with particular emphasis on the question of the extent to which the secondary interactions are already included implicitly in the scattering lengths obtained from accurate neutron optical measurements, which one finds listed in data tables, and the conditions under which explicit corrections for the residual secondary interactions are required in the analysis of neutron diffraction and inelastic scattering data for condensed matter. The main conclusion is that, except for the lightest atoms, the current habit of neglecting the secondary interactions can lead to significant systematic errors of up to 2 to 3% in neutron scattering experiments which extend over a wide range of momentum transfers. (orig.)
The analysis of environmental impact in electromagnetic radiation of melting equipment
International Nuclear Information System (INIS)
Zhang Baozeng; Xia Zitong
2012-01-01
High or medium-frequency electromagnetic melting equipment is always used in metals refining, but it will creates electromagnetic fields of powerful high-frequency in operation. With the development of our national economy and the raising of environmental awareness among the people, the electromagnetic pollution of industrial electromagnetic has aroused great concern in administrative department, analyzing the effects scope and influencing depth of electromagnetic radiation by field monitoring for the electromagnetic melting equipment in a steel mills, this paper discussed the protective key for this project on radiation and putforward some corresponding preventive measures. (authors)
Analysis of inelastic neutron scattering results on model compounds ...
Indian Academy of Sciences (India)
Keywords. Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. 63.20. 1. .... Where, Bz[x(y)] implies that this indole mode has x% of the benzene mode number y (after [10]); similarly .... the momentum transfer vector, Q, is essentially parallel to the incident beam for all energy transfers, at least ...
THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.
ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS
International Nuclear Information System (INIS)
Washizu, Masao; Tanabe, Yoshio.
1986-01-01
In a system handling the electromagnetic waves of large power such as the cavity resonator for a high energy accelerator and the high frequency heater for a nuclear fusion apparatus, the margin in the thermal and mechanical design of a wave guide system cannot be taken large, accordingly, the detailed analysis of electromagnetic waves is required. When the analysis in a general form is carried out, boundary element method may be a useful method of solution. This time, the authors carried out the formulation of steady electromagnetic wave problems by boundary element method, and it was shown that the formulation was able to be carried out under the physically clear boundary condition also in this case, and especially in the case of a perfect conductor system, a very simple form was obtained. In this paper, first, the techniques of formulation in a general case, and next, as a special case, the formulation for a perfect conductor system are described. Taking the analysis of the cavity resonators of cylindrical and rectangular parallelepiped forms as examples, the comparison with the analytical solution was carried out. (Kako, I.)
Comparative electromagnetic analysis of ridge waveguide transitions for RF power couplers
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rajesh, E-mail: krajesh@barc.gov.in [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, P. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mathur, Pratigya; Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076 (India)
2014-02-01
Ridge waveguide transitions have been used in the high power couplers of many ongoing high intensity proton accelerator projects worldwide. Because of their smaller size and high energy densities, they require strict dimensional tolerances during fabrication and operating conditions. In order to study their electromagnetic characteristics, two different types of transitions with a straight ridge and a tapered ridge are compared using full wave simulations. Apart from the return loss and resonant frequency variation with dimensions, comparative studies on the phase shift, insertion losses, electric and magnetic field distributions and multipacting are also reported. This analysis will be useful in selecting the appropriate ridge waveguide transition for the RF couplers of accelerator cavities.
Rigid format alter packets for the analysis of electromagnetic field problems
Spreeuw, E.; Reefman, R. J. B.
1975-01-01
The computer program NASTRAN is used to solve electromagnetic field problems. The diffusion equation and the boundary conditions valid for problems of these kinds together with a replacing potential energy function are given. The extent to which an analogy with finite element displacement and temperature approaches holds is indicated. The outputting of complex quantities is made possible after adjustment of standard rigid format 1 input data blocks to module SDR2. The applications made involve the study of the proximity effect in a system of three parallel conductors and the analysis of the magnetic field in the vicinity of the points of contact in circuit breakers.
Applications of Advanced Electromagnetics Components and Systems
Kouzaev, Guennadi A
2013-01-01
This text, directed to the microwave engineers and Master and PhD students, is on the use of electromagnetics to the development and design of advanced integrated components distinguished by their extended field of applications. The results of hundreds of authors scattered in numerous journals and conference proceedings are carefully reviewed and classed. Several chapters are to refresh the knowledge of readers in advanced electromagnetics. New techniques are represented by compact electromagnetic–quantum equations which can be used in modeling of microwave-quantum integrated circuits of future In addition, a topological method to the boundary value problem analysis is considered with the results and examples. One extended chapter is for the development and design of integrated components for extended bandwidth applications, and the technology and electromagnetic issues of silicon integrated transmission lines, transitions, filters, power dividers, directional couplers, etc are considered. Novel prospec...
Noda, Taku
Nowadays, there is quite high demand for electromagnetic transient (EMT) analysis programs and real-time simulators for power systems. In addition to the conventional demand such as overvoltage, over-current and oscillation simulations, the new demand that includes simulations of power-electronics circuits and power quality is increasing. With this background, development groups of EMT programs and real-time simulators have made progress in terms of computational performance and user experience. In Japan, Central Research Institute of Electric Power Industry has newly developed an EMT analysis program called XTAP (eXpandable Transient Analysis Program). This article overviews these international and domestic development trends of EMT analysis programs and real-time simulators.
Analysis of plasma behavior and electro-magnetic interaction between plasma and device
International Nuclear Information System (INIS)
Kobayashi, Tomofumi
1980-01-01
A simulation program for the analysis of plasma behavior and the electromagnetic interaction between plasma and device has been developed. The program consists of a part for the analysis of plasma behavior (plasma system) and a part for the analysis of the electro-magnetic interaction between plasma and devices (circuit system). The parameters which connect the plasma system and the circuit system are the electric resistance of plasma, the internal inductance, and the plasma current. For the plasma system, the simultaneous equations which describe the density distribution of plasma particles, the temperature distribution of electrons and ions, and the space-time variation of current density distribution were derived. The one-dimensional plasma column in γ-direction was considered. The electric resistance and the internal inductance can be deduced. The circuit components are a current transformer, a vertical field coil, a quadrupole field coil, a vacuum chamber and others. An equation which describes plasma position and the shape of cross section is introduced. The plasma position can be known by solving the Mukhavatov's formula of equilibrium. By using this program, the build-up process of plasma current in JT-60 was analysed. It was found that the expansion of plasma sub radius and the control of current distribution by gas injection are the effective methods to obtain high temperature and high density plasma. The eddy current induced in a vacuum vessel shields 40 percent of magnetic field made in the plasma region by a vertical field coil. (Kato, T.)
Coupled analysis between X-ray scattering and birefringence on an ionomer film
Energy Technology Data Exchange (ETDEWEB)
Heijden, P.C. van der [Structures et Proprietes d' Architectures Moleculaires, UMR 5819 (LEA, CNRS, UJF) DRFMC/SPrAM, CEA - Grenoble, 38054 Grenoble cedex 9 (France); Diat, O. [Structures et Proprietes d' Architectures Moleculaires, UMR 5819 (LEA, CNRS, UJF) DRFMC/SPrAM, CEA - Grenoble, 38054 Grenoble cedex 9 (France)]. E-mail: odiat@cea.fr
2005-08-15
Birefringence and orientation factor determined from scattering data analysis are correlated. The intrinsic birefringence from crystalline and amorphous phase in the Nafion, a benchmark ionomer system, were determined and compared with other values from literature.
Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis
DEFF Research Database (Denmark)
Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias
2014-01-01
introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report...
Energy Technology Data Exchange (ETDEWEB)
Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)
2013-01-01
This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.
Analysis of the Relationship between Hamming Distance and the Electromagnetic Information Leakage
Sun Haimeng; Liu Jinming; Zhang Jiemin; Mao Jian
2013-01-01
Electromagnetic information leak as a potential data security risk is more and more serious. Discussing the relationship between compromising emanations and Hamming distance is directed to preventing or reducing the electromagnetic information leakage. The paper presents the model of electromagnetic information leak, then the hierarchical protection strategy based on the model is proposed, that is anti-radiation, anti-intercept and anti-reconstruction. Analyzing the causes of electromagnetic ...
On the analysis of Deep Inelastic Neutron Scattering Experiments
International Nuclear Information System (INIS)
Blostein, J.J.; Dawidowski, J.; Granada, J.R.
2001-01-01
We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)
Roy-Steiner-equation analysis of pion-nucleon scattering
Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.
2017-03-01
Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.
Claassen, E.A.M.; Smid, T.; Woudenberg, F.; Timmermans, D.R.M.
2012-01-01
The way health risks of electromagnetic fields are portrayed in the media may shape public concerns that the growing exposure to electromagnetic fields in daily life constitutes a health hazard. We analysed the content of information on electromagnetic fields and health in Dutch media to identify
International Nuclear Information System (INIS)
Marchand, C.
1987-09-01
The He3 nuclear structure was studied, particularly the longitudinal and transverse response functions and the momentum distribution of high linear momentum protons. Measurements of the inclusive cross sections for incident energies between 120 and 667 MeV were used to derive the electromagnetic response functions for momentum and energy transfers covering the quasi-elastic region and a part of the delta resonance (1232). The Coulomb sum rule is saturated for momentum transfers ≥ 500 MeV/sec. The drop to zero of the longitudinal response after the quasi-elastic peak confirms the transverse nature of the mesic exchange currents and of the excitation of the delta resonance in the nucleus. Measurement of the (e, e'p) exclusive cross sections at 560 MeV incident energy allowed a direct determination of proton linear momentum distributions at 300 to 600 MeV/c for the pd and ppn decay channels. The data agree with wave function calculations and do not indicate an excess of high momentum components. Analysis of the ppn decay channel indicates that high linear momentum components in He3 are dominated by two-nucleon processes, i.e., nucleon-nucleon correlations at medium and short range. Kinematic evidence supports this picture: displacement of the missing energy and dynamic spectra, and comparison of the linear momentum distribution for protons in He3 and deuterium [fr
International Nuclear Information System (INIS)
Kim, Se Yun
2009-01-01
This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.
Optimum Scheme for Insulation System in HV Generator Based on Electromagnetic Analysis
Directory of Open Access Journals (Sweden)
A. Gholami
2011-06-01
Full Text Available Electrical insulations are one of the basic parts of electrical machinery in any sizes and characteristics. Focusing on insulating, studies on the operation of industrial-electrical machinery came to the fact that the most important part of a machine is the Stator. This fact reveals the requirement for inspection of the electrical machine insulation along with the electromagnetic tensions. Therefore with respect to insulation system improvement of stator, the HV generator can be optimized. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electromagnetic performance is Finite Element Method (FEM which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical stresses in order to increase the power of generator in the same volume of core. These processes of optimization have been done according the proposed algorithm. In this algorithm the technical constraints have been considered. This paper describes the process used to perform classical design and improvement analysis of stator slot’s insulation with respect to objective function and constraints.
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
Energy Technology Data Exchange (ETDEWEB)
Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)
2016-10-15
An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.
