WorldWideScience

Sample records for electromagnetic resonance discovered

  1. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  2. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  3. Analytic Solution of the Electromagnetic Eigenvalues Problem in a Cylindrical Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Fermilab; Martinello, Martina [Fermilab

    2016-10-06

    Resonant accelerating cavities are key components in modern particles accelerating facilities. These take advantage of electromagnetic fields resonating at microwave frequencies to accelerate charged particles. Particles gain finite energy at each passage through a cavity if in phase with the resonating field, reaching energies even of the order of $TeV$ when a cascade of accelerating resonators are present. In order to understand how a resonant accelerating cavity transfers energy to charged particles, it is important to determine how the electromagnetic modes are exited into such resonators. In this paper we present a complete analytical calculation of the resonating fields for a simple cylindrical-shaped cavity.

  4. Absorption of resonant electromagnetic radiation in electron-atom collisions

    International Nuclear Information System (INIS)

    Arslanbekov, T.U.; Pazdzerskii, V.A.; Usachenko, V.I.

    1986-01-01

    Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons

  5. Electromagnetic resonance waves. Resonancias de ondas electromagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs.

  6. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  7. Electromagnetic excitation of the two-phonon giant dipole resonance

    International Nuclear Information System (INIS)

    Emling, H.

    1994-03-01

    It is the aim of this article to summarize our present knowledge on the double isovector giant dipole resonance (DGDR) and our understanding of the electromagnetic excitation mechanism in heavy ion collisions in the relativistic energy regime. In the following chapter, a brief resume on the history of giant resonances is given and, based on their understanding, conclusions on the expected properties of multi-phonon resonances are drawn. In chapter 2, the essential features of electromagnetic heavy ion interactions at (near) relativistic velocities will be illuminated and the theoretical framework is presented, which describes such processes. New experimental methods were required for an appropriate study of Coulomb dissociation processes, which are discussed in chapter 3 together with the experimental results. Chapter 4 is dedicated to summarize the results from electromagnetic excitation studies, to compare with those from alternative methods and, in particular, to contrast experimental findings with theoretical predictions and to address open problems. (orig.)

  8. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  9. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin [Sensors and Instruments Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  10. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  11. Photoproduction of axions in a resonant electromagnetic cavity

    International Nuclear Information System (INIS)

    Dang Van Soa; Hoang Ngoc Long; Ha Huy Bang; Nguyen Mai Hung

    2000-09-01

    Photon-axion conversions in a resonant electromagnetic cavity with frequency equal to the axion mass are considered in detail by the Feynman diagram methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. From our results, some estimates for experimental conditions are given. (author)

  12. Resonance contribution to electromagnetic structure functions

    International Nuclear Information System (INIS)

    Bowling, A.L. Jr.

    1974-01-01

    The part of the pion and proton electromagnetic structure functions due to direct channel resonances in the virtual Compton amplitude is discussed. After a phenomenological discussion, based on the work of Bloom and Gilman, of resonance production in inelastic electroproduction, the single resonance contribution to the pion and proton structure functions is expressed in terms of transition form factors. Froissart-Gribov representations of the Compton amplitude partial waves are presented and are used to specify the spin dependence of the transition form factors. The dependence of the form factors on momentum transfer and resonance mass is assumed on the basis of the behavior of exclusive resonance electroproduction. The single resonance contributions are summed in the Bjorken limit, and the result exhibits Bjorken scaling. Transverse photons are found to dominate in the Bjorken limit, and the threshold behavior of the resonant part of the structure functions is related to the asymptotic behavior of exclusive form factors at large momentum transfer. The resonant parts of the annihilation structure functions are not in general given by simple analytic continuation in the scaling vari []ble ω' of the electroproduction structure functions. (Diss. Abstr. Int., B)

  13. Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy

    DEFF Research Database (Denmark)

    Miroshnichenko, A. E.; Flach, S.; Fistul, M.

    2001-01-01

    We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...

  14. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  15. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  16. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  17. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  18. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  19. Penetrating power of resonant electromagnetic induction imaging

    Directory of Open Access Journals (Sweden)

    Roberta Guilizzoni

    2016-09-01

    Full Text Available The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm−1 concealed behind them.

  20. Electromagnetic Meson Production in the Nucleon Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  1. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  2. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    Directory of Open Access Journals (Sweden)

    Irena Cosic

    2016-06-01

    Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.

  3. Determination of the electromagnetic field in a high-Tc linear superconducting resonator

    International Nuclear Information System (INIS)

    Trotel, A.; Sautrot, S.; Pyee, M.

    1994-01-01

    In this paper, the electromagnetic field configuration in a linear SHTC resonator is described. Two areas are considered: 1) the superconducting strip, 2) the dielectric around the strip. The calculation is based on the current density given by Bowers for an infinite superconducting line. The current density in the resonator is defined by these relations and the resonance conditions. (orig.)

  4. Can doubly strange dibaryon resonances be discovered at RHIC?

    International Nuclear Information System (INIS)

    Paganis, S. D.; Hoffmann, G. W.; Ray, R. L.; Tang, J.-L.; Udagawa, T.; Longacre, R. S.

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly strange dibaryon states are considered for experimental search using the STAR detector (solenoidal tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to ΛΛ and/or pΞ - , depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to pΞ - , but not ΛΛ. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states. (c) 2000 The American Physical Society

  5. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  6. Electromagnetic transitions between giant resonances within a continuum-RPA approach

    NARCIS (Netherlands)

    Rodin, VA; Dieperink, AEL

    2002-01-01

    A general continuum-RPA approach is developed to describe electromagnetic transitions between giant resonances. Using a diagrammatic representation for the three-point Green's function, an expression for the transition amplitude is derived which allows one to incorporate effects of mixing of single

  7. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  8. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    Science.gov (United States)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  9. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    Science.gov (United States)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  10. Autler-Townes doublet and electromagnetically induced transparency resonance probed by an ultrashort pulse train

    International Nuclear Information System (INIS)

    Soares, A A; De Araujo, Luis E E

    2010-01-01

    We study theoretically the interaction between an ultrashort pulse train and a three-level atom driven by a cw laser. We show that the pulse train can be employed to observe spectra of Autler-Townes doublet and electromagnetically induced transparency resonance that are time and frequency resolved. The observation of subnatural linewidth features associated with the electromagnetically induced transparency resonance is described. The temporal evolution of electromagnetically induced transparency of the pulse train is shown to exhibit new and different features compared to that of the related phenomenon of coherent population trapping. By matching the tooth separation of the frequency comb associated with the pulse train to that of the Autler-Townes doublet, quantum beats between the doublet components can be induced. We show that coherent accumulation of excitation plays a major role in the two studied phenomena.

  11. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Fu

    2018-02-01

    Full Text Available The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.

  12. Resonant scattering in the presence of an electromagnetic field

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1983-01-01

    The theory of resonant reactions, in the projection-operator formulation of Feshbach, is generalized to account for the presence of an external electromagnetic field. The theory is used as the basis for the construction of low-frequency approximations for the transition amplitude. Results obtained here for scattering in a laser field confirm earlier versions of the low-frequency approximation when the resonances are isolated. However, if there are several closely spaced resonances additional terms must be included (their importance magnified by the appearance of near singularities) which account for the effect of radiative transitions between pairs of nearly degenerate resonant states. The weak-field limit of this result yields a low-frequency approximation for single-photon spontaneous bremsstrahlung which, through the inclusion of correction terms associated with closely spaced resonances, provides an improvement over the Feshbach-Yennie version derived some time ago. A separate treatment is required to deal with the limiting case of a static external field and this is worked out here in the context of a time-dependent formulation of the scattering problem. Linear and quadratic Stark splitting of the resonance positions, and resonance broadening due to the tunneling mechanism, are expected to play a significant role in the static limit and these effects are included in the approximation derived here for the transition amplitude

  13. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  14. Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance

    International Nuclear Information System (INIS)

    Yang Lijun; Zhang Lianshui; Li Xiaoli; Han Li; Fu Guangsheng; Manson, Neil B.; Suter, Dieter; Wei Changjiang

    2005-01-01

    In this paper we study the nonlinear behavior of an electromagnetically induced transparency (EIT) resonance subject to a coherent driving field. The EIT is associated with a Λ three-level system where two hyperfine levels within an electronic ground state are coupled to a common excited state level by a coupling field and a probe field. In addition there is an radio-frequency (rf) field driving a hyperfine transition within the ground state. The paper contrasts two different situations. In one case the rf-driven transition shares a common level with the probed transition and in the second case it shares a common level with the coupled transition. In both cases the EIT resonance is split into a doublet and the characteristics of the EIT doublet are determined by the strength and frequency of the rf-driving field. The doublet splitting originates from the rf-field induced dynamic Stark effect and has close analogy with the Autler-Townes effect observed in three-level pump-probe spectroscopy study. The situation changes when the rf field is strong and the two cases are very different. One is analogous to two Λ three-level systems with EIT resonance associated with each. The other corresponds to a doubly driven three-level system with rf-field-induced electromagnetically induced absorption resonance. The two situations are modeled using numerical solutions of the relevant equation of motion of density matrix. In addition a physical account of their behaviors is given in terms of a dressed state picture

  15. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  16. Behavioral and Biological Effects of Resonant Electromagnetic Absorption in Rats.

    Science.gov (United States)

    1976-11-01

    for 23-550 MHz, biological phantom materials to simulate tissue properties, monopole -above-ground radiation chamber, design of a waveguide slot array...Resonant Electromagnetic Power Absorption in Rats" L T OF FTCTIF S A,’L i .LIS SFigure Pa 1 A photograiph of the monopole -above-gruund radiation...and mice without ground effects (L/2b = 3.25 where 21Tb is the "average" circumference of the animals) ........ .................... ... 20 8

  17. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    Science.gov (United States)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  18. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    International Nuclear Information System (INIS)

    Li, Xianping; Wei, Zhongchao; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-01

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  19. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianping; Wei, Zhongchao, E-mail: wzc@scnu.edu.cn; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-08

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  20. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  1. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  2. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    Science.gov (United States)

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  3. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  4. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    Science.gov (United States)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  5. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Javan, Ali; Kocharovskaya, Olga; Lee Hwang; Scully, Marlan O.

    2002-01-01

    We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving field the EIT linewidth is proportional to the square root of intensity and is independent of the Doppler width, similar to the laser-induced line narrowing effect described by Feld and Javan. In the limit of high intensity we recover the usual power-broadening case where the EIT linewidth is proportional to the intensity and inversely proportional to the Doppler width

  6. Narrow resonances in systems of spinning charged particles and their possible physical manifestations

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Shichanin, S.A.; Boos, V.I.; Savrin, V.I.

    1990-01-01

    In the paper the relativistic single-time equation is obtained describing electromagnetic interaction of two spinor charged particles in an arbitrary gauge. In the Feynman gauge it is show that there appear bound states embedded in the continuum, whose masses exactly coincide with the earlier calculated levels in the scalar model. These states can be related to the well-known narrow resonances discovered experimentally in e + e - and pp systems. In particular, the estimates of the resonance enhancement of the nucleosynthesis reaction of deuterium nuclei are presented. 19 refs

  7. Non-resonant electromagnetic energy harvester for car-key applications

    Science.gov (United States)

    Li, X.; Hehn, T.; Thewes, M.; Kuehne, I.; Frey, A.; Scholl, G.; Manoli, Y.

    2013-12-01

    This paper presents a novel non-resonant electromagnetic energy harvester for application in a remote car-key, to extend the lifetime of the battery or even to realize a fully energy autonomous, maintenance-free car-key product. Characteristic for a car-key are low frequency and large amplitude motions during normal daily operation. The basic idea of this non-resonant generator is to use a round flat permanent magnet moving freely in a round flat cavity, which is packaged on both sides by printed circuit boards embedded with multi-layer copper coils. The primary goal of this structure is to easily integrate the energy harvester with the existing electrical circuit module into available commercial car-key designs. The whole size of the energy harvester is comparable to a CR2032 coin battery. To find out the best power-efficient and optimal design, several magnets with different dimensions and magnetizations, and various layouts of copper coils were analysed and built up for prototype testing. Experimental results show that with an axially magnetized NdFeB magnet and copper coils of design variant B a maximum open circuit voltage of 1.1V can be observed.

  8. Detection of electromagnetic radiation using nonlinear materials

    Science.gov (United States)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  9. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    Science.gov (United States)

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  10. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. High-quality electromagnetically-induced absorption resonances in a buffer-gas-filled vapour cell

    Science.gov (United States)

    Brazhnikov, D. V.; Ignatovich, S. M.; Vishnyakov, V. I.; Skvortsov, M. N.; Andreeva, Ch; Entin, V. M.; Ryabtsev, I. I.

    2018-02-01

    Magneto-optical subnatural-linewidth resonances of electromagnetically-induced absorption (EIA) in an alkali vapour cell have been experimentally studied. The observation configuration includes using two counter-propagating pumps and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition in the 87Rb D 1 line in the presence of argon buffer gas. The EIA signals registered in a probe-wave transmission reach an unprecedented contrast of about 135% with respect to the wide ‘Doppler’ absorption pedestal and 29% with respect to the level of background transmission signal. These contrast values correspond to a relatively small resonance full width at half maximum of about 7.2 mG (5.2 kHz). The width of the narrowest EIA resonance observed is about 2.1 mG (1.5 kHz). To our knowledge, such a large relative contrast at the kHz-width is the record result for EIA resonances. In general, the work has experimentally proved that the magneto-optical scheme used has very good prospects for various quantum technologies (quantum sensors of weak magnetic fields, optical switches and other photonic elements).

  12. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    Science.gov (United States)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  13. A multi-purpose electromagnetic actuator for magnetic resonance elastography.

