WorldWideScience

Sample records for electromagnetic reverberation chamber

  1. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  2. Electromagnetic Fields in Reverberant Environments

    NARCIS (Netherlands)

    Vogt-Ardatjew, Robert Andrzej

    2017-01-01

    The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical

  3. Statistics of the electromagnetic response of a chaotic reverberation chamber

    Directory of Open Access Journals (Sweden)

    J.-B. Gros

    2015-11-01

    Full Text Available This article presents a study of the electromagnetic re- sponse of a chaotic reverberation chamber (RC in the pres- ence of losses. By means of simulations and of experi- ments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF. The present work illustrates that the uni- versal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electro- magnetic compatibility.

  4. In-situ testing of aircraft and satellites using a transportable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A transportable reverberation chamber with vibrating walls to create high field strength has been developed, called Vibrating Intrinsic Reverberation Chamber (VIRC). It creates a statistically uniform electromagnetic field without the use of a rotating mode stirrer, resulting in a better homogeneity

  5. Shielding Effectiveness Measurements using a Reverberation Chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Bergsma, J.G.; Bergsma, Hans; van Etten, Wim

    2006-01-01

    Shielding effectiveness measurements have been performed using a reverberation chamber. The reverberation chamber methodology as we1l as the measurement setup is described and some results are given. Samples include glass reinforced plastic panels, aluminum panels with many holes, wire mesh, among

  6. Assessment of reverberation time by two measurement systems for room electromagnetics analysis

    DEFF Research Database (Denmark)

    Bamba, Aliou; Joseph, Wout; Plets, David

    2011-01-01

    A closed room environment is viewed as a lossy cavity, characterized by possibly a line of sight (LOS) component and diffuse scattering parts from walls and internal obstacles. A theory used in acoustics and reverberation chambers is applied for the electromagnetics case, and main issues related...

  7. Small-sized reverberation chamber for the measurement of sound absorption

    International Nuclear Information System (INIS)

    Rey, R. del; Alba, J.; Bertó, L.; Gregori, A.

    2017-01-01

    This paper presents the design, construction, calibration and automation of a reverberation chamber for small samples. A balance has been sought between reducing sample size, to reduce the manufacturing costs of materials, and finding the appropriate volume of the chamber, to obtain reliable values at high and mid frequencies. The small-sized reverberation chamber, that was built, has a volume of 1.12 m3 and allows for the testing of samples of 0.3 m2. By using diffusers, to improve the diffusion degree, and automating measurements, we were able to improve the reliability of the results, thus reducing test errors. Several comparison studies of the measurements of the small-sized reverberation chamber and the standardised reverberation chamber are shown, and a good degree of adjustment can be seen between them, within the range of valid frequencies. This paper presents a small laboratory for comparing samples and making decisions before the manufacturing of larger sizes. [es

  8. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  9. Reverberation chambers a la carte: an overview of the different mode-stirring techniques

    NARCIS (Netherlands)

    Serra, R.; Marvin, A.C.; Moglie, F.; Mariani Primiani, V.; Cozza, A.; Arnaut, L.R.; Huang, Y.; Hatfield, M.O.; Klingler, M.; Leferink, F.

    2017-01-01

    Reverberation chambers (RC), a name inspired in room acoustics, are also known in literature as reverberating, reverb, mode-stirred or mode-tuned chambers. In their basic form, they consist of a shielded metallic enclosure, forming a cavity resonator, together with some mode-stirring mechanism. The

  10. Reverberation Chambers à La Carte : An Overview of the Different Mode-Stirring Techniques

    NARCIS (Netherlands)

    Serra, Ramiro; Marvin, Andy C.; Moglie, Franco; Mariani Primiani, Valter; Cozza, Andrea; Arnaut, Luk R.; Huang, Yi; Hatfield, Michael O.; Klingler, Marco; Leferink, Frank

    2017-01-01

    Reverberation chambers (RC), a name inspired in room acoustics, are also known in literature as reverberating, reverb, mode-stirred or mode-tuned chambers. In their basic form, they consist of a shielded metallic enclosure, forming a cavity resonator, together with some mode-stirring mechanism. The

  11. Modeling of Reverberation Effects for Radio Localization and Communications

    DEFF Research Database (Denmark)

    Steinböck, Gerhard

    2013-01-01

    a recently proposed approach, we transcribe these models to electromagnetics and validate them experimentally following a systematic procedure. These transcribed models provide accurate predictions of the delay power spectrum in a typical office environment. Furthermore, they can predict changes...... into a distance dependent model of the delay power spectrum, which we then validate experimentally. From this model we derive secondary models that predict the received power, the mean delay, the rms delay spread and the kurtosis versus distance. The behavior of the diffuse component versus distance in indoor...... environment is linked to reverberation effects analog to reverberation effects observed in room acoustics and electromagnetic reverberation chambers. Reverberation models of room acoustics relate the decay rate of the diffuse component to the room geometry and an average absorption coefficient. Following...

  12. Experimental Validation of the Reverberation Effect in Room Electromagnetics

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2015-01-01

    . This tail can be characterized with Sabine's or Eyring's reverberation models, which were initially developed in acoustics. So far, these models were only fitted to data collected from radio measurements, but no thorough validation of their prediction ability in electromagnetics has been performed yet...

  13. Radiated Emissions from a Remote-Controlled Airplane-Measured in a Reverberation Chamber

    Science.gov (United States)

    Ely, Jay J.; Koppen, Sandra V.; Nguyen, Truong X.; Dudley, Kenneth L.; Szatkowski, George N.; Quach, Cuong C.; Vazquez, Sixto L.; Mielnik, John J.; Hogge, Edward F.; Hill, Boyd L.; hide

    2011-01-01

    A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.

  14. Optimizing the stirring strategy for the vibrating intrinsic reverberation chamber

    NARCIS (Netherlands)

    Serra, Ramiro; Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2010-01-01

    This work describes the definition, application and assessment of a factorial plan with the aim of gaining insight on what kind of stirring strategy could work the best in a vibrating intrinsic reverberation chamber. Three different stirring strategies were defined as factors of a factorial

  15. Effects of different diffuser types on the diffusivity in reverberation chambers

    DEFF Research Database (Denmark)

    Nolan, Melanie; Vercammen, Martijn; Jeong, Cheol-Ho

    2015-01-01

    Knowledge of sound absorption properties of typical building materials is essential for all tasks related to room acoustic design. The Sabine absorption coefficient is measured in a reverberation chamber according to the international standard ISO 354. It is known that inter-laboratory reproducib...

  16. Whole-body new-born and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tongning; Hadjem, Abdelhamid; Wong, M-F; Gati, Azzedine; Wiart, Joe [Orange Labs R and D, Whist Lab 38-40 rue du General Leclerc, 92794 Issy-les-Moulineaux (France); Picon, Odile [Universite Paris-Est, ESYCOM, Cite Descartes 5, bd Descartes, 77454 Marne la Vallee Cedex 2 (France)], E-mail: joe.wiart@orange-ftgroup.com

    2010-03-21

    This paper presents the whole-body specific absorption rate (WBSAR) assessment of embryos and new-born rats' exposure in a reverberating chamber (RC) operating at 2.4 GHz (WiFi). The finite difference in time domain (FDTD) method often used in bio-electromagnetism is facing very slow convergence. A new simulation-measurement hybrid approach has been proposed to characterize the incident power related to the RC and the WBSAR in rats, which are linked by the mean squared electric field strength in the working volume. Peak localized SAR in the rat under exposure is not included in the content of the study. Detailed parameters of this approach are determined by simulations. Evolutions for the physical and physiological parameters of the small rats at different ages are discussed. Simulations have been made to analyse all the variability factors contributing to the global results. WBSAR information and the variability for rats at different ages are also discussed in the paper.

  17. Evanescent reverberation

    NARCIS (Netherlands)

    Serra, R.

    2012-01-01

    Abstract—One of the main statistical models for fields in reverberation chambers is the so-called "plane wave integral representation" model of David Hill. However, despite being widely known and used, this model (as stated by D. Hill himself) lacks a rigorous demonstration, especially when

  18. Decay curves in coupled, reverberant spaces

    DEFF Research Database (Denmark)

    Balin, Jamilla; Nolan, Melanie; Fernandez Grande, Efren

    2016-01-01

    This study investigates the effect of panel and boundary diffusers in a reverberant space. Diffusers are usually mounted in a reverberation chamber to increase the diffuse sound field as recommended in Annex A of ISO 354. The ISO is not specific about the location or the material of the panels; t...

  19. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    Science.gov (United States)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  20. Wireless Communications in Reverberant Environments

    Science.gov (United States)

    2015-01-01

    Dedications For Mom, Dad , Michelle, Tyler, and Emily. iii Acknowledgments Moshe once told us that we would learn more from our lab mates than we would...in reverberant environments, such as industrial facilities, naval vessels, aircraft, and spacecraft, has proven challenging, because rich ...environments are characterized by rich electromagnetic scattering which is a result of the low absorption of electromagnetic radiation by the surfaces

  1. A Radio Frequency Radiation Exposure System for Rodents based on Reverberation Chambers.

    Science.gov (United States)

    Capstick, Myles; Kuster, Niels; Kuehn, Sven; Berdinas-Torres, Veronica; Gong, Yijian; Wilson, Perry; Ladbury, John; Koepke, Galen; McCormick, David L; Gauger, James; Melnick, Ronald L

    2017-08-01

    In this paper we present the novel design features, their technical implementation, and an evaluation of the radio Frequency (RF) exposure systems developed for the National Toxicology Program (NTP) of the National Institute of Environmental Health Sciences (NIEHS) studies on the potential toxicity and carcinogenicity of 2nd and 3rd generation mobile-phone signals. The system requirements for this 2-year NTP cancer bioassay study were the tightly-controlled lifetime exposure of rodents (1568 rats and 1512 mice) to three power levels plus sham simulating typical daily, and higher, exposures of users of GSM and CDMA (IS95) signals. Reverberation chambers and animal housing were designed to allow extended exposure time per day for free-roaming individually-housed animals. The performance of the chamber was characterized in terms of homogeneity, stirred to unstirred energy, efficiency. The achieved homogeneity was 0.59 dB and 0.48 dB at 900 and 1900 MHz respectively. The temporal variation in the electric field strength was optimized to give similar characteristics to that of the power control of a phone in a real network using the two stirrers. Experimental dosimetry was performed to validate the SAR sensitivity and determine the SAR uniformity throughout the exposure volume; SAR uniformities of 0.46 dB and 0.40 dB, respectively, for rats and mice were achieved.

  2. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    Science.gov (United States)

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  3. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  4. The effect of loudness on the reverberance of music: reverberance prediction using loudness models.

    Science.gov (United States)

    Lee, Doheon; Cabrera, Densil; Martens, William L

    2012-02-01

    This study examines the auditory attribute that describes the perceived amount of reverberation, known as "reverberance." Listening experiments were performed using two signals commonly heard in auditoria: excerpts of orchestral music and western classical singing. Listeners adjusted the decay rate of room impulse responses prior to convolution with these signals, so as to match the reverberance of each stimulus to that of a reference stimulus. The analysis examines the hypothesis that reverberance is related to the loudness decay rate of the underlying room impulse response. This hypothesis is tested using computational models of time varying or dynamic loudness, from which parameters analogous to conventional reverberation parameters (early decay time and reverberation time) are derived. The results show that listening level significantly affects reverberance, and that the loudness-based parameters outperform related conventional parameters. Results support the proposed relationship between reverberance and the computationally predicted loudness decay function of sound in rooms. © 2012 Acoustical Society of America

  5. The use of a reference absorber for absorption measurements in a reverberation chamber

    DEFF Research Database (Denmark)

    Nolan, Melanie; Vercammen, Martijn; Jeong, Cheol-Ho

    2014-01-01

    The statistical incidence absorption coefficient is measured in a reverberation room according to ISO 354. This absorption coefficient is referred to as Sabine absorption coefficient, which assumes the chambe r to be completely diffuse. It is known that the reproducibility of these results is poo...

  6. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    International Nuclear Information System (INIS)

    De Marco, M; Pfeifer, M; Krousky, E; Krasa, J; Cikhardt, J; Klir, D; Nassisi, V

    2014-01-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 10 16 W/cm 2 . The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E 0 ≊ 7 kV/m and H 0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  7. ASTROMETRIC REVERBERATION MAPPING

    International Nuclear Information System (INIS)

    Shen Yue

    2012-01-01

    Spatially extended emission regions of active galactic nuclei respond to continuum variations, if such emission regions are powered by energy reprocessing of the continuum. The response from different parts of the reverberating region arrives at different times lagging behind the continuum variation. The lags can be used to map the geometry and kinematics of the emission region (i.e., reverberation mapping, RM). If the extended emission region is not spherically symmetric in configuration and velocity space, reverberation may produce astrometric offsets in the emission region photocenter as a function of time delay and velocity, detectable with future μas to tens of μas astrometry. Such astrometric responses provide independent constraints on the geometric and kinematic structure of the extended emission region, complementary to traditional RM. In addition, astrometric RM is more sensitive to infer the inclination of a flattened geometry and the rotation angle of the extended emission region.

  8. Single-Channel Blind Estimation of Reverberation Parameters

    DEFF Research Database (Denmark)

    Doire, C.S.J.; Brookes, M. D.; Naylor, P. A.

    2015-01-01

    The reverberation of an acoustic channel can be characterised by two frequency-dependent parameters: the reverberation time and the direct-to-reverberant energy ratio. This paper presents an algorithm for blindly determining these parameters from a single-channel speech signal. The algorithm uses...

  9. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  10. Sonar waveforms for reverberation rejection, Part IV: Adaptive processing.

    NARCIS (Netherlands)

    IJsselmuide, S.P. van; Deruaz, L.; Been, R.; Doisy, Y.; Beerens, S.P.

    2002-01-01

    For littoral ASW, reverberation is a big problem and rejection of reverberation is of utmost importance. The influence of the transmitted signal on the signal to reverberation ratio has been presented in three preceding papers. In this paper, the influence of improved signal processing on the

  11. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  12. Binaural Speech Understanding With Bilateral Cochlear Implants in Reverberation.

    Science.gov (United States)

    Kokkinakis, Kostas

    2018-03-08

    The purpose of this study was to investigate whether bilateral cochlear implant (CI) listeners who are fitted with clinical processors are able to benefit from binaural advantages under reverberant conditions. Another aim of this contribution was to determine whether the magnitude of each binaural advantage observed inside a highly reverberant environment differs significantly from the magnitude measured in a near-anechoic environment. Ten adults with postlingual deafness who are bilateral CI users fitted with either Nucleus 5 or Nucleus 6 clinical sound processors (Cochlear Corporation) participated in this study. Speech reception thresholds were measured in sound field and 2 different reverberation conditions (0.06 and 0.6 s) as a function of the listening condition (left, right, both) and the noise spatial location (left, front, right). The presence of the binaural effects of head-shadow, squelch, summation, and spatial release from masking in the 2 different reverberation conditions tested was determined using nonparametric statistical analysis. In the bilateral population tested, when the ambient reverberation time was equal to 0.6 s, results indicated strong positive effects of head-shadow and a weaker spatial release from masking advantage, whereas binaural squelch and summation contributed no statistically significant benefit to bilateral performance under this acoustic condition. These findings are consistent with those of previous studies, which have demonstrated that head-shadow yields the most pronounced advantage in noise. The finding that spatial release from masking produced little to almost no benefit in bilateral listeners is consistent with the hypothesis that additive reverberation degrades spatial cues and negatively affects binaural performance. The magnitude of 4 different binaural advantages was measured on the same group of bilateral CI subjects fitted with clinical processors in 2 different reverberation conditions. The results of this work

  13. Study of reverberation pattern and its cancellation method in shallow water

    Directory of Open Access Journals (Sweden)

    Yang Shiuh-Kuang

    2007-01-01

    Full Text Available In shallow water, the primary limitation of the performance of active sonar is the reverberation that originates from volume and boundaries scattering as well as multi-path propagation. There­fore, reverberation cancelation is an important research topic for increasing the performance of active sonar in shallow water. In this research, the reverberation pattern is simulated using MAT­LAB software. The simulated frequency is 30-kHz in the research. There are two main aims of this work. The first is to create the signals that include the reverberation and the target. The second is to perform the reverberation cancelation for the active sonar in shallow water. The analysis of the reverberation for the spherical target is based on the propagation theory of image source, surface scattering of Rayleigh criterion of roughness, bottom scattering of Lambert’s Law, and multiple scattering. The signal containing the reverberation and the target is then compressed or enhanced by AGC (Automatic Gain Control. The echo of the target is then distinguished through the method of cross correlation. The follow­ing phenomena can be found: (a AGC can compress the signal in a specific dynamic range. (b cross correlation can be used to locate and distinguish the echoes of the target in a high reverberation environment.

  14. Sound localization and word discrimination in reverberant environment in children with developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Wendy Castro-Camacho

    2015-04-01

    Full Text Available Objective Compare if localization of sounds and words discrimination in reverberant environment is different between children with dyslexia and controls. Method We studied 30 children with dyslexia and 30 controls. Sound and word localization and discrimination was studied in five angles from left to right auditory fields (-90o, -45o, 0o, +45o, +90o, under reverberant and no-reverberant conditions; correct answers were compared. Results Spatial location of words in no-reverberant test was deficient in children with dyslexia at 0º and +90o. Spatial location for reverberant test was altered in children with dyslexia at all angles, except –-90o. Word discrimination in no-reverberant test in children with dyslexia had a poor performance at left angles. In reverberant test, children with dyslexia exhibited deficiencies at -45o, -90o, and +45o angles. Conclusion Children with dyslexia could had problems when have to locate sound, and discriminate words in extreme locations of the horizontal plane in classrooms with reverberation.

  15. Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Caratelli, David [Columbia U.

    2018-01-01

    This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel ! e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from 0 decay in the 30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.

  16. Observation and analysis of cosmic electromagnetic cascades detected in lead photoemulsion chamber of the Brazil-Japan cooperation, exposed in Monte Chacaltaya, Bolivia (altitude 5200m, air pressure 550 gr.cm-2)

    International Nuclear Information System (INIS)

    Bastos, C.A.

    1971-04-01

    The cosmic gamma radiations in the photoemulsion chamber for Brazil-Japan Cooperation are studied. These radiations reproduces the electromagnetic component of extensive air showers at the begining of its development through the atmosphere. The gamma radiations, which is 0 Π meson decay products emitted in nuclear interaction, are detected by electromagnetic cascades which are developed when they reach the photoemulsion chamber. Cosmic gamma radiations is a set of parallel electromagnetic cascades proceeding from nuclear interactions. The information about high energy nuclear interactions making possible to study the structure of extensive air showers at the beginning of its development and multiple meson production are obtained. (M.C.K.) [pt

  17. Aging and Temporal Influences on Speech Perception in Reverberation and Noise.

    Science.gov (United States)

    Helfer, Karen S.

    The present study examined the interactions of age, temporal resolution, hearing loss, and consonant perception under realistic listening conditions. Four subject groups were employed, with N = 8 per group: young adults with normal hearing or sloping sensorineural hearing loss; and elderly individuals with minimal peripheral hearing loss or presbycusis. Copies of the CUNY Nonsense Syllable Test (NST) were re-recorded under four levels of reverberation in quiet and in +10 signal-to-noise ratio of cafeteria noise. The test stimuli were presented binaurally to the subjects via TDH-49 headphones. In addition, a diotic wideband gap detection task, using a 72 dBSPL presentation level, was used as a measure of temporal resolution. Results of the present investigation demonstrated that all other subject groups performed significantly poorer than the young, normal hearing adults. Scores decreased as the amount of distortion increased, although there was very little difference between performance in the two highest reverberation conditions. For reverberation alone, the young, hearing-impaired listeners obtained the lowest scores; for reverberation + noise, the older, hearing-impaired subjects performed poorest. Large within-group variability was noted in the size of the gap thresholds, and only the two groups of young subjects differed significantly on this task of temporal resolution. Correlation analyses demonstrated a strong inverse relation between age and performance in reverberation + noise, even when degree of hearing loss was partialed out. Pure -tone average, as well as NST scores in quiet and in noise alone were related strongly to performance in reverberation. Multiple regression analyses demonstrated that nonsense syllable perception in reverberation could be predicted from a combination of age, pure-tone thresholds, scores in quiet and noise, and gap threshold. Gap threshold was the strongest predictor variable for reverberation alone, while the NST score

  18. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  19. 'Reverberation time', dreaming and the capacity to dream.