Golodoniuc, P.; Davis, A. C.; Klump, J. F.
2017-12-01
Electromagnetic exploration techniques are extensively used for remote detection and measurement of subsurface electrical conductivity structures for a variety of geophysical applications such as mineral exploration and groundwater detection. The Electromagnetic Applications group in the Mineral Resources business unit of CSIRO heavily relies upon the use of airborne electromagnetic (AEM) data for the development of new exploration methods. AEM data, which are often originally acquired for green- or brown-fields exploration for minerals, can be re-used for groundwater resource detection in the near-surface. This makes AEM data potentially useful beyond their initial purpose for decades into the future. Increasingly, AEM data are also used as a primary mapping tool for groundwater resources. With surveys ranging from under 1000 km to tens of thousands of km in total length, AEM data are spatially and temporally dense. Sounding stations are often sampled every 0.2 seconds, with about 30-50 measurements taken at each site, resulting in a spacing of measurements along the flight lines of approximately 20-50 metres. This means that typical AEM surveys can easily have on the order of millions of individual stations, with tens of millions of measurements. AEM data needs to be examined for data quality before it can be inverted into conductivity-depth information. Data, which is gathered in survey transects or lines, is examined both along the line, in a plan view and for the transient decay of the electromagnetic signal of individual stations before noise artefacts can be removed. The complexity of the data, its size and dimensionality require efficient tools that support interactive visual data analysis and allows easy navigation through the dataset. A suite of numerical algorithms for data quality assurance facilitates this process through efficient visualisations and data quality metrics. The extensible architecture of the toolkit allows application of custom
Robustness of the fractal regime for the multiple-scattering structure factor
Katyal, Nisha; Botet, Robert; Puri, Sanjay
2016-08-01
In the single-scattering theory of electromagnetic radiation, the fractal regime is a definite range in the photon momentum-transfer q, which is characterized by the scaling-law behavior of the structure factor: S(q) ∝ 1 /q df. This allows a straightforward estimation of the fractal dimension df of aggregates in Small-Angle X-ray Scattering (SAXS) experiments. However, this behavior is not commonly studied in optical scattering experiments because of the lack of information on its domain of validity. In the present work, we propose a definition of the multiple-scattering structure factor, which naturally generalizes the single-scattering function S(q). We show that the mean-field theory of electromagnetic scattering provides an explicit condition to interpret the significance of multiple scattering. In this paper, we investigate and discuss electromagnetic scattering by three classes of fractal aggregates. The results obtained from the TMatrix method show that the fractal scaling range is divided into two domains: (1) a genuine fractal regime, which is robust; (2) a possible anomalous scaling regime, S(q) ∝ 1 /qδ, with exponent δ independent of df, and related to the way the scattering mechanism uses the local morphology of the scatterer. The recognition, and an analysis, of the latter domain is of importance because it may result in significant reduction of the fractal regime, and brings into question the proper mechanism in the build-up of multiple-scattering.
Neutron scattering for analysis of processes in lithium-ion batteries
Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.
2014-12-01
The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.
Analysis of the low-energy $\\pi^\\pm p$ elastic-scattering data
Matsinos, Evangelos; Rasche, Guenther
2012-01-01
We report the results of a phase-shift analysis (PSA) of the low-energy $\\pi^\\pm p$ elastic-scattering data. Following the method which we had set forth in our previous PSA (Matsinos et al., 2006), we first investigate the self-consistency of the low-energy $\\pi^\\pm p$ elastic-scattering databases, via two separate analyses of (first) the $\\pi^+ p$ and (subsequently) the $\\pi^- p$ elastic-scattering data. There are two main differences to our previous PSA: a) we now perform only one test for ...
Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis
International Nuclear Information System (INIS)
Hellings, G.J.A.
1986-01-01
In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)
Jet analysis in lepton-hadron scattering from QCD
International Nuclear Information System (INIS)
Ranft, J.; Ranft, G.
1978-10-01
For deep inelastic lepton-hadron scattering the cross sections dσ/dT and dσ/dS are deduced from QCD perturbation theory in terms of the collective jet variables thrust T and spherocity S. It is found that the shape of these cross sections depends mainly on the total hadronic energy W. While present data are consistent with the cross sections calculated they do not yet prove or disprove the presence of three-jet contributions. It is predicted that these contributions will be clearly visible for W greater than approximately 12 to 15 GeV. (author)
Structural analysis of the KSTAR in-vessel control coils under electromagnetic loads
International Nuclear Information System (INIS)
Kim, H. K.; Yang, H. L.; Choi, C. H.; Bak, J. S.; Lee, S. C.
2002-01-01
In-Vessel Control Coils(IVCC) are to be used for the fast plasma position control, Field Error Correction(FEC), and Resistive Wall Mode(RWM) feedback stabilization in the Korea Superconducting Tokamak Advanced Research(KSTAR) device. This system consists of 16 segments. Each segment is designed in 8 turn coils of 32 mm x 15 mm rectangular hollow copper conductor with a 7 mm diameter internal coolant hole. The coils are enclosed in 2 mm thick Inconel 625 rectangular welded vacuum jacket with epoxy. Structural analyses were performed to evaluate structural safety against electromagnetic loads acting on the IVCC for the various operation scenarios using finite element analysis. It was found that the IVCC was designed to have sufficient structural rigidity from the stress analysis results
Directory of Open Access Journals (Sweden)
Song Xue
2012-05-01
Full Text Available The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT and the New Equivalent Source (NES method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA. The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.
Directory of Open Access Journals (Sweden)
Bulucea Cornelia A.
2016-01-01
Full Text Available Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. An important issue that correlates these aspects is the electromagnetic torque developed by an electric traction motor. In order to provide an overview of the technical performance of the operation of sustainable railway systems, a detailed analysis is carried out of the electromagnetic torque capability of AC electric motors utilized as traction motors in modern locomotives of high power and/or high speed. The results of this work may help in enhancing the main criteria for optimising the safe and sustainable operation of electric railway traction systems.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652
Zhang, Shanwen; Song, Yuntao; Tang, Linlin; Wang, Zhongwei; Ji, Xiang; Du, Shuangsong
2017-05-01
In a fusion reactor, the edge localized mode (ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature, high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil (with flexible supports) of ITER (the International Thermonuclear Fusion Reactor), an electromagnetic-thermal-structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
DEFF Research Database (Denmark)
Kotwa, Ewelina Katarzyna; Jørgensen, Bo Munk; Brockhoff, Per B.
2013-01-01
In this paper, we introduce a new method, based on spherical principal component analysis (S‐PCA), for the identification of Rayleigh and Raman scatters in fluorescence excitation–emission data. These scatters should be found and eliminated as a prestep before fitting parallel factor analysis...... models to the data, in order to avoid model degeneracies. The work is inspired and based on a previous research, where scatter removal was automatic (based on a robust version of PCA called ROBPCA) and required no visual data inspection but appeared to be computationally intensive. To overcome...... this drawback, we implement the fast S‐PCA in the scatter identification routine. Moreover, an additional pattern interpolation step that complements the method, based on robust regression, will be applied. In this way, substantial time savings are gained, and the user's engagement is restricted to a minimum...
Energy Technology Data Exchange (ETDEWEB)
Faugeras, P.E. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee
1967-07-01
The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde
Radio-analysis of hydrogenous material using neutron back-scattering technique
International Nuclear Information System (INIS)
Holly, Wiam Ahmed Alteghany
2014-10-01
In this work, we have explored the possibility of using neutron back-scattering technique in performing radio analysis for samples of hydrogenous materials such as explosives, drugs, crude oil and water, looking for different signals that may be used to discriminate these samples. Monte Carlo simulations were carried out to model the detection system and select the optimal geometry as well. The results were determined in terms of the energy spectra of the back-scattered neutrons.(Author)
The videopulse scattering in inhomogeneous media containing conductive cylinder objects
Varianytsia-Roshchupkina, Liudmyla A.
2003-01-01
The results of the computer simulation of videopulse scattering on the conductive cylinder objects buried in homogeneous media are presented in this work. The finite difference time domain method (FDTD) and Mur's absorbing boundary conditions of second order were used to regularize the problem. The analysis and the comparison of the scattered electromagnetic fields obtained at different dielectric parameters of the media and different sizes of the conductive objects were carried out.
Design and analysis of an electromagnetic turnout for the superconducting Maglev system
Energy Technology Data Exchange (ETDEWEB)
Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)
2016-09-15
Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.
Design and analysis of an electromagnetic turnout for the superconducting Maglev system
International Nuclear Information System (INIS)
Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.
2016-01-01
Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.
Analysis of data on polarized lepton-nucleon scattering
Ellis, Jonathan Richard
1993-01-01
We re-analyze data on deep inelastic polarized lepton-nucleon scattering, with particular attention to testing the Bjorken sum rule and estimating the quark contributions to the nucleon spin. Since only structure function data at fixed $Q^2$ can be used to test sum rules, we use E142 asymmetry measurements and unpolarized structure function data to extract $g_1^n$ at fixed $Q^2$ = 2 GeV$^2$. When higher-twist effects, which are important at low $Q^2$, are included, both the E142 and SMC data are compatible with the Bjorken sum rule within one standard deviation. Assuming validity of the Bjorken sum rule, we estimate the quark contributions to the nucleon spin, finding that their total net contribution is small, with the strange quark contribution non-zero and negative. The quark spin content of the nucleon spin is in agreement with Skyrme model.
Application of Incoherent Inelastic Neutron Scattering in Pharmaceutical Analysis
DEFF Research Database (Denmark)
Bordallo, Heloisa N.; A. Zakharov, Boris; Boidyreva, E.V.
2012-01-01
This study centers on the use of inelastic neutron scattering as an alternative tool for physical characterization of solid pharmaceutical drugs. On the basis of such approach, relaxation processes in the pharmaceutical compound phenacetin (p-ethoxyacetanilide, C(10)H(13)NO(2)) were evidenced...... on heating between 2 and 300 K. By evaluating the mean-square displacement obtained from the elastic fixed window approach, using the neutron backscattering technique, a crossover of the molecular fluctuations between harmonic and nonharmonic dynamical regimes around 75 K was observed. From the temperature...... in the harmonic approximation. The overall spectral profile of the calculated partial contributions to the generalized density of states compares satisfactorily to the experimental spectra in the region of the lattice modes where the intermolecular interactions are expected to play an important role. This study...
Structural analysis by electro-magnetic loads for conceptual design of HCCR TBM-set
International Nuclear Information System (INIS)
Lee, Dong Won; Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung; Shin, Kyu In; Park, Jai Hak; Lee, Youngmin; Ku, Duck Young; Cho, Seungyon
2016-01-01
Highlights: • Using the results of EM analysis on the magnetization and the major disruption such as MD-1, MD-2, and MD-IV events, structural analyses are performed with the conventional FEM code (ANSYS). • The obtained stresses and deformations are confirmed to meet the design criteria. • We found that the magnetization effect is dominant compared to the major disruptions. - Abstract: Using a conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a structural analysis with electro-magnetic (EM) loads is performed. From a previous analysis of the material magnetization due to the use of reduced activation ferritic-martensitic (RAFM) steel as the TBM structure material and EM analysis considering the major disruption of MD-I, MD-II, and MD-IV, the forces are obtained and used for the current structural analysis. The results indicate that the maximum stress occurs at the He purge line at the upper and lower region of the breeding zone (BZ) box including the graphite reflector region, which meets the design requirement. In addition, displacements are lower than the designed gaps from the TBM port plug (PP) frame. The results are provided to the load combination analysis.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter
2018-04-01
A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.