    Science.gov (United States)

    Feng, Yuan; Zhu, Mo; Qiu, Suhao; Shen, Ping; Ma, Shengyuan; Zhao, Xuefeng; Hu, Chun-Hong; Guo, Liang

    2018-04-19

    An electromagnetic actuator was designed for magnetic resonance elastography (MRE). The actuator is unique in that it is simple, portable, and capable of brain, abdomen, and phantom imagings. A custom-built control unit was used for controlling the vibration frequency and synchronizing the trigger signals. An actuation unit was built and mounted on the specifically designed clamp and holders for different imaging applications. MRE experiments with respect to gel phantoms, brain, and liver showed that the actuator could produce stable and consistent mechanical waves. Estimated shear modulus using local frequency estimate method demonstrated that the measurement results were in line with that from MRE studies using different actuation systems. The relatively easy setup procedure and simple design indicated that the actuator system had the potential to be applied in many different clinical studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Science.gov (United States)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  15. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  16. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-15

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  17. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    International Nuclear Information System (INIS)

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  18. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  19. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.

    Science.gov (United States)

    Moon, Han Seb; Noh, Heung-Ryoul

    2013-03-25

    We have experimentally and theoretically studied resonant two-photon absorption (TPA) and electromagnetically induced transparency (EIT) in the open ladder-type atomic system of the 5S(1/2) (F = 1)-5P(3/2) (F' = 0, 1, 2)-5D(5/2) (F″ = 1, 2, 3) transitions in (87)Rb atoms. As the coupling laser intensity was increased, the resonant TPA was transformed to EIT for the 5S(1/2) (F = 1)-5P(3/2) (F' = 2)-5D(5/2) (F″ = 3) transition. The transformation of resonant TPA into EIT was numerically calculated for various coupling laser intensities, considering all the degenerate magnetic sublevels of the 5S(1/2)-5P(3/2)-5D(5/2) transition. From the numerical results, the crossover from TPA to EIT could be understood by the decomposition of the spectrum into an EIT component owing to the pure two-photon coherence and a TPA component caused by the mixed term.

  20. Propagation of electromagnetic waves in the plasma near electron cyclotron resonance: Undulator-induced transparency

    International Nuclear Information System (INIS)

    Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.

    2005-01-01

    Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations

  1. Electromagnetic Fields in Reverberant Environments

    NARCIS (Netherlands)

    Vogt-Ardatjew, Robert Andrzej

    2017-01-01

    The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical

  2. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  3. Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators

    Science.gov (United States)

    Huang, Yanyi; Poon, Joyce K. S.; Liang, Wei; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2005-08-01

    By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices.

  4. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  5. Electromagnetic design of a β=0.4 superconducting spoke resonator for a high intensity proton linac

    International Nuclear Information System (INIS)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2015-01-01

    Here we present electromagnetic design simulations of a superconducting single-spoke resonator with a geometrical beta of 0.4 and operating at 325 MHz for a high intensity proton linac (HIPL). The spoke equatorial and base parameters were optimized to minimize the peak electric and peak magnetic fields and maximize the shunt impedance, while keeping the same resonant frequency. Variation of the surface magnetic fields was investigated as a function of the spoke base shape, and it was found that an elliptical profile is preferred over a circular or racecourse profile with E peak /E acc =4.71, E peak /E acc =4.33 (mT/(MV/m)) and R/Q=272 Ω. (author)

  6. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  7. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  8. The theory of electromagnetism

    CERN Document Server

    Jones, D S

    1964-01-01

    The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The

  9. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  10. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  11. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  12. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Pophof, B.; Brix, G.

    2017-01-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de

  13. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  14. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    Science.gov (United States)

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  15. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    International Nuclear Information System (INIS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-01-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of −38.97 dB at 10.81 GHz and an absorption band with RL under −10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application. - Highlights: • Hcp-cobalt particles were prepared by a liquid phase reduction method. • The saturation magnetization was less than that of hcp-Co single crystals. • The permittivity presents multi-nonlinear dielectric resonance. • The real part of permeability decreases with frequency, and the imaginary part presents a wide resonant peak. • The paraffin-based composite possessed a minimum RL of −38.97 dB at 10.81 GHz

  16. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    Science.gov (United States)

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.

  17. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  18. Online monitoring of pipe wall thinning by electromagnetic acoustic resonance method

    International Nuclear Information System (INIS)

    Urayama, Ryoichi; Takagi, Toshiyuki; Uchimoto, Tetsuya; Kanemoto, Shigeru

    2013-01-01

    The electromagnetic acoustic resonance (EMAR) method provides accurate and stable evaluation in high temperature environment, and it is an effective tool for online monitoring. In this study, the EMAR method and the superposition of the n-th compression (SNC) for data processing are applied to online monitoring of pipe wall thinning, and the accuracy and reliability of the measurements are demonstrated through field tests using a large-scale corrosion test loop at high temperature. To measure the thickness of pipes with complicated wall thinning, the SNC extracts thickness information from the spectral responses of the EMAR. Results from monitoring test show that EMAR with SNC can evaluate pipe wall thinning with an accuracy of 10 μm at 165degC. In addition, time evaluation of evaluated thickness decreases monotonically all over the test duration, which indicates high stability of this measurement technique. (author)

  19. Resonant interaction of electromagnetic wave with plasma layer and overcoming the radiocommunication blackout problem

    Science.gov (United States)

    Bogatskaya, A. V.; Klenov, N. V.; Tereshonok, M. V.; Adjemov, S. S.; Popov, A. M.

    2018-05-01

    We present an analysis of the possibility of penetrating electromagnetic waves through opaque media using an optical-mechanical analogy. As an example, we consider the plasma sheath surrounding the vehicle as a potential barrier and analyze the overcoming of radiocommunication blackout problem. The idea is to embed a «resonator» between the surface on the vehicle and plasma sheath which is supposed to provide an effective tunneling of the signal to the receiving antenna. We discuss the peculiarities of optical mechanical analogy applicability and analyze the radio frequency wave tunneling regime in detail. The cases of normal and oblique incidence of radiofrequency waves on the vehicle surface are studied.

  20. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  1. Structures, systems and methods for harvesting energy from electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  2. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  3. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  4. Resonant emission of electromagnetic waves by plasma solitons

    International Nuclear Information System (INIS)

    Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.

    1988-01-01

    The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed

  5. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  6. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  7. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  8. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation

    Science.gov (United States)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  9. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation.

    Science.gov (United States)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (L s C p L p ) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  10. The power and beauty of electromagnetic fields

    CERN Document Server

    Morgenthaler, Frederic R

    2011-01-01

    Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.

  11. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  12. Reducing radar cross section by investigation electromagnetic materials

    Directory of Open Access Journals (Sweden)

    S. Komeylian

    2012-12-01

    Full Text Available Decreasing the Radar Cross Section (RCS is investigated in electromagnetic materials, i.e. double-positive (DPS , double-negative (DNG , epsilon-negative (ENG and mu-negative (MNG materials. The interesting properties of these materials lead to a great flexibility in manufacturing structures with unusual electromagnetic characteristics. The valid conditions for achieving the transparency and gaining resonance for an electrically small cylinder are established, in this corresponding The effect of incidence direction on RCS inclusive of transparency and resonance conditions is also explored ,through computer simulations for an electrically small cylinder.

  13. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to approx.15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. Other observations in 208 Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3 - state at 2.6 MeV, a strong branch to a 3 - state at 4.97 MeV from the same region, and transitions to various 1 - states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance)

  14. Electromagnetic modeling in accelerator designs

    International Nuclear Information System (INIS)

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described

  15. A review of electromagnetic missiles

    International Nuclear Information System (INIS)

    Wu, T.T.; Shen, H.M.; Myers, J.M.

    1988-01-01

    Theoretical results are reviewed pertaining to the behavior of transient electromagnetic fields in the limit of great distances from their sources. In 1985 it was shown that pulses of finite total radiated energy could propagate to a distant receiver, delivering energy that decreases much more slowly than the usual r - 2 . Such pulses have been referred to as electromagnetic (EM) missiles. The types first discovered propagate along a straight line with a monotonically (though slowly) decreasing time-integrated flux. Other types are now known. One type can be made to rise and fall with increasing distance; another is the curved EM missile. Early efforts to classify EM missiles are reviewed

  16. Scattering of electromagnetic pulses by metal nanospheres in the vicinity of a Fano-like resonance

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Svita, S.Yu.

    2015-01-01

    In the work, radiation scattering by metal nanospheres in a dielectric matrix in case of ultrashort and long electromagnetic pulses is studied theoretically. Spectral efficiencies of backward and forward scattering by silver nanospheres in glass are calculated with the use of experimental data on the dielectric permittivity of silver. The presence of Fano-like resonances in spectral dependences of scattering efficiency caused by interference of dipole and quadrupole scatterings is shown. Backward and forward scattering of ultrashort pulses is calculated and analyzed. The obtained dependences of the total probability of scattering (during all time of the action of a pulse) on pulse duration demonstrate an essential distinction between an ultrashort case and a long pulse limit

  17. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  18. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily; Roqan, Iman S.

    2012-01-01

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  19. Electromagnetic-acoustic coupling in ferromagnetic metals at liquid-helium temperatures

    DEFF Research Database (Denmark)

    Gordon, R A

    1981-01-01

    Electromagnetic-acoustic coupling at the surface and in the bulk of ferromagnetic metals at liquid-helium temperatures has been studied using electromagnetically excited acoustic standing-wave resonances at MHz frequencies in a number of ferromagnetic metals and alloys of commercial interest...

  20. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    Science.gov (United States)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  1. Coherent electromagnetic excitation and disintegration of relativistic nuclei passing through crystals

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Shirokov, A.A.; Vorobiev, S.A.

    1990-01-01

    The energy dependence of electromagnetic excitation and electromagnetic disintegration cross sections for relativistic nuclei passing through crystals is investigated both theoretically and by means of computer simulation. For electromagnetic excitation, resonant peaks are found at definite energy values. An increase of electromagnetic excitation and disintegration cross sections in crystals at very high energies is found to be due to coherent addition of amplitudes. Numerical results are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron disintegration. (orig.)

  2. Nonlinear self-precession and wavenumber shift of electromagnetic waves under resonance and of Alfven waves in plasmas

    International Nuclear Information System (INIS)

    Bhattacharyya, B.; Chakraborty, B.

    1979-01-01

    Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)

  3. Modeling and Experimental Verification of an Electromagnetic and Piezoelectric Hybrid Energy Harvester

    Directory of Open Access Journals (Sweden)

    Fan Yuanyuan

    2016-11-01

    Full Text Available This paper describes mathematical models of an electromagnetic and piezoelectric hybrid energy harvesting system and provides an analysis of the relationship between the resonance frequency and the configuration parameters of the system. An electromagnetic and piezoelectric energy harvesting device was designed and the experimental results showed good agreement with the analytical results. The maximum load power of the hybrid energy harvesting system achieved 4.25 mW at a resonant frequency of 18 Hz when the acceleration was 0.7 g, which is an increase of 15% compared with the 3.62 mW achieved by a single electromagnetic technique.

  4. Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell

    International Nuclear Information System (INIS)

    Yang Bao-Dong; Gao Jing; Liang Qiang-Bing; Wang Jie; Zhang Tian-Cai; Wang Jun-Min

    2011-01-01

    In a Doppler-broadened ladder-type cesium atomic system (6S 1/2 -6P 3/2 -8S 1/2 ), this paper characterizes electromagnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P 3/2 F' = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S 1/2 F = 4−6P 3/2 F' = 5−8S 1/2 F″ = 4 transitions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. A novel noncontact electromagnetic field-based sensor for the monitoring of resonant fatigue tests

    International Nuclear Information System (INIS)

    Nam, Si-Byung; Yun, Gun Jin; Binienda, Wieslaw; Carletta, Joan; Kim, Dong-Han

    2011-01-01

    In this paper, a prototype of an electromagnetic field-based (EFB) vibration sensor that uses a novel sensing technique to monitor the resonant fatigue testing of a conductive and/or ferromagnetic target specimen is presented. The distance from the target to a coil within the sensor affects the impedance of the coil. The electronic circuitry for the sensor consists of a relaxation oscillator, an embedded microprocessor module and a high-speed digital-to-analog converter. The impedance of the coil determines the frequency of oscillation of the relaxation oscillator's output, so that vibration of the target causes changes in the oscillation frequency. A timer in the embedded microprocessor module is used to count the oscillations, producing a digital signal that indicates the coil-to-target distance. The digital signal is instantaneously converted to an analog signal to produce the sensor's output. The key technologies proposed include: (1) a novel timer counting method using the input capture functionality and timer of the embedded microprocessor module and (2) significant simplification of the analog electronic circuitry. The performance of the proposed sensor has been verified using AISI 1095 carbon steel and Al6061–T6 aluminum alloy specimens during resonant fatigue tests. The sensor shows a good linearity between displacement amplitudes and output voltages

  6. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  7. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  8. Emission and formation of electromagnetic pulses in cylindrical systems

    International Nuclear Information System (INIS)

    Lomize, L.G.; Sveshnikova, N.N.; Kuz'min, V.A.

    1983-01-01

    During the passage of a charged particle bunch through a cylindrical resonator after the process of field formation has been over the radiation, having separated from the intrinsic field, freely propagates over the resonator volume while undergoing multiple reflections from the resonator walls. As the numerical experiments have shown not only localized reflections from the resonator walls but the distributed reflections from the near-axial region take place; they result in the formation of a short intense pulse of the accelerating field along the resonator axis. The pulse runs in the direction of the bunch motion and is responsible for the process of particle autoacceleration. Transformations of the electromagnetic pUlse shape at subsequent reflections are rather of a regular character and repeated almost periodically in a certain period of time during which the light in the vacuum covers eight radii of the resonator. Conservation of the pulse shape from a period to another proceeds the more precisely, the shorter the range of the electromagnetic pulse is as compared with the resonator radius. If the resonator is permeated by successive bunches, then at a pulse frequency, for which the wave length is equal to eight radii of the resonator, a pulse resonance should arise, while at the wave length eqUal to four resonator radii a pulse antiresonance should arise

  9. Time-domain, nuclear-resonant, forward scattering: the classical approach

    International Nuclear Information System (INIS)

    Hoy, G.R.