    Science.gov (United States)

    Birksted-Breen, Dana

    2009-02-01

    In this paper the author suggests that understanding the roots of the subjective sense of time can throw light on the disturbances in psychic time which are found in particular in the more severe pathologies. She introduces the argument that the roots of the development of the sense of time rest on a primitive sense of time she calls 'reverberation time'. By this notion she refers to the particular quality of the earliest 'back and forth' internalized exchange with the mother in which the auditory dimension plays a significant part. Referring to a wide range of literature and clinical examples, the author thus suggests that the subjective sense of time is created by the reverberation between mother and infant. Disturbances in this area will be reflected in the pathological 'arresting' of time which is observed in the different pathologies and, in particular, around the negotiation of the depressive position and the oedipal situation.Extending this argument, the author goes on to suggest that it is the internalization of this experience of 'reverberation' which lies at the heart of the experience of dreaming; she considers that dreaming understood as an internal dialogue points both to its roots in the relationship to the maternal object and to its fundamental role in psychic life. The author concludes that 'reverberation time' is also the building block of a psychoanalysis, leading to 'unfreezing' psychic time and enabling the reconnection of 'here and now' with 'there and then' in a flexible way which promotes open possibilities, and that this takes place via the analyst's reverie, or time of reverberation.

  20. Effects of Varying Reverberation on Music Perception for Young Normal-Hearing and Old Hearing-Impaired Listeners.

    Science.gov (United States)

    Reinhart, Paul N; Souza, Pamela E

    2018-01-01

    Reverberation enhances music perception and is one of the most important acoustic factors in auditorium design. However, previous research on reverberant music perception has focused on young normal-hearing (YNH) listeners. Old hearing-impaired (OHI) listeners have degraded spatial auditory processing; therefore, they may perceive reverberant music differently. Two experiments were conducted examining the effects of varying reverberation on music perception for YNH and OHI listeners. Experiment 1 examined whether YNH listeners and OHI listeners prefer different amounts of reverberation for classical music listening. Symphonic excerpts were processed at a range of reverberation times using a point-source simulation. Listeners performed a paired-comparisons task in which they heard two excerpts with different reverberation times, and they indicated which they preferred. The YNH group preferred a reverberation time of 2.5 s; however, the OHI group did not demonstrate any significant preference. Experiment 2 examined whether OHI listeners are less sensitive to (e, less able to discriminate) differences in reverberation time than YNH listeners. YNH and OHI participants listened to pairs of music excerpts and indicated whether they perceived the same or different amount of reverberation. Results indicated that the ability of both groups to detect differences in reverberation time improved with increasing reverberation time difference. However, discrimination was poorer for the OHI group than for the YNH group. This suggests that OHI listeners are less sensitive to differences in reverberation when listening to music than YNH listeners, which might explain the lack of group reverberation time preferences of the OHI group.

  1. variation of reverberation time with quantity of absorbers in an ...

    African Journals Online (AJOL)

    DJFLEX

    broadcasting and recording studios, reverberation time can be simply controlled to achieve desired results. KEY WORDS: ..... Positions and Actual sizes and Numbers of. Absorbers Used. Measured. Reverberation. Times (s). Calculated with. Sabine Formula. Calculated with. Arau-Puchades. Formula. 500. (Hz). 1000. (Hz).

  2. An oscillation phenomenon of low frequency reverberation in the shallow water and its physical explanation

    Institute of Scientific and Technical Information of China (English)

    LI; Fenghua; LIU; Jianjun; LI; Zhenglin; ZHANG; Renhe

    2005-01-01

    An oscillation phenomenon of the low frequency reverberation intensity was observed in several shallow water reverberation experiments. This phenomenon cannot be explained by the widely used incoherent reverberation theory. In this paper, to explain the observed oscillation phenomenon, a normal mode based coherent reverberation theory is presented. The theoretical analysis and numerical results show that modal interference can cause the regular oscillation phenomenon of the low frequency reverberation intensity, and the oscillation frequency is determined by the normal mode eigen-values. A new method to estimate the bottom sound speed based on the oscillation frequency of reverberation intensity was presented in this paper. The experimental results at three different sites indicate that the bottom sound speed estimated from the oscillation frequency of reverberation intensity agrees with that inverted from Matched Field Processing (MFP) well.

  3. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    International Nuclear Information System (INIS)

    Méjean, Chloé; Pometcu, Laura; Benzerga, Ratiba; Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu; Pouliguen, Philippe

    2017-01-01

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S 11 coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S 11 of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  4. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    Energy Technology Data Exchange (ETDEWEB)

    Méjean, Chloé; Pometcu, Laura [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Pouliguen, Philippe [Département Recherche et Innovation Scientifique de la Direction Générale de l’Armement, 7-9 rue des Mathurins, 92221 Bagneux (France)

    2017-06-15

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S{sub 11} coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S{sub 11} of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  5. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  6. Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids

    DEFF Research Database (Denmark)

    Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt

    2014-01-01

    We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...

  7. Room acoustic enhancement in a small hall with very low natural reverberation time

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    natural combinations of room acoustic properties. Consequently, the natural reverberation time in a newly opened 350 seat multipurpose hall in Denmark was designed as low as 0.7 sec. Two different reverberation enhancement systems were considered and tested in the hall. The objective and subjective...... testing results are reported and compared with previous results obtained in another small hall supplied with a similar enhancement system. The results concerning 'realism' are also compared with acoustic properties found in 'natural' halls of different sizes and reverberation times.......In small multipurpose halls to be equipped with electronic reverberation enhancement systems, selecting a very low natural reverberation time is advantageous for several reasons. It will 1) reduce the risk of feedback, 2) increase the possible range of room acoustic variation and 3) allow for more...

  8. Binaural segregation in multisource reverberant environments.

    Science.gov (United States)

    Roman, Nicoleta; Srinivasan, Soundararajan; Wang, DeLiang

    2006-12-01

    In a natural environment, speech signals are degraded by both reverberation and concurrent noise sources. While human listening is robust under these conditions using only two ears, current two-microphone algorithms perform poorly. The psychological process of figure-ground segregation suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask, which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a binaural segregation system that extracts the reverberant target signal from multisource reverberant mixtures by utilizing only the location information of target source is proposed. The proposed system combines target cancellation through adaptive filtering and a binary decision rule to estimate the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A comprehensive evaluation shows that the proposed system results in large SNR gains. In addition, comparisons using SNR as well as automatic speech recognition measures show that this system outperforms standard two-microphone beamforming approaches and a recent binaural processor.

  9. Reaching imaginary places: resonance and reverberation

    Directory of Open Access Journals (Sweden)

    Kristupas Sabolius

    2012-10-01

    Full Text Available Based on Bachelard’s phenomenological take on the temporality of imagination, this paper analyzes a few works by Marcos Lutyens, a contemporary artist. Bachelard offers two concepts that bring about an altered temporality of material imagination: resonance and reverberation. Resonance is a dynamical condition through which the world discloses its imaginary opportunities: it oscillates with larger amplitude at some frequencies than it does at others. Under this intense state, the attunement of two rhythms, the rhythm of consciousness and the world-rhythm, can occur. Reverberation technically means a further step, i.e., a change in the configuration of our rhythmical settings through the intrusion of an alien vibration: we are possessed by external rhythms; the so-called depth of our interiority is affected by an alien energy, and we vibrate in tune with alien rhythms. By reshaping the rhythmical organization of one’s perception (using hypnosis, a trance state and registered body automatisms, Lutyens tries to trace pathways related to unconscious thought processes. Shifting the experience of duration, he moves through imaginary environments within the preconscious that are progressively charted and recorded. Consequently it appears that what is “penetration” in space is marked by resonance and reverberation in time.

  10. A Novel Approach for Blind Estimation of Reverberation Time using Rayleigh Distribution Model

    Directory of Open Access Journals (Sweden)

    AMAD HAMZA

    2016-10-01

    Full Text Available In this paper a blind estimation approach is proposed which directly utilizes the reverberant signal for estimating the RT (Reverberation Time.For estimation a very well-known method is used; MLE (Maximum Likelihood Estimation. Distribution of the decay rate is the core of the proposed method and can be achieved from the analysis of decay curve of the energy of the sound or from enclosure impulse response. In a pre-existing state of the art method Laplace distribution is used to model reverberation decay. The method proposed in this paper make use of the Rayleigh distribution and a spotting approach for modelling decay rate and identifying region of free decay in reverberant signal respectively. Motivation for the paper was deduced from the fact, when the reverberant speech RT falls in specific range then the signals decay rate impersonate Rayleigh distribution. On the basis of results of the experiments carried out for numerous reverberant signal it is clear that the performance and accuracy of the proposed method is better than other pre-existing methods

  11. A Novel Approach for Blind Estimation of Reverberation Time using Rayleigh Distribution Model

    International Nuclear Information System (INIS)

    Hamza, A.; Jan, T.; Ali, A.

    2016-01-01

    In this paper a blind estimation approach is proposed which directly utilizes the reverberant signal for estimating the RT (Reverberation Time). For estimation a very well-known method is used; MLE (Maximum Likelihood Estimation). Distribution of the decay rate is the core of the proposed method and can be achieved from the analysis of decay curve of the energy of the sound or from enclosure impulse response. In a pre-existing state of the art method Laplace distribution is used to model reverberation decay. The method proposed in this paper make use of the Rayleigh distribution and a spotting approach for modelling decay rate and identifying region of free decay in reverberant signal respectively. Motivation for the paper was deduced from the fact, when the reverberant speech RT falls in specific range then the signals decay rate impersonate Rayleigh distribution. On the basis of results of the experiments carried out for numerous reverberant signal it is clear that the performance and accuracy of the proposed method is better than other pre-existing methods. (author)

  12. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  13. Continuing Long Term Optical and Infrared Reverberation Mapping of 17 Sloan Digital Sky Survey Quasars

    Science.gov (United States)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling

    2018-05-01

    Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.

  14. Revisiting perceptual compensation for effects of reverberation in speech identifcation

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Dau, Torsten

    2010-01-01

    Listeners were given the task to identify the stop-consonant [t] in the test-word "stir" when the word was embedded in a carrier sentence. Reverberation was added to the test-word, but not to the carrier, and the ability to identify the [t] decreased because the amplitude modulations associated...... with the [t] were smeared. When a similar amount of reverberation was also added to the carrier sentence, the listeners' ability to identify the stop-consonant was restored. This phenomenon has in previous research been considered as evidence for an extrinsic compensation mechanism for reverberation...... an interference effect that impedes the identification of the stop-consonant. These findings raise doubts about the existence of the compensation mechanism....

  15. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    Energy Technology Data Exchange (ETDEWEB)

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  16. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  17. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    DEFF Research Database (Denmark)

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  18. Multi-time-scale X-ray reverberation mapping of accreting black holes

    Science.gov (United States)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  19. Perception of Reverberation in Small Rooms

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Jensen, Søren Holdt

    summarises the current literature following a top-down approach. It identifies the perceptual aspects of reverberation and attempts to establish links to physical measures, focussing on small rooms. Results indicate that the current acoustical metrics often have limited correlation to the perceptual...

  20. Investigation on acceptable reverberation time at various frequency bands in halls that present amplified music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Jeong, Cheol-Ho; Støfringsdal, Bård

    2018-01-01

    Subjective ratings from 25 professional musicians and sound engineers were obtained to assess two Danish rock venues of similar size and similar low frequency reverberation times, but different high frequency reverberation times. The musicians judged one hall significantly better than the other......, confirming a hypothesis that rock venues can have a longer reverberation time at mid to high frequencies at least in the empty condition. A fairly long reverberation time in the 63 Hz octave band is found to be acceptable, so the 125 Hz octave band is probably the single most important band to control...... for amplified music....

  1. Anomalous correlation between hadrons and electromagnetic particles in hadron and gamma-ray families

    International Nuclear Information System (INIS)

    Tamada, Masanobu; Funayama, Yoshimi

    1986-01-01

    Correlations in relative (energy-weighted) distance between hadrons and electromagnetic particles are studied in the families observed in Chacaltaya emulsion chamber experiment. It is found that the observed number of hadrons which accompany electromagnetic in very close vicinity, say -5 , and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade. The results are also compared with those of Japan-USSR joint chamber exposed at Pamir observatory. (author)

  2. Reverberation Mapping Results from MDM Observatory

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, B. M.; Pogge, R. W.

    2010-01-01

    Reverberation mapping takes advantage of the presence of a time delay or lag, t, between continuum and emission line flux variations observed through spectroscopic monitoring campaigns to infer the radius of the broad-line region (BLR) and, subsequently, the central black hole mass in type 1 AGNs...

  3. Reverberation Mapping Results from MDM Observatory

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, B. M.; Pogge, R. W.

    2009-01-01

    We present results from a multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from around the world. We measure broad line region (BLR) radii and black hole masses for six objects. A velocity-resolved analysis of the H_beta response show...

  4. High second-language proficiency protects against the effects of reverberation on listening comprehension.

    Science.gov (United States)

    Sörqvist, Patrik; Hurtig, Anders; Ljung, Robert; Rönnberg, Jerker

    2014-04-01

    The purpose of this experiment was to investigate whether classroom reverberation influences second-language (L2) listening comprehension. Moreover, we investigated whether individual differences in baseline L2 proficiency and in working memory capacity (WMC) modulate the effect of reverberation time on L2 listening comprehension. The results showed that L2 listening comprehension decreased as reverberation time increased. Participants with higher baseline L2 proficiency were less susceptible to this effect. WMC was also related to the effect of reverberation (although just barely significant), but the effect of WMC was eliminated when baseline L2 proficiency was statistically controlled. Taken together, the results suggest that top-down cognitive capabilities support listening in adverse conditions. Potential implications for the Swedish national tests in English are discussed. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  5. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    Science.gov (United States)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  6. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    Science.gov (United States)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  7. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  8. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  9. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    Science.gov (United States)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  10. Effect of direction on loudness for wideband and reverberant sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    The effect of incidence angle on loudness was investigated for wideband and reverberant sounds. In an adaptive procedure, five listeners matched the loudness of a sound coming from five incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were...... presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation....

  11. Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to Aircraft Navigation Radios

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Salud, M. Theresa

    2002-01-01

    To address the concern for cellular phone electromagnetic interference (EMI) to aircraft radios, a radiated emission measurement process for CDMA (IS-95) and GSM (ETSI GSM 11.22) wireless handsets was developed. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective isotropic radiated power. Eight representative handsets (4 GSM, 4 CDMA) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation for cellular/PCS phones, Bluetooth, IEEE802.11b, IEEE802.11a, FRS/GMRS radios, and other portable transmitters. Aircraft interference path loss (IPL) and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using this data, a preliminary risk assessment is provided for CDMA and GSM wireless phone interference to aircraft localizer, Glideslope, VOR, and GPS radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, IPL, and navigation radio interference thresholds needs to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  12. Acoustical monitoring of diesel engines in reverberant environment; Methodes de surveillance acoustique des diesels en milieu reverberant

    Energy Technology Data Exchange (ETDEWEB)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs.

  13. The role of reverberation-related binaural cues in the externalization of speech

    DEFF Research Database (Denmark)

    Catic, Jasmina; Santurette, Sébastien; Dau, Torsten

    2015-01-01

    The perception of externalization of speech sounds was investigated with respect to the monaural and binaural cues available at the listeners’ ears in a reverberant environment. Individualized binaural room impulse responses (BRIRs) were used to simulate externalized sound sources via headphones....... The measured BRIRs were subsequently modified such that the proportion of the response containing binaural vs monaural information was varied. Normal-hearing listeners were presented with speech sounds convolved with such modified BRIRs. Monaural reverberation cues were found to be sufficient...

  14. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  15. Preference of reverberation time for musicians and audience of the Javanese traditional gamelan music

    Science.gov (United States)

    Suyatno; Tjokronegoro, H. A.; Merthayasa, I. G. N.; Supanggah, R.

    2016-11-01

    This paper presents results of an investigation of room acoustic parameters those are appropriated particularly to perform a Javanese gamelan. The acoustic parameters were obtained by analysing simulated sounds of performance. Those simulated sounds were obtained by sound convolution technique of a dry sound signal of Javanese gamelan performance with impulse responses rooms whose appropriated reverberation time. The reverberation time were varied between 1.0s to 1.8s, those belong to the characteristic of Pendopo Mangkunegaran Surakarta. In this case, Pendopo Mangkunegaran is assumed as one of the most suitable concert halls for Javanese gamelan performance. To obtain the acoustic parameters, we used a psycho-acoustics measurement based on paired comparison test that having different of acoustic parameters to determine the most comfortable one to majority of respondents. The respondents who have participated in this research composed of a group of professional musicians of Javanese gamelan and groups of audience who are not musician, nevertheless part of them were familiar with Javanese gamelan music. The comparison test gave results and showed majority of respondents of group of musicians had a notion sound reverberation time of 1.2s was most comfortable. This corresponds to +6.2dB, clarity and 74% definition. It means the appropriate acoustic condition allows musicians to recognize and distinguish clearly sound of each instrument being played. Meanwhile, group of audience had a notion reverberation time in a range of 1.2s - 1.6s was most comfortable. This range of reverberation time corresponds to +4dB to +6.2dB of clarity, and 66% to 74% of definition.

  16. Development of sound absorption measuring system with acoustic chamber; Kogata kyuon koka sokutei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, M.; Noba, M. [Toyota Motor Corp., Aichi (Japan); Matsuoka, H. [Nippon Soken, Inc., Tokyo (Japan)

    1998-05-01

    In order to measure sound absorption performance necessary to develop sound absorption materials, development was made on a device consisting of a small sound box capable of measurement inexpensively and easily, as a measure against the reverberation chamber method. In order to obtain stabilized diffusion sound internally, the sound box has a shape of asymmetric seven-side body in which sides do not face squarely with each other. The box was so sized that a large number of resonant vibration postures can be constituted at the targeted frequency simultaneously in the box. The box has a commercially available cone speaker with good acoustic output characteristics in frequency range of higher than 500 Hz installed on an inner side of the box. The sound source uses a method to derive sound absorption rate from difference of sound pressure levels. In order to eliminate need of averaging treatment by using a multi-point measurement inside the box, a discussion was given to provide an opening on part of the box to place the sound receiving point outside the opening. A square test piece is placed on the floor 0.5 meter or more away from the speaker in the box. As a result of the experiment, it was verified that the sound absorption rate obtained by this device corresponds well with that by the reverberation chamber method. The size of the test piece was also found adequate. 2 refs., 11 figs., 1 tab.

  17. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging periodicity-tagged segregation of competing speech in rooms

    Directory of Open Access Journals (Sweden)

    Mark eSayles

    2015-01-01

    Full Text Available The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once, in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation. Brainstem circuits help segregate these complex acoustic mixtures into auditory objects. Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0 modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous.We examine the ability of 129 single units in the ventral cochlear nucleus of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels’ spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels’ spectral energy into two streams (corresponding to the two vowels, on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging

  18. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  19. Evaluation of a reverberation enhancement system installed in a small multi purpose hall

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1997-01-01

    After design and installation of a reverberation enhancement system in new 400 seat multi purpose hall in Vejle, Denmark. room acoustic measurements and listening tests were performed in order to reveal the objective and subjective performance and limits of such a powerful tool for altering ''room...... acoustic'' properties. The compromises in realistic choice of acoustic parameters for the different settings of the system are described with reference to the natural acoustics and functional needs of the hall in question. Although the enhancement system is capable of increasing the reverberation time...