Improved scatter correction with factor analysis for planar and SPECT imaging
Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw
2017-09-01
Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user
Numerical Analysis of the Electromagnetic Field in Microwave Processing of Forest Fruits
Directory of Open Access Journals (Sweden)
Teodor LEUCA
2009-05-01
Full Text Available In the paper we present the numerical analysis of the power density distribution in the forest fruits in microwave systems. The processing in a microwave field of forest fruits offers the processor a new tool, strong and at the same time different from the conventional methods, improving the characteristic performances of the product. Our purpose is to simulate the drying of the fruits in electromagnetic field-microwave field and to obtain a homogenous temperature distribution, which does not create overheating points like the tangent points between the spheres that, sometimes, can destroy at a local level the forest fruits from the applicator. The drying of forest fruits is done by eliminating the water from the products up to 15-25 % moisture, thus securing the concentration of the sugars and of the acids.
Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data
DEFF Research Database (Denmark)
Tølbøll, R.J.; Christensen, N.B.
2006-01-01
but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...
Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang
2016-06-01
The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.
Tests and Analysis of Electromagnetic Models for Semiconductor-Metal Quantum-Well Lasers
Shih, Meng-Mu
2012-03-01
This work tests the proposed electromagnetic models for quantum-well lasers by using several materials of semiconductors and metals. Different combinations of semiconductors and metals can generate various wavelengths and mode-couplings in such semiconductor waveguide structures with built-in metal-gratings. The numerical results of these models are computed by the photonic approach and verified by the optical approach. Even for the weak mode-coupling cases, the numerical results computed by both approaches have close values. Numerical results with post-analysis can summarize how the key parameters, such as grating geometry, well thickness, and layer thickness, affect the mode-couplings. The above results can be further interpreted by physics intuition and fundamental concepts so as to provide insights into the modeling and design of lasers for more applications.
He, Ren; Hu, Donghai
2015-01-01
Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and c...
International Nuclear Information System (INIS)
Hu Xuefeng; Zhou Liang; Zhang Longqiang
2014-01-01
The applicable qualification standard of electromagnetic compatibility (EMC) tests for instrumentation and control electronic equipment was introduced. The electromagnetic interference immunity test, the radiated radio-frequency electromagnetic field immunity test, the sensibility test, the source surge immunity test and the electrostatic discharge immunity test for EMC test were mainly introduced. And the important of configuration and the selection of method for EMC sampler was especially introduced. (authors)
Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak
Energy Technology Data Exchange (ETDEWEB)
Berni, L. A. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), 12.227-010 Sao Jose dos Campos, SP (Brazil); Albuquerque, B. F. C. [Instituto Nacional de Pesquisas Espaciais (INPE), Engenharia e Tecnologia Espaciais, Divisao de Eletronica Aeroespacial, 12.227-010 Sao Jose dos Campos, SP (Brazil)
2010-12-15
Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.
Flesia, C.; Schwendimann, P.
1992-01-01
The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.
Directory of Open Access Journals (Sweden)
S. Saito
2011-07-01
Full Text Available Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF. In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise, precipitation, and so on. In general, the intensity of electromagnetic signals associated with crustal activity is smaller than the above variations. Therefore, in order to detect a smaller signal, signal discrimination such as noise reduction or identification of noises is very important. In this paper, the singular spectrum analysis (SSA has been performed to detect the DC-driven train noise in geoelectric potential difference data. The aim of this paper is to develop an effective algorithm for the DC-driven train noise detection.
A new computer code for quantitative analysis of low-energy ion scattering data
Dorenbos, G; Breeman, M; Boerma, D.O
We have developed a computer program for the full analysis of low-energy ion scattering (LEIS) data, i.e. an analysis that is equivalent to the full calculation of the three-dimensional trajectories of beam particles through a number of layers in the solid, and ending in the detector. A dedicated
Multivariate analysis of the scattering profiles of healthy and pathological human breast tissues
Energy Technology Data Exchange (ETDEWEB)
Conceicao, A.L.C.; Antoniassi, M. [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil); Cunha, D.M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, Minas Gerais (Brazil); Ribeiro-Silva, A. [Departamento de Patologia, HCFMRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil)
2011-10-01
Scattering profiles of 106 healthy and pathological human breast samples were obtained using the angular dispersive X-ray scattering technique (AD-XRD) and synchrotron radiation covering the momentum transfer interval of 0.7 nm{sup -1}{<=}q(=4{pi} sin({theta}/2)/{lambda}){<=}70.5 nm{sup -1}. Multivariate analysis in the form of discriminant analysis was applied over the whole scattering profile curve of each sample in order to build a model for breast tissue classification. The classification results were validated and compared with histological sample classification obtained by microscopy analysis. Finally, the model allows classifying correctly 91.5% of the samples and presented values of 98.5%, 89.7% and 0.90 for sensitivity, specificity and Cohen's {kappa}, respectively, in correctly differentiating between healthy and pathological tissues.
Surface enhanced Raman scattering (SERS) fabrics for trace analysis
Energy Technology Data Exchange (ETDEWEB)
Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)
2016-11-15
Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.
Surface enhanced Raman scattering (SERS) fabrics for trace analysis
International Nuclear Information System (INIS)
Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai
2016-01-01
Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.
Huiberts, Ashild; Hjørnevik, Mari; Mykletun, Arnstein; Skogen, Jens C
2013-01-01
Electromagnetic hypersensitivity (EHS) is a condition characterized by experiencing symptoms after perceived exposure to weak electromagnetic fields (EMFs). There is substantial debate concerning the aetiology of EHS, but experimental data indicate no association between EHS and actual presence of EMFs. Newspapers play a key role in shaping peoples' understanding of health-related issues. The aim of this study was to describe the content of newspaper articles concerning aetiology and treatment of EHS. Qualitative content analysis of newspaper articles. Norwegian newspaper articles were identified using a comprehensive electronic media archive. Norwegian newspaper articles published between 1 February 2006 and 11 August 2010. Statements coded according to source of information, whether it was pro or con scientific evidence on EHS aetiology, and type of intervention presented as treatment option for EHS. Of the statements concerning EHS aetiology (n = 196), 35% (n = 69) were categorized as pro evidence, 65% (n = 127) as con evidence. Of the statements about EHS interventions assessed, 78% (n = 99) were categorized as 'radiance reduction', 4% (n = 5) as 'complementary medicine', and 18% (n = 23) as 'other'. Cognitive behavioural therapy (CBT) and psychotropic drugs were never presented as possible treatment options for EHS. The newspaper media discourse of EHS aetiology and recommended treatment interventions is much in conflict with the current evidence in the field. The majority of statements concerning aetiology convey that EHS is related to the presence of weak EMFs, and radiance reduction as the most frequently conveyed measure to reduce EHS-related symptoms.
Energy Technology Data Exchange (ETDEWEB)
Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)
1998-11-01
In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.
On the effects of systematic errors in analysis of nuclear scattering data.
Energy Technology Data Exchange (ETDEWEB)
Bennett, M.T.; Steward, C.; Amos, K.; Allen, L.J.
1995-07-05
The effects of systematic errors on elastic scattering differential cross-section data upon the assessment of quality fits to that data have been studied. Three cases are studied, namely the differential cross-section data sets from elastic scattering of 200 MeV protons from {sup 12}C, of 350 MeV {sup 16}O-{sup 16}O scattering and of 288.6 MeV {sup 12}C-{sup 12}C scattering. First, to estimate the probability of any unknown systematic errors, select sets of data have been processed using the method of generalized cross validation; a method based upon the premise that any data set should satisfy an optimal smoothness criterion. In another case, the S function that provided a statistically significant fit to data, upon allowance for angle variation, became overdetermined. A far simpler S function form could then be found to describe the scattering process. The S functions so obtained have been used in a fixed energy inverse scattering study to specify effective, local, Schroedinger potentials for the collisions. An error analysis has been performed on the results to specify confidence levels for those interactions. 19 refs., 6 tabs., 15 figs.
The Pressure and Magnetic Flux Density Analysis of Helical-Type DC Electromagnetic Pump
International Nuclear Information System (INIS)
Lee, Geun Hyeong; Kim, Hee Reyoung
2016-01-01
The developed pressure was made by only electromagnetic force eliminating probability of impurities contact, therefore the high reactivity materials such as alkali were best match to electromagnetic pump. The heavy ion accelerator facility by Rare Isotope Science Project (RISP) in Korea is trying to construct accelerator using liquid lithium for high efficiency of acceleration by decreasing charge state. The helical-type DC electromagnetic pump was employed to make a charge stripper that decrease charge state of heavy ion. The specification of electromagnetic pump was developed pressure of 15 bar with flowrate of 6 cc/s in the condition of 200℃. The pressure of DC electromagnetic pump was analyzed in the aspects of current and number of duct turns. The developed pressure was almost proportional to input current because relatively low flowrate made negligible of the electromotive force and hydraulic pressure drop. The pressure and magnetic flux density of helical-type DC electromagnetic pump were analyzed. The pressure was proportion to input current and number of duct turns, and magnetic flux density was higher when ferromagnet was applied at electromagnetic pump. It seems that number of duct turns could be increase and ferromagnet could be applied in order to increase pressure of DC electromagnetic pump with constant input current
Mechanical and electromagnetic analysis of 50 millimeter designs for the SSC dipole
International Nuclear Information System (INIS)
Jayakumar, J.; Leung, K.; Nobrega, F.; Orrell, D.; Sanger, P.; Snitchler, G.; Spigo, G.; Turner, J.; Goodzeit, C.; Gupta, R.; Kahn, S.; Morgan, G.; Willen, E.; Kerby, J.; Strait, J.; Schermer, R.
1990-09-01
Several designs for the Superconducting Super Collider dipole magnet have been analyzed. This note discusses the mechanical and electromagnetic features of each design. Electromagnetic and Mechanical analyses were performed using hand, computer programs and finite element techniques to evaluate the design. 10 refs., 6 figs., 3 tabs
Almudi, Jose Manuel; Ceberio, Mikel
2015-01-01
This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…
Lee, Yeonkyung; Yoo, Hoon
2016-02-01
This paper presents a three-dimensional visualization method of 3D objects in a scattering medium. The proposed method employs integral imaging and spectral analysis to improve the visual quality of 3D images. The images observed from 3D objects in the scattering medium such as turbid water suffer from image degradation due to scattering. The main reason is that the observed image signal is very weak compared with the scattering signal. Common image enhancement techniques including histogram equalization and contrast enhancement works improperly to overcome the problem. Thus, integral imaging that enables to integrate the weak signals from multiple images was discussed to improve image quality. In this paper, we apply spectral analysis to an integral imaging system such as the computational integral imaging reconstruction. Also, we introduce a signal model with a visibility parameter to analyze the scattering signal. The proposed method based on spectral analysis efficiently estimates the original signal and it is applied to elemental images. The visibility-enhanced elemental images are then used to reconstruct 3D images using a computational integral imaging reconstruction algorithm. To evaluate the proposed method, we perform the optical experiments for 3D objects in turbid water. The experimental results indicate that the proposed method outperforms the existing methods.