    1997-01-01

    This paper deals with the interaction of electromagnetic radiation with matter assuming the matter to have nuclear transitions in resonance with incident electromagnetic radiation. The source of the radiation is taken to be of two types; natural radioactive gamma decay and synchrotron radiation. Numerical examples using 57 Fe are given for the two types of source radiation. Calculated results are contrasted for the two cases. Electromagnetic radiation produced by recoil-free gamma-ray emission has essentially the natural linewidth. Electromagnetic radiation from a synchrotron, even with the best monochromators available, has a relatively broad-band spectrum, essentially constant for these considerations. Polarization effects are considered. In general, the nuclear-resonant medium changes the polarization of the input radiation on traversing the medium. Calculations are presented to illustrate that synchrotron radiation studies using nuclear-resonant forward scattering have the potential for making high-precision measurements of hyperfine fields and recoilless fractions. An interesting aspect of nuclear-resonant forward scattering, relative to possible gamma-ray laser development, is the so-called 'speed-up' effect

  10. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kikuchi, Satoru; Ito, Koichi; Saito, Kazuyuki; Takahashi, Masaharu

    2010-01-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 deg. C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg -1 , which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 deg. C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 deg. C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 deg. C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  11. Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory

    International Nuclear Information System (INIS)

    Geng, L. S.; Camalich, J. Martin; Vacas, M. J. Vicente

    2009-01-01

    We present a calculation of the leading SU(3)-breaking O(p 3 ) corrections to the electromagnetic moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment of the Ω - . We predict μ Δ ++ =6.04(13) and μ Δ + =2.84(2), which agree well with the current experimental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare our results with those reported in large N c , lattice QCD, heavy-baryon chiral perturbation theory, and other models.

  12. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  13. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  14. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  15. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  16. Scattering of ultrashort electromagnetic pulses on metal clusters

    International Nuclear Information System (INIS)

    Astapenko, V. A.; Sakhno, S. V.

    2016-01-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  17. Scattering of ultrashort electromagnetic pulses on metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  18. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  19. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    International Nuclear Information System (INIS)

    Villalon, E.

    1989-01-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency

  20. Electromagnetic radiation unmasked

    International Nuclear Information System (INIS)

    Hart, P.

    1996-01-01

    This article describes the nature of the electromagnetic waves, what they are and how do they affect us. Current concern is focused on exposure to low level power-frequency magnetic fields like microwave radiation from mobile phones and leaking microwave ovens; high power radiation from defence and airport radars; fields close to high voltage transmission lines; radio frequency fields from industrial welders and heaters and DC magnetic fields in aluminium smelters. These fields with frequency less than 300 GHz do not carry sufficient energy to break chemical bonds and it is assumed that they cannot damage cell DNA. The amount of radiation absorbed by a human exposed to far field electromagnetic radiation (EMR) depends on the orientation and size of the person. In the 30-300 MHz range it is possible to excite resonance in the whole or partial body such as the head. It is emphasised that since there are some evidence that electromagnetic fields do harm, a policy of prudent avoidance is recommended, especially for children. ills

  1. Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M

    2007-01-01

    We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed

  2. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  3. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  4. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Satoru; Ito, Koichi [Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Saito, Kazuyuki; Takahashi, Masaharu [Research Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)], E-mail: kikuchi@graduate.chiba-u.jp

    2010-04-21

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 deg. C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg{sup -1}, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 deg. C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 deg. C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 deg. C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  5. Electromagnetic production of associated strangeness

    International Nuclear Information System (INIS)

    David, J.C.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Fayard, C.; Lamot, G.H.; Saghai, B.

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin ≤ 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.)

  6. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  7. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  8. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    Science.gov (United States)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  9. Development and test of the e+e- pair spectrometer for the detection of the electromagnetic decay of the E0 giant resonance state

    International Nuclear Information System (INIS)

    Katayama, I.; Fujita, Y.; Fujiwara, M.; Morinobu, S.; Ikegami, H.

    1978-01-01

    A lens type pair spectrometer of electron and positron has been developed and tested in order to detect the electromagnetic decay (pair creation) of the E0 giant resonance state. It was found from the one day machine time test (targets: natural Mo and Pb, beam:α, 70 MeV) that the improvement of the apparatus is necessary for getting a definite information on the yield of high energy electron pairs. (author)

  10. High frequency electromagnetic processes in induction motors supplied from PWM inverters

    Directory of Open Access Journals (Sweden)

    Ioan Ţilea

    2010-12-01

    Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.

  11. Electromagnetic production of associated strangeness

    Energy Technology Data Exchange (ETDEWEB)

    David, J C [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Fayard, C; Lamot, G H [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Saghai, B [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin {<=} 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.). 70 refs.; Submitted to Physical Review, C (US).

  12. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    Science.gov (United States)

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  13. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    Science.gov (United States)

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  14. Faraday, Maxwell, and the electromagnetic field how two men revolutionized physics

    CERN Document Server

    Forbes, Nancy

    2014-01-01

    The story of two brilliant nineteenth-century scientists who discovered the electromagnetic field, laying the groundwork for the amazing technological and theoretical breakthroughs of the twentieth century Two of the boldest and most creative scientists of all time were Michael Faraday (1791-1867) and James Clerk Maxwell (1831-1879). This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time. The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skil...

  15. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  16. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    Acoustics; energy harvesting; electromagnetic; Helmholtz resonator; sound pressure level; suspended coil. ... WSNs, which are supposed to operate for longer period of time. However ... several ambient energies such as wind, thermal, vibration, and solar are ..... textile plants in Northern India with specific reference to noise.

  17. Ultrashort electromagnetic clusters formation by two-stream superheterodyne free electron lasers

    DEFF Research Database (Denmark)

    Kulish, Viktor V.; Lysenko, Alexander V.; Volk, Iurii I.

    2016-01-01

    A cubic nonlinear self-consistent theory of multiharmonic two-stream superheterodyne free electron lasers (TSFEL) of a klystron type, intended to form powerful ultrashort clusters of an electromagnetic field is constructed. Plural three-wave parametric resonant interactions of wave harmonics have...... been taken into account. An amplitude, phase and spectral analyses of the processes occurring in such devices have been carried out. The conditions necessary for the forming of the ultrashort clusters of an electromagnetic field have been found out. The possibility of the ultrashort electromagnetic...

  18. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  19. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  20. Electromagnetic waves in optical fibres in a magnetic field

    International Nuclear Information System (INIS)

    Gorelik, V S; Burdanova, M G

    2016-01-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er 3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion–polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field. (paper)

  1. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  2. Electromagnetically induced transparency in an open multilevel system

    International Nuclear Information System (INIS)

    Li Tian; Lu Meiju; Weinstein, Jonathan D.

    2011-01-01

    Electromagnetically induced transparency in a multilevel system is investigated in 173 Yb. The level structure investigated is ''open'' in that the light that gives rise to the transparency also resonantly couples the atoms to excited states which do not exhibit electromagnetically induced transparency. The resulting reduction of transparency is investigated experimentally and theoretically. It is found that, while the transparency is poor in certain regimes, it can be made to perform arbitrarily well in the limit of a large intensity imbalance between the optical fields.

  3. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    Science.gov (United States)

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  4. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Science.gov (United States)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  5. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1–4 Hz at L = 5.2

    Directory of Open Access Journals (Sweden)

    A. G. Yahnin

    2003-03-01

    Full Text Available Continuous observations of fluctuations of the geomagnetic field at Sodankylä Geophysical Observatory (L = 5.2 were used for a comprehensive morphological study of the spectral resonance structure (SRS seen in the background electromagnetic noise in the frequency range of 0.1–4.0 Hz. It is shown that the occurrence rate of SRS is higher in the nighttime than in the daytime. The occurrence rate is higher in winter than in summer. The SRS frequencies and the difference between neighbouring eigenfrequencies (the frequency scale increase towards nighttime and decrease towards daytime. Both frequency scale and occurrence rate exhibit a clear tendency to decrease from minimum to maximum of the solar activity cycle. It is found that the occurrence rate of SRS decreases when geomagnetic activity increases. The SRS is believed to be a consequence of a resonator for Alfvén waves, which is suggested to exist in the upper ionosphere. According to the theory of the ionospheric Alfvén resonator (IAR, characteristics of SRS crucially depend on electron density in the F-layer maximum, as well as on the altitudinal scale of the density decay above the maximum.We compared the SRS morphological properties with predictions of the IAR theory. The ionospheric parameters needed for calculation were obtained from the ionosphere model (IRI-95, as well as from measurements made with the ionosonde in Sodankylä. We conclude that, indeed, the main morphological properties of SRS are explained on the basis of the IAR theory. The measured parameters of SRS can be used for improving the ionospheric models.Key words. Ionosphere (auroral ionosphere; wave propagation – Radio Science (electromagnetic noise and interference

  6. Parametric transformation of weak gravitational wave into electromagnetic one in a three-level system

    International Nuclear Information System (INIS)

    Tagirov, Eh.A.

    1985-01-01

    A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined

  7. Electromagnetic Form Factors of Hadrons in Dual-Large Nc QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and Δ(1236)) in the framework of Dual-Large N c QCD (Dual-QCD ∞ ). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.

  8. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  9. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  10. Trapped resonance modes at tapered SR masks in a beam pipe

    International Nuclear Information System (INIS)

    Sakanaka, Shogo.

    1995-04-01

    We report on the possibility that electromagnetic resonances arise at a certain configuration of SR (synchrotron radiation) masks installed in a beam pipe. Because such resonances can cause coupled-bunch instabilities, care should be taken to avoid a resonance structure or to damp the Q-values of the resonances. (author)

  11. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  12. Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

    International Nuclear Information System (INIS)

    Chang, Yoon Do; Yim, Seong Woo; Hwang, Si Dole

    2013-01-01

    The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

  13. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  14. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  15. Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous γ spectroscopy

    International Nuclear Information System (INIS)

    Voinov, A.; Schiller, A.; Guttormsen, M.; Rekstad, J.; Siem, S.

    2003-01-01

    We show that the combined analysis of quasicontinuous γ spectra from the ( 3 He,α) and (n th ,2γ) reactions gives the possibility to measure the electromagnetic character of soft dipole resonances. Two-step γ-cascade spectra have been calculated, using level densities and radiative strength functions from the ( 3 He,αγ) reaction. The calculations show that the intensity of the two-step cascades depends on the electromagnetic character of the soft dipole resonance under study. The difference reaches 40-100% which can be measured experimentally

  16. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  17. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    M. Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  18. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  19. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  20. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  1. Buffer-gas-induced absorption resonances in Rb vapor

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Novikova, Irina; Rostovtsev, Yuri V.; Welch, George R.

    2004-01-01

    We observe transformation of the electromagnetically induced transparency (EIT) resonance into an absorption resonance in a Λ interaction configuration in a cell filled with 87 Rb and a buffer gas. This transformation occurs as one-photon detuning of the coupling fields is varied from the atomic transition. No such absorption resonance is found in the absence of a buffer gas. The width of the absorption resonance is several times smaller than the width of the EIT resonance, and the changes of absorption near these resonances are about the same. Similar absorption resonances are detected in the Hanle configuration in a buffered cell

  2. Electromagnetic decay of two-phonon states

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.; Van Giai, N.; Paris-11 Univ., 91 - Orsay

    1991-01-01

    The electromagnetic decay of two-phonon states corresponding to the multi-excitation of giant resonances is studied. The calculations are performed within a boson expansion approach and the elementary modes are constructed in random phase approximation (RPA). The rates for direct transition of two-phonon states to the ground state turn out to be not negligibly smaller than those from the (single) giant resonances. The former transitions are accompanied by a γ-ray whose energy is equal to the sum of the two phonon energies. Thus the detection of such high energy γ-rays could provide a signature of the excitation of two-phonon states. (author) 9 refs., 3 tabs

  3. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments are carried out to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. The authors determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to ∼15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. (Auth.)

  4. Electromagnetic fields - introduction to relevant issues

    International Nuclear Information System (INIS)

    Brueggemeyer, H.; Csicsaky, M.

    1993-01-01

    This introductory paper surveys potential sources of electric magnetic, and electro-magnetic fields. Various cases are discussed to exemplify the total frequency range: nuclear magnetic resonance tomography, high-voltage transmission lines, transformer stations, effect lighting balls, military transmitters, transmitter towers of the Postal Services and other operators, mobile radiotelephone equipment, large broadcasting transmitters, radar radiation, high-frequency heat therapy. There is evidence suggesting that electric, magnetic and electro-magnetic fields may possibly represent a certain nuisance or health hazard even at field strength occuring in equipment used for every-day-life purposes, with an emphasis on their possible actions and effects in children and adolescents. The author discusses, in conclusion, the aerial equipment ordinance issued by Lower Saxony. (Uhe) [de

  5. On the electro-magnetic nature of life.

    Science.gov (United States)

    Jacobson, J I

    1989-01-01

    Man has wondered since the dawning of thought about the origin and the meaning of the spark of life. How does life work and what is the difference between life and non-life? This paper wonders about the part that electromagnetism plays in the life process. It proposes a new insight into the relation of in vivo electromagnetic fields and gravitational fields and discusses such manifestations as solitons, the quantum hall effect, gravity waves, biological strings, biologically closed electric circuits, phonos and the piezoelectric nature of living tissue. It proposes a new and fundamental form of resonance, called Jacobson resonance. The system unifies quantum genetic characters and associated structures with electromagnetic field interaction energies. The result is the reorientation of atomic crystal lattice structures of organic molecules critical to the sustenance of life. A new treatment methodology is proposed for genomic, viral and trophic factor disorders essentially in terms of the potential efficacy of the magnetic force to reorient the spin angular momenta of electrons and protons; to therein rearrange atomic and molecular magnetic domains regulating homeostasis on microscopic, mesosopic and macroscopic levels through biological amplification of quantum interactions. Finally it proposes that the equation, mc2 = Bvl coulomb, may indeed represent the achievement of fourfold physical unification, the unification of physics and medicine, and resultant production of a thorough understanding of what may be the most fundamental natural law of the universe representing the ultimate goal of Einsteinian equivalence and relativistic field theory.

  6. Electromagnetic behaviour of the earth and planets

    International Nuclear Information System (INIS)

    McCarthy, A.J.