  20. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  1. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  2. The role of reverberation-related binaural cues in the externalization of speech.

    Science.gov (United States)

    Catic, Jasmina; Santurette, Sébastien; Dau, Torsten

    2015-08-01

    The perception of externalization of speech sounds was investigated with respect to the monaural and binaural cues available at the listeners' ears in a reverberant environment. Individualized binaural room impulse responses (BRIRs) were used to simulate externalized sound sources via headphones. The measured BRIRs were subsequently modified such that the proportion of the response containing binaural vs monaural information was varied. Normal-hearing listeners were presented with speech sounds convolved with such modified BRIRs. Monaural reverberation cues were found to be sufficient for the externalization of a lateral sound source. In contrast, for a frontal source, an increased amount of binaural cues from reflections was required in order to obtain well externalized sound images. It was demonstrated that the interaction between the interaural cues of the direct sound and the reverberation strongly affects the perception of externalization. An analysis of the short-term binaural cues showed that the amount of fluctuations of the binaural cues corresponded well to the externalization ratings obtained in the listening tests. The results further suggested that the precedence effect is involved in the auditory processing of the dynamic binaural cues that are utilized for externalization perception.

  3. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...... are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands....

  4. Neural Segregation of Concurrent Speech: Effects of Background Noise and Reverberation on Auditory Scene Analysis in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M

    2016-01-01

    Concurrent complex sounds (e.g., two voices speaking at once) are perceptually disentangled into separate "auditory objects". This neural processing often occurs in the presence of acoustic-signal distortions from noise and reverberation (e.g., in a busy restaurant). A difference in periodicity between sounds is a strong segregation cue under quiet, anechoic conditions. However, noise and reverberation exert differential effects on speech intelligibility under "cocktail-party" listening conditions. Previous neurophysiological studies have concentrated on understanding auditory scene analysis under ideal listening conditions. Here, we examine the effects of noise and reverberation on periodicity-based neural segregation of concurrent vowels /a/ and /i/, in the responses of single units in the guinea-pig ventral cochlear nucleus (VCN): the first processing station of the auditory brain stem. In line with human psychoacoustic data, we find reverberation significantly impairs segregation when vowels have an intonated pitch contour, but not when they are spoken on a monotone. In contrast, noise impairs segregation independent of intonation pattern. These results are informative for models of speech processing under ecologically valid listening conditions, where noise and reverberation abound.

  5. A REVERBERATION-BASED BLACK HOLE MASS FOR MCG-06-30-15

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Crenshaw, D. Michael; Ou-Yang, Benjamin; Cackett, Edward M.; Horne, Keith; Street, Rachel

    2016-01-01

    We present the results of a reverberation campaign targeting MGC-06-30-15. Spectrophotometric monitoring and broad-band photometric monitoring over the course of four months in spring 2012 allowed a determination of a time delay in the broad H β emission line of τ = 5.3 ± 1.8 days in the rest frame of the active galactic nucleus (AGN). Combined with the width of the variable portion of the emission line, we determine a black hole mass of M BH = (1.6 ± 0.4) × 10 6 M ⊙ . Both the H β time delay and the black hole mass are in good agreement with expectations from the R BLR – L and M BH – σ ⋆ relationships for other reverberation-mapped AGNs. The H β time delay is also in good agreement with the relationship between H β and broad-band near-IR delays, in which the effective size of the broad-line region is ∼4–5 times smaller than the inner edge of the dust torus. Additionally, the reverberation-based mass is in good agreement with estimates from the scaling relationship of the break in the X-ray power spectral density, and with constraints based on stellar kinematics derived from integral field spectroscopy of the inner ∼0.5 kpc of the galaxy.

  6. A REVERBERATION-BASED BLACK HOLE MASS FOR MCG-06-30-15

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C.; Crenshaw, D. Michael; Ou-Yang, Benjamin [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Street, Rachel, E-mail: bentz@astro.gsu.edu [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Drive, Goleta, CA 93117 (United States)

    2016-10-20

    We present the results of a reverberation campaign targeting MGC-06-30-15. Spectrophotometric monitoring and broad-band photometric monitoring over the course of four months in spring 2012 allowed a determination of a time delay in the broad H β emission line of τ = 5.3 ± 1.8 days in the rest frame of the active galactic nucleus (AGN). Combined with the width of the variable portion of the emission line, we determine a black hole mass of M {sub BH} = (1.6 ± 0.4) × 10{sup 6} M {sub ⊙}. Both the H β time delay and the black hole mass are in good agreement with expectations from the R {sub BLR}– L and M {sub BH}– σ {sub ⋆} relationships for other reverberation-mapped AGNs. The H β time delay is also in good agreement with the relationship between H β and broad-band near-IR delays, in which the effective size of the broad-line region is ∼4–5 times smaller than the inner edge of the dust torus. Additionally, the reverberation-based mass is in good agreement with estimates from the scaling relationship of the break in the X-ray power spectral density, and with constraints based on stellar kinematics derived from integral field spectroscopy of the inner ∼0.5 kpc of the galaxy.

  7. THE LICK AGN MONITORING PROJECT: THE M BH-σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle L.; Bentz, Misty C.; Wright, Shelley A.; Filippenko, Alexei V.; Li, Weidong; Martini, Paul; Canalizo, Gabriela; Gates, Elinor; Greene, Jenny; Malkan, Matthew A.; Stern, Daniel; Minezaki, Takeo

    2010-01-01

    To investigate the black hole mass versus stellar velocity dispersion (M BH -σ * ) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 10 6 BH /M sun 9 . We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the M BH -σ * relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σ int = 0.43 ± 0.08 dex in the relation log(M BH /M sun ) = α + β log(σ * /200 km s -1 ), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the M BH -σ * relation of quiescent galaxies; using the quiescent M BH -σ * relation determined by Gueltekin et al., we find log f = 0.72 +0.09 -0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the

  8. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Brown, Jonathan S.; Coker, C. T. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Grier, C. J.; Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Rosa, G. De [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Adams, S. M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Barth, A. J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bhattacharjee, A.; Brotherton, M. S. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University Avenue, Laramie, WY (United States); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 298409 (Russian Federation); Boroson, T. A. [Las Cumbres Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bottorff, M. C. [Fountainwood Observatory, Department of Physics FJS 149, Southwestern University, 1011 E. University Avenue, Georgetown, TX 78626 (United States); Brown, Jacob E. [Department of Physics and Astronomy, University of Missouri, Columbia (United States); Crawford, S. M. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  9. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    International Nuclear Information System (INIS)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Brown, Jonathan S.; Coker, C. T.; Grier, C. J.; Beatty, Thomas G.; Bentz, M. C.; Rosa, G. De; Adams, S. M.; Barth, A. J.; Bhattacharjee, A.; Brotherton, M. S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Crawford, S. M.

    2017-01-01

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  10. Usage of measured reverberation tail in a binaural room impulse response synthesis

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Madsen, Esben

    2011-01-01

    The aim of the modern communication technologies is an immersive experience. One of the applications that should provide the feeling of being together and sharing the same environment during the communication process is BEAMING. The goal of this paper is to improve audible spatial impression...... density of reflections. That can lead to metallic and unnatural sound. Also, room-specific sound envelopment feeling is lost. This paper investigates the possibility of using measured reverberation tail instead of the modeled one in BRIRs synthesis. Three cases are observed. In the first one, BRIRs...... case and measured late reverberation from the first one. All three cases are evaluated and compared objectively based on the obtained room acoustic parameters as well as subjectively by listening tests....

  11. New theory on the reverberation of rooms. [considering sound wave travel time

    Science.gov (United States)

    Pujolle, J.

    1974-01-01

    The inadequacy of the various theories which have been proposed for finding the reverberation time of rooms can be explained by an attempt to examine what might occur at a listening point when image sources of determined acoustic power are added to the actual source. The number and locations of the image sources are stipulated. The intensity of sound at the listening point can be calculated by means of approximations whose conditions for validity are given. This leads to the proposal of a new expression for the reverberation time, yielding results which fall between those obtained through use of the Eyring and Millington formulae; these results are made to depend on the shape of the room by means of a new definition of the mean free path.

  12. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  13. Parallel Plate Chambers and their possible use in LHC experiments

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; D'Alessandro, R.; Dajko, G.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Maggi, F.; Malinin, A.; Martinez-Laso, L.; Meschini, M.; Molnar, J.; Pojidaev, V.; Szoncso, F.; Wulz, C.E.

    1995-01-01

    Present status of Parallel Plate Chambers (PPC) is reviewed. After a description of this detector, results from tests concerning PPC efficiency uniformity, radiation hardness, and behaviour in electromagnetic calorimetry are presented. Some possible utilizations in LHC experiments are mentioned. (orig.)

  14. The ensemble variance of pure-tone measurements in reverberation rooms

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Reverberation rooms are often used for measuring the sound power emitted by sources of sound. At medium and high frequencies, where the modal overlap is high, a fairly simple model based on sums of waves from random directions having random phase relations gives good predictions of the ensemble s...

  15. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners.

    Science.gov (United States)

    Ruggles, Dorea; Shinn-Cunningham, Barbara

    2011-06-01

    Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.

  16. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  17. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  18. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation

  19. Decay of reverberant sound in a spherical enclosure

    International Nuclear Information System (INIS)

    Carroll, M.M.; Chien, C.F.

    1977-01-01

    The assumption of diffuse reflection (Lambert's Law) leads to integral equations for the wall intensity in a reverberant sound field in the steady state and during decay. The latter equation, in the special case of a spherical enclosure with uniformly absorbent walls and uniform wall intensity, allows exponential decay with a decay time which agrees closely with the Norris--Eyring prediction. The sound-intensity and sound-energy density in the medium, during decay, are also calculated

  20. Ensemble statistics of active and reactive sound intensity in reverberation rooms

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodrıguez

    2011-01-01

    This paper examines fundamental statistical properties of the active and reactive sound intensity in reverberant enclosures driven with pure tones. The existing theory for sound intensity in a diffuse sound field, which is based on Waterhouse’s random wave model and therefore limited to the region...

  1. REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Comins, M. L.; Dietrich, M.; Eastman, J. D.; Adair, A.; Au-Yong, K.; Chisholm, E.; Ewald, S.; Ferbey, S.; Jackson, K.; Brokofsky, D. J.; Gaskell, C. M.; Hedrick, C. H.; Doroshenko, V. T.; Efimov, Y. S.

    2010-01-01

    We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.

  2. Effects of virtual speaker density and room reverberation on spatiotemporal thresholds of audio-visual motion coherence.

    Directory of Open Access Journals (Sweden)

    Narayan Sankaran

    Full Text Available The present study examined the effects of spatial sound-source density and reverberation on the spatiotemporal window for audio-visual motion coherence. Three different acoustic stimuli were generated in Virtual Auditory Space: two acoustically "dry" stimuli via the measurement of anechoic head-related impulse responses recorded at either 1° or 5° spatial intervals (Experiment 1, and a reverberant stimulus rendered from binaural room impulse responses recorded at 5° intervals in situ in order to capture reverberant acoustics in addition to head-related cues (Experiment 2. A moving visual stimulus with invariant localization cues was generated by sequentially activating LED's along the same radial path as the virtual auditory motion. Stimuli were presented at 25°/s, 50°/s and 100°/s with a random spatial offset between audition and vision. In a 2AFC task, subjects made a judgment of the leading modality (auditory or visual. No significant differences were observed in the spatial threshold based on the point of subjective equivalence (PSE or the slope of psychometric functions (β across all three acoustic conditions. Additionally, both the PSE and β did not significantly differ across velocity, suggesting a fixed spatial window of audio-visual separation. Findings suggest that there was no loss in spatial information accompanying the reduction in spatial cues and reverberation levels tested, and establish a perceptual measure for assessing the veracity of motion generated from discrete locations and in echoic environments.

  3. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, C. Alenka [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Dultzin, Deborah [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (Mexico); Marziani, Paola [INAF, Astronomical Observatory of Padova, I-35122 Padova (Italy); Sulentic, Jack W., E-mail: cnegrete@inaoep.mx, E-mail: deborah@astro.unam.mx, E-mail: paola.marziani@oapd.inaf.it, E-mail: sulentic@iaa.es [Instituto de Astrofisica de Andalucia, E-18008 Granada (Spain)

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  4. Thin-gap gas chambers for hadronic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mikenberg, G

    1988-03-01

    A new type of thin multiwire gas detector operating in a high gain mode has been developed. Its characteristics have been optimized for calorimetric use. The setup for mass production, quality control and calibration for the OPAL Pole Tip Calorimeter Chambers is presented as an application of such a device. Other possible applications as an electromagnetic presampler as well as its use in a high resolution calorimeter are also discussed.

  5. Multiwire proportional counter (lecture by an electromagnetic delay line)

    International Nuclear Information System (INIS)

    Bruere-Dawson, R.

    1989-01-01

    For track localisation of ionizing particles with multiwire proportional chamber, an electronic chain including amplifying, shaping and memorizing circuits is required for each wire. In order to lower the cost of this type of detector, an electromagnetic delay line is proposed among various possibilities. In this paper, different coupling modes between chamber and delay line are studied with their respective advantages. The realization of one meter long delay line with a unit delay time of 15 ns per cm is also presented [fr

  6. DOA Estimation of Audio Sources in Reverberant Environments

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Nielsen, Jesper Kjær; Heusdens, Richard

    2016-01-01

    Reverberation is well-known to have a detrimental impact on many localization methods for audio sources. We address this problem by imposing a model for the early reflections as well as a model for the audio source itself. Using these models, we propose two iterative localization methods...... that estimate the direction-of-arrival (DOA) of both the direct path of the audio source and the early reflections. In these methods, the contribution of the early reflections is essentially subtracted from the signal observations before localization of the direct path component, which may reduce the estimation...

  7. High-resolution ion pulse ionization chamber with air filling for the {sup 222}Rn decays detection

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu.M.; Gangapshev, A.M.; Gezhaev, A.M.; Etezov, R.A.; Kazalov, V.V.; Kuzminov, V.V. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation); Panasenko, S.I. [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Ratkevich, S.S., E-mail: ssratk@gmail.com [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Tekueva, D.A.; Yakimenko, S.P. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation)

    2015-11-21

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the {sup 222}Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented. - Highlights: • The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. • The chamber is intended to register alpha-particles from {sup 222}Rn and its daughter's decays in the filled air sample. • The detector is less sensitive to electromagnetic pick-ups and mechanical noises. • An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure have been investigated and the results are presented.

  8. The effects of reverberant self- and overlap-masking on speech recognition in cochlear implant listeners.

    Science.gov (United States)

    Desmond, Jill M; Collins, Leslie M; Throckmorton, Chandra S

    2014-06-01

    Many cochlear implant (CI) listeners experience decreased speech recognition in reverberant environments [Kokkinakis et al., J. Acoust. Soc. Am. 129(5), 3221-3232 (2011)], which may be caused by a combination of self- and overlap-masking [Bolt and MacDonald, J. Acoust. Soc. Am. 21(6), 577-580 (1949)]. Determining the extent to which these effects decrease speech recognition for CI listeners may influence reverberation mitigation algorithms. This study compared speech recognition with ideal self-masking mitigation, with ideal overlap-masking mitigation, and with no mitigation. Under these conditions, mitigating either self- or overlap-masking resulted in significant improvements in speech recognition for both normal hearing subjects utilizing an acoustic model and for CI listeners using their own devices.

  9. Are communication activities shaped by environmental constraints in reverberating and absorbing forest habitats?

    DEFF Research Database (Denmark)

    Mathevon, Nicolas; Aubin, Thierry; Dabelsteen, Torben

    2004-01-01

    In the dense vegetation of temperate or tropical forests, communication processes are constrained by propagation-induced modifications of the transmitted sounds. The presence of leaves, trunks and branches induces important sound reverberation and absorption leading to diminution of the signal en...

  10. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  11. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    International Nuclear Information System (INIS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Fumagalli, Michele; Gates, Elinor L.; Gerke, Brian F.

    2011-01-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86 +0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σ line = 1590 ± 47 km s -1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00 +0.19 -0.24 x 10 7 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  12. SWIFT/UVOT GRISM MONITORING OF NGC 5548 IN 2013: AN ATTEMPT AT Mg ii REVERBERATION MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Cackett, E. M.; Troyer, J. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Gültekin, K. [Department of Astronomy, University of Michigan, 1085 S. University Ave, Ann Arbor, MI 48109 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Fausnaugh, M. M.; Peterson, B. M. [Department of Astronomy, The Ohio State University, 140 West 18th Ave, Columbus, OH 43210 (United States); Vestergaard, M., E-mail: ecackett@wayne.edu [Dark Cosmology Centre, The Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark)

    2015-09-10

    Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of active galactic nuclei (AGNs). While the radius–luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the Hβ line in nearby AGNs, the scaling relations are often extended to use other broad emission lines, such as Mg ii, in order to get black hole masses at higher redshifts when Hβ is redshifted out of the optical waveband. However, there is no radius–luminosity relation determined directly from Mg ii. Here, we present an attempt to perform reverberation mapping using Mg ii in the well-studied nearby Seyfert 1 NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from 2013 April to September. Concurrent photometric UV monitoring with Swift provides a well determined continuum light curve that shows strong variability. The Mg ii emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using Mg ii scaling relations to estimate high-redshift black hole masses.

  13. Localizing Submarine Earthquakes by Listening to the Water Reverberations

    Science.gov (United States)

    Castillo, J.; Zhan, Z.; Wu, W.

    2017-12-01

    Mid-Ocean Ridge (MOR) earthquakes generally occur far from any land based station and are of moderate magnitude, making it complicated to detect and in most cases, locate accurately. This limits our understanding of how MOR normal and transform faults move and the manner in which they slip. Different from continental events, seismic records from earthquakes occurring beneath the ocean floor show complex reverberations caused by P-wave energy trapped in the water column that are highly dependent of the source location and the efficiency to which energy propagated to the near-source surface. These later arrivals are commonly considered to be only a nuisance as they might sometimes interfere with the primary arrivals. However, in this study, we take advantage of the wavefield's high sensitivity to small changes in the seafloor topography and the present-day availability of worldwide multi-beam bathymetry to relocate submarine earthquakes by modeling these water column reverberations in teleseismic signals. Using a three-dimensional hybrid method for modeling body wave arrivals, we demonstrate that an accurate hypocentral location of a submarine earthquake (<5 km) can be achieved if the structural complexities near the source region are appropriately accounted for. This presents a novel way of studying earthquake source properties and will serve as a means to explore the influence of physical fault structure on the seismic behavior of transform faults.

  14. Accelerated search of gamma-quantum families in a X-ray emulsion chamber

    International Nuclear Information System (INIS)

    Takibaev, Zh.S.; Bajgubekov, A.S.; Sadykov, T.Kh.