Single particle analysis with a 360/sup 0/ light scattering photometer
Energy Technology Data Exchange (ETDEWEB)
Bartholdi, M.F.
1979-06-01
Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.
The structural and compositional analysis of single crystal surfaces using low energy ion scattering
International Nuclear Information System (INIS)
Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.
1979-01-01
The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)
Neutron scattering material analysis of Bronze Age metal artefacts
Cartechini, L.; Arletti, R.; Rinaldi, R.; Kockelmann, W.; Giovannini, S.; Cardarelli, A.
2008-03-01
Non-destructive characterization of bronze artefacts from archaeological finds of the 'Terramare' dwellings near Modena, Italy, was carried out by time-of-flight neutron scattering at the ISIS spallation neutron source of the Rutherford Appleton Laboratory, UK. This provides information on ancient metal technology and its development through the Bronze Age in that region. Six pieces from three different classes as to use and manufacture, from the Middle to Late Bronze Age, were investigated on the ROTAX and GEM beam lines at ISIS, providing a comparison between results from the two instruments. A comparison is also made with three axes of the same area of provenance (Emilia, Terramare culture) from the Early, Middle and Late Bronze Age respectively, analysed previously. Data collected provide stable refinements of the phase fractions and lattice parameters by the Rietveld method, allowing determination of Sn contents from the unit cell expansion due to the incorporation of Sn into the Cu-type α-phase. Notably, two of the objects exhibit a range of Sn contents in the bulk as is evident from broad diffraction peaks (4-8 and 10-14 wt% Sn), while the other four artefacts have more defined Sn contents of 8, 9, 10 and 14.5 wt% respectively. The higher Sn weight fractions are associated with the presence of pure unalloyed Cu, interestingly coexisting in one case with two bronze phases (α and the eutectoid δ). One sample shows the presence of 2-3 wt% Pb. Varying amounts of oxidation products such as cuprite were identified. Texture information extracted from the diffraction data provided some indications of different working treatments of the analysed objects.
THEORY OF ELECTRON-DEUTERON SCATTERING
Energy Technology Data Exchange (ETDEWEB)
Durand, L. III
1963-06-15
Information on the electromagnetic form factors of the neutron is obtained from the theory of inelastic electrondeuteron scattering. Problems in the analysis of these experiments that are related to the detailed structure of the deuteron and to the strong final state interactions between the emergent nucleons are considered. Problems arising from an ambiguity in the sign of the Dirac or charge form factor are also discussed. (C.E.S.)
Particle size and shape analysis using light scattering, Coulter principle, and image analysis
International Nuclear Information System (INIS)
Xu, R.; Di Guida, A.
2002-01-01
Particle size and shape analyses have become important tools for research and applications in a broad spectrum of industries such as pharmaceuticals, metallurgic, ceramics, food and beverage, plastics, petrochemical, clinical, etc. Two of the most utilized technologies for sizing particulate materials are laser diffraction (LD) and electrical sensing zone (ESZ) methods. In a LD experiment, particle size distribution is retrieved from the measured scattering intensity as a function of scattering angle and light wavelength based on the assumption that all particles are spheres. In ESZ measurement, the volume of each individual particle is determined by the change in the resistance of electrolyte while particles flow through an orifice to which a voltage is applied; the particle size distribution is then deduced based on a spherical assumption. Lately, another powerful means for characterizing particles, dynamic image analysis (DIA), has been shown to be able to provide both size and shape information of particulate materials. For real industrial materials, rarely are particles spheres. The effect of non-sphericity in different technologies varies causing discrepancies in results and bias from true characteristics of the sample. Systematic studies of shape effects in particle characterization are few. In this study, samples consisting of particles of the same regular shape are studied using the three technologies (LD, ESZ, and DIA). General conclusions regarding the bias, resolution, reproducibility, and predicted discrepancies from measurements using these technologies are deduced to provide a useful guideline for practical applications of these popular technologies to non-spherical samples
Proceedings of the workshop on small angle scattering data analysis. Micelle related topics
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, Toshio [Fukuoka Univ. (Japan). Faculty of Science; Furusaka, Michihiro; Ohtomo, Toshiya [eds.
1996-02-01
This workshop was held on December 13 and 14, 1995 at National Laboratory for High Energy Physics. At the workshop, the purpose of the workshop was explained, and lectures were given on the research on superhigh molecular structure by small angle neutron scattering, the verification of the reliability of WINK data (absolute intensity), the analysis of WINK data, the new data program of SAN, small angle X-ray scattering data analysis program (SAXS), the basis of the analysis of micelle system, analysis software manual and practice program Q-I(Q) ver 1.0, various analysis methods for small angle scattering and contrast modulation method and others, the ordering of and the countermeasures to the problems of WINK, and the hereafter of KENS small angle scattering facility. How to treat the analysis related to micelle, how to save WINK and how to install the SAN/reflectometer are the matters to be discussed at the workshop. In this book, the summaries of the lectures are collected. (K.I.)
Directory of Open Access Journals (Sweden)
Rodrigo Martinez-Duarte
2008-12-01
Full Text Available The following work presents the fluido-dynamic and electromagnetic characterization of an array of 3D electrodes to be used in high throughput and high efficiency Carbon Dielectrophoresis (CarbonDEP applications such as filters, continuous particle enrichment and positioning of particle populations for analysis. CarbonDEP refers to the induction of Dielectrophoresis (DEP by carbon surfaces. The final goal is, through an initial stage of modeling and analysis, to reduce idea-to-prototype time and cost of CarbonDEP devices to be applied in the health care field. Finite Element Analysis (FEA is successfully conducted to model flow velocity and electric fields established by polarized high aspect ratio carbon cylinders, and its planar carbon connecting leads, immersed in a water-based medium. Results demonstrate correlation between a decreasing flow velocity gradient and an increasing electric field gradient toward electrodes’ surfaces which is optimal for selected CarbonDEP applications. Simulation results are experimentally validated in the proposed applications.
International Nuclear Information System (INIS)
George, J.S.; Schmidt, D.M.; Wood, C.C.
1999-01-01
We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented
Torres-Pomales, Wilfredo
2012-01-01
Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.
Oil classification using X-ray scattering and principal component analysis
International Nuclear Information System (INIS)
Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T.; Oliveira, Davi F.; Anjos, Marcelino J.
2015-01-01
X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)
Oil classification using X-ray scattering and principal component analysis
Energy Technology Data Exchange (ETDEWEB)
Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: dani.almeida84@gmail.com, E-mail: ricardo@lin.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Davi F.; Anjos, Marcelino J., E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares
2015-07-01
X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)
Ohchi, Masashi; Furukawa, Tatsuya; Tanaka, Shin-Ichiro
Among several numerical methods, a Finite Element Method (FEM) has been adopted in various engineering problems. In such a background, it is necessary to instruct university students in the numerical analysis. The authors have designed and implemented the numerical analysis education support system for learning electromagnetic fields with Graphical User Interface (GUI) based on the server-client model using Java. In the paper, a feasibility study on the student laboratory class in the third year is described.
Object-oriented data analysis framework for neutron scattering experiments
International Nuclear Information System (INIS)
Suzuki, Jiro; Nakatani, Takeshi; Ohhara, Takashi; Inamura, Yasuhiro; Yonemura, Masao; Morishima, Takahiro; Aoyagi, Tetsuo; Manabe, Atsushi; Otomo, Toshiya
2009-01-01
Materials and Life Science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) is one of the facilities that provided the highest intensity pulsed neutron and muon beams. The MLF computing environment design group organizes the computing environments of MLF and instruments. It is important that the computing environment is provided by the facility side, because meta-data formats, the analysis functions and also data analysis strategy should be shared among many instruments in MLF. The C++ class library, named Manyo-lib, is a framework software for developing data reduction and analysis softwares. The framework is composed of the class library for data reduction and analysis operators, network distributed data processing modules and data containers. The class library is wrapped by the Python interface created by SWIG. All classes of the framework can be called from Python language, and Manyo-lib will be cooperated with the data acquisition and data-visualization components through the MLF-platform, a user interface unified in MLF, which is working on Python language. Raw data in the event-data format obtained by data acquisition systems will be converted into histogram format data on Manyo-lib in high performance, and data reductions and analysis are performed with user-application software developed based on Manyo-lib. We enforce standardization of data containers with Manyo-lib, and many additional fundamental data containers in Manyo-lib have been designed and developed. Experimental and analysis data in the data containers can be converted into NeXus file. Manyo-lib is the standard framework for developing analysis software in MLF, and prototypes of data-analysis softwares for each instrument are being developed by the instrument teams.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2012-07-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump
International Nuclear Information System (INIS)
Goldsteins, Linards
2015-01-01
The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr
Electro-magnetic analysis of high-frequency digital signal processors.
Li, Bing; Lei, Mingzhu; Chen, Meiyuan; Zhang, Lanyong
2016-01-01
High-frequency digital signal processors are increasingly suffering from electro-magnetic interference, due to its ever-increasing integration level and operation speed. The accurate prediction of its electro-magnetic effects require less effort to be spared in the design procedures to obtain better electro-magnetic compatibility and to avoid later modifications that are lengthy and expensive. In this paper, the dipole method is implemented to predict the magnetic impacts of DSP6713 system in order to reduce its design costs.
Efficient CFIE-MOM Analysis of 3-D PEC Scatterers in Layered Media
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, E.; Meincke, Peter
2002-01-01
This paper presents an efficient technique for analysis of arbitrary closed perfectly conducting (PEC) scatterers in layered media. The technique is based on a method of moments (MoM) solution of the combined field integral equation (CFIE). The high efficiency is obtained by employing an accurate...
Lasda Bergman, Elaine M.
2011-01-01
To determine the mix of resources used in social gerontology research, a citation analysis was conducted. A representative sample of citations was selected from three prominent gerontology journals and information was added to determine subject scatter and database coverage for the cited materials. Results indicate that a significant portion of…
Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...
African Journals Online (AJOL)
Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...
International Nuclear Information System (INIS)
Magnani, M.; Stefanon, M.; Puliti, P.
1988-01-01
A simple numerical procedure is presented to face particular problems encountered in the data analysis of small angle scattering studies of precipitation in complicated alloys. A suitable method for solving a least-squares problem with inequality constraints is suggested. (orig.)
Diffraction model analysis of pion-12C elastic scattering at 800 MeV ...