    2002-01-01

    Forecast problems of global warming, rising sea-levels, UV enhancement, and solar disruptions of power grids and satellite communications, have been widely discussed. Added to these calamities is the steady decay of the Earth's magnetic radiation shield against high energy particles. A system of solar-induced aperiodic electromagnetic resonances, referred to here as the Debye resonances, is resurrected as the preferred basis for describing the electromagnetic behaviour of the Earth and planets. Debye's two basic solutions to the spherical vector wave equation provide foundations for electromagnetic modes of the terrestrial and gaseous planets respectively in contrast with the separate electric and magnetic approaches usually taken. For those engaged in radiation protection issues, this paper provides the first published account of how the Sun apparently triggers an Earth magnetic shield against its own harmful radiation. Disturbances from the Sun - which are random in terms of polarity, polarisation, amplitude, and occurrence - are considered here to trigger the Debye modes and generate observed planetary electric and magnetic fields. Snapping or reconnection of solar or interplanetary field lines, acting together with the newly conceived magnetospheric transmission lines of recent literature, is suspected as the excitation mechanism. Virtual replacement of free space by plasma, places the electromagnetic behaviour of the Earth and planets under greatly enhanced control from the Sun. From a radiation protection viewpoint, modal theory based on solar-terrestrial coupling provides a new insight into the origin of the Earth's magnetic radiation shield, greater understanding of which is essential to development of global cosmic radiation protection strategies. Should man-made influences unduly increase conductivities of the Earth's magnetosphere, planet Earth could be left with no magnetic radiation shield whatsoever. Copyright (2002) Australasian Radiation Protection

  7. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  8. Strength distributions of electromagnetic transitions in light nuclei

    International Nuclear Information System (INIS)

    Kostin, V.Ya.; Koval', A.A.; Kopanets, E.G.; Tsytko, S.P.

    1980-01-01

    Distributions of probabilities of electromagnetic transitions from resonance levels of light nuclei with masses A=Z-40 for eight types of transition (epsilon1, epsilon2, M1, M8, isoscalar and isovector) are obtained. Recommended upper limits (RUL) of transition probabilities are determined for each type of transitions. A comparison with analogous characteristics for transitions between bound states is carried out. It has been causes found that RUL for resonance states substantially differ from RUL for transitions between bound states. Possible causes of such difference are discussed

  9. Polarization-independent electromagnetically induced transparency-like metasurface

    Science.gov (United States)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  10. Schumann Resonances and Their Potential Applications: a Review Article

    Directory of Open Access Journals (Sweden)

    Amal Fathi Alrais

    2017-12-01

    Full Text Available Introduction: Schumann resonances is an important topic gains great interest in research areas which has extensive use of Schumann resonances in a variety of desplines such as biological evolutionary processes, the optimal functioning of the human brain waves and lightning-related studies. Materials and Methods: This dictates the major emphasis on economic, environmental, and engineering applications and hazard assessments in the form of earthquake and volcano monitoring. Results: This review is aimed at the reader generally unfamiliar with the Schumann Resonances. It is our hope that this review will increase the interest in SR among researchers previously unfamiliar with this phenomenon. Discussion and Conclusions: In this review paper, a brief introduction about Schumann resonances is presented. A general description of Earth’s ionosphere is outlined. The electromagnetic waves spectrum from lightning is discussed. The history of Schumann resonances is briefly presented. The connection of man with nature through Schumann resonances is introduced. Present Schumann resonances researches are briefly outlined. Schumann (global electromagnetic resonances in the cavity Earth – ionosphere play a critical role in all biological evolutionary processes. However, there is a great need for independent research into the bio-compatibility between natural and manmade signals. Serious attention must now be paid to the possible biological role of standing waves in the atmosphere. Being a global phenomenon, Schumann resonances have numerous applications in lightning research.

  11. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    Science.gov (United States)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  12. Coherent Population Trapping Resonances in Cs Atomic Vapor Layers of Micrometric Thickness

    Directory of Open Access Journals (Sweden)

    A. Krasteva

    2011-01-01

    Full Text Available We report on a novel behavior of the electromagnetically induced absorption (EIA resonance observed on the D2 line of Cs for atoms confined in cells with micrometric thickness. With the enhancement of light intensity, the EIA resonance amplitude suffers from fast reduction, and even at very low intensity (W < 1 mW/cm2, resonance sign reversal takes place and electromagnetically induced transparency (EIT resonance is observed. Similar EIA resonance transformation to EIT one is not observed in conventional cm-size cells. A theoretical model is proposed to analyze the physical processes behind the EIA resonance sign reversal with light intensity. The model involves elastic interactions between Cs atoms as well as elastic interaction of atom micrometric-cell windows, both resulting in depolarization of excited state which can lead to the new observations. The effect of excited state depolarization is confirmed also by the fluorescence (absorption spectra measurement in micrometric cells with different thicknesses.

  13. Investigation on Electromagnetic Models of High-Speed Solenoid Valve for Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2017-01-01

    Full Text Available A novel formula easily applied with high precision is proposed in this paper to fit the B-H curve of soft magnetic materials, and it is validated by comparison with predicted and experimental results. It can accurately describe the nonlinear magnetization process and magnetic saturation characteristics of soft magnetic materials. Based on the electromagnetic transient coupling principle, an electromagnetic mathematical model of a high-speed solenoid valve (HSV is developed in Fortran language that takes the saturation phenomena of the electromagnetic force into consideration. The accuracy of the model is validated by the comparison of the simulated and experimental static electromagnetic forces. Through experiment, it is concluded that the increase of the drive current is conducive to improving the electromagnetic energy conversion efficiency of the HSV at a low drive current, but it has little effect at a high drive current. Through simulation, it is discovered that the electromagnetic energy conversion characteristics of the HSV are affected by the drive current and the total reluctance, consisting of the gap reluctance and the reluctance of the iron core and armature soft magnetic materials. These two influence factors, within the scope of the different drive currents, have different contribution rates to the electromagnetic energy conversion efficiency.

  14. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    Science.gov (United States)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  15. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  16. Urothelial carcinoma in a pyelocaliceal diverticulum discovered by magnetic resonance urography[

    Energy Technology Data Exchange (ETDEWEB)

    Akatsuka, Jun; Suzuki, Yasutomo; Hamasaki, Tsutomu; Kimura, Go; Kondo, Yukihiro, E-mail: s00-001@nms.ac.jp [Departments of Urology, Nippon Medical School, Bunkyo-ku, Tokyo (Japan)

    2014-03-15

    Neither computed tomography (CT) nor intravenous pyelography (IVP) alone can diagnose tumors of renal pelvic diverticula, but magnetic resonance urography (MRU) can obtain accurate preoperative information. (author)

  17. Disentanglement of Electromagnetic Baryon Properties

    Science.gov (United States)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  18. Design of Metamaterials for control of electromagnetic waves

    Science.gov (United States)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  19. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  20. The Combined Internal and Principal Parametric Resonances on Continuum Stator System of Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    Baizhou Li

    2014-01-01

    Full Text Available With the increasing requirement of quiet electrical machines in the civil and defense industry, it is very significant and necessary to predict the vibration and noise characteristics of stator and rotor in the early conceptual phase. Therefore, the combined internal and principal parametric resonances of a stator system excited by radial electromagnetic force are presented in this paper. The stator structure is modeled as a continuum double-shell system which is loaded by a varying distributed electromagnetic load. The nonlinear dynamic equations are derived and solved by the method of multiple scales. The influences of mechanical and electromagnetic parameters on resonance characteristics are illustrated by the frequency-response curves. Furthermore, the Runge-Kutta method is adopted to numerically analyze steady-state response for the further understanding of the resonance characteristics with different parameters.

  1. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    Science.gov (United States)

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  2. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  3. Urothelial carcinoma in a pyelocaliceal diverticulum discovered by magnetic resonance urography

    Directory of Open Access Journals (Sweden)

    Jun Akatsuka

    2014-04-01

    Full Text Available Neither computed tomography (CT nor intravenous pyelography (IVP alone can diagnose tumors of renal pelvic diverticula, but magnetic resonance urography (MRU can obtain accurate preoperative information.

  4. Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, PO Box 10348, Ruston, LA 71272 (United States)

    2005-11-07

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have recently been approved by the Federal Communications Commission for a number of different applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite-difference time-domain (FDTD) method, has been extended here into a full three-dimensional computation. To account for the UWB frequency range, the geometrical resolution of the exposed sample was 0.25 mm and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from the three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the Q-factor of the resonator.

  5. Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2005-01-01

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have recently been approved by the Federal Communications Commission for a number of different applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite-difference time-domain (FDTD) method, has been extended here into a full three-dimensional computation. To account for the UWB frequency range, the geometrical resolution of the exposed sample was 0.25 mm and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from the three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the Q-factor of the resonator

  6. Optical phased array using guided resonance with backside reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  7. Wavelength mismatch effect in electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  8. Wavelength mismatch effect in electromagnetically induced absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Vineet [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Wasan, Ajay [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Natarajan, Vasant [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-07-15

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  9. Nucleon resonance production in electromagnetic interactions

    International Nuclear Information System (INIS)

    Mukhtarov, A.I.; Sadykhov, F.S.; Vasil'ev, O.A.; Abdullaev, S.K.; Mustafaev, V.Z.

    1977-01-01

    The results of investigation into nucleon resonance production (NR) in the ep → eNsup(*)(eNsup(*)γ) and eantie → antipNsup(*)(antipNsup(*)γ) processes, where Nsup(*) is a nucleon resonance of the 3/2 or 5/2 spin are presented. The calculation of the NR structure functions with the mass M and 3/2 or 5/2 spin is carried out. The Δ(1236), N(1688) and Δ(2160) NR production was observed in the ep → eNsup(*) and eantie → antipNsup(*) processes. For the ep-interaction the energy dependence of the NR production differential cross section at the electron scattering angle THETA = 6 dea and the angular dependence of the longitudinal polarization degree of the scattered electrons at the electron energy of 6 GeV are presented. The energy dependence of the total cross section of the NR production for eantie → antipNsup(*) is obtained. The ep → eNsup(*)γ radiative electron scattering on a proton is investigated only in case of the Δ(1236)NR production. The dependence of the effective cross section of the Δ(1236) radiative production process on THETA for the energies of an incident and scattered electron of 6 and 2.5 GeV, respectively, and the dependence of the cross section on the scattered electron energy at the initial energy of 6 GeV and THETA = 15 deg are presented

  10. Flaw Detection using Electromagneticc Acourstic Resonance for a Tube of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Min; Kim, Yong Kwon; Choi, Sang Hoon [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    We present preliminary experimental verification of the proposed method and show that the defects on steel tubes can be detected based on changes in resonant frequencies. The result of this study showed that the electromagnetic acoustic resonance technique can detect notch defects on the tube and the changes in resonant frequencies are approximately proportional to the width of defect.

  11. Electromagnetic Interference in Implantable Rhythm Devices - The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2002-07-01

    Full Text Available Implantable rhythm device (IRD is the generic name for the group of implantable devices used for diagnosis and treatment of cardiac arrhythmias. Devices in this category include cardiac pacemakers, implantable cardioverter defibrillators and implantable loop recorders. Since these devices have complex microelectronic circuitry and use electromagnetic waves for communication, they are susceptible to interference from extraneous sources of electromagnetic radiation and magnetic energy. Electromagnetic interference (EMI is generally not a major problem outside of the hospital environment. The most important interactions occur when a patient is subjected to medical procedures such as magnetic resonance imaging (MRI, electrocautery and radiation therapy. Two articles in this issue of the journal discusses various aspects of EMI on IRD1,2 . Together these articles provide a good review of the various sources of EMI and their interaction with IRD for the treating physician.

  12. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  13. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  14. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  15. Homogenized boundary conditions and resonance effects in Faraday cages

    Science.gov (United States)

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  16. Homogenized boundary conditions and resonance effects in Faraday cages

    Science.gov (United States)

    Hewett, D. P.; Hewitt, I. J.

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  17. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  18. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  19. Electromagnetic fields on a quantum scale. I.

    Science.gov (United States)

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  20. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  1. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  2. Photon - axion conversions in a periodic electromagnetic field with axion frequency

    International Nuclear Information System (INIS)

    Dang Van Soa

    1998-09-01

    The conversion of photons into axions in a periodic external electromagnetic field with axion frequency is considered in detail by Feynman methods. The differential cross sections are given. It is shown that there is a resonant conversion for the considered process. (author)

  3. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  4. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    Energy Technology Data Exchange (ETDEWEB)

    Cadez, V.M.; Vukovic, S. (Belgrade Univ. (Yugoslavia). Inst. za Fiziku); Frolov, V.V.; Kyrie, A.Y. (AN SSSR, Moscow. Fizicheskij Inst.)

    1981-12-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams.

  5. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    Science.gov (United States)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  6. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  7. [Biological effects of non-ionizing electromagnetic radiation].

    Science.gov (United States)

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic

  8. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    International Nuclear Information System (INIS)

    Cadez, V.M.; Vukovic, S.; Frolov, V.V.; Kyrie, A.Y.

    1981-01-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams. (author)

  9. Resonant absorption of electromagnetic waves in transition anisotropic media.

    Science.gov (United States)

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  10. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  11. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  12. Dynamics of electrons in a parabolic magnetic field perturbed by an electromagnetic wave

    International Nuclear Information System (INIS)

    Neishtadt, Anatoly; Vainchtein, Dmitri; Vasiliev, Alexei

    2011-01-01

    In this paper we study the resonance interaction between monochromatic electromagnetic waves and fully magnetized electrons in a model parabolic magnetic field (like, e.g., in the Earth's magnetotail). The smallness of certain physical parameters allows us to approach this problem using perturbation theory for multiscale (slow-fast) systems: the study of the global interaction is reduced to the analysis of slow passages of particles through a resonance. At the resonance, two important phenomena occur: capture into resonance and scattering on resonance. We show that while the primary adiabatic invariant (magnetic moment or Larmor radius) remains conserved, these processes result in destruction of the second, longitudinal, adiabatic invariant. We find significant acceleration of particles by capture into resonance, while the scatterings on resonances lead to decrease in energy and chaotization of particles.