    1977-01-01

    The criteria are derived allowing to considerably accelerate the process of detecting the pure gamma-quantum families. The suitable criterion is the apparent size of the distribution of black spots due to electromagnetic cascades inside a circle of specific radius. The results of assaying 27 gamma-families with energies above 3 TeV generated in a target above the chamber are presented. The method of search for the target families suggested in this paper allows to cut four-fold the roentgen-emulsion cloud chamber treatment time

  15. When to Perform Antenna Measurements in a Near-Field Range or a Short Tapered Chamber

    Science.gov (United States)

    2017-03-01

    results for future antennas under test in the most cost-effective manner (man-hours, custom mount, etc.) 15. SUBJECT TERMS electromagnetic, chamber...to obtain the results for future antennas under test (AUTs) in the most cost-effective manner (man-hours, custom mounting, etc.). The NFR and...the most cost-effective manner to obtain AUT data be established for either the NFR or tapered anechoic chamber. The NFR can obtain planar

  16. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    International Nuclear Information System (INIS)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-01-01

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws

  17. Reverberation time influences musical enjoyment with cochlear implants.

    Science.gov (United States)

    Certo, Michael V; Kohlberg, Gavriel D; Chari, Divya A; Mancuso, Dean M; Lalwani, Anil K

    2015-02-01

    To identify factors that enhance the enjoyment of music in cochlear implant (CI) recipients. Specifically, we assessed the hypothesis that variations in reverberation time (RT60) may be linked to variations in the level of musical enjoyment in CI users. Prospective analysis of music enjoyment in normal-hearing individuals. Single tertiary academic medical center. Normal-hearing adults (N = 20) were asked to rate a novel 20-second melody on three enjoyment modalities: musicality, pleasantness, and naturalness. Subjective rating of music excerpts. Participants listened to seven different instruments play the melody, each with five levels (0.2, 1.6, 3.0, 5.0, 10.0 s) of RT60, both with and without CI simulation processing. Linear regression analysis with analysis of variance was used to assess the impact of RT60 on music enjoyment. Without CI simulation, music samples with RT60 = 3.0 seconds were ranked most pleasant and most musical, whereas those with RT60 = 1.6 seconds and RT60 = 3.0 seconds were ranked equally most natural (all p < 0.05). With CI simulation, music samples with RT60 = 0.2 seconds were ranked most pleasant, most musical, and most natural (all p < 0.05). Samples without CI simulation show a preference for middle-range RT60, whereas samples with CI simulation show a negative linear relationship between RT60 and musical enjoyment, with preference for minimal reverberation. Minimization of RT60 may be a useful strategy for increasing musical enjoyment under CI conditions, both in altering existing music as well as in composition of new music.

  18. Reverberation index: a novel metric by which to quantify the impact of a scientific entity on a given field.

    Science.gov (United States)

    Kathleen Bandt, S; Dacey, Ralph G

    2017-09-01

    The authors propose a novel bibilometric index, the reverberation index (r-index), as a comparative assessment tool for use in determining differential reverberation between scientific fields for a given scientific entity. Conversely, this may allow comparison of 2 similar scientific entities within a single scientific field. This index is calculated using a relatively simple 3-step process. Briefly, Thompson Reuters' Web of Science is used to produce a citation report for a unique search parameter (this may be an author, journal article, or topical key word). From this citation report, a list of citing journals is retrieved from which a weighted ratio of citation patterns across journals can be calculated. This r-index is then used to compare the reverberation of the original search parameter across different fields of study or wherever a comparison is required. The advantage of this novel tool is its ability to transcend a specific component of the scientific process. This affords application to a diverse range of entities, including an author, a journal article, or a topical key word, for effective comparison of that entity's reverberation within a scientific arena. The authors introduce the context for and applications of the r-index, emphasizing neurosurgical topics and journals for illustration purposes. It should be kept in mind, however, that the r-index is readily applicable across all fields of study.

  19. PyCCF: Python Cross Correlation Function for reverberation mapping studies

    Science.gov (United States)

    Sun, Mouyuan; Grier, C. J.; Peterson, B. M.

    2018-05-01

    PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.

  20. Computer model of a reverberant and parallel circuit coupling

    Science.gov (United States)

    Kalil, Camila de Andrade; de Castro, Maria Clícia Stelling; Cortez, Célia Martins

    2017-11-01

    The objective of the present study was to deepen the knowledge about the functioning of the neural circuits by implementing a signal transmission model using the Graph Theory in a small network of neurons composed of an interconnected reverberant and parallel circuit, in order to investigate the processing of the signals in each of them and the effects on the output of the network. For this, a program was developed in C language and simulations were done using neurophysiological data obtained in the literature.

  1. Prototype development or multi-cavity ion chamber for depth dose measurement

    International Nuclear Information System (INIS)

    Nayak, M.K.; Sahu, T.K.; Haridas, G.; Bandyopadhyay, Tapas; Tripathi, R.M.; Nandedkar, R.V.

    2016-01-01

    In high energy electron accelerators, when the electrons interact with vacuum chamber or surrounding structural material, Bremsstrahlung x-rays are produced. It is having a broad spectrum extending up to the electron energies. Dose measured as a function of depth due to electromagnetic cascade will give rise to depth dose curve. To measure the online depth dose profile in an absorber medium, when high energy electron or Bremsstrahlung is incident, a prototype Multi-Cavity Ion Chamber (MCIC) detector is developed. The paper describes the design and development of the MCIC for measurement of depth dose profile

  2. Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide

    Science.gov (United States)

    to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.

  3. Blinded Comparison between an In-Air Reverberation Method and an Electronic Probe Tester in the Detection of Ultrasound Probe Faults.

    Science.gov (United States)

    Dudley, Nicholas J; Woolley, Darren J

    2017-12-01

    The aim of this study was to perform a blinded trial, comparing the results of a visual inspection of the in-air reverberation pattern with the results of an electronic probe tester in detecting ultrasound probe faults. Sixty-two probes were tested. A total of 28 faults were found, 3 only by in-air reverberation assessment and 2 only by the electronic probe tester. The electronic probe tester provided additional information regarding the location of the fault in 74% of the cases in which both methods detected a fault. It is possible to detect the majority of probe faults by visual inspection and in-air reverberation assessment. The latter provides an excellent first-line test, easily performed on a daily basis by equipment users. An electronic probe tester is required if detailed evaluation of faults is necessary. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. All rights reserved.

  4. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    Science.gov (United States)

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  5. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    Energy Technology Data Exchange (ETDEWEB)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu [Universite de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  6. A Test Model in a RF Anechoic Chamber for the Application of Wi-Fi Communication in Korean Operating NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sik; Kim, Min Seok; Ryu, Ho Sun; Ye, Song Hae; Lee, Gwang Dae [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The objective of this study is to make a test model and confirm its effectiveness in a radio frequency (RF) anechoic chamber before conducting a field test in Korean operating NPPs for use of Wi-Fi communication technology. This paper is focused on electromagnetic/radio-frequency interference (EMI/RFI) issue and discusses a methodology and its test result for overcoming that issue. Whenever wireless communication is performed between an access point (AP) and a smart phone, EMI/RFI problem always happens around those devices. It is necessary to decide how many wireless devices local workers will use and select what facilities and systems to protect from EMI/RFI, which are so-called EMI/RFI sensitive equipment. The number of wireless devices was decided as many as possible in the area where those devices could be used, and some sensitive equipment that shall not malfunction under electromagnetic environment were chosen. The test bed which considered above mentioned conditions was constructed and an experiment was carried out inside a radio-frequency anechoic chamber. Comparing with the allowable operating envelopes for electromagnetic level from RG-1.180, each maximum level of the test results acquired from a RF anechoic chamber is not over the limit even in case of considering the maximum local workers' usage. This result shows that it is highly likely that Wi-Fi communication can be used without any problem if sensitive equipment has observed the electromagnetic susceptibility limit of RG-1.180.

  7. Plasma Chamber Design and Fabrication Activities

    Science.gov (United States)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  8. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    Science.gov (United States)

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  9. A machine-hearing system exploiting head movements for binaural sound localisation in reverberant conditions

    DEFF Research Database (Denmark)

    May, Tobias; Ma, Ning; Wierstorf, Hagen

    2015-01-01

    This paper is concerned with machine localisation of multiple active speech sources in reverberant environments using two (binaural) microphones. Such conditions typically present a problem for ‘classical’ binaural models. Inspired by the human ability to utilise head movements, the current study...

  10. Plaatsafhankelijkheid van timbre bij nagalm (Place dependence of timbre in reverberant sound fields)

    NARCIS (Netherlands)

    Plomp, R.; Steeneken, H.J.M.

    1973-01-01

    The sound-pressure level of a simple tone in a diffuse sound field varies from point to point with a theoretical standard deviation of 5.57 dB. This variability affects the timbre of complex tones in reverberant sound fields, Experiments have shown that the timbre dissimilarity at any two positions

  11. Do wavelet filters provide more accurate estimates of reverberation times at low frequencies

    DEFF Research Database (Denmark)

    Sobreira Seoane, Manuel A.; Pérez Cabo, David; Agerkvist, Finn T.

    2016-01-01

    It has been amply demonstrated in the literature that it is not possible to measure acoustic decays without significant errors for low BT values (narrow filters and or low reverberation times). Recently, it has been shown how the main source of distortion in the time envelope of the acoustic deca...

  12. Positron imaging with multiwire proportional chamber-gamma converter hybrid detectors

    International Nuclear Information System (INIS)

    Chu, D.Y.H.

    1976-09-01

    A large area positron camera was developed using multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout. Honeycomb structured gamma converters made of lead are coupled to the chambers for efficient gamma detection and good spatial resolution. Two opposing detectors, each having a sensitive area of 48 cm x 48 cm, are operated in coincidence for the detection of annihilation gammas (511 keV) from positron emitters. Detection efficiency of 4.2 percent per detector and spatial resolution of 6 to 7 mm FWHM at the mid-plane were achieved. The present camera operates at a maximum count rate of 24 K counts/min, limited by accidental coincidence. The theory for the gamma converter is presented along with a review of the operation of the multiwire proportional chamber and delay line readout. Calculated gamma converter efficiencies are compared with the measured results using a prototype test chamber. The characteristics of the positron camera system is evaluated, and the performance is shown to be consistent with calculation

  13. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    Science.gov (United States)

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  14. DISCOVERY OF Fe Kα X-RAY REVERBERATION AROUND THE BLACK HOLES IN MCG-5-23-16 AND NGC 7314

    International Nuclear Information System (INIS)

    Zoghbi, A.; Reynolds, C.; Cackett, E. M.; Miniutti, G.; Kara, E.; Fabian, A. C.

    2013-01-01

    Several X-ray observations have recently revealed the presence of reverberation time delays between spectral components in active galactic nuclei. Most of the observed lags are between the power-law Comptonization component, seen directly, and the soft excess produced by reflection in the vicinity of the black hole. NGC 4151 was the first object to show these lags in the iron K band. Here, we report the discovery of reverberation lags in the Fe K band in two other sources: MCG-5-23-16 and NGC 7314. In both objects, the 6-7 keV band, where the Fe Kα line peaks, lags the bands at lower and higher energies with a time delay of ∼1 ks. These lags are unlikely to be due to the narrow Fe Kα line. They are fully consistent with reverberation of the relativistically broadened iron Kα line. The measured lags, their time scale, and spectral modeling indicate that most of the radiation is emitted at ∼5 and 24 gravitational radii for MCG-5-23-16 and NGC 7314, respectively.

  15. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  16. Statistical analysis of the ratio of electric and magnetic fields in random fields generators

    NARCIS (Netherlands)

    Serra, R.; Nijenhuis, J.

    2013-01-01

    In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for

  17. Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness

    Energy Technology Data Exchange (ETDEWEB)

    Chelouche, Doron; Pozo-Nuñez, Francisco [Department of Physics, Faculty of Natural Sciences, University of Haifa, Haifa 3498838 (Israel); Zucker, Shay, E-mail: doron@sci.haifa.ac.il, E-mail: francisco.pozon@gmail.com, E-mail: shayz@post.tau.ac.il [Department of Geosciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-08-01

    A class of methods for measuring time delays between astronomical time series is introduced in the context of quasar reverberation mapping, which is based on measures of randomness or complexity of the data. Several distinct statistical estimators are considered that do not rely on polynomial interpolations of the light curves nor on their stochastic modeling, and do not require binning in correlation space. Methods based on von Neumann’s mean-square successive-difference estimator are found to be superior to those using other estimators. An optimized von Neumann scheme is formulated, which better handles sparsely sampled data and outperforms current implementations of discrete correlation function methods. This scheme is applied to existing reverberation data of varying quality, and consistency with previously reported time delays is found. In particular, the size–luminosity relation of the broad-line region in quasars is recovered with a scatter comparable to that obtained by other works, yet with fewer assumptions made concerning the process underlying the variability. The proposed method for time-lag determination is particularly relevant for irregularly sampled time series, and in cases where the process underlying the variability cannot be adequately modeled.

  18. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.

    2017-11-30

    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  19. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  20. Echo and reverberation in a Pekeris waveguide by convolution and by the product rule

    NARCIS (Netherlands)

    Ainslie, M.A.

    2013-01-01

    The detection performance of an active sonar depends on the intensity of the signal (target echo) relative to that of a background of reverberation plus noise. The echo is calculated for a standard test problem by convolving the time-domain impulse response at the target position with itself. The

  1. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    Science.gov (United States)

    Li, Jennifer; Shen, Yue; Horne, Keith; Brandt, W. N.; Greene, Jenny E.; Grier, C. J.; Ho, Luis C.; Kochanek, Chris; Schneider, Donald P.; Trump, Jonathan R.; Dawson, Kyle S.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena

    2017-09-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for Hα, Hβ, He II λ4686, and Mg II for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for Hα) and ˜0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, Hα, Hβ, and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, Hα shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on Hβ. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  2. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jennifer; Shen, Yue [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Horne, Keith [SUPA Physics/Astronomy, Univ. of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Brandt, W. N.; Grier, C. J.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA, 16802 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Kochanek, Chris [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Trump, Jonathan R. [Department of Physics, University of Connecticut, 2152 Hillside Road, Unit 3046, Storrs, CT 06269 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States)

    2017-09-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for H α , H β , He ii λ 4686, and Mg ii for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for H α ) and ∼0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg ii, H α , H β , and He ii. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, H α shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–luminosity relation based on H β . The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  3. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    International Nuclear Information System (INIS)

    Li, Jennifer; Shen, Yue; Horne, Keith; Brandt, W. N.; Grier, C. J.; Schneider, Donald P.; Greene, Jenny E.; Ho, Luis C.; Kochanek, Chris; Trump, Jonathan R.; Dawson, Kyle S.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena

    2017-01-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for H α , H β , He ii λ 4686, and Mg ii for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for H α ) and ∼0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg ii, H α , H β , and He ii. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, H α shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–luminosity relation based on H β . The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  4. DISCOVERY OF Fe K{alpha} X-RAY REVERBERATION AROUND THE BLACK HOLES IN MCG-5-23-16 AND NGC 7314

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, A.; Reynolds, C. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Miniutti, G. [Centro de Astrobiologia (CSIC-INTA), Dep. de Astrosica, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Kara, E.; Fabian, A. C., E-mail: azoghbi@astro.umd.edu [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-04-20

    Several X-ray observations have recently revealed the presence of reverberation time delays between spectral components in active galactic nuclei. Most of the observed lags are between the power-law Comptonization component, seen directly, and the soft excess produced by reflection in the vicinity of the black hole. NGC 4151 was the first object to show these lags in the iron K band. Here, we report the discovery of reverberation lags in the Fe K band in two other sources: MCG-5-23-16 and NGC 7314. In both objects, the 6-7 keV band, where the Fe K{alpha} line peaks, lags the bands at lower and higher energies with a time delay of {approx}1 ks. These lags are unlikely to be due to the narrow Fe K{alpha} line. They are fully consistent with reverberation of the relativistically broadened iron K{alpha} line. The measured lags, their time scale, and spectral modeling indicate that most of the radiation is emitted at {approx}5 and 24 gravitational radii for MCG-5-23-16 and NGC 7314, respectively.

  5. Analysis of the big halo event observed by Pamir emulsion chamber -P3B-90-

    International Nuclear Information System (INIS)

    Yamashita, Seibun

    1986-01-01

    There is observed a big air family (named as 'P3B-90') with a large halo by Pamir carbon chamber, called P3B, in USSR-Japan joint experiment at Pamir plateau (4370 m above sea level). Total observed energy of this halo is estimated to be 19000 TeV. It penetrates through both the upper and the lower chamber without decreasing its size. Such strong penetrative power is due to the existence of many hadrons in the halo region which are produced through the atmospheric successive interactions. The energy ratio of hadronic part to electromagnetic part is 1/3 and it is nearly equal to the case of 'Andromeda' observed in Chacaltaya experiment. On the other hand, 298 shower spots (>1 TeV) with total observed energy 1163 TeV are found within about 30 cm of radius from the center of the family. Among the observed shower spots, 45 spots are identified as hadronic ones, whose total observed energy is 345 TeV and 253 spots are electromagnetic ones with total observed energy 818 TeV. There exists a large difference in the power index of the energy spectrum between the electromagnetic and the hadronic components. That is, the hadronic component has a harder spectrum than the electromagnetic component. It shows that there exist a lot of hadrons in high energy region among the observed shower spots. This seems to be a general tendency of the super-high energy families. (author)

  6. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...... chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori...... and the uncertainty of the flow resistivity and the test chamber’s influence are estimated. Inclusion of more than one chamber’s absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%...

  7. Measurements of diversity gain and radiation efficiency of the eleven antenna by using different measurement techniques

    DEFF Research Database (Denmark)

    Yang, Jian; Pivnenko, Sergey; Laitinen, Tommi

    2010-01-01

    This paper presents measurement results of diversity gain and radiation efficiency by using three different measurement techniques: reverberation chamber, spherical near-field anechoic chamber, and multi-probe anechoic chamber. The results are measured over a large 2–8 GHz bandwidth which...

  8. Sound insulation and reverberation time for classrooms - Criteria in regulations and classification schemes in the Nordic countries

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2016-01-01

    Acoustic regulations or guidelines for schools exist in all five Nordic countries. The acoustic criteria depend on room uses and deal with airborne and impact sound insulation, reverberation time, sound absorption, traffic noise, service equipment noise and other acoustic performance...... have become more extensive and stricter during the last two decades. The paper focuses on comparison of sound insulation and reverberation time criteria for classrooms in regulations and classification schemes in the Nordic countries. Limit values and changes over time will be discussed as well as how...... not identical. The national criteria for quality level C correspond to the national regulations or recommendations for new-build. The quality levels A and B are intended to define better acoustic performance than C, and D lower performance. Typically, acoustic regulations and classification criteria for schools...

  9. Acoustic parameters of sound insulating materials investigation in small reverberation rooms on rubber plates

    Directory of Open Access Journals (Sweden)

    О.О. Козлітін

    2005-01-01

    Full Text Available  The new method of sound insulating materials acoustic characteristics investigation in small reverberation rooms was elaborated. The research of sound insulating materials on rubber plates was done. The analysis of obtained results of acoustic parameters of materials being a part of the composite real structures of airplane was carried out.

  10. Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions

    DEFF Research Database (Denmark)

    Ma, Ning; Brown, Guy J.; May, Tobias

    2015-01-01

    This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for binaural localisation of multiple speakers in reverberant conditions. DNNs are used to map binaural features, consisting of the complete crosscorrelation function (CCF) and interaural...

  11. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    Science.gov (United States)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  12. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    International Nuclear Information System (INIS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-01-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself

  13. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  14. Efficient voice activity detection in reverberant enclosures using far field microphones

    DEFF Research Database (Denmark)

    Petsatodis, Theodore; Boukis, Christos

    2009-01-01

    An algorithm suitable for voice activity detection under reverberant conditions is proposed in this paper. Due to the use of far-filed microphones the proposed solution processes speech signals of highly-varying intensity and signal to noise ratio, that are contaminated with several echoes....... The core of the system is a pair of Hidden Markov Models, that effectively model the speech presence and speech absence situations. To minimise mis-detections an adaptive threshold is used, while a hang-over scheme caters for the intra-frame correlation of speech signals. Experimental results conducted...

  15. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are init...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  16. Impacts of Reverberation Time, Absorption Location and Background Noise on Listening Conditions in Multi Source Environment

    DEFF Research Database (Denmark)

    Saher, Konca; Rindel, Jens Holger; Nijs, Lau

    2005-01-01

    index (STI) needs to be improved. The impact of the reverberation time (RT), the distribution of the absorptive materials and the introduction of a screen on STI are discussed briefly .However, these objective parameters have to be assessed through subjective judgement. Auralizations of the multi source...