Indian Academy of Sciences (India)
Elastic scattering of 800 MeV/c pions by 12C has been studied in the diffraction model with a view to determine pion optical potential by the method of inversion. Finding an earlier diffraction model analysis to be deficient in some respects, we propose a Glauber model based parametrization for the elastic -matrix and show ...
Folding model analysis of the nucleus–nucleus scattering based on ...
Indian Academy of Sciences (India)
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 6. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates. F PAKDEL A A RAJABI L NICKHAH. Regular Volume 87 Issue 6 December 2016 Article ID 90 ...
Canonical problems in scattering and potential theory
Vinogradov, SS; Vinogradova, ED
2001-01-01
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified.The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and uni...
Canonical problems in scattering and potential theory
Vinogradov, SS; Vinogradova, ED
2002-01-01
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified.The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and uni...
Directory of Open Access Journals (Sweden)
Cinara Stein
2013-04-01
Full Text Available BACKGROUND: Painful diabetic neuropathy (PDN is a common complication of diabetes mellitus, and pharmacological therapies are ineffective in many patients. Therefore, other treatment modalities should be considered, including electrical stimulation and electromagnetic fields. OBJECTIVES: The research objective was to evaluate the effect of treatment with electrical stimulation and electromagnetic fields on pain and sensitivity in patients with painful diabetic neuropathy compared with placebo or another intervention. METHOD: We searched the following electronic databases (from inception to April 2012: MEDLINE (accessed by PubMed, LILACS, Physiotherapy Evidence Database (PEDro, EMBASE and Cochrane CENTRAL. We included randomized trials that compared electrical stimulation or electromagnetic fields with control groups in which the objective was to assess pain and sensitivity in patients with PDN. Two reviewers independently extracted the data. A random-effects model was used for the main analysis. RESULTS: The search retrieved 1336 articles, of which 12 studies were included. Reductions in the mean pain score were significantly greater in the TENS (transcutaneous electrical nerve stimulation group than in the placebo group [-0.44 (95% CI: -0.79 to -0.09; I2: 0%]. There was no improvement in pain relief when electromagnetic fields were compared with the control group [-0.69 (95% CI: -1.86 to 0.48; I2: 63%]. CONCLUSIONS: We found that TENS improved pain relief in patients with diabetic neuropathy, while no such improvement was observed with the use of electromagnetic field treatment. Due to the methodological differences between the studies, a meta-analysis for the outcome of sensitivity could not be performed.
Bao, S; Wang, Z; Rong, L
1999-04-01
The study in this paper shows that the relationship between mass attenuation coefficient and continuous scattering radiation at wavelength 0.081 nm is not an inverse proportion supposed as the scattering internal standard method but a power function in a wide range of matix composition. Experimental results are in good agreement with that of theoretical prediction. A new method is recommended for matrix absorption correction using the 1.22 power function of continuous scattering radiation at wavelength 0.081 nm and used for microelement Sr determination in geological samples as an application example. The accuracy of the results by this method is nearly 4 times better than that from the traditional scattering internal method in a wide range of matrix composition.
Breast tissue classification using x-ray scattering measurements and multivariate data analysis
Energy Technology Data Exchange (ETDEWEB)
Ryan, Elaine A; Farquharson, Michael J [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)
2007-11-21
This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.
Structural analysis of Fe-Mn-O nanoparticles in glass ceramics by small angle scattering
Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian
2015-02-01
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na2O-62.9SiO2-8.5MnO-15.0Fe2O3-x (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core-shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO2. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region.
Field-based dynamic light scattering microscopy: theory and numerical analysis.
Joo, Chulmin; de Boer, Johannes F
2013-11-01
We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.
Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets
Directory of Open Access Journals (Sweden)
Erice Borja
2015-01-01
Full Text Available Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.
Analysis of the fields emitted by mobile communication systems in terms of electromagnetic security
International Nuclear Information System (INIS)
Kerimov, E.A.; Abdullayeva, T.M.; Bayramova, Sh.A.; Mardakhayev, A.V.; Khidirov, A.Sh.
2009-01-01
The main technical characteristics of digital communication systems of cellular bond are analyzed in this paper.The peculiarities of the electromagnetic fields near the antenna of digital communication systems of cellular bond with frequency, time and code interleaving of subscriber channels.It is shown that it is necessary to pay attention to relative broadbandness of digital signal spectrum on antenna radiation characteristics at carrying out of works on electromagnetic monitoring
Leinonen, Jussi
2014-01-27
The PyTMatrix package was designed with the objective of providing a simple, extensible interface to T-Matrix electromagnetic scattering calculations performed using an extensively validated numerical core. The interface, implemented in the Python programming language, facilitates automation of the calculations and further analysis of the results through direct integration of both the inputs and the outputs of the calculations to numerical analysis software. This article describes the architecture and design of the package, illustrating how the concepts in the physics of electromagnetic scattering are mapped into data and code models in the computer software. The resulting capabilities and their consequences for the usability and performance of the package are explored.
Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.
2017-10-01
The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.
Directory of Open Access Journals (Sweden)
Yousef Hasheminejhad
2017-02-01
significant correlation between electrical conductivity and apparent conductivity with a regression coefficient of 0.78. Although multiple linear regression by inclusion of soil moisture and clay content as independent variables improved the regression coefficient to 0.80 but the effect of clay content was not significant in this multiple model. Sensitivity analysis by maintaining one variable at its average value and changing the second variable also showed greater sensitivity of the model to soil moisture in comparison with soil clay content. Generally under estimation of soil moisture and over estimation of soil clay content produced about 63 to 65 percent Mean Bias Error (MBE while over estimation of soil moisture and under estimation of soil clay content produced about 35- 37 percent of MBE. So the model is quite sensitive to both parameters and they cannot be estimated in the field by feeling and the other field methods. Simple linear regression model between ECe and EMh was tested on the second year because the errors in estimating soil moisture could be imposed a significant error on estimating soil salinity. Once the model was tested for estimation of soil salinity in the central point based on EMh reading at the center and then it was tested for estimation of soil salinity based on the average EMh of 9 points in each location. Results showed that the correlation between soil salinity and apparent soil electrical conductivity could be improved to 0.98 using the average of 9 measurements instead of 1 measurement. Conclusion: Based on the results the electromagnetic induction device is sensitive to soil moisture. Although its sensitivity to clay content is less than the sensitivity to moisture content, but the total model error as a result of over estimating soil moisture is about equal to its error resulted from under estimating clay content and vice versa. So the field and feeling methods could not be implemented as inputs for the multiple regression models but these
Seismic electromagnetic study in China
Huang, Qinghua
2016-04-01
Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).
Development of the methodology for the MHD analysis in a linear induction electro-magnetic pump
International Nuclear Information System (INIS)
Seong, Seung Hwan; Hur, Seop; Kim, Seong O; Choi, Seok Ki; Wi, Myung Hwan; Jeon, Won Dae
2004-01-01
Generally, fast breeder reactors have adopted a liquid metal as a coolant for the heat transfer from the reactor to the heat exchangers. Since a liquid metal has an electrical conductivity, the pumping of the liquid metal may use an induction electro-magnetic (EM) pump which induces electrical current and body force on the metal flow. These linear induction pumps use a traveling magnetic field wave created by poly-phase currents and the induced currents and their associated magnetic field generate the Lorentz force whose effect can be actually the pumping of the liquid metal. The flow behaviors in the pump are very complex such as the existence of a rotational force, pulsation and so on, because the induction EM pump has time-varying magnetic fields and the induced convective currents which originate form the flow of the liquid metal. These phenomena generate a stability problem in the pump and depend on the changes of the magnetic field and fluid flow field due to the induced currents and the fluid flow of the liquid metal with time and complex pump geometry. Therefore, an exact flow analysis is required for designing and evaluating the stability of a pump
Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic
Directory of Open Access Journals (Sweden)
Muhammad Yazid Muhammad Ammar Faris
2017-01-01
Full Text Available Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed using the Ansys software with the harmonic analysis solver to analyze and examine hybrid harvesting energy system. Both power output generated from the magnet and the piezoelectric is then combined to form one unit of energy. Further, it was found that the result shows the system generate the maximum power output of 14.85 μW from 100 Hz, 4.905 m/s2, and 0.6 cm3 for resonance frequency, acceleration, and the volume respectively from the optimal energy harvester design. Normalized Power Density (NPD result of 10.29 kgs/m3 comparable with other literature also can be used in energy harvesting system for vibration application.
Fast time- and frequency-domain finite-element methods for electromagnetic analysis
Lee, Woochan
Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution
International Nuclear Information System (INIS)
Gakh, G.I.; Tomasi-Gustafsson, E.
2006-01-01
The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)
Esmaeili, Mostafa; Motagh, Mahdi
2016-07-01
Time-series analysis of Synthetic Aperture Radar (SAR) data using the two techniques of Small BAseline Subset (SBAS) and Persistent Scatterer Interferometric SAR (PSInSAR) extends the capability of conventional interferometry technique for deformation monitoring and mitigating many of its limitations. Using dual/quad polarized data provides us with an additional source of information to improve further the capability of InSAR time-series analysis. In this paper we use dual-polarized data and combine the Amplitude Dispersion Index (ADI) optimization of pixels with phase stability criterion for PSInSAR analysis. ADI optimization is performed by using Simulated Annealing algorithm to increase the number of Persistent Scatterer Candidate (PSC). The phase stability of PSCs is then measured using their temporal coherence to select the final sets of pixels for deformation analysis. We evaluate the method for a dataset comprising of 17 dual polarization SAR data (HH/VV) acquired by TerraSAR-X data from July 2013 to January 2014 over a subsidence area in Iran and compare the effectiveness of the method for both agricultural and urban regions. The results reveal that using optimum scattering mechanism decreases the ADI values in urban and non-urban regions. As compared to single-pol data the use of optimized polarization increases initially the number of PSCs by about three times and improves the final PS density by about 50%, in particular in regions with high rate of deformation which suffer from losing phase stability over the time. The classification of PS pixels based on their optimum scattering mechanism revealed that the dominant scattering mechanism of the PS pixels in the urban area is double-bounce while for the non-urban regions (ground surfaces and farmlands) it is mostly single-bounce mechanism.
International Nuclear Information System (INIS)
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-01-01
Textbooks are a very important tool in the teaching–learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention. (paper)
Electromagnetic reciprocity in antenna theory
Stumpf, Martin
2018-01-01
The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.
Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles.
Eicher, Barbara; Heberle, Frederick A; Marquardt, Drew; Rechberger, Gerald N; Katsaras, John; Pabst, Georg
2017-04-01
Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyl-oleoyl phosphatidyl-choline (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids.
Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects
International Nuclear Information System (INIS)
Lee, Joon Hyun; Lee, Seo Il; Cho, Youn Ho
1998-01-01
In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem
On electromagnetic field problems in inhomogeneous media
Mohsen, A.
1973-01-01
Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.
Energy Technology Data Exchange (ETDEWEB)
LI, Ming [Iowa State Univ., Ames, IA (United States)
2007-01-01
In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.