  13. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  14. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  15. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Cheng Jing; Huang Guoxiang

    2011-01-01

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determined and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.

  16. Parametric excitation electromagnetic radiation in a bounded non-equilibrium plasma

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Tolstoluzhskij, A.P.

    1981-01-01

    An excitation mechanism of electromagnetic radiation in a bounded plasma-beam system which is based on the process of induced scattering of electron beam-strengthened high-frequency wave (HF) of a plasma waveguide with an ion-sound wave, is investigated. It is shown that the process under investigation is an effective mechanism of electromagnetic radiation production. Up to 73 % of the beam power is trabsformed to the electromagnetic radiation under the conditions considered. As the frequency of the irradiated wave is close to the plasma frequency it can vary within wide limits by the change in plasma density. It is noted that the necessary condition of electromagnetic radiation production in the mechanism under consideration has the form of inequality ωsub(l)-ωsub(s)/(ksub(l)-ksub(s)>c (ωsub(l) - frequency of HF wave, ωsub(s)- frequency of ion-sound wave) and is less rigid as compared with the synchronism conditions for three-wave resonant interaction of proper oscillations. Therefore, the considered induced scattering process is less sensitive to a possible inhomogeneity of plasma density [ru

  17. Enhancement of four-wave mixing induced by interacting dark resonances

    International Nuclear Information System (INIS)

    Yang Weifeng; Gong Shangqing; Niu Yueping; Jin Shiqi; Xu Zhizhan

    2005-01-01

    We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances

  18. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    International Nuclear Information System (INIS)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M

    2010-01-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  19. Parametric excitation of electromagnetic waves by electron Bernstein waves

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1992-01-01

    A parametric instability involving the decay of a standing electron Bernstein pump into electromagnetic sidebands and lower-hybrid decay waves is studied. A general dispersion relation is derived and analyzed. Threshold fields and growth rates are obtained for the two cases that the electron Bernstein pump is introduced near the X-mode cutoff layer or introduced in the region between the upper-hybrid resonance layer and the O-mode cutoff layer. Applications of these results to the recent observation [P. Stubbe and H. Kopka, Phys. Rev. Lett. 65, 183 (1990)] of stimulated electromagnetic emission (SEE) with a broad symmetrical structure (BSS) in the ionospheric modifications by powerful high-frequency (HF) wave are discussed

  20. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  1. Resonant e+e- production by time-varying electromagnetic field

    International Nuclear Information System (INIS)

    Farakos, K.; Koutsoumbas, G.; Tiktopoulos, G.

    1990-01-01

    As pointed out by Cornwall and Tiktopoulos (CT) strong, time-varying electric fields may produce e + e - pairs in a resonant fashion. This effect could be related to the sharp peaks in the e + e - spectrum observed in the GSI heavy-ion collision experiments. We attempt to go beyond the case of spatially uniform fields discussed by CT. We find that resonant e + e - production indeed takes place for electric fields derived from four-potentials of the form A 1 =A 2 =A 0 =0, A 3 =δ(t)b(x 3 ) provided by b(x) has discontinuities with a jump at least equal to π. (orig.)

  2. Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer

    Science.gov (United States)

    Sholiyi, Olusegun; Williams, John

    2014-12-01

    In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.

  3. Electromagnetic properties of baryons in the constituent quark model

    International Nuclear Information System (INIS)

    Warns, M.

    1992-01-01

    The electromagnetic properties of baryons are investigated in the framework of a relativized quark model. The model includes beyond the usual single quark transition ansatz relativistic effects due to the strong interaction and confinement forces between the quarks. Furthermore the center-of-mass motion of the three-quark system is separated off in a Lorentz-invariant way. All relativistic correction terms are obtained by expanding the corresponding relativistic expressions in powers of the quark velocity. In this way recoil effects on the electromagnetic interaction between the photon and the baryon could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing from the Isgur-Karl model, the form factors of the nucleon and the electromagnetic transition amplitudes both for longitudinally and transversely polarized photons are calculated for the most important baryon resonances. An extension to baryons involving strange quarks is also considered. Comparisons are made with the results of the nonrelativistic quark model and with some other approaches. (orig.)

  4. Ultrasonic Resonance of Metallic Spheres at Elevated Temperatures

    OpenAIRE

    Johnson , W.

    1996-01-01

    A unique ultrasonic system has been constructed for measuring resonant frequencies and damping of metallic spheres at elevated temperatures. This system employs electromagnetic-acoustic transduction, with a solenoid coil surrounding the sphere in a uniform magnetic field. Temperature is measured with an optical pyrometer. Since the acoustic and temperature measurements are noncontacting, the uncertainties associated with external damping are relatively small. The resonant frequency and Q of t...

  5. Resonant and off-resonant transients in electromagnetically induced transparency: Turn-on and turn-off dynamics

    International Nuclear Information System (INIS)

    Greentree, Andrew D.; Smith, T.B.; Echaniz, S.R. de; Durrant, A. V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A.

    2002-01-01

    This paper presents a wide-ranging theoretical and experimental study of nonadiabatic transient phenomena in a Λ electromagnetically induced transparency system when a strong coupling field is rapidly switched on or off. The theoretical treatment uses a Laplace transform approach to solve the time-dependent density matrix equation. The experiments are carried out in a 87 Rb magneto-optical trap. The results show transient probe gain in parameter regions not previously studied, and provide insight into the transition dynamics between bare and dressed states

  6. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    Science.gov (United States)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  7. Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement.

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M. L.; Plain, J.; Bachelot, R.; Vial, A.; Royer, P.; Gray, S. K.; Montgomery, J. M.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2009-04-23

    We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis?trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced. Finite-difference time-domain and Monte Carlo simulations that model the induced field and corresponding material response are presented to aid in the interpretation of the experimental results. Evidence for propagating plasmons induced at the ends of the rods is also presented.

  8. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  9. Electromagnetic Resonance in Biological Form: A Role for Fields in Morphogenesis

    International Nuclear Information System (INIS)

    Pietak, Alexis M

    2011-01-01

    In morphogenesis, the mechanisms through which homogeneous, symmetric collectives of self-same cells are able to consistently and precisely establish long-range pattern remain an open question of scientific research. This work explores the hypothesis of developing biological structures as dielectric microwave resonators, using plant leaves as a working example. A finite element analysis (FEA) model was designed to determine if suitable resonant modes were physically possible for geometric and electrical parameters similar to those of developing leaf tissue. Using the FEA model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. Here I show how the single physical mechanism of EM resonance can self-consistently account for different kinds of key symmetry-breaking operations characteristic of a variety of leaf vascular patterns. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a leaf-like structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.

  10. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  11. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

    Science.gov (United States)

    Basharov, A. M.

    2018-03-01

    The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

  12. Capture of charged particles by transverse electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Davydovskii, V Ya; Sapogin, V G; Ukolov, A S

    1975-01-01

    An estimate is made of the maximum possible number of resonance particles interacting with a plane, transverse electromagnetic wave. The estimate is obtained by means of a distribution function, which is expressed in terms of the integrals of motion of the particles in the wave. Values of proton fluxes accelerated by an amplitude-modulated wave in the solar corona coincide with those observed during bursts of sporadic radioemission. (SJR)

  13. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  14. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Science Academies' Refresher Course on Classical Mechanics and Electromagnetism. Information and Announcements Volume 19 Issue 8 August 2014 pp 775-775 ...

  16. The effect of electromagnetically induced transparency in a potassium nanocell

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.

    2017-07-01

    The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.

  17. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  18. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  19. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  20. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  1. Electromagnetic dissociation of 238U in heavy-ion collisions at 120 MeV/A

    International Nuclear Information System (INIS)

    Justice, M.L.

    1991-04-01

    This thesis describes a measurement of the heavy-ion induced electromagnetic dissociation of a 120 MeV/A 238 U beam incident on five targets: 9 Be, 27 Al, nat Cu, nat Ag, and nat U. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state ΔE-E detectors, allowing the changes of the fragments to be determined to within ± .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties are discussed and suggestions for improving the experiment are given

  2. Calculus of the amplification and absorption coefficients of the electromagnetic waves in a cylindrical over dense plasma

    International Nuclear Information System (INIS)

    Arzate P, N.

    1994-01-01

    Based on the fundamental theory of cylindrical waveguides and resonant cavities, the main characteristic parameters of the microwave plasma source reported in [1] are calculated. The absorption coefficient of an electromagnetic wave which is excited in H 11 mode in a cylindrical waveguide that contains a cold, inhomogeneous and magnetized plasma column is determined by using the perturbative method describe in [2]. In similar way, due to the presence of the plasma column, the shifts of the resonant frequency and of the inverse of the quality of a cylindrical resonant cavity where a TE 111 mode is oscilating are obtained. Finally, based on the linear theory, an analysis of the penetration of electromagnetic fields in a semi-bounded plasma and a plasma layer is done. The reflexion, transmission and absorption coefficients of H waves for the cases of an isotropic homogeneous and weak inhomogeneous plasma are calculated. (Author)

  3. Electromagnetic torques in the core and resonant excitation of decadal polar motion

    Science.gov (United States)

    Mound, Jon E.

    2005-02-01

    Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.

  4. Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer

    International Nuclear Information System (INIS)

    Sholiyi, Olusegun; Williams, John

    2014-01-01

    In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8–1.0 μm and 3–6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples. (paper)

  5. Electromagnetically Induced Transparency in Four Wave Mixing Process

    International Nuclear Information System (INIS)

    Kucukkara, I.

    2008-01-01

    We have theoretically studied Four Wave Mixing (FWM) process in VUV (Vacuum Ultraviolet) region enhanced by Electromagnetically Induced Transparency in Krypton gas medium at room temperature. One of the mixing fields, in the ultraviolet region at 212.5 nm was in two-photon resonance with the 4p 6 1 S 0 -4p 5 5p[0,1/2] transition of Krypton and the second field (coupling field) at 759 nm was resonant with the 4p 5 5p[0,1/2]-4p 5 5s[1,1/2] transition in scheme. This coupling field produced an electromagnetically induced transparency and thus the efficiency of the generation of the field at 123.6 nm on the 4p 5 5s[1,1/2] to 4p 6 1 S 0 transition is enhanced. We modified the computer program previously written by changing some variables like pressure, interaction region length, UV energy, IR energy. As demonstrated by the intensity generated VUV light versus Krypton pressure graphic, the most efficient intensity value, which was approximately 4.2x10 1 6 arbitrary units, was obtained while IR energy was 3x10 - 4 J and the pressure was 2x10 - 3 bar

  6. Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    International Nuclear Information System (INIS)

    Basharov, A. M.

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.

  7. Uniform electromagnetic field as viscous medium for moving particles

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.

    2002-01-01

    The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles

  8. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  9. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  10. The discovery of resonances in multibaryon systems

    International Nuclear Information System (INIS)

    Shahbazian, B.A.

    1978-01-01

    The properties of multibaryon resonances discovered in the collisions of fast neutrons and pions minus with the C 12 nuclei at 7.0 and 4.0 GeV/c momenta, respectively, in the JINR propane bubble chamber have been investigated. It has been shown that due to the hypercharge selection rule (Y<=1) found earlier multibaryon resonances are ultra-high density superstrange objects. The hypothesis has been brought up: the central regions of galaxies and quasars up to certain densities are huge multibaryon or even multihyperon resonances

  11. Full controlling of Fano resonances in metal-slit superlattice.

    Science.gov (United States)

    Deng, Zi-Lan; Yogesh, Natesan; Chen, Xiao-Dong; Chen, Wen-Jie; Dong, Jian-Wen; Ouyang, Zhengbiao; Wang, Guo Ping

    2015-12-18

    Controlling of the lineshape of Fano resonance attracts much attention recently due to its wide capabilities for lasing, biosensing, slow-light applications and so on. However, the controllable Fano resonance always requires stringent alignment of complex symmetry-breaking structures and thus the manipulation could only be performed with limited degrees of freedom and narrow tuning range. Furthermore, there is no report so far on independent controlling of both the bright and dark modes in a single structure. Here, we semi-analytically show that the spectral position and linewidth of both the bright and dark modes can be tuned independently and/or simultaneously in a simple and symmetric metal-slit superlattice, and thus allowing for a free and continuous controlling of the lineshape of both the single and multiple Fano resonances. The independent controlling scheme is applicable for an extremely large electromagnetic spectrum range from optical to microwave frequencies, which is demonstrated by the numerical simulations with real metal and a microwave experiment. Our findings may provide convenient and flexible strategies for future tunable electromagnetic devices.

  12. Detection of internal fields in double-metal terahertz resonators

    DEFF Research Database (Denmark)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei

    2017-01-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal...... electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub...

  13. Dynamics of the retrograde 1/1 mean motion resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  14. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  15. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  16. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  17. Electromagnetic-radiation absorption by water.

    Science.gov (United States)

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  18. Electromagnetic-radiation absorption by water

    Science.gov (United States)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Biman Nath. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 6 June 1998 pp 76-77 Research News. Furthest Ever Galaxy Discovered - When the Universe was Young · Biman Nath · More Details Fulltext PDF. Volume 4 Issue 9 ...

  20. On dynamics of resonant charged particles in cyclotron electromagnetic wave field

    International Nuclear Information System (INIS)

    Shyutte, N.M.; Izhovkina, N.I.

    1989-01-01

    The model of time and spatial separation of resonance and nonresonance particles with quasimonochromatic wave packets during their propagation in the magnetosphere is presented. In regions with elevated geomagnetic field gradients and.or in waveguide channels such separation can result in diffusion increase of resonance particles by the pitch angle and create ''little peaks'' in the distribution function tail

  1. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  2. Electromagnetic dissociation of relativistic 28Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, Upal Jayasiri [Univ. of Pittsburgh, PA (United States)

    1992-12-01

    A detailed study of the electromagnetic dissociation of 28Si by nucleon emission at Elab/A = 14.6 (GeV/nucleon was carried out with 28Si beams interacting on 208Pb). 120Sn. 64C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge ZT and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of 28Si → p+27Al and 28Si → n+27Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in 28Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear 28Si(γ,p)27Al and 28Si(γ,n)27Si. The possibilities of observing double giant dipole resonance excitations in 28Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  3. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  4. Learning about nucleon resonances with pion photoproduction

    International Nuclear Information System (INIS)

    Walker, R.L.