  17. Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars

    Science.gov (United States)

    Zhang, Haowen; Yang, Qian; Wu, Xue-Bing

    2018-02-01

    We modified the broadband photometric reverberation mapping (PRM) code, JAVELIN, and tested the availability to get broad-line region time delays that are consistent with the spectroscopic reverberation mapping (SRM) project SDSS-RM. The broadband light curves of SDSS-RM quasars produced by convolution with the system transmission curves were used in the test. We found that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with the SRM project is the flux ratio of the broad emission line to the reference continuum, which is in line with the previous findings. We further found a critical line-to-continuum flux ratio, about 6%, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. We also tested our code on a subset of SDSS Stripe 82 quasars, and found that our program tends to give biased lag estimations due to the observation gaps when the R-L relation prior in Markov Chain Monte Carlo is discarded. The performance of the damped random walk (DRW) model and the power-law (PL) structure function model on broadband PRM were compared. We found that given both SDSS-RM-like or Stripe 82-like light curves, the DRW model performs better in carrying out broadband PRM than the PL model.

  18. Micrometeoroid impact simulations using a railgun electromagnetic accelerator

    International Nuclear Information System (INIS)

    Upshaw, J.L.; Kajs, J.P.

    1991-01-01

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT), using a railgun electromagnetic (EM) accelerator, has done a series of hypervelocity micrometeoroid impact simulations. Simulations done to date (78 tests) were carried out under contracts with Lockheed Palo Alto Research Laboratory and Martin Marietta Corporation. The tests were designed to demonstrate that railguns can provide a repeatable means of accelerating particles between 10 -4 and 10 -7 g to hypervelocities within a high-vacuum flight chamber. Sodalime glass beads were accelerated up to 11 km/s impacting into silicon, aluminum, quartz and various proprietary targets. At the muzzle of the gun was a 5.8-m-long, high-vacuum flight chamber. Targets were placed in this chamber at various distances from the gun. Impact craters on all the targets were examined using a light-source microscope and several targets were further examined using a scanning electron microscope. Gun and flight range diagnostics, along with experimental setups and results for several of the experiments, are presented in this paper

  19. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    Science.gov (United States)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  20. Prediction of the Electromagnetic Field Distribution in a Typical Aircraft Using the Statistical Energy Analysis

    Science.gov (United States)

    Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane

    2016-05-01

    Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.

  1. Estimation methods for sound levels and reverberation time in a room with irregular shape or absorption distribution

    NARCIS (Netherlands)

    Gerretsen, E.

    2006-01-01

    The reverberation time of an enclosed space is an important parameter to describe the acoustic quality in enclosed spaces. Mainly due to its simplicity Sabine’s equation is normally used even though the considered situations seldom comply with its preconditions: regular room shape, regular

  2. Usage of measured reverberation tail in a binaural room impulse response synthesis

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Madsen, Esben

    2011-01-01

    The aim of the modern communication technologies is an immersive experience. One of the applications that should provide the feeling of being together and sharing the same environment during the communication process is BEAMING. The goal of this paper is to improve audible spatial impression...... utilizing correct acoustical properties of the specific environments. Binaural room impulse response (BRIR) synthesis represents one of the main tasks in the binaural auralization. When the BRIRs are simulated, high order reflections (reverberation tail) are usually modeled statistically because of the high...

  3. Electromagnetic seal for the impulse feeding of gases into vacuum apparatuses

    International Nuclear Information System (INIS)

    Derevyankin, G.E.; Dudnikov, V.G.; Zhuravlyov, P.A.

    The construction of an electromagnetic seal for the impulse feeding of gases into vacuum systems is described. The seal feeds small bursts of gas into an evacuated chamber at frequencies up to 10 3 Hz. The long lifetime of the seal (more than 10 9 cycles) results from the elimination of stressed metallic components and the use of ''Viton'' for the vacuum gasket under the valve

  4. Behavioral and Biological Effects of Resonant Electromagnetic Absorption in Rats.

    Science.gov (United States)

    1976-11-01

    for 23-550 MHz, biological phantom materials to simulate tissue properties, monopole -above-ground radiation chamber, design of a waveguide slot array...Resonant Electromagnetic Power Absorption in Rats" L T OF FTCTIF S A,’L i .LIS SFigure Pa 1 A photograiph of the monopole -above-gruund radiation...and mice without ground effects (L/2b = 3.25 where 21Tb is the "average" circumference of the animals) ........ .................... ... 20 8

  5. Computational advantages of reverberating loops for sensorimotor learning.

    Science.gov (United States)

    Fortney, Kristen; Tweed, Douglas B

    2012-03-01

    When we learn something new, our brain may store the information in synapses or in reverberating loops of electrical activity, but current theories of motor learning focus almost entirely on the synapses. Here we show that loops could also play a role and would bring advantages: loop-based algorithms can learn complex control tasks faster, with exponentially fewer neurons, and avoid the problem of weight transport. They do all this at a cost: in the presence of long feedback delays, loop algorithms cannot control very fast movements, but in this case, loop and synaptic mechanisms can complement each other-mixed systems quickly learn to make accurate but not very fast motions and then gradually speed up. Loop algorithms explain aspects of consolidation, the role of attention, and the relapses that are sometimes seen after a task has apparently been learned, and they make further predictions.

  6. Evidence for a common scale O(0.1) m that controls seabed scattering and reverberation in shallow water.

    Science.gov (United States)

    Holland, Charles W

    2012-10-01

    Analysis of the spectral content of long-range reverberation yields two observations. First, there is a remarkably similar scale, O(0.1) m, between three diverse continental shelf regions. This is surprising given the complexity and diversity of geologic processes. Second, there is strong evidence that the scale is associated with heterogeneities within the sediment. Thus, sediment volume scattering, not interface scattering, controls long-range reverberation from a few hundred hertz to several kilohertz. This is also unexpected given that at long ranges the vertical grazing angles are less than the critical angle, and hence the penetration of the acoustic field into the sub-bottom is expected to be modest. The consistency of the scale, O(0.1) m, suggests an underlying feature or mechanism that is consistent across many ostensibly diverse geological settings. Neither the feature nor mechanism is known at this time.

  7. Source Coding for Wireless Distributed Microphones in Reverberant Environments

    DEFF Research Database (Denmark)

    Zahedi, Adel

    2016-01-01

    . However, it comes with the price of several challenges, including the limited power and bandwidth resources for wireless transmission of audio recordings. In such a setup, we study the problem of source coding for the compression of the audio recordings before the transmission in order to reduce the power...... consumption and/or transmission bandwidth by reduction in the transmission rates. Source coding for wireless microphones in reverberant environments has several special characteristics which make it more challenging in comparison with regular audio coding. The signals which are acquired by the microphones......Modern multimedia systems are more and more shifting toward distributed and networked structures. This includes audio systems, where networks of wireless distributed microphones are replacing the traditional microphone arrays. This allows for flexibility of placement and high spatial diversity...

  8. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    Science.gov (United States)

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  9. Separation of zeros for source signature identification under reverberant path conditions.

    Science.gov (United States)

    Hasegawa, Tomomi; Tohyama, Mikio

    2011-10-01

    This paper presents an approach to distinguishing the zeros representing a sound source from those representing the transfer function on the basis of Lyon's residue-sign model. In machinery noise diagnostics, the source signature must be separated from observation records under reverberant path conditions. In numerical examples and an experimental piano-string vibration analysis, the modal responses could be synthesized by using clustered line-spectrum modeling. The modeling error represented the source signature subject to the source characteristics being given by a finite impulse response. The modeling error can be interpreted as a remainder function necessary for the zeros representing the source signature. © 2011 Acoustical Society of America

  10. Life-Time Dosimetric Assessment for Mice and Rats Exposed in Reverberation Chambers of the 2-Year NTP Cancer Bioassay Study on Cell Phone Radiation.

    Science.gov (United States)

    Gong, Yijian; Capstick, Myles; Kuehn, Sven; Wilson, Perry; Ladbury, John; Koepke, Galen; McCormick, David L; Melnick, Ronald L; Kuster, Niels

    2017-12-01

    In this paper, we present the detailed life-time dosimetry analysis for rodents exposed in the reverberation exposure system designed for the two-year cancer bioassay study conducted by the National Toxicology Program of the National Institute of Environmental Health Sciences. The study required the well-controlled and characterized exposure of individually housed, unrestrained mice at 1900 MHz and rats at 900 MHz, frequencies chosen to give best uniformity exposure of organs and tissues. The wbSAR, the peak spatial SAR and the organ specific SAR as well as the uncertainty and variation due to the exposure environment, differences in the growth rates, and animal posture were assessed. Compared to the wbSAR, the average exposure of the high-water-content tissues (blood, heart, lung) were higher by ~4 dB, while the low-loss tissues (bone and fat) were less by ~9 dB. The maximum uncertainty over the exposure period for the SAR was estimated to be <49% (k=2) for the rodents whereas the relative uncertainty between the group was <14% (k=1). The instantaneous variation (averaged over 1 min) was <13% (k=1), which is small compared to other long term exposure research projects. These detailed dosimetric results empowers comparison with other studies and provides a reference for studies of long-term biological effects of exposure of rodents to RF energy.

  11. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  12. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015, Tokyo (Japan); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J. [Department of Natural Sciences, The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2012-08-10

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 A continuum and the H{beta} broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M{sub BH} and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  13. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R.; Bord, D. J.; Che, X.

    2012-01-01

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 Å continuum and the Hβ broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M BH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  14. Prediction of Classroom Reverberation Time using Neural Network

    Science.gov (United States)

    Liyana Zainudin, Fathin; Kadir Mahamad, Abd; Saon, Sharifah; Nizam Yahya, Musli

    2018-04-01

    In this paper, an alternative method for predicting the reverberation time (RT) using neural network (NN) for classroom was designed and explored. Classroom models were created using Google SketchUp software. The NN applied training dataset from the classroom models with RT values that were computed from ODEON 12.10 software. The NN was conducted separately for 500Hz, 1000Hz, and 2000Hz as absorption coefficient that is one of the prominent input variable is frequency dependent. Mean squared error (MSE) and regression (R) values were obtained to examine the NN efficiency. Overall, the NN shows a good result with MSE 0.9. The NN also managed to achieve a percentage of accuracy of 92.53% for 500Hz, 93.66% for 1000Hz, and 93.18% for 2000Hz and thus displays a good and efficient performance. Nevertheless, the optimum RT value is range between 0.75 – 0.9 seconds.

  15. Topography Estimation of the Core Mantle Boundary with ScS Reverberations and Diffraction Waves

    Science.gov (United States)

    Hein, B. E.; Nakata, N.

    2017-12-01

    In this study, we use the propagation of global seismic waves to study the Core Mantle Boundary (CMB). We focus on the use of S-wave reflections at the CMB (ScS reverberations) and outer-core diffracted waves. It is difficult imaging the CMB with the ScS wave because the complexity of the structure in the near surface ( 50 km); the complex structure degrades the signal-to-noise ratio of of the ScS. To avoid estimating the structure in the crust, we rely on the concept of seismic interferometry to extract wave propagation through mantle, but not through the crust. Our approach is compute the deconvolution between the ScS (and its reverberation) and direct S waves generated by intermediate to deep earthquakes (>50 km depth). Through this deconvolution, we have the ability to filter out the direct S wave and retrieve the wave field propagating from only the hypocenter to the outer core, but not between the hypocenter to the receiver. After the deconvolution, we can isolate the CMB reflected waves from the complicated wave phenomena because of the near-surface structure. Utilizing intermediate and deep earthquakes is key since we can suppress the near-surface effect from the surface to the hypocenter of the earthquakes. The variation of such waves (e.g., travel-time perturbation and/or wavefield decorrelation) at different receivers and earthquakes provides the information of the topography of the CMB. In order to get a more detailed image of the topography of the CMB we use diffracted seismic waves such as Pdiff , Sdiff, and P'P'. By using two intermediate to deep earthquakes on a great circle path with a station we can extract the wave propagation between the two earthquakes to simplify the waveform, similar to how it is preformed using the ScS wave. We generate more illumination of the CMB by using diffracted waves rather than only using ScS reverberations. The accurate topography of CMB obtained by these deconvolution analyses may provide new insight of the

  16. Moderately reverberant learning ultrasonic pinch panel.

    Science.gov (United States)

    Nikolovski, Jean-Pierre

    2013-10-01

    Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.

  17. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    International Nuclear Information System (INIS)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R. J.; Bord, D. J.

    2014-01-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 10 7 M ☉ , consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  18. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 298409 (Russian Federation); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015 Tokyo (Japan); Siverd, R. J. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J., E-mail: peterson.12@osu.edu [Department of Natural Sciences, The University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  19. Analysis of room transfer function and reverberant signal statistics

    DEFF Research Database (Denmark)

    Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn

    2008-01-01

    For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...

  20. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    Science.gov (United States)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  1. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    Science.gov (United States)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  2. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  3. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  4. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1972-01-01

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  5. Effects of noise and reverberation on speech perception and listening comprehension of children and adults in a classroom-like setting.

    Science.gov (United States)

    Klatte, Maria; Lachmann, Thomas; Meis, Markus

    2010-01-01

    The effects of classroom noise and background speech on speech perception, measured by word-to-picture matching, and listening comprehension, measured by execution of oral instructions, were assessed in first- and third-grade children and adults in a classroom-like setting. For speech perception, in addition to noise, reverberation time (RT) was varied by conducting the experiment in two virtual classrooms with mean RT = 0.47 versus RT = 1.1 s. Children were more impaired than adults by background sounds in both speech perception and listening comprehension. Classroom noise evoked a reliable disruption in children's speech perception even under conditions of short reverberation. RT had no effect on speech perception in silence, but evoked a severe increase in the impairments due to background sounds in all age groups. For listening comprehension, impairments due to background sounds were found in the children, stronger for first- than for third-graders, whereas adults were unaffected. Compared to classroom noise, background speech had a smaller effect on speech perception, but a stronger effect on listening comprehension, remaining significant when speech perception was controlled. This indicates that background speech affects higher-order cognitive processes involved in children's comprehension. Children's ratings of the sound-induced disturbance were low overall and uncorrelated to the actual disruption, indicating that the children did not consciously realize the detrimental effects. The present results confirm earlier findings on the substantial impact of noise and reverberation on children's speech perception, and extend these to classroom-like environmental settings and listening demands closely resembling those faced by children at school.

  6. Statistical modeling in phenomenological description of electromagnetic cascade processes produced by high-energy gamma quanta

    International Nuclear Information System (INIS)

    Slowinski, B.

    1987-01-01

    A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)

  7. EVALUATION OF REVERBERATION TIME IN THE CLASSROOM (CASE OF CLASSROOM AT DEPARTMENT OF ARCHITECTURE, UNIVERSITAS SEBELAS MARET

    Directory of Open Access Journals (Sweden)

    ISWATI Tri Yuni

    2016-12-01

    Full Text Available This study took place in three rooms in one building, give and take the external conditions were relatively similar. The study aims to observe the level of acoustic comfort and suggest strategies to improve the acoustic comfort by modifying materials and dimensions of the materials. The modification is much needed in practice since the user critize the acoustical comfort of the room. The method applied was simply measuring the condition of the rooms using laser distance meter and sound level meter, taking notes on the characteristic of the material used, and developing simulation based on several modifications in materials and dimensions of the materials. The result of the simulation was then being compared to the standart of reverberation time. The conclusion of the study was made into three points: (1 the acoustic condition in the rooms are indeed not meeting the standart to ensure users’ comfort, (2 the reverberation time is better when additional plasterboard ceiling are built, thus changing the rooms’ dimension; and (3 the noise in each room is not significantly reduced even after the additional ceiling built. The simulation in this study was done through the help of Ecotect 2011.

  8. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  9. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  10. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  11. Conceptual design report for the SDC barrel and intermediate muon detectors based on a jet-type drift chamber

    International Nuclear Information System (INIS)

    Arai, Y.; Funahashi, Y.; Higashi, Y.

    1992-04-01

    We propose a jet-type drift chamber for the barrel and intermediate muon detectors of SDC. The chamber system consists of large multiwire drift chambers having a simple box-type frame structure: 2. 5 x 0.4 m 2 in cross section and maximum 9 m in length. A chamber module consists of double layers of small jet cells. The drift cell is composed of a wire plane, including 3 sense wires, and cathode plates parallel to the wire plane. The two layers in a chamber are staggered to each other by half a cell width. The jet cell is tilted such that its principle axis points to the interaction point. Such an arrangement, together with a constant drift velocity of the jet cell, allows us to design a simple and powerful trigger system for high momentum muons utilizing a drift time sum between a pair of staggered cells. The multi-hit capability will be helpful to distinguish high momentum muon tracks from associated electromagnetic debris as has been demonstrated by the Fermilab beam test T816. The maximum drift time fulfills the SDC requirement. A preliminary FEM analysis of the chamber module verified the excellent structural stiffness. It makes the support structure and the alignment system relatively simple. These features will reduce the total cost as well as ensure a good performance of the chamber system. (J.P.N.)

  12. Precision Measurements of the Proton Electromagnetic Form Factors in the Time-Like Region and Vector Meson Spectroscopy

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...

  13. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array: a dissertation

    OpenAIRE

    Gallaudet, Timothy C. (Timothy Cole), 1967-

    2001-01-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360 deg imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and hori...

  14. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  15. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  16. Some characteristics of the development of high energy electromagnetic cascades in the atmosphere

    International Nuclear Information System (INIS)

    Jablonski, Z.; Tomaszewski, A.; Wrotniak, J.A.

    1977-01-01

    Results of the calculations of some characteristics of electromagnetic cascades induced by cosmic radiation are showed. The cascade parameters are influenced by effect of threshold energy of gamma quanta registration in emulsion chambers. Ratio of integral gamma quanta energies in cascade to initial particle energy and mean energy weighted radius as a function of primary interaction hight, as well as total energy and number of gamma quanta in the cascade are calculated. (S.B.)

  17. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  18. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  19. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  20. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    DEFF Research Database (Denmark)

    Peterson, B. M.; Ferrarese, L.; Gilbert, K. M.

    2004-01-01

    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained...

  1. First- and Second-level Bayesian Inference of Flow Resistivity of Sound Absorber and Room’s Influence

    DEFF Research Database (Denmark)

    Choi, Sang-Hyeon; Lee, Ikjin; Jeong, Cheol-Ho

    2016-01-01

    Sabine absorption coefficient is a widely used one deduced from reverberation time measurements via the Sabine equation. First- and second-level Bayesian analysis are used to estimate the flow resistivity of a sound absorber and the influences of the test chambers from Sabine absorption...... coefficients measured in 13 different reverberation chambers. The first-level Bayesian analysis is more general than the second-level Bayesian analysis. Sharper posterior distribution can be acquired by the second-level Bayesian analysis than the one by the first-level Bayesian analysis because more data...... are used to set more reliable prior distribution. The estimated room’s influences by the first- and the second-level Bayesian analyses are similar to the estimated results by the mean absolute error minimization....

  2. Method for neutralizing the effects of electromagnetic radiation in a radiation detector and a radiation detector for realizing this method

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1972-01-01

    Circuitry is described by means of which the need for shielded cables for ionization chambers utilizing a floating grid triode is eliminated. The circuitry, utilizing an electrometer, a relay, a comparator and an operational amplifier as the principal components, automatically connects the normally floating grid to a discharging circuit when it becomes negatively charged, thus putting the ionization chamber out of function, as the result of a signal induced in the cable by electromagnetic noise. When the negative charge has been discharged the relay restores the normal function. (JIW)

  3. Maximum Likelihood PSD Estimation for Speech Enhancement in Reverberation and Noise

    DEFF Research Database (Denmark)

    Kuklasinski, Adam; Doclo, Simon; Jensen, Søren Holdt

    2016-01-01

    In this contribution we focus on the problem of power spectral density (PSD) estimation from multiple microphone signals in reverberant and noisy environments. The PSD estimation method proposed in this paper is based on the maximum likelihood (ML) methodology. In particular, we derive a novel ML...... instrumental measures and is shown to be higher than when the competing estimator is used. Moreover, we perform a speech intelligibility test where we demonstrate that both the proposed and the competing PSD estimators lead to similar intelligibility improvements......., it is shown numerically that the mean squared estimation error achieved by the proposed method is near the limit set by the corresponding Cram´er-Rao lower bound. The speech dereverberation performance of a multi-channel Wiener filter (MWF) based on the proposed PSD estimators is measured using several...