Bao, S
1999-02-01
It was discovered that the relationship between mass attenuation coefficient and incoherent scattering is not an inverse proportion but a power function in a wide range of matrix compositon. Experimental results are in good agreement with this theoretical predition. A new method is recommended for matrix absorption correction according to the discovery and used for the determination of microelement Sr in geological samples as an application example. The accuracy of the results of heavy absorption samples obtained by this method is much better than those obtained by the traditional scattering internal method.
Directory of Open Access Journals (Sweden)
P. Han
2011-03-01
Full Text Available There have been many reports on ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm. In this study, seismo-magnetic anomalies are presented by examining energy variations of signatures at the periods around 100 s. Geomagnetic data observed at three stations in Izu Peninsula from 1 January 2000 to 30 April 2001 have been analyzed and wavelet transform has been performed. In order to indentify anomalous changes from ionosphere disturbances, Kakioka station has been chosen as a reference station, and the similar data analysis has been performed. The results suggest that the unusual energy enhancement of the Z component, which only appears in Izu Peninsula from late June until early November 2000, might possibly be one of electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm.
Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George
2014-01-01
As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.
Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.
2015-07-01
A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
International Nuclear Information System (INIS)
Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.
2002-01-01
A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper
Energy Technology Data Exchange (ETDEWEB)
Lenglart, E. [Laboratoire de Mathematique, Insa de Rouen, B.P. 08, 76131 Mont Saint Aignan Cedex (France); Gouesbet, G. [Laboratoire d`Energetique des Systemes et Procedes, Insa de Rouen, URA CNRS 230, B.P. 08, 76131 Mont Saint Aignan Cedex (France)
1996-09-01
The separability theorem states that, given a linear partial differential equation and special coordinates allowing to find a family of separated solutions, all solutions of physical interest of the equations can be obtained from linear combinations of the separated solutions. In developing the theory of interaction between an infinite cylinder and a Gaussian beam, it has been recently observed that the theorem may fail in terms of functions. In this paper, it is shown that the separability theorem is recovered if solutions are expressed in terms of distributions instead of in terms of functions. Relevance to light scattering theory is discussed. {copyright} {ital 1996 American Institute of Physics.}
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Simple scattering analysis and simulation of optical components created by additive manufacturing
Rank, M.; Horsak, A.; Heinrich, A.
2017-10-01
Additive manufacturing of optical elements is known but still new to the field of optical fabrication. In 3D printers, the parts are deposited layer-by-layer approximating the shape defined in optics design enabling new shapes, which cannot be manufactured using conventional methods. However, the layered structure also causes surface roughness and subsurface scattering, which decrease the quality of optical elements. Illuminating a flat sample with a laser beam, different light distributions are generated on a screen depending on the printing orientation of the sample. Whereas the laser beam is mainly diffused by the samples, a line shaped light distribution can be achieved for a special case in which the laser light goes parallel to the layer structure. These optical effects of 3D printed parts are analyzed using a goniometric setup and fed back into the optics simulation with the goal to improve the design considering the characteristics of the real sample. For a detailed look on the effect, the total scattering is split up into surface contributions and subsurface scattering using index matching techniques to isolate the effects from each other. For an index matched sample with negligible surface effects the line shaped distribution turns into a diffraction pattern which corresponds to the layer thickness of the printer. Finally, an optic simulation with the scattering data is set up for a simple curved sample. The light distribution measured with a robot-based goniophotometer differs from the simulation, because the curvature is approximated by the layer structure. This makes additional analysis necessary.
Simple analysis of scattering data with the Ornstein-Zernike equation
Kats, E. I.; Muratov, A. R.
2018-01-01
In this paper we propose and explore a method of analysis of the scattering experimental data for uniform liquidlike systems. In our pragmatic approach we are not trying to introduce by hands an artificial small parameter to work out a perturbation theory with respect to the known results, e.g., for hard spheres or sticky hard spheres (all the more that in the agreement with the notorious Landau statement, there is no physical small parameter for liquids). Instead of it being guided by the experimental data we are solving the Ornstein-Zernike equation with a trial (variational) form of the interparticle interaction potential. To find all needed correlation functions this variational input is iterated numerically to satisfy the Ornstein-Zernike equation supplemented by a closure relation. Our method is developed for spherically symmetric scattering objects, and our numeric code is written for such a case. However, it can be extended (at the expense of more involved computations and a larger amount of required experimental input information) for nonspherical particles. What is important for our approach is that it is sufficient to know experimental data in a relatively narrow range of the scattering wave vectors (q ) to compute the static structure factor in a much broader range of q . We illustrate by a few model and real experimental examples of the x-ray and neutron scattering data how the approach works.
Analysis of low-angle x-ray scattering peaks from lyophilized biological samples
Energy Technology Data Exchange (ETDEWEB)
Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology, A.E.A., Cairo (Egypt)]. E-mail: omardesouky@yahoo.com; Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt); Selim, Nabila S.; Ashour, Ahmed H. [Radiation Physics Department, National Center for Radiation Research and Technology, A.E.A., Cairo (Egypt)
2001-08-01
Low-angle x-ray scattering (LAXS) from lyophilized blood and its constituents is characterized by the presence of two peaks in the forward direction of scattering. These peaks are found to be sensitive to the variations in the molecular structure of a given sample. The present work aims to explore the nature of LAXS from a variety of lyophilized biological samples. It also aims to investigate the possibility that a certain biological macromolecule is responsible of the production of LAXS peaks. This is carried out through measurements of LAXS from complex biological samples and their basic constituents. Among the measured samples are haemoglobin (Hb), globin, haem, packed red blood cells, bovine albumin, egg albumin, milk, casein, glutamine, alanine, fat, muscle and DNA. A table containing some characteristic parameters of the LAXS profiles of these samples is also presented. Analysis of measured profiles shows that all lyophilized samples produce at least one relatively broad peak at a scattering angle around 10.35 deg. The full width at half maximum (FWHM) of this peak varies considerably among the measured samples. Except for milk and casein, one additional peak at a scattering angle around 4.65 deg. is observed only in the LAXS profiles of proteins or protein-rich samples. This fact strongly suggests protein to be the biological macromolecule from which this characteristic peak originates. The same idea is further strengthened through discussion of some previous observations. (author)
Analysis of diffuse scattering in neutron powder diagrams. Application to glassy carbon
International Nuclear Information System (INIS)
Boysen, H.
1985-01-01
From the quantitative analysis of the diffuse scattered intensity in powder diagrams valuable information about the disorder in crystals may be obtained. According to the dimensionality of this disorder (0D, 1D, 2D or 3D corresponding to diffuse peaks, streaks, planes or volume in reciprocal space) a characteristic modulation of the background is observed, which is described by specific functions. These are derived by averaging the appropriate cross sections over all crystallite orientations in the powder and folding with the resolution function of the instrument. If proper account is taken of all proportionality factors different components of the background can be put on one relative scale. The results are applied to two samples of glassy carbon differing in their degree of disorder. The neutron powder patterns contain contributions from 0D (00l peaks due to the stacking of graphitic layers), 1D (hkzeta streaks caused by the random orientation of these layers) and 3D (incoherent scattering, averaged thermal diffuse scattering, multiple scattering). From the fit to the observed data various parameters of the disorder like domain sizes, strains, interlayer distances, amount of incorporated hydrogen, pore sizes etc. are determined. It is shown that the omission of resolution corrections leads to false parameters. (orig.)
Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics
Roach, G F; Yannacopoulos, A N
2012-01-01
Electromagnetic complex media are artificial materials that affect the propagation of electromagnetic waves in surprising ways not usually seen in nature. Because of their wide range of important applications, these materials have been intensely studied over the past twenty-five years, mainly from the perspectives of physics and engineering. But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory. Designed for researchers and advanced graduate students in applied mathematics, electrical engineering, and physics, this book in
Electromagnetic analysis of the Faraday shield of the EAST ICRF antenna
International Nuclear Information System (INIS)
Yang Qingxi; Song Yuntao; Wu Songtao; Zhao Yanping
2011-01-01
Faraday shield is one of the important components of ICRF antenna for EAST. In view of the structural safety of the Faraday shield, the electromagnetic and structural analyses for the Faraday shield have been carried out by applying the finite element method and the formulas under the cases of plasma disruption and vertical displacement event (VDE). Results of the electromagnetic forces, the stresses distribution as well as the deformation in the Faraday shield have been obtained under the two cases. They meet the design requirements and provide the theoretical basis for the structural safety evaluation of the Faraday shield. (authors)
Scattering of Light in Defocusing Media upon Linear Substrate Analysis of Formal Solutions
Ochirbat, G
2000-01-01
An analysis of formal solutions to the system of Maxwell equations has been performed for a scattering problem of stationary TM light waves in defocusing matter on a linear substrate. Bruster waves have been observed. A nontrivial plane wave has been found for which relation between a refraction constant and an intensity-dependent dielectric constant has been found. An asymptotic plane TM wave has been obtained, and a procedure of its finding has been elaborated.
Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS
Ioffe, A.; Babcock, E.; Pipich, V.; Radulescu, A.
2011-06-01
Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.
Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS
International Nuclear Information System (INIS)
Ioffe, A; Babcock, E; Pipich, V; Radulescu, A
2011-01-01
Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3 He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2012-01-01
A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.
Highlights in the hadron electromagnetic structure
Directory of Open Access Journals (Sweden)
Tomasi-Gustafsson Egle
2017-01-01
Full Text Available In frame of a general view of proton electromagnetic form factors, two recent findings related to reanalyses of data are presented. Recent experiments in the scattering and in the annihilation region provided us with more precise data and/or extending the kinematical region, allowing a deeper analysis and a common view of these fundamental quantities. We will discuss two issues: the discrepancy between the form factors extracted from unpolarized and polarized ep elastic scattering experiments, in connection with the commonly used dipole parametrization; peculiar oscillations in e+e− → p̄p(γ annihilation cross section, that become periodical when plotted as a function of the 3-momentum of the relative motion of the final proton and antiproton, after subtraction of a smooth function.
Directory of Open Access Journals (Sweden)
Robinson Timothy
2018-01-01
Full Text Available We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with 30 MeV energies, suggesting the discharge current contribution to EMP is dominant.
ANALYSIS OF ELECTROMAGNETIC FIELDS AND NOISE IN THE AREA OF AGRICUL-TURAL BIOGAS PLANT
Directory of Open Access Journals (Sweden)
Paweł A. Mazurek
2016-12-01
Full Text Available Electro-magnetic and acoustic fields were analysed at the bioenergy and biogas production plant of 0.999 MW operational power, localized in Piaski. Measured values were compared with valid national norms and did not exceed limiting values in zones of people’s permanent residence.
Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis
DEFF Research Database (Denmark)
Schüz, Joachim; Svendsen, Anne Louise; Linet, Martha S
2007-01-01
It has been hypothesized that nighttime bedroom measurements of extremely low frequency electromagnetic fields (ELF EMF) may represent a more accurate reflection of exposure and have greater biologic relevance than previously used 24-/48-hour measurements. Accordingly, the authors extended a pooled...