    1989-01-01

    This chapter charts the discovery of nucleon resonances from pion-nucleon interactions. It was not until after the Albuquerque meeting in 1953 the experimentalists were able to persuade physicists about the existence of this phenomenon with the discovery of the P 33 resonance. The second and third resonances to be discovered, D 13 and F 15 , were seen as peaks in the total cross section for pion plus photoproduction, from 1956 onwards. Knowledge of pion-nucleon scattering has played an important role in the development of quark models. (UK)

  5. Search for heavy resonances in vector boson fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00423270; The ATLAS collaboration

    2017-01-01

    If the Higgs boson discovered at the Large Hadron Collider (LHC) is not exactly the one in the Standard Model, an alternative mechanism is needed to restore unitarity in the scattering amplitude of longitudinal gauge bosons, and new resonances may appear. This paper presents a search for new heavy neutral resonances ($R$) produced through vector boson fusion process $qq \\rightarrow Rqq \\rightarrow \\ell^+ \

  6. The role of resonances in chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.; Rafael, E. de

    1988-09-01

    The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)

  7. Strong interaction between dye molecule and electromagnetic field localized around 1 Nm3 at gaps of nanoparticle dimers by plasmon resonance

    Science.gov (United States)

    Itoh, Tamitake; Yamamoto, Yuko S.

    2017-11-01

    Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.

  8. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    Science.gov (United States)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  9. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  10. Parametric resonance in quantum electrodynamics vacuum birefringence

    Science.gov (United States)

    Arza, Ariel; Elias, Ricardo Gabriel

    2018-05-01

    Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.

  11. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  12. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

    International Nuclear Information System (INIS)

    Maimistov, Andrei I

    2000-01-01

    Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)

  13. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  14. On the plasma confinement by acoustic resonance. An innovation for electrodeless high-pressure discharge lamps

    Science.gov (United States)

    Courret, Gilles; Nikkola, Petri; Wasterlain, Sébastien; Gudozhnik, Olexandr; Girardin, Michel; Braun, Jonathan; Gavin, Serge; Croci, Mirko; Egolf, Peter W.

    2017-08-01

    In an applied research project on the development of a pulsed microwave sulfur lamp prototype of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could result from the simultaneous excitation of two normal modes with a frequency difference of approximately 1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz. Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase velocity of sound was calculated as a function of temperature in order to find the series of temperatures at which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside the actual bulb was determined from the only doublet of this series, that has characteristic frequencies close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct measurements on the bulb surface as well as with the temperature in the core of a similar plasma found in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion and the sound amplification due to electromagnetic coupling.

  15. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  16. Nucleon Resonance Transition Form factors

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  17. Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide

    International Nuclear Information System (INIS)

    Wei, Buzheng; Jian, Shuisheng

    2017-01-01

    A graphene-based nanotube waveguide system is proposed and designed to realize the analogue of electromagnetically-induced-transparency. The two nanotubes act as side coupled cavity rings which can be treated as the bright and dark resonators. By mimicking the quantum nonlinear optical interference, the light at resonant frequency makes the opaque system transparent. Conveniently, the working transparency window can be dynamically controlled by shifting the Fermi energy level of graphene without refabricating the device. Furthermore, the shape of the transmission spectrum can be tuned either by adjusting the waveguide coupling distance or by the cavity ring coupling distance. If the ring radius gets bigger, higher order of modes are excited in the dark resonator consequently. Meaningfully, the light travels at resonant frequency can be efficiently slowed down and the highest group delay reaches 25 ps. In the end, some concerns about the practical realization of such device are discussed. The structure may find potential applications in nano technology or light storage field. (paper)

  18. Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function - particle aspect analysis

    Directory of Open Access Journals (Sweden)

    G. Ahirwar

    2006-08-01

    Full Text Available The effect of parallel electric field on the growth rate, parallel and perpendicular resonant energy and marginal stability of the electromagnetic ion-cyclotron (EMIC wave with general loss-cone distribution function in a low β homogeneous plasma is investigated by particle aspect approach. The effect of the steepness of the loss-cone distribution is investigated on the electromagnetic ion-cyclotron wave. The whole plasma is considered to consist of resonant and non-resonant particles. It is assumed that resonant particles participate in the energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effect of the parallel electric field with the general distribution function is to control the growth rate of the EMIC waves, whereas the effect of steep loss-cone distribution is to enhance the growth rate and perpendicular heating of the ions. This study is relevant to the analysis of ion conics in the presence of an EMIC wave in the auroral acceleration region of the Earth's magnetoplasma.

  19. Time-domain numerical computations of electromagnetic fields in cylindrical co-ordinates using the transmission line matrix: evaluation of radiaion losses from a charge bunch passing through a pill-box resonator

    International Nuclear Information System (INIS)

    Sarma, J.; Robson, P.N.

    1979-01-01

    The two dimensional transmission line matrix (TLM) numerical method has been adapted to compute electromagnetic field distributions in cylindrical co-ordinates and it is applied to evaluate the radiation loss from a charge bunch passing through a 'pill-box' resonator. The computer program has been developed to calculate not only the total energy loss to the resonator but also that component of it which exists in the TM 010 mode. The numerically computed results are shown to agree very well with the analytically derived values as found in the literature which, therefore, established the degree of accuracy that is obtained with the TLM method. The particular features of computational simplicity, numerical stability and the inherently time-domain solutions produced by the TLM method are cited as additional, attractive reasons for using this numerical procedure in solving such problems. (Auth.)

  20. Resonance properties of the biological objects in the RF field

    International Nuclear Information System (INIS)

    Cocherova, E; Kupec, P; Stofanik, V

    2011-01-01

    Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called r esonance frequency . The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.

  1. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    Science.gov (United States)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  2. Optimization of saddle coils for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Salmon, Carlos Ernesto Garrido; Vidoto, Edson Luiz Gea; Martins, Mateus Jose; Tannus, Alberto

    2006-01-01

    In Nuclear Magnetic Resonance (NMR) experiments, besides the apparatus designed to acquire the NMR signal, it is necessary to generate a radio frequency electromagnetic field using a device capable to transduce electromagnetic power into a transverse magnetic field. We must generate this transverse homogeneous magnetic field inside the region of interest with minimum power consumption. Many configurations have been proposed for this task, from coils to resonators. For low field intensity (<0.5 T) and small sample dimensions (<30 cm), the saddle coil configuration has been widely used. In this work we present a simplified method for calculating the magnetic field distribution in these coils considering the current density profile. We propose an optimized saddle configuration as a function of the dimensions of the region of interest, taking into account the uniformity and the sensitivity. In order to evaluate the magnetic field uniformity three quantities have been analyzed: Non-uniformity, peak-to-peak homogeneity and relative uniformity. Some experimental results are presented to validate our calculation. (author)

  3. Magnetic resonance in prenatal diagnosis of thoracic anomalies

    International Nuclear Information System (INIS)

    Pietrani, M.; Elias, D.; Wojakowski, A.; Fataljaef, V.; Carcano, M.; Otano, L.

    2007-01-01

    The objective of this article is to communicate the experience in the evaluation of fetal anomalies thoracic by means of magnetic resonance. Between January, 2001 - March, 2007 16 fetus were evaluated by means of magnetic resonance with echographic diagnosis of thoracic anomalies. An equipment of 1.5 TESLA was used. The thoracic anatomy was valued in general. At the presence of discovering pulmonary mass, their size, volume and intensity of sign were determined. The echographic and magnetic resonance findings were checked against the perinatal results [es

  4. Level Set-Based Topology Optimization for the Design of an Electromagnetic Cloak With Ferrite Material

    DEFF Research Database (Denmark)

    Otomori, Masaki; Yamada, Takayuki; Andkjær, Jacob Anders

    2013-01-01

    . A level set-based topology optimization method incorporating a fictitious interface energy is used to find optimized configurations of the ferrite material. The numerical results demonstrate that the optimization successfully found an appropriate ferrite configuration that functions as an electromagnetic......This paper presents a structural optimization method for the design of an electromagnetic cloak made of ferrite material. Ferrite materials exhibit a frequency-dependent degree of permeability, due to a magnetic resonance phenomenon that can be altered by changing the magnitude of an externally...

  5. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2016-02-01

    Full Text Available In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  6. Electromagnetic probes of the QGP

    Directory of Open Access Journals (Sweden)

    Bratkovskaya E. L.

    2015-01-01

    Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. A New Era of Exotic Electromagnetism. K Porsezian Ancemma Joseph. General Article Volume 17 Issue 2 February 2012 pp 163-176. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. On the energy flux of stationary electromagnetic waves in anisotropic dissipative media with spatial dispersion

    NARCIS (Netherlands)

    Tokman, M. D.; Westerhof, E.; Gavrilova, M. A.

    2000-01-01

    The special features of the propagation of electromagnetic waves in gyrotropic medium with dispersion and resonant dissipation (specifically, in a magnetoactive plasma) are studied. Even though the anti-Hermitian components of the permittivity tensor are substantial in magnitude, weakly damped waves

  9. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  10. Nonstationary self-action of electromagnetic wave beams in the beat accelerator

    International Nuclear Information System (INIS)

    Abramyan, L.A.; Litvak, A.G.; Mironov, V.A.

    1990-01-01

    The resonance excitation of a plasma wave in a modified accelerator using the beats of two electromagnetic waves permits to increase considerably the intensity of the accelerating field and, consequently, the rate of the accumulation of the energy by charged particles. The efficiency of the electromagnetic radiation conversion to the longitudinal wave is defined by nonlinear processes. The saturation of the accelerating field is considered which is due to the appearance of multiflux motion of electrons oscillating in the wave field with overturn of waves, due to the development of parametric instabilities and due to the change of natural frequency of plasma oscillations caused by the relativistic increase of electron mass. The effects of self-action which change the form of the electromagnetic radiation pulse and the wave beam structure play a significant role in the most promising laser plasma beat accelerator. We consider dynamics of space distribution of the plasma wave in a self-consistent field of the wave beam. (author) 5 refs., 2 figs

  11. Electronic modulation of infrared radiation in graphene plasmonic resonators.

    Science.gov (United States)

    Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A

    2015-05-07

    All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.

  12. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based

  13. Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations

    OpenAIRE

    Fistul, M. V.

    2001-01-01

    We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing three small Josephson junctions. The current-voltage characteristics of such a system display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that...

  14. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  15. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    Science.gov (United States)

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  16. Theory of a beam-induced electromagnetic mode in a magnetized plasma

    International Nuclear Information System (INIS)

    Baumgaertel, K.; Sauer, K.

    1985-01-01

    The theory of a recently discovered plasma wave mode is presented. In a non-Maxwellian high-beta plasma a new electromagnetic mode was detected containing a group of energetic field-aligned electrons. The theory uses the standard method for derivation of the dispersion relation, allowing non-Maxwellian electron distributions and right-hand polarization. The theoretical dispersion relation is compared with the empirical data. This comparison confirmes the existence of a right-hand circularly polarized mode propagating parallel to the external magnetic field. (D.Gy.)

  17. Electromagnetically induced two-photon transparency in rubidium atoms

    International Nuclear Information System (INIS)

    Wang, D.; Gao, J.Y.; Xu, J.H.; Bassani, F.; La Rocca, G.C.; Salerno Univ.

    2001-01-01

    We present an experimental demonstration of electromagnetically induced two-photon transparency (EITT) in room temperature rubidium vapor. The 8S 1/2 to 5P 1/2 fluorescence is used to monitor the 5S 1/2 (F = 3) to 8S 1/2 (F = 3) two-photon absorption near resonance with the intermediate state 5P 3/2 . A controlling pump laser beam is employed to coherently couple the 5P 3/2 and 5D 5/2 states, thus producing two dressed intermediate states which give rise to destructive interference in the two-photon transition. An induced two-photon transparency of about 80% has been obtained at resonance; our experimental findings are in good agreement with the general theory of Agarwal et al. (1996), when the appropriate spectroscopic parameters are used. (orig.)

  18. Absorption of electromagnetic radiation in a quantum wire with an anisotropic parabolic potential in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Karpunin, V. V., E-mail: karpuninvv@mail.ru [Mordovian State Pedagogical Institute (Russian Federation); Margulis, V. A., E-mail: theorphysics@mrsu.ru [Mordovian State University (Russian Federation)

    2016-06-15

    An analytical expression for the coefficient of absorption of electromagnetic radiation by electrons in a quantum wire in a magnetic field is derived. The case of a magnetic field transverse with respect to the wire axis is considered. The resonance character of absorption is shown, and the resonance frequencies as functions of the field are determined. The effect of the scattering of electrons at optical phonons is studied, and it is shown that scattering is responsible for additional resonance absorption peaks.

  19. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  20. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  1. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  2. The replacement of an electromagnetic primary sodium sampling pump in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Grygiel, M.L.; McCargar, C.G.

    1985-01-01

    On November 16, 1984 a leak was discovered in one of the Fast Flux Test Facility (FFTF) Primary Sodium Sampling System electromagnetic pumps. The leak was discovered in the course of routine cell entry to investigate a shorted trace heat element. The purpose of this paper is to describe the circumstances surrounding the occurrence of the leak, the actions taken to replace the damaged pump and the additional steps which were necessary to return the plant to power. In addition, the processes involved in producing the leak are described briefly. The relative ease of recovery from this incident is indicative of the overall feasibility of the Liquid Metal Reactor (LMR) operational concept

  3. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    International Nuclear Information System (INIS)

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D.

    1995-01-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, S approx-gt 1 GW/cm 2 . We also discuss the possibility of experimentally observing this transition

  4. Investigating hadronic resonances in pp interactions with HADES

    Directory of Open Access Journals (Sweden)

    Przygoda Witold

    2015-01-01

    Full Text Available In this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232 and N(1440 (1.25 GeV as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.