  4. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Science.gov (United States)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  5. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiachen; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Steiner, James F., E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn, E-mail: jsteiner@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-05-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole candidates is produced by the illumination of a cold accretion disk by a hot corona. In this framework, the activation of a new flaring region in the hot corona imprints a time variation on the iron line spectrum. Future X-ray facilities with high time resolution and large effective areas may be able to measure the so-called 2-dimensional transfer function; that is, the iron line profile detected by a distant observer as a function of time in response to an instantaneous flare from the X-ray primary source. This work is a preliminary study to determine if and how such a technique can provide more information about the spacetime geometry around the compact object than the already possible measurements of the time-integrated iron line profile. Within our simplified model, we find that a measurement of iron line reverberation can improve constraints appreciably given a sufficiently strong signal, though that most of the information is present in the time-integrated spectrum. Our aim is to test the Kerr metric. We find that current X-ray facilities and data are unable to provide strong tests of the Kerr nature of supermassive black hole candidates. We consider an optimistic case of 10{sup 5} iron line photons from a next-generation data set. With such data, the reverberation model improves upon the spectral constraint by an order of magnitude.

  6. A SOFT X-RAY REVERBERATION LAG IN THE AGN ESO 113–G010

    International Nuclear Information System (INIS)

    Cackett, E. M.; Fabian, A. C.; Kara, E.; Zogbhi, A.; Reynolds, C.; Uttley, P.

    2013-01-01

    Reverberation lags have recently been discovered in a handful of nearby, variable active galactic nuclei (AGNs). Here, we analyze a ∼100 ks archival XMM-Newton observation of the highly variable AGN, ESO 113–G010, in order to search for lags between hard, 1.5-4.5 keV, and soft, 0.3-0.9 keV, energy X-ray bands. At the lowest frequencies available in the light curve (∼ –4 Hz), we find hard lags where the power-law-dominated hard band lags the soft band (where the reflection fraction is high). However, at higher frequencies in the range (2-3) × 10 –4 Hz we find a soft lag of –325 ± 89 s. The general evolution from hard to soft lags as the frequency increases is similar to other AGNs where soft lags have been detected. We interpret this soft lag as due to reverberation from the accretion disk, with the reflection component responding to variability from the X-ray corona. For a black hole mass of 7 × 10 6 M ☉ this corresponds to a light-crossing time of ∼9 R g /c; however, dilution effects mean that the intrinsic lag is likely longer than this. Based on recent black hole mass scaling for lag properties, the lag amplitude and frequency are more consistent with a black hole a few times more massive than the best estimates, though flux-dependent effects could easily add scatter this large.

  7. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  8. Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA–PDMS bonded membrane

    International Nuclear Information System (INIS)

    Lee, June Kyoo; Park, Kyung-Woo; Choi, Ju Chan; Kim, Hak-Rin; Kong, Seong Ho

    2012-01-01

    The fabrication of a poly(methyl methacrylate) (PMMA)-micromachined fluid lens with an optimally designed built-in electromagnetic actuator was demonstrated in this study. Through a finite element method, the number of winding turns and the distance between magnetic moments were estimated to design an effective and miniaturized electromagnetic actuator. The lens body composed of PMMA structures was simply and rapidly micromachined using computer numerical control micro-milling. The poly(dimethylsiloxane) (PDMS) membranes for electromagnetic actuation were bonded to the PMMA structures by using the proposed PMMA–PDMS bonding technique, which uses an SiO 2 intermediate layer. A physical repulsive force produced by the electromagnetic actuator applies a controllable fluidic pressure to a fluidic chamber that is sealed with the PDMS membrane, thus allowing dynamic focusing. The focus tunability of the fabricated lens was 67 diopters with a focus hysteresis of less than 1 mm and a response time of 2 ms. The solenoid of the built-in actuator showed negligible thermal crosstalk to the lens. (paper)

  9. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  10. Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

    Directory of Open Access Journals (Sweden)

    Jun Hur

    2018-04-01

    Full Text Available This paper proposes a design of small controlled reception pattern antenna (CRPA arrays using circular microstrip loops with frequencyinsensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

  11. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  12. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  13. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  14. Iron K and Compton hump reverberation in SWIFT J2127.4+5654 and NGC 1365 revealed by NuSTAR and XMM–Newton

    DEFF Research Database (Denmark)

    Kara, E.; Zoghbi, A.; Marinucci, A.

    2015-01-01

    In the past five years, a flurry of X-ray reverberation lag measurements of accreting supermassive black holes have been made using the XMM–Newton telescope in the 0.3–10 keV energy range. In this work, we use the NuSTAR (Nuclear Spectroscopic Telescope Array) telescope to extend the lag analysis...... up to higher energies for two Seyfert galaxies, SWIFT J2127.4+5654 and NGC 1365. X-ray reverberation lags are due to the light travel time delays between the direct continuum emission and the reprocessed emission from the inner radii of an ionized accretion disc. XMM–Newton has been particularly...... evidence for Compton reflection, known as the Compton ‘hump’. The XMM–Newton data show Fe K lags in both SWIFT J2127.4+5654 and NGC 1365. The NuSTAR data provide independent confirmation of these Fe K lags, and also show evidence for the corresponding Compton hump lags, especially in SWIFT J2127...

  15. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  16. STAR electromagnetic calorimeter R ampersand D progress report, 1 October 1992--31 August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    A lead-scintillator sampling electromagnetic calorimeter (EMC) is planned as an upgrade to the STAR detector for the RHIC Accelerator at Brookhaven National Laboratory (BNL). Considerable work on the conceptual design of the calorimeter, and related interfacing issues with the solenoids magnet and the time projection chamber (TPC) subsystems of STAR occurred in the period 1 October 1992 to 31 August 1993 (FY 1993). This report documents and summarizes the conclusions and progress from this work

  17. Comment on "Localized water reverberation phases and its impact on back-projection images" by Yue et al. [2017

    Science.gov (United States)

    Fan, W.; Shearer, P. M.

    2017-12-01

    Fan and Shearer [2016] analyzed the 2012 Mw 7.2 Sumatra earthquake and reported that the earthquake dynamically triggered early aftershock/aftershocks 150 km away from the mainshock and 50 s later. The early aftershock/aftershocks were detected with teleseismic P-wave back-projection, coincided with passing surface waves, and showed observable seismic waveforms in a wide frequency range (0.02—5 Hz). Recently, however, Yue et al. [2017] interpreted these coda arrivals as water reverberations from the mainshock, based mostly on EGF analysis of a nearby M6 earthquake and a water-phase synthetic test. Here, we show detailed back-projection and waveform analysis of three M6 earthquakes within 100km of the Mw 7.2 earthquake, including the EGF event analyzed in Yue et al. [2017]. In addition, we examine the waveforms of three M5.5 reverse faulting earthquakes close to our detected early aftershock landward of the trench. Our results show that the coda energy in question is more likely caused by a separate earthquake near the trench than by a mainshock water reverberation phase, thus supporting our earlier conclusion that the detected coherent radiators are likely to be dynamically triggered early aftershock/aftershocks.

  18. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  19. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  20. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  1. Blind estimation of the number of speech source in reverberant multisource scenarios based on binaural signals

    DEFF Research Database (Denmark)

    May, Tobias; van de Par, Steven

    2012-01-01

    In this paper we present a new approach for estimating the number of active speech sources in the presence of interfering noise sources and reverberation. First, a binaural front-end is used to detect the spatial positions of all active sound sources, resulting in a binary mask for each candidate...... on a support vector machine (SVM) classifier. A systematic analysis shows that the proposed algorithm is able to blindly determine the number and the corresponding spatial positions of speech sources in multisource scenarios and generalizes well to unknown acoustic conditions...

  2. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  3. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  4. Some remarks on antenna response in a reverberation chamber

    Energy Technology Data Exchange (ETDEWEB)

    WARNE,LARRY K.; LEE,K.S.H.

    2000-03-15

    The simple formula, {l_angle}P{sub r}{r_angle}=(E{sub o}{sup 2}/{eta})({lambda}{sup 2}/8{pi}), for the received power of an antenna with a matched load in an over-moded cavity actually holds for an antenna of any shape and size. This can be seen from the close connection between the correlation tensor of the cavity field at two different points and the imaginary part of the free-space dyadic Green's function.

  5. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  6. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    International Nuclear Information System (INIS)

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-01-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample

  7. Reverberation Mapping of the Kepler target KA1858+48

    Science.gov (United States)

    Pei, Liuyi; Barth, A. J.; Malkan, M. A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Gates, E. L.; Horst, J.; Joner, M. D.; Leonard, D. C.; Sand, D. J.

    2013-01-01

    KA1858+48 is a Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies being monitored by the Kepler mission. We have carried out a reverberation mapping program designed to measure the broad-line region size and estimate the mass of the black hole in KA1858+48. We obtained spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope during dark runs from late winter through fall of 2012, by requesting an observation on each night that the Kast Spectrograph was mounted on the telescope. We also obtained V-band images from the Nickel 1 m telescope at Lick Observatory, the 0.9 m telescope at Brigham Young University West Mountain Observatory, the Faulkes Telescope North at the Las Cumbres Observatory Global Telescope, the KAIT telescope at Lick Observatory, and the 1 m telescope at Mt. Laguna Observatory. The H-beta light curve shows a lag time of approximately 12 days with respect to the V-band continuum flux variations. We will present the continuum and emission-line light curves, cross-correlation lag measurements, and a preliminary estimate of the black hole mass in KA1858+48.

  8. Characterization of diffusivity based on spherical array processing

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Jeong, Cheol-Ho

    2015-01-01

    -dimensional domain and consequently examine some of its fundamental properties: spatial distribution of sound pressure levels, particle velocity and sound intensity. The study allows for visualization of the intensity field inside a reverberant space, and successfully illustrates the behavior of the sound field...... in such an environment. This initial investigation shows the validity of the suggested processing and reveals interesting perspectives for future work. Ultimately, the aim is to define a proper and reliable measure of the diffuse sound field conditions in a reverberation chamber, with the prospect of improving...

  9. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  10. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  11. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Buttner, Ulrich; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  12. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  13. REVERBERATION MAPPING OF THE INTERMEDIATE-MASS NUCLEAR BLACK HOLE IN SDSS J114008.71+030711.4

    International Nuclear Information System (INIS)

    Rafter, Stephen E.; Kaspi, Shai; Behar, Ehud; Kollatschny, Wolfram; Zetzl, Matthias

    2011-01-01

    We present the results of a reverberation mapping (RM) campaign on the black hole (BH) associated with the active galactic nucleus (AGN) in SDSS J114008.71+030711.4 (hereafter GH08). This object is selected from a sample of 19 candidate intermediate-mass BHs (M BH 6 M sun ) found by Greene and Ho in the Sloan Digital Sky Survey. We used the Hobby-Eberly Telescope to obtain 30 spectra over a period of 178 days in an attempt to resolve the reverberation time lag (τ) between the continuum source and the broad-line region (BLR) in order to determine the radius of the BLR (R BLR ) in GH08. We measure τ to be two days with an upper limit of six days. We estimate the AGN luminosity at 5100 Å to be λL 5100 ≈ 1.1 × 10 43 erg s –1 after deconvolution from the host galaxy. The most well-calibrated R BLR –L relation predicts a time lag that is four times larger than what we measure. Using the measured Hβ full width at half-maximum of 703 ± 110 km s –1 and an upper limit for R BLR =6 light days, we find M BH ∼ 5 M sun as an upper limit to the BH virial mass in GH08, which implies super-Eddington accretion. Based on our measured M BH we propose that GH08 may be another candidate to add to the very short list of AGNs with M BH 6 M sun determined using RM.

  14. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Electromagnetic radiation and behavioural response of ticks: an experimental test.

    Science.gov (United States)

    Vargová, Blažena; Majláth, Igor; Kurimský, Juraj; Cimbala, Roman; Kosterec, Michal; Tryjanowski, Piotr; Jankowiak, Łukasz; Raši, Tomáš; Majláthová, Viktória

    2018-05-01

    Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.

  17. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  18. The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Bentz, Misty C.; Peterson, Bradley M.

    2006-01-01

    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve...... reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results....

  19. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  20. Design, characterization, and application of fast, broadband, high-dynamic range, three-axis field strength probes

    NARCIS (Netherlands)

    Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2013-01-01

    Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode

  1. Design, characterization and application of fast, broadband, high-dynamic range, three-axis field strength probes

    NARCIS (Netherlands)

    Serra, R.; Leferink, F.B.J.

    2013-01-01

    Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode

  2. Exploiting Deep Neural Networks and Head Movements for Robust Binaural Localization of Multiple Sources in Reverberant Environments

    DEFF Research Database (Denmark)

    Ma, Ning; May, Tobias; Brown, Guy J.

    2017-01-01

    This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for robust binaural localization of multiple sources in reverberant environments. DNNs are used to learn the relationship between the source azimuth and binaural cues, consisting...... of the complete cross-correlation function (CCF) and interaural level differences (ILDs). In contrast to many previous binaural hearing systems, the proposed approach is not restricted to localization of sound sources in the frontal hemifield. Due to the similarity of binaural cues in the frontal and rear...

  3. The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment

    DEFF Research Database (Denmark)

    Hassager, Henrik Gert; Gran, Fredrik; Dau, Torsten

    2016-01-01

    . For various filter bandwidths, the modified BRIRs were convolved with broadband noise and listeners judged the perceived position of the noise when virtualized over headphones. Only reductions in spectral details of the direct part obtained with filter bandwidths broader than one equivalent rectangular...... bandwidth affected externalization. Reductions in spectral details of the reverberant part had only little influence on externalization. In both conditions, externalization was not as pronounced at 0° as at 50°. To characterize the auditory processes that may be involved in the perception of externalization...

  4. Gas microstrip chambers

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Barasch, E.F.; Bowcock, T.J.V.; Demroff, H.P.; Elliott, S.M.; Howe, M.R.; Lee, B.; Mazumdar, T.K.; Pang, Y.; Smith, D.D.; Wahl, J.; Wu, Y.; Yue, W.K.; Gaedke, R.M.; Vanstraelen, G.

    1992-01-01

    The gas microstrip chamber has been developed from concept to experimental system during the past three years. A pattern of anode and grid lines are microfabricated onto a dielectric substrate and configured as a high-resolution MWPC. Four recent developments are described: Suitable plastic substrates and lithography techniques for large-area chambers; non-planar silicon-based chambers for 20 μm resolution; integrated on-board synchronous front-end electronics and data buffering; and a porous silicon active cathode for enhanced efficiency and time response. The microstrip chamber appears to be a promising technology for applications in microvertex, tracking spectrometer, muon spectrometer, and transition radiation detection. (orig.)

  5. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  6. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  7. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  8. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  9. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  10. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  11. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  12. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  14. The upgrade of the multiwire drift chamber readout of the HADES experiment at GSI: the optical end point board

    Energy Technology Data Exchange (ETDEWEB)

    Tarantola, Attilio; Michel, Jan; Muentz, Christian; Stroth, Joachim [Institut fuer Kernphysik, Goethe-Universitaet, Frankfurt (Germany); GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Froehlich, Ingo; Stroebele, Herbert [Institut fuer Kernphysik, Goethe-Universitaet, Frankfurt (Germany); Kolb, Burkhard; Traxler, Michael [GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Palka, Marek [Smoluchowski Institute of Physics, Jagiellonian University, Krakow (Poland); GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Wuestenfeld, Joern [Institut fuer Strahlenphysik, Forschungszentrum, Dresden-Rossendorf (Germany)

    2009-07-01

    One of the goal of the HADES upgrade project is the realization of a new data acquisition scheme for the 24 Multiwire Drift Chambers (MDCs), which allows to increase the readout speed of the 40.000 TDC channels. On the existing MDC Front End Electronic (FEE) side an Optical End Point Board (OEPB) has been designed to control configuration and readout of the chamber's TDCs. The OEPB uses Plastic Optical Fibres (POF) for data transmission, which results in total electromagnetic immunity, amazing simplicity in handling and low power consumption. The employment of a Lattice ECP2/M FPGA with SERDES manages serial data transmission and its large resources allow for the storage of several events close-to-front-end. As 400 OEPBs will be located in the detector acceptance, dedicated FPGA hardware is used to detect Single Event Upsets (SEUs).

  15. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to gro...

  16. Emulsion chamber response and PCR mass composition according to the PAMIR data

    International Nuclear Information System (INIS)

    Puchkov, V.S.; Borisov, A.S.; Denisova, V.G.; Guseva, Z.M.; Kanevskaya, E.A.; Kogan, M.G.; Maximenko, V.M.; Morozov, A.E.; Mukhamedshin, R.A.; Pyatovsky, S.E.

    2009-01-01

    The response of the X-ray emulsion chamber (XREC) is analyzed. The code GEANT 3.21 has been adopted for simulating the measurement procedure in the PAMIR XREC experiment. The contribution of below threshold gamma-quanta, the mutual influence of neighboring electromagnetic cascades in gamma-families, identification against a background by Raleigh's criterion are taken into account. Our earlier publications overestimated the family energy by about (10-20)% and the real family angular distribution is less steeper than the measured one. Consequently, the gamma-family intensity should be reduced by 1.10-1.15 times. It means, that the Pamir experiment estimate of the PCR proton fraction in the energy region 1-100PeV slowly decreases from 25% to 20%.

  17. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  18. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  19. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  20. A combination drift chamber/pad chamber for very high readout rates

    International Nuclear Information System (INIS)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P.; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M.; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized (∼1 x 2 m 2 ) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers

  1. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. (Wisconsin Univ., Madison, WI (United States)); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. (Pavia Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  2. The freely localized microwave discharge in air in the focused beam of the electromagnetic energy

    International Nuclear Information System (INIS)

    Alexandrov, A.F.; Kuzovnikov, A.A.; Shibkov, V.M.

    1995-01-01

    The successfull use of the microwave discharge in many applications make it necessary to research the physics of a new kind of discharge - the electrodeless microwave discharge in the focused beam, in the free space and to search for ways to optimize this discharge parameters. The breakdown was performed in a discharge chamber at approximately free space conditions: R/λ much-gt 1, where R = 1 m is the discharge chamber's dimension, λ = 2 divided-by 10 cm is the wavelength of the microwave radiation. The focused electromagnetic beam was formed by a trumped-lens antenna. The electric field E≤6 kV/cm, the density of energy flow S≤10 5 W/cm 2 , the wave is linearity polarized. The microwave pulse duration could be changed from 1 μs to 1 ms. The gas pressure (nitrogen, air) is varied from 1 to 760 torr

  3. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  4. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  5. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  6. Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment

    DEFF Research Database (Denmark)

    Hassager, Henrik Gert; Wiinberg, Alan; Dau, Torsten

    2017-01-01

    This study investigated the effects of fast-acting hearing-aid compression on normal-hearing and hearing-impaired listeners’ spatial perception in a reverberant environment. Three compression schemes—independent compression at each ear, linked compression between the two ears, and “spatially ideal......” compression operating solely on the dry source signal—were considered using virtualized speech and noise bursts. Listeners indicated the location and extent of their perceived sound images on the horizontal plane. Linear processing was considered as the reference condition. The results showed that both...... independent and linked compression resulted in more diffuse and broader sound images as well as internalization and image splits, whereby more image splits were reported for the noise bursts than for speech. Only the spatially ideal compression provided the listeners with a spatial percept similar...