[Analysis of Electric Stress in Human Head in High-frequency Low-power Electromagnetic Environment].
Zhou, Yongjun; Zhang, Hui; Niu, Zhongqi
2015-04-01
Action of electromagnetic radiation exerting on human body has been a concerned issue for people. Because electromagnetic waves could generate an electric stress in a discontinuous medium, we used the finite difference time domain (FDTD) as calculation methods to calculate the electric stress and its distribution in human head caused by high-frequency low-power electromagnetic environment, which was generated by dual-band (900 MHz and 1 800 MHz) PIFA antennas with radiated power 1 W, and we then performed the safety evaluation of cell phone radiation from the angle whether the electric stress further reached the human hearing threshold. The result showed that there existed the electric stress at the interface of different permittivity organization caused by the two kinds of high-frequency low-power electromagnetic environment and the maximum electric stress was located at the interface between skin and air of the phone side, and the electric stress peak at skull did not reach the threshold of auditory caused by bone tissue conduction so that it can not produce auditory effects.
International Nuclear Information System (INIS)
Spencer, C
2004-01-01
The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Electromagnetic Manifestation of Earthquakes
Uvarov Vladimir
2017-01-01
In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.
Electromagnetic Manifestation of Earthquakes
Directory of Open Access Journals (Sweden)
Uvarov Vladimir
2017-01-01
Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.
Milson, James L.
1990-01-01
Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)
Electromagnetic properties of off-shell particles and gauge invariance
Nagorny, S. I.; Dieperink, A. E. L.
1998-01-01
Abstract: Electromagnetic properties of off-shell particles are discussed on the basis of a purely electromagnetic reaction: virtual Compton scattering off a proton. It is shown that the definition of off-shell electromagnetic form factors is not gauge invariant and that these cannot be investigated
Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis.
Kamali, Koosha; Atarod, Mohammadmehdi; Sarhadi, Saeedeh; Nikbakht, Javad; Emami, Maryam; Maghsoudi, Robab; Salimi, Hormoz; Fallahpour, Bita; Kamali, Negar; Momtazan, Abdolreza; Ameli, Mojtaba
2017-10-25
The purpose of this study was to evaluate the effects of 3G+wifi modems on human sperm quality.A total of 40 semen specimens were gathered between March and September 2015, from healthy adult men. The sperm samples were divided into two groups - 3G+wi-fi exposed and unexposed groups. In the unexposed group, the specimens were shielded by aluminum foil in three layers and put into an incubator at a temperature of 37°C for 50 minutes. The exposed group was positioned in another room in an incubator at a temperature of 37°C for 50 minutes. A 3G+wi-fi modem was put into the same incubator and a laptop computer was connected to the modem and was downloading for the entire 50 minutes.Semen analysis was done for each specimen and comparisons between parameters of the two groups were done by using Kolmogorov-Smirnov study and a paired t-test. Mean percentage of sperm with class A and B motility were not significantly different in two groups (p = 0.22 and 0.54, respectively). In class C, it was significantly lower in the exposed group (p = 0.046), while in class D it was significantly higher (p = 0.022).Velocity curvilinear, velocity straight line, velocity average path, mean angular displacement, lateral displacement and beat cross frequency were significantly higher in the unexposed group. The limitation was the in vitro design. Electromagnetic waves (EMWs) emitted from 3G+wi-fi modems cause a significant decrease in sperm motility and velocity, especially in non-progressive motile sperms. Other parameters of semen analysis did not change significantly.EMWs, which are used in communications worldwide, are a suspected cause of male infertility. Many studies evaluated the effects of cell phones and wi-fi on fertility. To our knowledge, no study has yet been done to show the effects of EMWs emitted from 3G+wi-fi modems on fertility.Our study revealed a significant decrease in the quality of human semen after exposure to EMWs emitted from 3G+wi-fi modems.
Bosanac, Slobodan Danko
2016-01-01
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions.
Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F
2015-10-01
SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102).
Recent developments in X-ray and neutron small-angle scattering instrumentation and data analysis
International Nuclear Information System (INIS)
Schelten, J.
1978-01-01
The developments in instrumentation and data analysis that have occurred in the field of small-angle X-ray and neutron scattering since 1973 are reviewed. For X-rays, the cone camera collimation was invented, synchrotrons and storage rings were demonstrated to be intense sources of X-radiation, and one- and two-dimensional position-sensitive detectors were interfaced to cameras with both point and line collimation. For neutrons, the collimators and detectors on the Juelich and Grenoble machines were improved, new D11-type instruments were built or are under construction at several sites, double-crystal instruments were set up, and various new machines have been proposed. Significant progress in data analysis and evaluation has been made through application of mathematical techniques such as the use of spline functions, error minimization with constraints, and linear programming. Several special experiments, unusual in respect to the anisotropy of the scattering pattern, gravitational effects, moving scatterers, and dynamic fast time slicing, are discussed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2013-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
Infrared dispersion analysis and Raman scattering spectra of taurine single crystals
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson
2018-01-01
A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.
Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring
Diehl, S. R.; Smith, D. T.; Sydor, M.
1979-01-01
Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.
Spectral analysis of the S{sub N} approximations in a slab with quadratically anisotropic scattering
Energy Technology Data Exchange (ETDEWEB)
Ourique, L.E.; Pazos, R.P. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil)]. E-mail: ourique@pucrs.br; rpp@pucrs.br; Vilhena, M.T. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Escola de Engenharia); vilhena@cesup.ufrgs.br; Barros, R.C. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: dickbarros@uol.com.br
2003-07-01
The spectral analysis of the S{sub N} approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S{sub N} approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S{sub N} transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S{sub N} transport matrix has only real eigenvalues while for other values the S{sub N} relation between the eigenvalues of S{sub N} transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)
Energy Technology Data Exchange (ETDEWEB)
Heftberger, Peter [University of Graz, Institute of Molecular Biosciences, Austria; Kollmitzer, Benjamin [University of Graz, Institute of Molecular Biosciences, Austria; Heberle, Frederick A [ORNL; Pan, Jianjun [ORNL; Rappolt, Michael [University of Leeds, UK; Amenitsch, Heinz [Graz University of Technology; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Katsaras, John [ORNL; Pabst, georg [University of Graz, Institute of Molecular Biosciences, Austria
2014-01-01
The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid.
Spectral analysis of the SN approximations in a slab with quadratically anisotropic scattering
International Nuclear Information System (INIS)
Ourique, L.E.; Pazos, R.P.; Vilhena, M.T.; Barros, R.C.
2003-01-01
The spectral analysis of the S N approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S N approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S N transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S N transport matrix has only real eigenvalues while for other values the S N relation between the eigenvalues of S N transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)
Energy Technology Data Exchange (ETDEWEB)
Hyun, O.B. [Korea Electric Power Research Institute, Taejeon (Korea); Lee, C.J.; Lee, S.J.; Ko, T.K. [Yonsei University, Seoul (Korea)
2001-07-01
The existence of a large air gaps between a High-Tc Superconducting (HTS) tube and an iron core, or between a primary winding and a HTS tube possibly causes magnetic flux leaks, resulting in undesirable voltage drops under normal operation. For this reason optimization of air gaps is essential in designing a high-Tc superconducting fault current limiter (SFCL). In this paper we performed the electromagnetic analysis for the optimization. The inductance L decreases by 20% as the hight of the winding increases from 50 to 200 mm. But, L increases from 5.6 mH to 10.5 mH as the hight of the rod changes from 150 to 400 mm. L is found to be almost constant for the air gap between 5 to 10 mm, but L decreases by 20% as the gap increases from 10 to 20 mm. The computational and experimental results will bo compared. (author). 7 refs., 8 figs., 1 tab.
White, P C; Munro, C H; Smith, W E
1996-06-01
An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.
Energy Technology Data Exchange (ETDEWEB)
Xie, Wei, E-mail: cslggncl@163.com [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Zhu, Xukun; Kuang, Jiacai [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); Yi, Shihe; Cheng, Haifeng [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Guo, Zhanhu; He, Qingliang [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)
2017-06-15
Highlights: • Theoretical formula and calculation results of effective permeability and effective permittivity of the Fe-C coaxial fiber are obtained based on the Maxwell equation. • The coaxial fiber has stronger anisotropy and better electromagnetic dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. • Greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers. - Abstract: Based on the Maxwell equation, the electromagnetic model in the coaxial fiber was described. The interaction with electromagnetic wave was analysed and the theoretical formula of axial permeability (μ{sub ∥}), axial permittivity (ε{sub ∥}), radial permeability (μ{sub ⊥}) and radial permittivity (ε{sub ⊥}) of Fe-C coaxial fiber were derived, and the demagnetization factor (N) of fibrous material was revised. Calculation results indicate that the composite fiber has stronger anisotropy and better EM dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. These properties can be enhanced through increasing aspect ratio and carbon content. The μ{sub ‖} is 5.18-4.46i, μ{sub ⊥} is 2.58-0.50i, ε{sub ∥} is 7.63-6.97i, and ε{sub ⊥} is 1.98-0.15i when the electromagnetic wave frequency is 5 GHz with the outer diameter of 0.866 μm, inner diameter of 0.500 μm, and length of 20 μm. The maximum of the imaginary part of μ{sub ∥} and ε{sub ∥} are much larger than that of μ{sub ⊥} and ε{sub ⊥} when the structural parameters change, and the maximum of μ{sub ∥} and ε{sub ∥} can reach 6.429 and 23.59. Simulation results show that greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers.
Energy Technology Data Exchange (ETDEWEB)
Risterucci, P., E-mail: paul.risterucci@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Zborowski, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Bertrand, D.; Torres, A. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Rueff, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Ceolin, D. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Grenet, G. [Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)
2017-04-30
Highlights: • An effective approach for quantitative background analysis in HAXPES spectra of buried layer underneath complex overlayer structures is proposed. • The approach relies on using a weighted sum of inelastic scattering cross section of the pure layers. • The method is validated by the study of an advanced power transistor stack after successive annealing steps. • The depth distribution of crucial elements (Ti, Ga) is determined reliably at depths up to nearly 50 nm. - Abstract: Inelastic background analysis of HAXPES spectra was recently introduced as a powerful method to get access to the elemental distribution in deeply buried layers or interfaces, at depth up to 60 nm below the surface. However the accuracy of the analysis highly relies on suitable scattering cross-sections able to describe effectively the transport of photoelectrons through overlayer structures consisting of individual layers with potentially very different scattering properties. Here, we show that within Tougaard’s practical framework as implemented in the Quases-Analyze software, the photoelectron transport through thick (25–40 nm) multi-layer structures with widely different cross-sections can be reliably described with an effective cross-section in the form of a weighted sum of the individual cross-section of each layer. The high-resolution core-level analysis partly provides a guide for determining the nature of the individual cross-sections to be used. We illustrate this novel approach with the practical case of a top Al/Ti bilayer structure in an AlGaN/GaN power transistor device stack before and after sucessive annealing treatments. The analysis provides reliable insights on the Ti and Ga depth distributions up to nearly 50 nm below the surface.
Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data
DEFF Research Database (Denmark)
Tølbøll, R.J.; Christensen, N.B.
2006-01-01
Ground-based electrical and electromagnetic methods are used systematically for quantitative hydrogeologic investigations in Denmark. In recent years, a desire for faster and more cost-efficient methods has led to growing interest in the possibility of using airborne systems, and in 2001 a number...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...
International Nuclear Information System (INIS)
Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.
2011-01-01
A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.
Shi, Yifei
2015-10-26
Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.
International Nuclear Information System (INIS)
Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki
1994-01-01
Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)
Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes
Trost, T. F.; Pitts, F. L.
1982-01-01
Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.
Li , Guangjin; Ojeda , Javier; Hoang , Emmanuel; Gabsi , Mohamed; Lécrivain , Michel
2012-01-01
International audience; This paper presents a fast and precise electromagnetic-thermal model of a redundant dual star Flux-Switching Permanent Magnet (FSPM) motor for the embedded applications with driving cycles, e.g. Hybrid Electrical Vehicle (HEV), aerospace, etc. This model is based on a prior steady characterization by Finite Element Method (FEM) 2D of the FSPM motor via calculating the instantaneous torque, the normal and tangential components of magnetic flux density (Br and ) of each ...
Fluid analysis of electromagnetic ballooning modes in a fully toroidal description
International Nuclear Information System (INIS)
Andersson, P.; Weiland, J.
1986-01-01
A comparatively complete two fluid description of collisionless electromagnetic ballooning modes has been derived. Using an unexpanded ion density response it has been shown that a necessary and sufficient condition for an instability below the MHD/BETA/ limit is the presence of an ion temperature gradient exceeding a threshold. The cause of this instability has been identified and an analytical dispersion relation is given. (authors)
Dhar, Nivedita Bhatta; Thornton, Julie; Karafa, Matthew T; Streem, Stevan B
2004-12-01
Subcapsular or perinephric hematoma is one of the most frequent and potentially serious complications of extracorporeal shock wave lithotripsy (SWL). We determined the incidence of and risk factors for renal hematomas following electromagnetic shock wave lithotripsy. Between February 1999 and August 2003, 570 SWL treatments were performed using a Modulith SLX electromagnetic lithotriptor (Storz, St. Louis, Missouri). A total of 415 of these treatments in 317 patients were performed for stones in the renal pelvis or calices and these treatment episodes represent the study group reported. Treatment episodes were reviewed from a prospective institutional review board approved registry and analyzed for patient age, gender, body mass index, mean arterial pressure at induction, stone location, total number of shock waves and peak shock wave intensity. Following these 415 episodes subcapsular or perinephric hematomas developed in 17 patients for an overall incidence of 4.1%. The probability of hematoma after shock wave lithotripsy increased significantly as patient age at treatment increased, such that the probability of hematoma was estimated to be 1.67 times greater for each 10-year incremental increase in patient age. None of the other variables analyzed were significantly related to the incidence of hematoma formation at the 0.05 level. The incidence of renal hematoma formation following electromagnetic SWL for renal calculus was 4.1%. The probability of hematoma increased significantly with increasing patient age but it was not associated with increasing mean arterial pressure at treatment. These findings are in contrast to previous reports of hematoma associated with electrohydraulic SWL. These differences may be a consequence of the smaller focal zone and higher peak pressure associated with Storz Modulith electromagnetic SWL and, just as importantly, a consequence of the difference in the manner in which blood pressure was defined.
N. Boutra; N. Ravot; J. Benoit; O. Picon
2017-01-01
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evalu...
Ulaş, Cihan
2016-01-01
In this paper, the emissions of a laser printer, which may process classified information, are investigated in the media of electromagnetic radiation (ER), Power Line Conductors (PLC), and Signal Line Conductors (SLC). First, the candidate frequency points of CE are examined in the frequency domain. Second, the emitted signal is AM-demodulated with the proper bandwidth, and then sampled by a high storage oscilloscope in these frequency points. Third, the collected data is converted to 2D imag...
Directory of Open Access Journals (Sweden)
Brown C.G.
2013-11-01
Full Text Available From May 2009 to the present we have recorded electromagnetic pulse (EMP strength and spectrum (100 MHz – 5 GHz in the target bay and chamber of the National Ignition Facility (NIF. The dependence of EMP strength and frequency spectrum on target type and laser energy is discussed. The largest EMP measured was for relatively low-energy, short-pulse (100 ps flat targets.
Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A
2015-09-30
Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions
Gas analysis within remote porous targets using LIDAR multi-scatter techniques
Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.
2008-11-01
Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.
Modeling light scattering in the shadow region behind thin cylinders for diameter analysis
Blohm, Werner
2018-03-01
In this paper, the scattered light intensities resulting in the shadow region at an observation plane behind monochromatically illuminated circular cylinders are modeled by sinusoidal sequences having a squared dependence on spatial position in the observation plane. Whereas two sinusoidal components appear to be sufficient for modeling the light distribution behind intransparent cylinders, at least three sinusoidal components are necessary for transparent cylinders. Based on this model, a novel evaluation algorithm for a very fast retrieval of the diameter of thin cylindrical products like metallic wires and transparent fibers is presented. This algorithm was tested in a cylinder diameter range typical for these products (d ≈ 70 … 150 μm; n ≈ 1.5). Numerical examples are given to illustrate its application by using both synthetic and experimental scattering data. Diameter accuracies below 0.05 μm could be achieved for intransparent cylinders in the tested diameter range. However, scattering effects due to morphological-dependent resonances (MDRs) are problematical in the diameter analysis of transparent products. In order to incorporate these effects into the model, further investigations are needed.
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
Energy Technology Data Exchange (ETDEWEB)
Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Harizanova, Ruzha [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd, 1756 Sofia (Bulgaria); Tatchev, Dragomir [Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 11, 1113 Sofia (Bulgaria); Hoell, Armin [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Rüssel, Christian [Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena (Germany)
2015-02-15
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.
A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U
Miller, Jared; Diallo, Ahmed; Leblanc, Benoit
2014-10-01
Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.
Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.
Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam
2016-09-29
The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
International Nuclear Information System (INIS)
Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian
2015-01-01
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na 2 O–62.9SiO 2 –8.5MnO–15.0Fe 2 O 3−x (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO 2 . SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region
Yin, Junjun; Yang, Jian; Zhang, Qingjun
2017-12-01
On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric SAR has many advantages such as high resolution and multi-polarization imaging capabilities. Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great interest to explore the physical scattering mechanisms of terrain types, which is very important in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this paper, focusing on target scattering characterization and feature extraction, we generalize the Δ α B / α B method, which was proposed under the reflection symmetric assumption, for the general backscatter process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean area observation.
DEFF Research Database (Denmark)
Barfod, Adrian; Møller, Ingelise; Christiansen, Anders Vest
2015-01-01
We present a large-scale study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Airborne electromagnetic (AEM) data contains information about subsurface geology and hydrologic properties; however extracting this information is not trivial....... surface. By applying the proposed algorithm to all available airborne electromagnetic data, detailed maps of the large-scale resistivity-lihology structures on a National scale in Denmark are constructed....... properties and lithology, and apply this to get a better understanding of large-scale petrophysical structures of the subsurface. The data sampling is carried out in a scheme where data is interpolated onto the position of the boreholes. This allows for a lithological categorization of the interpolated......We present a large-scale study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Airborne electromagnetic (AEM) data contains information about subsurface geology and hydrologic properties; however extracting this information is not trivial...
Zhang, Yemao; Lai, Jinsheng; Ruan, Guoran; Chen, Chen; Wang, Dao Wen
2016-03-01
Studies have suggested that extremely low frequency electromagnetic fields (ELF-EMF) may affect physiological functions in animal models. However, epidemiologic studies investigating the association of ELF-EMF with the susceptibility to cancer yield contradictory results. In this comprehensive analysis, we conducted a search for case-control surveys regarding the associations of ELF-EMF and cancer susceptibility in electronic databases. A total of 42 studies involving 13,259 cases and 100,882 controls were retrieved. Overall, increased susceptibility to cancer was identified in the ELF-EMF exposed population (OR=1.08, 95% CI: 1.01, 1.15, P=0.02). In the stratified analyses, increased risk was found in North America (OR=1.10; 95% CI: 1.02, 1.20, P=0.02), especially the United States (OR=1.10; 95% CI: 1.01, 1.20, P=0.03). However, studies from Europe contradict these results. Moreover, a higher risk was found to be statistically significantly associated with the residential exposed population (OR=1.18; 95% CI: 1.02, 1.37, P=0.03). Furthermore, an increased cancer risk was found in interview-based surveys (OR=1.16; 95% CI: 1.00, 1.35, P=0.04). In device measurement-based studies, a slight increased risk was found only in premenopausal breast cancer (OR=1.23; 95% CI: 1.01, 1.49, P=0.04). Our meta-analysis suggests that ELF-EMFs are associated with cancer risk, mainly in the United States and in residential exposed populations. Methodological challenges might explain the differences among studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)
2017-07-01
Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.
X-ray electromagnetic application technology
International Nuclear Information System (INIS)
2011-01-01
The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)
Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Mozer, M.U.
2006-07-24
Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)
Inelastic neutron scattering analysis of the thermal decomposition of kaolinite to metakaolin
Energy Technology Data Exchange (ETDEWEB)
White, Claire E., E-mail: whitece@princeton.edu [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos (United States); Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos (United States); Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos (United States); Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville (Australia); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia); Provis, John L. [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville (Australia); Department of Materials Science and Engineering, The University of Sheffield, Sheffield (United Kingdom); Riley, Daniel P. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia); Department of Mechanical Engineering, The University of Melbourne, Parkville (Australia)
2013-12-12
Highlights: • Kaolinite dehydroxylation studied using inelastic neutron scattering analysis. • Integrated intensities in 200–1200 cm{sup −1} range used for semi-quantitative analysis. • Preferential loss of inner surface hydrogen atoms during reaction. • INS is an ideal tool for studying different hydrogen environments in clays. - Abstract: Understanding the formation of metakaolin via kaolinite dehydroxylation is extremely important for the optimization of various industrial processes. Recent investigations have reported that the different types of hydrogen atoms in kaolinite are removed concurrently during the dehydroxylation process. Here, inelastic neutron scattering (INS) is used to analyze the location and dynamics of hydrogen atoms in kaolinite, together with the changes induced during dehydroxylation. This is achieved by using prior knowledge of how the inner and inner surface hydrogen atoms contribute to the kaolinite INS spectrum in the 200–1200 cm{sup −1} range, in combination with a semi-quantitative analysis of the experimental INS spectra. Overall, it is seen that there is a distinct preferential loss of inner surface hydrogen-atom types during the dehydroxylation process, as determined from analysis of the Al–O–H vibrational modes (consisting of deformation and torsion) in the INS spectrum.
Aurally-adequate time-frequency analysis for scattered sound in auditoria
Norris, Molly K.; Xiang, Ning; Kleiner, Mendel
2005-04-01
The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.