  5. Electromagnetic Properties of Graphene-like Films in Ka-Band

    Directory of Open Access Journals (Sweden)

    Sofia Voronovich

    2014-05-01

    Full Text Available We studied electromagnetic properties of pyrolytic carbon (PyC films with thicknesses from 9 nm to 110 nm. The PyC films consisted of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers were synthesized by chemical vapor deposition (CVD at 1100 °C on a quartz substrate. The reflectance and transmittance of these films in Ka-band, 26–37 GHz, were studied both experimentally and theoretically. The discovered remarkably high absorption loss of up to 50% of incident power, along with chemical stability, makes PyC films attractive for electromagnetic (EM interference shielding in space and airspace communication systems, as well as in portable electronic devices occupying this frequency slot. Since, in practical applications, the PyC film should be employed for coating of dielectric surfaces, two important issues to be addressed are: (i which side (front or back of the substrate should be covered to ensure maximum absorption losses; and (ii the frequency dependence of absorbance/transmittance/reflectance of binary PyC/quartz structures in the Ka-band.

  6. Non linear excitation of waves at the vicinity of plasma resonance

    International Nuclear Information System (INIS)

    Chiron, Arnaud

    1992-01-01

    This research thesis reports the study of the non linear evolution of ionic acoustic and plasma waves excited by resonant absorption of an electromagnetic wave, in a non collisional plasma, without external magnetic field, and with a parabolic density profile. The plasma resonance occurs about the density profile peak. The numerical resolution of the Zakharov equation system is performed to describe the coupled evolution of the plasma wave electric field envelope, and low frequency density disturbances. Experiments performed in the microwave domain show the existence of a new effect related to the modification of the electromagnetic wave propagation under the influence of plasma density disturbances created by the ponderomotive force. This effect which results in a collisional relaxation of plasma waves trapped in the cavity formed at resonance, cannot be taken into account by a numerical simulation using a capacitive pump field. Measurements showed that plasma waves were trapped and relaxing in a cavity with characteristic dimensions of some thousands of Debye lengths, and that the plasma wave in the cavity was stationary. A new turbulence regime is thus highlighted [fr

  7. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  8. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  9. Nuclear reorientation in static and radio-frequency electro-magnetic fields

    International Nuclear Information System (INIS)

    Dubbers, D.

    1976-01-01

    Nuclear reorientation by external electromagnetic fields is treated using Fano's irreducible tensor formulation of the problem. Although the main purpose of this paper is the description of the effects of nuclear magnetic resonance (NMR) on an ensemble of oriented nuclei in the presence of a crystal electric field gradient (efg), the results are applicable to all types of nuclear or atomic orientation or angular correlation work. The theory is applied to a number of exemplary cases: magnetic field dependence of nuclear orientation in the presence of quadrupole interactions; sign determination in electric quadrupole coupling; line shapes of nuclear acoustic resonance (NAR) signals; quadrupole splitting and multiquantum transitions in NMR with oriented nuclei. (orig./WBU) [de

  10. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  11. On the nature of resonances in photonuclear reactions

    International Nuclear Information System (INIS)

    Filippov, G.F.; Vasilevsky, V.S.; Kruchinin, S.P.; Chopovsky, L.L.

    1985-01-01

    An investigation of continuous spectrum states of the 6 He, 6 Li, 7 Li and 7 Be light atomic nuclei is carried out within the microscopic approach taking into account the dynamics of cluster and quadrupole collective degrees of freedom. The interaction of these nuclei with electromagnetic radiation is shown to lead to the excitation of collective resonances with energy exceeding 20 MeV and width GITA<1 MeV, and also giant quadrupole resonances with parameters: E=12-15 MeV and GITA approximately 5 MeV

  12. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation.

    Science.gov (United States)

    Dogan, M; Turtay, M G; Oguzturk, H; Samdanci, E; Turkoz, Y; Tasdemir, S; Alkan, A; Bakir, S

    2012-06-01

    The effects of electromagnetic radiation (EMR) produced by a third-generation (3G) mobile phone (MP) on rat brain tissues were investigated in terms of magnetic resonance spectroscopy (MRS), biochemistry, and histopathological evaluations. The rats were randomly assigned to two groups: Group 1 is composed of 3G-EMR-exposed rats (n = 9) and Group 2 is the control group (n = 9). The first group was subjected to EMR for 20 days. The control group was not exposed to EMR. Choline (Cho), creatinin (Cr), and N-acetylaspartate (NAA) levels were evaluated by MRS. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were measured by spectrophotometric method. Histopathological analyses were carried out to evaluate apoptosis in the brain tissues of both groups. In MRS, NAA/Cr, Cho/Cr, and NAA/Cho ratios were not significantly different between Groups 1 and 2. Neither the oxidative stress parameters, CAT and GSH-Px, nor the number of apoptotic cells were significantly different between Groups 1 and 2. Usage of short-term 3G MP does not seem to have a harmful effect on rat brain tissue.

  13. Method for analyzing electromagnetic-force-induced vibration and noise analysis; Denjiryoku reiki ni yoru dendoki no shindo hoshaon kaisekiho

    Energy Technology Data Exchange (ETDEWEB)

    Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)

    1998-11-01

    In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.

  14. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  15. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  16. Safety guidelines for magnetic resonance diagnostic facilities (1991)

    International Nuclear Information System (INIS)

    1992-01-01

    These guidelines provide information on levels and health effects of exposure to magnetic and radiofrequency electromagnetic fields associated with magnetic resonance (MR) devices, and on precautions to minimize effects on patients, staff, and the general public. The guidelines are for use by regulatory authorities, MR users and health professionals. 22 refs., 1 tab

  17. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Science.gov (United States)

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  18. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  19. An Improved Current-Doubler Rectifier for the Marine Controlled Source Electromagnetic Transmitter

    Directory of Open Access Journals (Sweden)

    Hongxi Song

    2018-01-01

    Full Text Available High power marine controlled source electromagnetic transmitters have gained interest with applications in marine geological survey and mineral resources exploration. The direct current to direct current (DC-DC converter that is typically used in marine transmitters has some issues, as the insulated-gate bipolar transistor (IGBT tube cannot achieve zero-voltage switching (ZVS. In particular, lagging-leg switching cannot easily achieve ZVS. The conversion efficiency of the heat converter requires improvement. This paper proposes an improved current-doubler rectifier for the marine controlled source electromagnetic transmitter (ICDR-MCSET. Resonant inductance is increased and a blocking capacitor is added to the converter (DC-DC circuit, where the converter can achieve ZVS in a wide load range. This results in the effective decrease of the heating temperature and the improvement of transformation efficiency. Saber software simulation and a 20 KW electromagnetic transmitter are used to verify the results, which show that the method is feasible and effective.

  20. Human reactions to electromagnetic radiation in millimeter range

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, E.A.; Belyy, M.U.; Sit' ko, S.P.

    1985-01-01

    The article deals with a problem that is on the boundary of different disciplines. The authors discovered previously unknown effects of low-energy electromagnetic radiation on the human body. A total of 188 subjects, both healthy and sick in terms of medical diagnosis, were submitted to sensory tests. The vast majority of healthy subjects did not react to radiation in the range of 27-78 GHz and power density of up to 10 mW/cm/sup 2/. The same situation was also observed in many cases with patients. However, exposure of very specific parts of the body of sick subjects to electromagnetic waves at a fixed frequency in the range of 45-65 GHz elicited a sensory reaction in the region of the organ with a marked impairment, and this was an organ that was spatially remote from the irradiated region. It was established that the zones on the surface of the body that are the most sensitive to radiation coincide with acupuncture zones that are known in reflex acupuncture therapy. In addition to presentation of experimental results, the authors also propose a theoretical interpretation of the demonstrated effects.

  1. Properties of backward electromagnetic waves and negative reflection in ferrite films

    International Nuclear Information System (INIS)

    Vashkovsky, Anatolii V; Lock, Edwin H

    2006-01-01

    For a backward electromagnetic wave (magnetostatic wave) in a ferrite film, reflection from a perfect mirror formed by the straight edge of the film is investigated experimentally and theoretically. It is found that when the incident wave is collinear (the group velocity vector and the wave vector have opposite directions), negative reflection occurs at any angle of incidence, i.e., the incident and reflected beams are on the same side of the normal to the boundary. It is discovered that a noncollinear backward wave is nonreciprocal in the sense that its energy can be localized both near the surface and in the middle of the film. This property, previously observed only for surface magnetostatic waves, provides both the efficiency of generating and receiving the wave and the possibility of observing the reflected beam. A situation is realized where wave reflection results in two reflected beams. The properties of backward electromagnetic waves propagating in ferrite films are briefly analyzed. (methodological notes)

  2. Numerical evaluation of electromagnetic force induced in high Tc superconductor with grain boundary

    International Nuclear Information System (INIS)

    Hashizume, Hidetoshi; Toda, Saburo; Maeda, Koutaro

    1996-01-01

    After high T c superconducting material was discovered, its superconducting characteristic has been improved so that its critical current density becomes comparable with that of metal alloy superconductors. Together with this progress of the high T c material, it is considered to apply the materials to generating levitation force in combination with permanent magnets. In this case, it becomes very important to evaluate quantitatively the electromagnetic force for designing of the devices. Some researches have used numerical analysis to evaluate the force, where the grain boundary was ignored or treated as nonconducting. In the real materials, however, some part of the screening current can pass through the grain boundary. In this paper, therefore, two dimensional electromagnetic analysis was performed with a new method to treat the grain boundaries, and its effect on the levitation force was discussed

  3. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  4. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  5. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  6. Electromagnetic local density of states in graphene-covered porous silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting [Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Tong-Biao, E-mail: tbwang@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Liao, Qing-Hua; Liu, Jiang-Tao; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Institute for Advanced Study, Nanchang University, Nanchang 330031 (China)

    2017-06-21

    Surface phonon polariton supported by silicon carbide (SiC) can be strongly coupled with graphene plasmon in the graphene-covered SiC bulk. The spectrum of the electromagnetic local density of states exhibits two peaks whose positions can be tuned by the chemical potential of graphene. In this work, we study the electromagnetic local density of states in the proximity of a graphene-covered SiC with periodic hole arrays. The well-known peak from the coupling of surface polariton supported by SiC and graphene plasmon splits into two. With increased volume ratio of holes, one of the split peak shifts towards high frequencies, whereas the other moves towards low frequencies. The dependence of split-peak positions on the chemical potential and permittivity of filling materials in the holes are also investigated. This study offers another method of modulating the electromagnetic local density of states. - Highlights: • The electromagnetic local density of states in the proximity of graphene-covered anisotropic SiC is firstly studied. • The peak from resonance of surface phonon polaritons in the EM-LDOS spectrum can be split into two. • The split peaks can be tuned by chemical potential, filling factor, and filling materials. • Our results provide a new method to modulate the EM-LDOS.

  7. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    International Nuclear Information System (INIS)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-01-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves

  8. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  9. Magnetic resonance imaging- physical principles and clinical application

    International Nuclear Information System (INIS)

    Tavri, Omprakash J.

    1996-01-01

    The advances in equipment and knowledge related to radiology are occurring at an astonishingly rapid rate. On November 8, 1895, William Conrad Roentgen discovered x-rays. In 1972, Godfrey Hounsfield and George Ambrose introduced computec tomography at a meeting of the British Institute of Radiology. In the same year, Paul Lauterbur published the idea of spatially resolving nuclear magnetic resonance samples, naming it zeugmatography. In 1977, Waldo Hinshaw and co-workers published a magnetic resonance image of a human hand and wrist, and by 1981 several centres were obtaining clinical magnetic resonance (MR) images. In a very short time, magnetic resonance imaging (MRI) has gained acceptance as a clinically useful imaging tool. (author)

  10. Incidentally found and unexpected tumors discovered by MRI examination for temporomandibular joint arthrosis

    International Nuclear Information System (INIS)

    Yanagi, Yoshinobu; Asaumi, Jun-ichi; Maki, Yuu; Murakami, Jun; Hisatomi, Miki; Matsuzaki, Hidenobu; Konouchi, Hironobu; Honda, Yosutoshi; Kishi, Kanji

    2003-01-01

    We examined the frequency of incidentally found or unexpected tumors discovered at the time of magnetic resonance imaging (MRI) examinations in the temporomandibular joint (TMJ) region for patients with suspicion of TMJ arthrosis. Five MR images (T1-weighted transverse scout image and proton density and T2-weighted oblique sagittal images at the open and closed mouth) were acquired. In 2776 MRI examinations of TMJ arthrosis, two tumors were discovered. They consisted of an adenoid cystic carcinoma in the deep portion of the parotid gland, and a malignant tumor extending from the infratemporal fossa to the parapharyngeal space. The rate of incidentally founded or unexpected tumors in TMJ examinations was low (0.072%), but the two tumors found were malignant tumors, and therefore, scout image should be carefully examined, not only used for positing the slice

  11. Incidentally found and unexpected tumors discovered by MRI examination for temporomandibular joint arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshinobu; Asaumi, Jun-ichi E-mail: asaumi@md.okayama-u.ac.jp; Maki, Yuu; Murakami, Jun; Hisatomi, Miki; Matsuzaki, Hidenobu; Konouchi, Hironobu; Honda, Yosutoshi; Kishi, Kanji

    2003-07-01

    We examined the frequency of incidentally found or unexpected tumors discovered at the time of magnetic resonance imaging (MRI) examinations in the temporomandibular joint (TMJ) region for patients with suspicion of TMJ arthrosis. Five MR images (T1-weighted transverse scout image and proton density and T2-weighted oblique sagittal images at the open and closed mouth) were acquired. In 2776 MRI examinations of TMJ arthrosis, two tumors were discovered. They consisted of an adenoid cystic carcinoma in the deep portion of the parotid gland, and a malignant tumor extending from the infratemporal fossa to the parapharyngeal space. The rate of incidentally founded or unexpected tumors in TMJ examinations was low (0.072%), but the two tumors found were malignant tumors, and therefore, scout image should be carefully examined, not only used for positing the slice.

  12. Electromagnetic form factors of hadrons

    International Nuclear Information System (INIS)

    Zidell, V.S.