  7. Space charge in ionization detectors and the NA48 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Chollet, J.C.; Cirilli, M.; Cogan, J.; Costantini, F.; Crepe, S.; Cundy, D.; Fantechi, R.; Fayard, L.; Fischer, G.; Formica, A.; Frabetti, P.L.; Funk, W.; Gianoli, A.; Giudici, S.; Gonidec, A.; Gorini, B.; Govi, G.; Iconomidou-Fayard, L.; Kekelidze, V.; Kubischta, W.; Luitz, S.; Mannelli, I.; Martini, M.; Mikulec, I.; Norton, A.; Ocariz, J.; Schinzel, D.; Sozzi, M.; Tatishvili, G.; Tkatchev, A.; Unal, G.; Velasco, M.; Vossnack, O.; Wahl, H.

    1999-01-01

    The subject of space charge due to positive ions slowly moving in parallel plate ionization chambers is considered. A model for the degradation of the detector response is developed, with particular emphasis on electromagnetic calorimeters.The topics discussed include: (a) the stationary; (b) the time dependent cases; (c) the limit of very large space charge; (d) the electric field dependence of the electron drift velocity; (e) the effect of longitudinal development of showers; (f) the behaviour of the average reductions of response; (g) the non-uniformity of response for different positions of the shower axis inside the cell defined by the electrodes. The NA48 calorimeter is used as application and for comparison of results

  8. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  9. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  10. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  11. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  12. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  13. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  14. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  15. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  16. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  17. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  18. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  19. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  20. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  1. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  2. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  3. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  4. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  5. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  6. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  7. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  8. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan

    2007-01-01

    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  9. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  10. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  11. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  12. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  13. Sub-sampling-based 2D localization of an impulsive acoustic source in reverberant environments

    KAUST Repository

    Omer, Muhammad

    2014-07-01

    This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room environment using low sampling rates. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the hardware and computational complexity and decreases the communication between the microphones and the centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate the performance of the proposed technique.

  14. Sub-sampling-based 2D localization of an impulsive acoustic source in reverberant environments

    KAUST Repository

    Omer, Muhammad; Quadeer, Ahmed A; Sharawi, Mohammad S; Al-Naffouri, Tareq Y.

    2014-01-01

    This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room environment using low sampling rates. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the hardware and computational complexity and decreases the communication between the microphones and the centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate the performance of the proposed technique.

  15. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. A conceptual design for the STAR endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.G.

    1993-01-01

    In order to make measurements of the gluon spin or helicity distribution in the proton or the gluon spin average distribution in nuclei, both a barrel and an endcap electromagnetic calorimeter must be added to the STAR baseline detector. Information on the gluon will be obtained in inclusive direct-γ + jet and jet + jet production. In order to be sensitive to the proper gluon kinematic regions, either the direct-γ or the jet must be in the endcap electromagnetic calorimeter (EMC). However, the endcap EMC is not large enough to completely contain the jets, so that the barrel EMC is also needed. This note describes a conceptual design for the STAR endcap EMC. Constraints are imposed by the space available between the end of the time projection chamber (TPC) and the inside of the magnet pole tip iron. Severe constraints also occur near |η| = 1, where the barrel and endcap EMC's meet. Cables from detectors inside the EMC, including those from the TPC, will exit from STAR near |η| = 1. The constraints in this region have not yet been seriously studied since no decision on the detailed routing of these cables was available at the time this work was being done. This report includes details of the conceptual design, analytical and finite element calculations of stresses in various structural members for the endcap EMC, and a preliminary cost estimate

  17. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  18. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  19. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  20. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  1. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  2. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  3. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  4. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  6. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  7. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  8. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  9. A new definition of boundary point between early reflections and late reverberation in room impulse responses.

    Science.gov (United States)

    Hidaka, Takayuki; Yamada, Yoshinari; Nakagawa, Takehiko

    2007-07-01

    The early reflections in the room impulse response are usually defined as those observed within the initial 80 ms after the arrival of the direct sound, after which time the sound field is called reverberant. This number was chosen from measurements of other functions in a limited number of halls. In order to give an objective foundation to this time separation and to establish a physical indicator for it, a new method is proposed that defines a "transition time t(L)," which is the time at which the energy correlation between the direct plus initial sound and the subsequent decaying sound first achieves a specified low value. For various halls this number is shown and its relevance as a new parameter is discussed.

  10. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    Science.gov (United States)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  11. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  12. Electromagnetic Interference from Swimming Pool Generator Current Causing Inappropriate ICD Discharges

    Directory of Open Access Journals (Sweden)

    Edward Samuel Roberto

    2017-01-01

    Full Text Available Electromagnetic interference (EMI includes any electromagnetic field signal that can be detected by device circuitry, with potentially serious consequences: incorrect sensing, pacing, device mode switching, and defibrillation. This is a unique case of extracardiac EMI by alternating current leakage from a submerged motor used to recycle chlorinated water, resulting in false rhythm detection and inappropriate ICD discharge. A 31-year-old female with arrhythmogenic right ventricular cardiomyopathy and Medtronic dual-chamber ICD placement presented after several inappropriate ICD shocks at the public swimming pool. Patient had never received prior shocks and device was appropriate at all regular follow-ups. Intracardiac electrograms revealed unique, high-frequency signals at exactly 120 msec suggestive of EMI from a strong external source of alternating current. Electrical artifact was incorrectly sensed as a ventricular arrhythmia which resulted in discharge. ICD parameters including sensing, pacing thresholds, and impedance were all normal suggesting against device malfunction. With device failure and intracardiac sources excluded, EMI was therefore strongly suspected. Avoidance of EMI source brought complete resolution with no further inappropriate shocks. After exclusion of intracardiac interference, device malfunction, and abnormal settings, extracardiac etiologies such as EMI must be thoughtfully considered and excluded. Elimination of inappropriate shocks is to “first, do no harm.”

  13. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  14. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  15. SU-F-T-321: The Effect of an Electromagnetic Array Used for Patient Localization and Tumor Tracking On OSLD in Vivo Dosimetry

    International Nuclear Information System (INIS)

    Rea, A; Kuruvilla, A; Gill, G; Riegel, A; Klein, E

    2016-01-01

    Purpose: The purpose of this study was to observe the effect of an electromagnetic array used for patient localization and tumor tracking on optically-stimulated luminescent in-vivo dosimetry. Methods: A linear accelerator equipped with four photon energies was used to irradiate optically stimulated luminescent dosimeters (OSLDs) at the respective dmax depths and in the buildup region, with and without the presence of an electromagnetic array used for tumor tracking and patient localization. The OSLDs were placed on solid water slabs under 5 mm bolus and on each face of an octagonal phantom, and irradiated using both static beam and arc geometry, with and without the electromagnetic array under our setup. The electromagnetic array was placed 6 cm above the phantom to coincide with similar distances used during patient treatment. Ionization chamber measurements in a water phantom were also taken initially for comparison with the simple geometry OSLD measurements and published data. Results: Under simple geometry, a negligible change was observed at dmax for all energies when the electromagnetic array was placed over the setup. When measuring at five millimeter depth, increases of 1.3/3.1/16/18% were observed for energies 4X/6X/10X/15X respectively when the electromagnetic array was in place. Measurements using the octagonal phantom yielded scattered results for the lateral and posterior oblique fields, and showed increases in dose to the OSLDs placed on the anterior and lateral anterior faces of the phantom. Conclusion: Placing the electromagnetic array very close to the patient’s surface acts as a beam spoiler in the buildup region (at 5 mm depth), which in turn causes an increase in the measured dose reading of the OSLD. This increase in dose is more pronounced when the OSLD is placed directly underneath the electromagnetic array than off to one side or the other.

  16. Potential Magma Chambers beneath the Tatun Volcanic Area, Taiwan: Results from Magnetotelluric Survey and Monitoring

    Science.gov (United States)

    Chen, C.

    2013-12-01

    Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.

  17. Shielding and filtering techniques to protect sensitive instrumentation from electromagnetic interference caused by arc welding

    International Nuclear Information System (INIS)

    Kalechstein, W.

    1997-01-01

    Electromagnetic interference (EMI) caused by arc welding is a concern for sensitive CANDU instrumentation and control equipment, especially start-up instrumentation (SUI) and ion chamber instruments used to measure neutron flux at low power. Measurements of the effectiveness of simple shielding and filtering techniques that may be applied to limit arc welding electromagnetic emissions below the interference threshold are described. Shielding configurations investigated include an arrangement in which the welding power supply, torch (electrode holder), interconnecting cables and welder operator were housed in a single enclosure and a more practical configuration of separate shields for the power supply, cables and operator with torch. The two configuration were found to provide 30 dB and 26 dB attenuation, respectively, for arc welder electric-field emissions and were successful in preventing EMI in SUI set up just outside the shielding enclosures. Practical improvements that may be incorporated in the shielding arrangement to facilitate quick setup in the field in a variety of application environments, while maintaining adequate EMI protection, are discussed. (author)

  18. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  2. Time delay estimation in a reverberant environment by low rate sampling of impulsive acoustic sources

    KAUST Repository

    Omer, Muhammad

    2012-07-01

    This paper presents a new method of time delay estimation (TDE) using low sample rates of an impulsive acoustic source in a room environment. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. The RIR is considered a sparse phenomenon and a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) is utilized for its estimation from the low rate sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR and their difference yields the desired time delay. Low sampling rates reduce the hardware and computational complexity and decrease the communication between the microphones and the centralized location. The performance of the proposed technique is demonstrated by numerical simulations and experimental results. © 2012 IEEE.

  3. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  4. Accurate simulation of ionisation chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Sempau, Josep; Andreo, Pedro

    2011-01-01

    Ionisation chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, for various decades, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects can be sizeable when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artefact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics are discussed in the context of the transport model implemented in the PENELOPE code. The degree of violation of the Fano theorem for a simple, planar geometry, is used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It is shown that, with a suitable choice of transport parameters, PENELOPE simulates IC response with an accuracy of the order of 0.1%.

  5. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Sempau, Josep

    2010-01-01

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  6. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  7. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  8. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  9. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  10. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  11. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  12. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  13. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  14. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    Science.gov (United States)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  15. Reverberation time in class rooms – Comparison of regulations and classification criteria in the Nordic countries

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Brunskog, Jonas; Hoffmeyer, Dan

    2012-01-01

    Regulatory requirements or guidelines for classroom reverberation time exist in all five Nordic countries and in most of Europe – as well as other acoustic criteria for schools, e.g. concerning airborne and impact sound insulation, facade sound insulation and installation noise. There are several...... reasons for having such requirements: Improving learning efficiency for pupils and work conditions for teachers and reducing noise levels, thus increasing comfort for everyone. Instead of including acoustic regulatory requirements for schools directly in the building regulations, Iceland, Norway...... and Sweden have introduced acoustic quality classes A, B, C and D in national standards with class C referred to as regulatory requirements. These national classification standards are dealing with acoustic classes for several types of buildings. A classification scheme also exists in Finland...

  16. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    International Nuclear Information System (INIS)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert

    2017-01-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  17. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Nikutta, Robert, E-mail: tra3595@rit.edu [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States)

    2017-07-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  18. Proportional chamber with data analog output

    International Nuclear Information System (INIS)

    Popov, V.E.; Prokof'ev, A.N.

    1977-01-01

    A proportional multiwier chamber is described. The chamber makes it possible to determine angles at wich a pion strikes a polarized target. A delay line, made of 60-core flat cable is used for removing signals from the chamber. From the delay line, signals are amplified and successively injected into shapers and a time-to-amplitude converter. An amplitude of the time-to amplitude converter output signal unambiguously determines the coordinate of a point at which a particle strikes the chamber plane. There are also given circuits of amplifiers, which consist of a preamplifier with gain 30 and a main amplifier with adjustable gain. Data on testing the chamber with the 450 MeV pion beam is demonstrated. The chamber features an efficiency of about 98 per cent under load of 2x10 5 s -1

  19. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    Science.gov (United States)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  20. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  2. Development of an Acoustic Localization Method for Cavitation Experiments in Reverberant Environments

    Science.gov (United States)

    Ranjeva, Minna; Thompson, Lee; Perlitz, Daniel; Bonness, William; Capone, Dean; Elbing, Brian

    2011-11-01

    Cavitation is a major concern for the US Navy since it can cause ship damage and produce unwanted noise. The ability to precisely locate cavitation onset in laboratory scale experiments is essential for proper design that will minimize this undesired phenomenon. Measuring the cavitation onset is more accurately determined acoustically than visually. However, if other parts of the model begin to cavitate prior to the component of interest the acoustic data is contaminated with spurious noise. Consequently, cavitation onset is widely determined by optically locating the event of interest. The current research effort aims at developing an acoustic localization scheme for reverberant environments such as water tunnels. Currently cavitation bubbles are being induced in a static water tank with a laser, allowing the localization techniques to be refined with the bubble at a known location. The source is located with the use of acoustic data collected with hydrophones and analyzed using signal processing techniques. To verify the accuracy of the acoustic scheme, the events are simultaneously monitored visually with the use of a high speed camera. Once refined testing will be conducted in a water tunnel. This research was sponsored by the Naval Engineering Education Center (NEEC).

  3. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  4. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  5. Radiofrequency spark chambers and delay line resonators

    International Nuclear Information System (INIS)

    Sayag, Jacques

    1971-01-01

    According to a suggestion of A. Kastler, a spark chamber was excited by an undamped radiofrequency pulse and tracks about 1 mm wide obtained; the result was interpreted by computation of the coefficients of electronic amplification and partial ambipolar diffusion. This work led us to the construction of a new fast triggering undamped wave-train generator of very high tension (patent taken out by the C.E.A. under the no.: EN 7 134 650 the 27.9.1971). Since this apparatus uses a resonant storage line, its design implied a precise knowledge of high impedance delay lines. The experimental radiofrequency spectra of the input impedance of opened or short-circuited lines were plotted completely and analysed by the circuits theory, new measuring methods were established, dispersion relations accurately checked and the equivalence of the formulas, within the third order, with theses of Debye's Dipolar Absorption demonstrated. General properties of Hilbert's transform were also investigated. From the experimental point of view, the electromagnetic energy storage process was extended to the case of a liquid nitrogen-immersed resonant delay line. The good behavior of the cryogenic experiment, where the main difficulty of icing was overcame by the construction of special electrodes, offers great promise for extrapolation to superconductivity. (author) [fr

  6. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  7. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  8. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  9. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  10. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  11. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  12. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  13. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  14. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  15. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  16. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP.

  17. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  18. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  19. Impedances in lossy elliptical vacuum chambers

    International Nuclear Information System (INIS)

    Piwinski, A.

    1994-04-01

    The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)

  20. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  1. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  2. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP. (orig.).

  3. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  4. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  5. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  6. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  7. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  8. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  9. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  10. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  11. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  12. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  13. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  14. New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences

    Science.gov (United States)

    Garcia Perez, Luis Gines

    Electromagnetic shielding enclosures are simulated in this PhD thesis. Metallic enclosures with a frontal aperture have been implemented and shielding effectiveness has been calculated in frequency and time domains. The CST Microwave Studio application has been used, and necessary electromagnetic shielding measurements have been implemented in order to confirm the simulated results. An anechoic chamber and the network vector analyser ZVA 67 R&S have been employed. There were different set-ups that consist on two shielding enclosures with different apertures on their frontal walls, as well as an electric and a magnetic probes, and an external log-periodic antenna. The electromagnetic field shielding of enclosures against radiated interferences, and its study in the frequency and time domains requires to determine specific parameters for the measurement of the shielding effectiveness (SE). With this target recently it has been essayed indicators based on the peak reduction of electric and magnetic fields and the energy density in the time domain. Although many papers have been published with numeric simulations, rarely real measures in laboratory have been published. In the first part of this study, some important theoretical concepts have been explained, as the high intensity penetration of radiated fields in enclosures with apertures, several ways to define the shielding effectiveness, analytic formulations and different parameters among other concepts, in the frequency and time domains. Then, the system is defined, as from the implementations for simulations and calculations in CST Microwave Studio point of view, as from the set-ups implemented in laboratory point of view. In this section the features and utilization of the network vector analyser ZVA 67 R&S;, anechoic chamber design and dimensions, log-periodic antenna features, and all the different probes, enclosures and apertures employed have been detailed. After de system definition simulated and measured

  15. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  16. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Viyar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Puimedon, J.; Saens, K.; Salinas, A.; Sarsa, M.

    1993-01-01

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78 Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88 Y) when the chamber is filled with a mixture of Kr+0.2% H 2 under a pressure of 25 atm

  17. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  18. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  19. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  20. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  1. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    Science.gov (United States)

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  2. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  3. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  4. How to build a cloud chamber?

    International Nuclear Information System (INIS)

    Mariaud, C.

    2012-01-01

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO 2 snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  5. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  6. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  7. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  8. Electromagnetic engineering - from dc to light

    International Nuclear Information System (INIS)

    Austin, B.A.

    1984-01-01

    Electromagnetic engineering is of great importance to modern world. Some of its various applications can be found in communications science. There is little agreement between the East and West about electromagnetic radiation effects. Although the West believes that there is no danger in power frequency fields, standards for the maximum power densities to which humans may be exposed were laid down by various national and international bodies. Two other effects of electromagnetic energy include: a) The possible ignition of flammable vapours and gases by electromagnetic radiation and; b) the electromagnetic pulse. The application of radar is also discussed

  9. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  10. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  11. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  12. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  13. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    Science.gov (United States)

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  14. HVAC&R Equipment Environmental Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — Description:Large "Truck" ChamberThe large "truck" chamber provides controlled air conditions from -7 °C (20 °F) to 65 °C (150 °F).Air-Conditioner and Heat Pump Test...

  15. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  16. Ionization chamber for smoke detector and the like

    International Nuclear Information System (INIS)

    Rork, G.D.; Thorp, E.J.; Zegarski, R.J.

    1985-01-01

    This invention relates to detectors of the ionization type for detecting airborne particulate matter and, in particular, to the construction of an ionization chamber for such a detector. This invention may be used for detecting a variety of materials, such as dust, fog and the like, but is particularly useful for detecting combustion products such as smoke. The smoke detector ionization chamber has two electrodes connected to a source of electric power; means defining access openings for enabling air flow into and out of the chamber; and means for causing ionization within the chamber. It has control structure means within the chamber in the path of the airflow cooperating with the electrodes to establish within the chamber an electric field having a higher intensity close to the access openings and a lower intensity in the remainder of the chamber without significantly impairing the flow of neutral particles into the chamber. The control structure reduces airflow velocity within the chamber without adversely affecting the access of airborne particles to the chamber

  17. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  18. Measurement of optical blurring in a turbulent cloud chamber

    Science.gov (United States)

    Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.

    2016-10-01

    Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the

  19. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  20. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  1. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  2. Bicone vacuum chamber for ISR intersection

    CERN Multimedia

    1975-01-01

    This is one of the bicone chambers made of titanium for experiment R 702. The central corrugated part had a very thin titanium wall (0.28 mm). The first of these chambers collapsed in its central part when baked at 300 C (August 1975). After an intensive effort to develop better quality and reproducible welds for this special material, the ISR workshop was able to build two new chambers of this type. One of them was installed at I 7 for R 702 in 1976 and worked perfectly. It was at that time the most "transparent" intersection vacuum chamber. See also 7609219, 7609221.

  3. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  4. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  5. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    Science.gov (United States)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

  6. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  7. Multi-stage low-pressure avalanche chamber

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Peshekhonov, V.D.; Smykov, L.P.

    1985-01-01

    A multi-stage avalanche-chamber filled with isobutane operating at the pressure of 6 torr is described. The chamber comprises an amplifying gap, drift gap and multiwire proportional chamber with interelectrode gaps equal to 4 mm. The anode plane of the proportional chamber is winded of wire 2 μm in diameter with 2 mm pitch. The cathode are winded orthogonally to anode wires of wire 50 μm in diameter with 1 mm pitch. Drift and preamplifier gaps are formed by grid electrodes made of wire 50 μm in diameter with dimension of the cell equal to 1x1 mm. Width of the drift gap is 5 mm, width of the preamplification gap is 3 or 9 mm. Coordinate data are removed from the cathodes of the proportional chamber by means of delay lines. Sensitive square of the chamber equals 240x180 mm. Gas gain coefficient is 3x10 6 at its square nonuniformity equal to approximately 3%. Spatial resolution by both coordinates equals 170 μm; spatial resolution for isotropic α-emitters located close to the preamplifier gap is equal to 500 μm

  8. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    Science.gov (United States)

    Iyer, H. M.

    1984-04-01

    This paper is a review of seismic, gravity, magnetic and electromagnetic techniques to detect and delineate magma chambers of a few cubic kilometres to several thousand cubic kilometres volume. A dramatic decrease in density and seismic velocity, and an increase in seismic attenuation and electrical conductivity occurs at the onset of partial melting in rocks. The geophysical techniques are based on detecting these differences in physical properties between solid and partially molten rock. Although seismic refraction techniques, with sophisticated instrumentation and analytical procedures, are routinely used for detailed studies of crustal structure in volcanic regions, their application for magma detection has been quite limited. In one study, in Yellowstone National Park, U.S.A., fan-shooting and time-term techniques have been used to detect an upper-crustal magma chamber. Attenuation and velocity changes in seismic waves from explosions and earthquakes diffracted around magma chambers are observed near some volcanoes in Kamchatka. Strong attenuation of shear waves from regional earthquakes, interpreted as a diffraction effect, has been used to model magma chambers in Alaska, Kamchatka, Iceland, and New Zealand. One of the most powerful techniques in modern seismology, the seismic reflection technique with vibrators, was used to confirm the existence of a strong reflector in the crust near Socorro, New Mexico, in the Rio Grande Rift. This reflector, discovered earlier from data from local earthquakes, is interpreted as a sill-like magma body. In the Kilauea volcano, Hawaii, mapping seismicity patterns in the upper crust has enabled the modelling of the complex magma conduits in the crust and upper mantle. On the other hand, in the Usu volcano, Japan, the magma conduits are delineated by zones of seismic quiescence. Three-dimensional modelling of laterally varying structures using teleseismic residuals is proving to be a very promising technique for detecting and

  9. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  10. Integral methods in low-frequency electromagnetics

    CERN Document Server

    Solin, Pavel; Karban, Pavel; Ulrych, Bohus

    2009-01-01

    A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods

  11. A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-11-10

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  12. A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING

    International Nuclear Information System (INIS)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-01-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  13. Electromagnetic cascades produced by gamma-quanta with the energy Eγ=100-3500 MeV

    International Nuclear Information System (INIS)

    Slowinski, B.

    1990-01-01

    Fluctuations of the electron ionization loss (IL) in electromagnetic showers produced by gamma-quanta of energy E γ between 100 and 3500 MeV have been studied using pictures of the 180 l xenon bubble chamber of ITEP (Moscow). The distribution of the standard deviation σ A of the part A of the IL released along the shower axis and in its lateral direction was obtained and found to be approximately independent of Eγ at Eγ≥500 MeV when expressed as a fuction of A and normalized to maximum value of the σ A in the case of the lateral shower development. The relative spread of the average longitudinal and lateral e.m. shower dimensions are discussed too. 18 refs.; 4 figs

  14. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  15. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    Scragg, R. L.; Parker, A. B.

    1984-01-01

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  16. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  17. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  18. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  19. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  20. Bi-cone vacuum chamber in the ISR

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The "bi-cone" vacuum chamber in ISR intersection I-7, for experiment R702. Made from 0.28 mm thick titanium, it was at its time the most transparent chamber ever built. Ian Wilson is standing next to the chamber. See also 7609219.

  1. Device for gamma-chamber transducer alignment

    International Nuclear Information System (INIS)

    Mirkhodzhaev, A.Kh.; Kuznetsov, N.K.; Ostryj, Yu.E.

    1987-01-01

    The device consists of the upper part of the gamma chamber pilar to which a rod is rigidly fastened with a disk of acrylic plastic moving freely on the opposite end. The disk is placed coaxially and is equal to the gamma chamber detector crystal. The device makes it possible to use ordinary medical couches covered with a porolone mattress when the gamma chamber detector is placed below

  2. Bubble chamber: Omega production and decay

    CERN Document Server

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  3. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  4. Electromagnetic force support for thermonuclear device

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.

    1992-01-01

    The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)

  5. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  6. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  7. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  8. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  9. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  10. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  11. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  12. Temperature Studies for ATLAS MDT BOS Chambers

    CERN Document Server

    Engl, A.; Biebel, O.; Mameghani, R.; Merkl, D.; Rauscher, F.; Schaile, D.; Ströhmer, R.

    Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber ...

  13. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  14. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  15. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  16. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  17. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  18. Note: Small anaerobic chamber for optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Agarwal, Rachna; Cramer, William A. [Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  19. Structural Analysis of Extended Plasma Focus Chamber

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Abdul Halim Baijan; Siti Aiasah Hashim

    2016-01-01

    Accelerator Development Centre (ADC) of Nuclear Malaysia intends to upgrade the plasma focus device. It involves the extension part placed on top of the existing plasma focus vacuum chamber. This extended vacuum chamber purposely to give an extra space in conducting experiments on the existing plasma focus chamber. The aim of upgrading the plasma focus device is to solve the limitation in research and analysis of sample due to its done in an open system that cause analysis of samples is limited and less optimal. This extended chamber was design in considering the ease of fabrication as well as durability of its structural. Thus, this paper discusses the structural analysis in term of pressure loading effect in extended chamber. (author)

  20. Attracting electromagnet for control rod

    International Nuclear Information System (INIS)

    Kato, Kazuo; Sasaki, Kotaro.

    1989-01-01

    Non-magnetic material plates with inherent resistivity of greater than 20 μΩ-cm and thickness of less than 3 mm are used for the end plates of attracting electromagnets for closed type control rods. By using such control rod attracting electromagnets, the scram releasing time can be shortened than usual. Since the armature attracting side of the electromagnet has to be sealed by a non-magnetic plate, a bronze plate of about 5 mm thickness has been used so far. Accordingly, non-magnetic plate is inserted to the electromagnet attracting face to increase air source length for improving to shorten the scram releasing time. This method, however, worsens the attracting property on one hand to require a great magnetomotive force. For overcoming these drawbacks, in the present invention, the material for tightly closing end plates in an electromagnet is changed from bronze plate to non-magnetic stainless steel SUS 303 or non-magnetic Monel metal and, in addition, the plate thickness is reduced to less than 5 mm thereby maintaining the attracting property and shortening the scram releasing time. (K.M.)

  1. Electromagnetic potentials without gauge transformations

    International Nuclear Information System (INIS)

    Chubykalo, A; Espinoza, A; Alvarado Flores, R

    2011-01-01

    In this paper, we show that the use of the Helmholtz theorem enables the derivation of uniquely determined electromagnetic potentials without the necessity of using gauge transformation. We show that the electromagnetic field comprises two components, one of which is characterized by instantaneous action at a distance, whereas the other propagates in retarded form with the velocity of light. In our attempt to show the superiority of the new proposed method to the standard one, we argue that the action-at-a-distance components cannot be considered as a drawback of our method, because the recommended procedure for eliminating the action at a distance in the Coulomb gauge leads to theoretical subtleties that allow us to say that the needed gauge transformation is not guaranteed. One of the theoretical consequences of this new definition is that, in addition to the electric E and magnetic B fields, the electromagnetic potentials are real physical quantities. We show that this property of the electromagnetic potentials in quantum mechanics is also a property of the electromagnetic potentials in classical electrodynamics.

  2. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  3. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  4. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  5. Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap

    International Nuclear Information System (INIS)

    D'yakov, V.E.

    1984-01-01

    Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients

  6. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  7. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  8. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  9. Nuclear design considerations for Z-IFE chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)]. E-mail: meier5@llnl.gov; Schmitt, R.C. [Bettis Atomic Power Laboratory, Pittsburgh, PA 15203 (United States); Abbott, R.P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Reyes, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)

    2006-02-15

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (X-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped recyclable transmission line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  10. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  11. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  12. PWCs and drift chambers at ISABELLE

    International Nuclear Information System (INIS)

    Okuno, H.; Teramoto, Y.; Wheeler, C.D.

    1978-01-01

    Rate effects in proportional chambers and drift chambers are addressed first. The widely used high-gas-gain chambers would have impaired performance at ISABELLE data rates. Improvement can be expected with lower gas gain, and this possibility is investigated with respect to position and time resolution. Results on chamber lifetime are summarized; space-charge effects, gain saturation, and radiation hardness of electronics are considered. The resolution of drift chambers is discussed in some detail; time resolution, double pulse resolution, and momentum resolution and multiple scattering are included. The expected high multiplicity of tracks from a single event, the high event rates, and the requirement for low gas gain necessitate revision of the methods for measuring the second coordinate. Known methods of two-dimensional point localization are summarized according to spatial accuracy, electronics requirements, and multihit capability. Delay lines, charge division, and cathode strips are considered. Particle identification by means of measurement of the relativistic rise of energy loss by conventional and unconventional means was investigated. 32 references, 3 figures, 4 tables

  13. Improved climatic chamber for desiccation simulation

    Directory of Open Access Journals (Sweden)

    Lozada Catalina

    2016-01-01

    Full Text Available The climatic chamber at the Universidad de Los Andes was improved for modeling desiccation in soil layers. This chamber allows the measurement of different environmental variables. In this research, evaporation tests were conducted in water imposing boundary conditions for drying, and then these tests were performed in a soil layer. The soil was prepared from a slurry state and was drying controlling the temperature, the infrared radiation, the wind velocity, and the relative humidity. In the first part of this paper, a description of the climatic chamber, operation ranges and theoretical work principles of the climatic chamber are presented. Then, the second part shows the results for desiccation in water and soil. The desiccation tests performed with the climatic chamber allow simulating all environmental conditions accurately during drying coupling the effect of all environmental variables. As a result, the evaporation rate increases with infrared radiation in soil and water. The rate at the beginning of the desiccation tests in clays is the same as in water. However, this evaporation rate decreases as the soil becomes desiccated.

  14. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  15. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  16. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  17. Effects of electromagnetic shielding cases for semiconductor-type electronic personal dosimeters on preventing electromagnetic interference

    International Nuclear Information System (INIS)

    Deji, Shizuhiko; Ito, Shigeki; Nishizawa, Kunihide; Saze, Takuya; Mori, Kazuyuki

    2005-01-01

    Performance of electromagnetic shielding cases for preventing malfunction of semiconductor-type electronic personal dosimeters (SEPDs) caused by high frequency electromagnetic fields emitted from a digital cellular telephone (cell phone) and a card reader of access control system were analyzed. The cases were handcrafted by using cloth of activated carbon fiber, polyester film laminated metal, and two kinds of metal netting. Five kinds of SEPDs put in the cases were exposed to the high frequency electromagnetic fields for 50 sec or 1 min. The cases prevented perfectly the malfunction due to the cell phone. The cases shortened distances required to prevent the malfunction due to the card reader, but did not prevent the malfunction. The electromagnetic immunity level of SEPD inserted in the cases increased from greater than 11.2 to greater than 18.7 times for the cell phone and from 1.1 to greater than 4.3 times for the card reader. The maximum of electromagnetic shielding effectiveness of each case was greater than 18.7 times for the cell phone and greater than 4.3 times for the card reader. (author)

  18. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    Science.gov (United States)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  19. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  20. Mixed field dosimetry with the twin chamber technique

    International Nuclear Information System (INIS)

    Burger, G.; Maier, E.

    1974-04-01

    For the separate dosimetry of the neutron- and gamma-component in a mixed beam it is principally possible to use two ionization chambers with different ratios of neutron- to gamma sensitivity. Several authors proposed for this purpose the use of a homogenious TE-chamber filled with the TE-gas and of a carbon-chamber filled with CO 2 -gas. This chamber combination is also commercially available in several countries. The chambers are normally equipped with a continuous gas-flow provision and with a waterproof-housing for the use within liquid phantoms. The application of such chambers for mixed field dosimetry in the intercomparison project of the ICRU at the RARAF-facility in Brookhaven (International Neutron Dosimetry Intercomparison - INDI) is described. (orig./HP) [de

  1. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  2. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  3. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  4. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  5. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  6. An experimental propane bubble chamber

    International Nuclear Information System (INIS)

    Rogozinski, A.

    1957-01-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [fr

  7. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  8. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  9. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  10. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  11. Production of gravitation waves by electromagnetic radiation

    International Nuclear Information System (INIS)

    Buchner, K.; Rosca, R.

    1980-01-01

    An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)

  12. Electromagnetic foundations of electrical engineering

    CERN Document Server

    Faria, J A Brandao

    2008-01-01

    The applications of electromagnetic phenomena within electrical engineering have been evolving and progressing at a fast pace. In contrast, the underlying principles have been stable for a long time and are not expected to undergo any changes. It is these electromagnetic field fundamentals that are the subject of discussion in this book with an emphasis on basic principles, concepts and governing laws that apply across the electrical engineering discipline. Electromagnetic Foundations of Electrical Engineering begins with an explanation of Maxwell's equations, from which the fundament

  13. Practical electron dosimetry: a comparison of different types of ionization chambers

    International Nuclear Information System (INIS)

    Dohm, O.S.; Christ, G.

    2002-01-01

    Since Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber). The perturbation correction factor at 60 Co radiation was determined experimentally as 1,029 ± 0,5% (Roos chamber) and 1,018 ± 0,5% (Markus chamber) for the investigated plane-parallel chambers. In addition, we could show that the Roos chambers do not have a larger chamber-to-chamber variation than the Farmer chambers. Likewise, our results suggest that Farmer chambers could be used for electron energies above 6 MeV. (orig.) [de

  14. Mathematics and electromagnetism

    International Nuclear Information System (INIS)

    Rodriguez Danta, M.

    2000-01-01

    Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)

  15. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  16. Ionization chamber correction factors for MR-linacs.

    Science.gov (United States)

    Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-07

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  17. Ionization chamber correction factors for MR-linacs

    Science.gov (United States)

    Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-01

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  18. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    International Nuclear Information System (INIS)

    Revel, G M; Martarelli, M; Chiariotti, P

    2010-01-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project

  19. Diagnosing the Kinematics of the Tori in Active Galactic Nuclei with the Velocity-resolved Reverberation Mapping of the Narrow Iron K α Line

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuan; Li Xiaobo, E-mail: liuyuan@ihep.ac.cn, E-mail: lixb@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918-3, Beijing 100049 (China)

    2017-07-20

    The properties of the dusty tori in active galactic nuclei (AGNs) have been investigated in detail, mainly focusing on the geometry and components; however, the kinematics of the torus are still not clear. The narrow iron K α line at 6.4 keV is thought to be produced by the X-ray reflection from the torus. Thus, the velocity-resolved reverberation mapping of it is able to constrain the kinematics of the torus. Such effort is limited by the spectral resolution of current charged coupled device (CCD) detectors and should be possible with the microcalorimeter on the next generation X-ray satellite. In this paper, we first construct the response functions of the torus under a uniform inflow, a Keplerian rotation, and a uniform outflow. Then the energy-dependent light curve of the narrow iron K α line is simulated according to the performance of the X-ray Integral Field Unit in Athena. Finally, the energy-dependent cross-correlation function is calculated to reveal the kinematic signal. According to our results, 100 observations with 5 ks exposure of each are sufficient to distinguish the above three velocity fields. Although the real geometry and velocity field of the torus could be more complex than we assumed, the present result proves the feasibility of the velocity-resolved reverberation mapping of the narrow iron K α line. The combination of the dynamics of the torus with those of the broad-line region and the host galaxy is instructive for the understanding of the feeding and feedback process of AGNs.

  20. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  1. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  2. Statistical fluctuations of electromagnetic transition intensities and electromagnetic moments in pf-shell nuclei

    International Nuclear Information System (INIS)

    Hamoudi, A.; Shahaliev, E.; Nazmitdinov, R. G.; Alhassid, Y.

    2002-01-01

    We study the fluctuation properties of ΔT=0 electromagnetic transition intensities and electromagnetic moments in A∼60 nuclei within the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a 56 Ni core. The distributions of the transition intensities and of the electromagnetic moments are well described by the Gaussian orthogonal ensemble of random matrices. In particular, the transition intensity distributions follow a Porter-Thomas distribution. When diagonal matrix elements (i.e., moments) are included in the analysis of transition intensities, the distributions remain Porter-Thomas except for the isoscalar M1. This deviation is explained in terms of the structure of the isoscalar M1 operator

  3. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  4. Evaluation of carbon dioxide dissipation within a euthanasia chamber.

    Science.gov (United States)

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.

  5. D0 central tracking chamber performance studies

    International Nuclear Information System (INIS)

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an RΦ tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against γ → e + e - events

  6. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  7. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  8. Hadronic processes and electromagnetic corrections

    International Nuclear Information System (INIS)

    Scimemi, I.

    2004-01-01

    The inclusion of electromagnetism in a low energy effective theory is worth further study in view of the present high precision experiments (muon g - 2, π 0 → γγ, τ decays, etc.). In particular in many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. The theoretical problems that I want to point out here are following: the splitting of a pure QCD and a pure electromagnetic part in a hadronic process is model dependent: is it possible to parametrise in a clear way this splitting? What kind of information (scale dependence, gauge dependence,) is actually included in the parameters of the low energy effective theory? I will attempt to answer these questions introducing a possible convention to perform the splitting between strong and electromagnetic parts in some examples

  9. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  10. Electromagnetic forces on type-II superconducting rotating cylinders

    International Nuclear Information System (INIS)

    Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.

    1995-01-01

    Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)

  11. The Shock and Vibration Bulletin. Part 2. Measurement Techniques and Data Analysis, Dynamic Measurements, Vibration and Acoustics

    Science.gov (United States)

    1980-09-01

    Smallwood and D. L. Gregory, Sandia Laboratories, Albuquerque, NM A NEW METHOD OF IMPROVING SPECTRA SHAPING IN REVERBERANT CHAMBERS...DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman , OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...RANDOM VIBRATION EXTRENAL CONTROL STRATEGY D. 0. Smallwood D. L. Gregory Sandia Laboratories Albuquerque, NM This paper discusses the theoretical basis for

  12. Argus drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P

    1983-11-15

    The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.

  13. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  14. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  15. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  16. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  17. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  18. Transformation electromagnetics and metamaterials fundamental principles and applications

    CERN Document Server

    Werner, Douglas H

    2013-01-01

    Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices.Transformation Electromagnetics and Metamaterials: Fundamental Princ

  19. Analyzing high school students' reasoning about electromagnetic induction

    Science.gov (United States)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  20. Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Remus Oşan

    2011-02-01

    Full Text Available One hallmark feature of consolidation of episodic memory is that only a fraction of original information, which is usually in a more abstract form, is selected for long-term memory storage. How does the brain perform these differential memory consolidations? To investigate the neural network mechanism that governs this selective consolidation process, we use a set of distinct fearful events to study if and how hippocampal CA1 cells engage in selective memory encoding and consolidation. We show that these distinct episodes activate a unique assembly of CA1 episodic cells, or neural cliques, whose response-selectivity ranges from general-to-specific features. A series of parametric analyses further reveal that post-learning CA1 episodic pattern replays or reverberations are mostly mediated by cells exhibiting event intensity-invariant responses, not by the intensity-sensitive cells. More importantly, reactivation cross-correlations displayed by intensity-invariant cells encoding general episodic features during immediate post-learning period tend to be stronger than those displayed by invariant cells encoding specific features. These differential reactivations within the CA1 episodic cell populations can thus provide the hippocampus with a selection mechanism to consolidate preferentially more generalized knowledge for long-term memory storage.