    1976-01-01

    A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated

  13. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  14. Resonant interactions between cometary ions and low frequency electromagnetic waves

    Science.gov (United States)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  15. On the exhaust of electromagnetic drive

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2016-06-01

    Full Text Available Recent reports about propulsion without reaction mass have been met on one hand with enthusiasm and on the other hand with some doubts. Namely, closed metal cavities, when fueled with microwaves, have delivered thrust that could eventually maintain satellites on orbits using solar power. However, the measured thrust appears to be without any apparent exhaust. Thus the Law of Action-Reaction seems to have been violated. We consider the possibility that the exhaust is in a form that has so far escaped both experimental detection and theoretical attention. In the thruster’s cavity microwaves interfere with each other and invariably some photons will also end up co-propagating with opposite phases. At the destructive interference electromagnetic fields cancel. However, the photons themselves do not vanish for nothing but continue in propagation. These photon pairs without net electromagnetic field do not reflect back from the metal walls but escape from the resonator. By this action momentum is lost from the cavity which, according to the conservation of momentum, gives rise to an equal and opposite reaction. We examine theoretical corollaries and practical concerns that follow from the paired-photon conclusion.

  16. Broadband Control of Topological Nodes in Electromagnetic Fields

    Science.gov (United States)

    Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui

    2018-05-01

    We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.

  17. Effect of electromagnetic field in fusion facility on electronic personal dosimeter

    International Nuclear Information System (INIS)

    Yamada, Junya; Kawano, Takao; Uda, Tatsuhiko; Shimo, Michikuni

    2010-01-01

    The effect of electromagnetic field on electronic personal dosimeters in a nuclear fusion facility was examined in a Magnetic Resonance Imaging (MRI) examination room instead of a nuclear fusion facility. Three types of electronic personal dosimeters, the PDM-111, the 112, and the 117, were used as typical ones. We surveyed the electromagnetic field distribution and dosimeters were placed at locations with various strengths of the electromagnetic field. The natural radiation dose was measured for about one week. We found that while dosimeters were not affected by the electric field, they were affected by the magnetic one. Dosimeters detected radiation levels less sensitively as the magnetic field strength was increased up to 150 mT. The dosimeters underestimated the environmental radiation dose rates by about 10-30% when the magnetic field strength was larger than 150 mT. We assumed that hall-effect caused the reduction in radiation sensitivity. We concluded that the strength of the magnetic field needs to be carefully considered when an electronic personal dosimeter is used for monitoring both personal and area dose in a nuclear fusion facility. (author)

  18. Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media

    Science.gov (United States)

    Botet, R.; Kuratsuji, H.; Seto, R.

    2006-08-01

    Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.

  19. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  20. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz)

    International Nuclear Information System (INIS)

    Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; Lindt, Tessa van de; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf

    2015-01-01

    Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions

  1. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  2. Electromagnetic liquid pistons for capillarity-based pumping

    Science.gov (United States)

    Malouin, Bernard; Olles, Joseph; Cheng, Lili; Hirsa, Amir; Vogel, Michael

    2011-11-01

    Two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their motion can be exploited to displace a surrounding liquid, forming electromagnetic liquid pistons. Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes or resonant frequencies with no solid moving parts. Here we demonstrate the use of these liquid pistons in capillarity-dominated systems for variable focal distance liquid lenses with nearly perfect spherical interfaces. These liquid/liquid lenses feature many promising qualities not previously realized together in a liquid lens, including large apertures, immunity to evaporation, invariance to orientation relative to gravity, and low driving voltages. The dynamics of these liquid pistons is examined, with experimental measurements showing good agreement with a spherical cap model. A centimeter-scale lens was shown to respond in excess of 30 Hz, with resonant frequencies over 1 kHz predicted for scaled down systems.

  3. Direct measurement of the quantum state of the electromagnetic field in a superconducting transmission line

    International Nuclear Information System (INIS)

    Melo, F. de; Aolita, L.; Davidovich, L.; Toscano, F.

    2006-01-01

    We propose an experimental procedure to directly measure the state of an electromagnetic field inside a resonator, corresponding to a superconducting transmission line, coupled to a Cooper-pair box (CPB). The measurement protocol is based on the use of a dispersive interaction between the field and the CPB, and the coupling to an external classical field that is tuned to resonance with either the field or the CPB. We present a numerical simulation that demonstrates the feasibility of this protocol, which is within reach of present technology

  4. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  5. Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)

  6. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    Science.gov (United States)

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  7. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    Directory of Open Access Journals (Sweden)

    S. Parr

    2017-09-01

    Full Text Available The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB pulse, which constitutes a typical intentional electromagnetic interference (IEMI scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  8. Nonlinear cyclotron-resonance accelerations by a generalized EM wave

    International Nuclear Information System (INIS)

    Akimoto, K.; Hojo, H.

    2004-01-01

    Particle accelerations by a one-dimensional, electromagnetic, dispersive pulse in an external magnetic field are investigated. It is found that the well-known cyclotron resonance may be classified into three regimes as the length and/or the amplitude of the pulse are varied. Namely, as the pulse amplitude increases, the transit-time cyclotron-resonance acceleration (CRA) evolves to phase trapping, and reflect particles. The amplitude and wave dispersion as well as the pulse length strongly affect those accelerations. The interesting phenomena of quantization of resonance velocities in between the two regimes are also investigated. This new mechanism may lead to wave amplification at some discrete frequencies other than the cyclotron frequency. (authors)

  9. Formulation of electromagnetic-wave analysis by boundary element method and its application to the analysis of RF cavities

    International Nuclear Information System (INIS)

    Washizu, Masao; Tanabe, Yoshio.

    1986-01-01

    In a system handling the electromagnetic waves of large power such as the cavity resonator for a high energy accelerator and the high frequency heater for a nuclear fusion apparatus, the margin in the thermal and mechanical design of a wave guide system cannot be taken large, accordingly, the detailed analysis of electromagnetic waves is required. When the analysis in a general form is carried out, boundary element method may be a useful method of solution. This time, the authors carried out the formulation of steady electromagnetic wave problems by boundary element method, and it was shown that the formulation was able to be carried out under the physically clear boundary condition also in this case, and especially in the case of a perfect conductor system, a very simple form was obtained. In this paper, first, the techniques of formulation in a general case, and next, as a special case, the formulation for a perfect conductor system are described. Taking the analysis of the cavity resonators of cylindrical and rectangular parallelepiped forms as examples, the comparison with the analytical solution was carried out. (Kako, I.)

  10. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Oxidative response of human monocytes and macrophages cultured under low oxygen culture conditions to ion parametric resonance magnetic fields.

    Science.gov (United States)

    INTRODUCTION One proposed mechanism of action of electromagnetic fields (EMFs) on biological systems is the Ion Parametric Resonance (IPR) model, which has been experimentally validated in neuronal PC-12 cells [1, 2]. It proposes that when applied EMFs are tuned to resonate with...

  12. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    Directory of Open Access Journals (Sweden)

    Vipul Sharma

    2018-05-01

    Full Text Available M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd and samarium (Sm, with cobalt (Co as base, doped hexaferrite nanoparticles (NPs. X-ray diffractometry, vibrating sample magnetometer (VSM, and ferromagnetic resonance (FMR techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  13. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  14. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 5. Contributions of Maxwell to Electromagnetism. P V Panat. General Article Volume 8 Issue 5 May 2003 pp 17-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/05/0017-0029. Keywords.

  16. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  17. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    Science.gov (United States)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  18. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    International Nuclear Information System (INIS)

    Ohta, N; Niki, T; Kirihara, S

    2011-01-01

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  19. The discovery of resonances in multibaryon systems. Pt. 3. Λ p-resonances

    International Nuclear Information System (INIS)

    Shahbazian, B.A.; Temnikov, P.P.; Timonina, A.A.; Rozhdestvenskij, A.M.

    1978-01-01

    Dibaryon Λ p resonance of 2256 MeV/c 2 mass, GITA 2 (depending on the spin Jsub(Λp)) width, and Jsup(p) > O + spin-parity assignments is discovered. The statistical significance of the corresponding peak in Λ p effective mass spectra is defined by more than five standard deviations. Its production effective cross section in n 12 C collisions at =7.0 GeV/c is estimated to be sigmasub(pr) (2256)=(85.3+-20.0)μb, whereas the formation effective cross section in Λ p → Λ p interactions is sigmasub(f) (2256) = 5.3(2Jsub(Λp)+1) mb. The Λp effective mass spectra which have been investigated in this experiment reveal, apart the well known approximately(Msub(Λ+Msub(p)) MeV/c 2 and 2128 MeV/c 2 peaks, enhancements including 2256 MeV/c 2 peak near the most of the resonance mass values predicted by MIT Bag Model. Possible mechanisms of multibaryon resonance formation are discussed. According to the hypercharge selection rule Y <= 1 multibaryon resonances are shown to be ultra-high density superstrange objects

  20. Complete electromagnetically induced transparency in sodium atoms excited by a multimode dye laser

    International Nuclear Information System (INIS)

    Alzetta, G.; Gozzini, S.; Lucchesini, A.; Cartaleva, S.; Karaulanov, T.; Marinelli, C.; Moi, L.

    2004-01-01

    Complete electromagnetically induced transparency (EIT) in sodium vapor is demonstrated experimentally by means of excitation with a broadband multimode dye laser tuned on the D 1 line. One hundred percent transparency is observed by excitation of the Na vapor with circularly polarized laser light. The linear polarization excitation produces, instead, complete destruction of the EIT resonance. For laser power density in the 0.1 to 1 W/cm 2 range, the linewidth of the EIT resonance remains in the interval of 90-400 kHz. This complete transparency of the medium in a narrow frequency interval is interesting for many applications where the enhancement of the refractive index is important and where the improvement of the signal-to-noise ratio of the dark resonances allows a more sensitive measurement of weak magnetic fields

  1. Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    experimentation that improves understanding of basic MR phenomena. The simulator is used to introduce and explore electromagnetism, magnetic dipoles, static and radiofrequency fields, Compass MR, the free induction decay (FID), relaxation, the Fourier transform (FFT), the resonance condition, spin, precession......, the Larmor equation, Nuclear MR, resonant excitation (linear and quadrature), and off-resonance effects. Methods and implementation: The simulator is a complete HTML5/JavaScript[1,2] rewrite of the JavaCompass[3] so it now executes in modern browsers with no additional software needed. Spin dynamics...

  2. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  3. Enhanced escape rate for Hg 254 nm resonance radiation in fluorescent lamps

    International Nuclear Information System (INIS)

    Lawler, James E; Raizen, Mark G

    2013-01-01

    The potential of the low-cost MAGIS isotopic separation method to improve fluorescent lamp efficacy is explored using resonance radiation transport simulations. New Hg isotopic mixes are discovered that yield escape rates for 254 nm Hg I resonance radiation equal to 117% to 122% of the rate for a natural isotopic mix under the same lamp conditions. (paper)

  4. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    International Nuclear Information System (INIS)

    Franco-Villafañe, J A; Méndez-Sánchez, R A; Flores-Olmedo, E; Báez, G; Gandarilla-Carrillo, O

    2012-01-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results. (paper)

  5. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Elnaggar, Sameh Y. [School of Engineering and Information Technology, University of New South Wales, Canberra (Australia); Tervo, Richard J. [Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada); Mattar, Saba M., E-mail: mattar@unb.ca [Chemistry Department, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  6. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    International Nuclear Information System (INIS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-01-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ E and/or magnetic κ M components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures

  7. Electromagnetic design issues in elliptic superconducting radio frequency cavity for H- LINAC

    International Nuclear Information System (INIS)

    Kumar, V.; Jana, A.R.; Gaur, R.

    2013-01-01

    Multi-cell elliptic superconducting radiofrequency (SCRF) cavities are used for efficient acceleration of a high power charged particle beam for a wide range of velocities, typically corresponding to β = 0.5 to ∼ 1, where β is the particle speed in unit of speed of light. Electromagnetic design of such cavities involves careful optimization of the cavity geometry with several design constraints. In this paper, we discuss a generalized approach to optimize the design to achieve maximum acceleration gradient and field flatness, while ensuring that the effect due to higher order modes supported by the cavity are within acceptable limits. Study of detuning in the cavity resonance frequency due to mechanical pressure associated with electromagnetic field inside the cavity, known as Lorentz Force Detuning (LFD), plays an important role in optimizing the scheme for stiffening of the cavity. Electromagnetic design calculations performed for SCRF cavities of medium energy section of 1 GeV H - injector linac for the proposed Indian Spallation Neutron Source (ISNS) at Raja Ramanna Centre for Advanced Technology are presented in the paper highlighting all these important design issues. (author)

  8. Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories

    International Nuclear Information System (INIS)

    Ahmad, Mahmoud Al; Alshareef, H N; Elshurafa, Amro M; Salama, Khaled N

    2011-01-01

    This work proposes a novel methodology for estimating the power output of piezoelectric generators. An analytical model that estimates for the first time the loss ratio and output power of piezoelectric generators based on the direct mechanical-to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line theory allows deduction of the equivalent electromechanical loss of the piezoelectric generator. By knowing the mechanical input power and the loss of the network, calculation of the output power of the piezoelectric device becomes a straightforward procedure. Experimental results based on published data are also presented to validate the analytical solution. In order to fully benefit from the well-established electromagnetic transmission line and electric circuit theories, further analyses on the resonant frequency, bandwidth, and sensitivity are presented. Compared to the conventional modeling methods currently being adopted in the literature, the proposed method provides significant additional information that is crucial for enhanced device operation and quick performance optimization

  9. An overview of landmine detection with emphasis on electromagnetic approaches

    Science.gov (United States)

    Das, Yogadhish

    2003-04-01

    Human suffering caused by antipersonnel landmines left over from previous conflicts has only recently received significant public exposure. However, considerable amount of research on how to detect and deal with buried landmines has been carried out at least since the second world war. The research has encompassed a wide range of technologies and large sums of money have been spent. Despite these efforts there is still no operationally satisfactory solution, especially to the detection problem. This lack of success is attributable to the difficulty of the problem and the high degree of effectiveness demanded of any proposed solution. The many landmine detection approaches can be divided into two broad categories: (1)approaches primarily aimed at detecting the casing of the landmine (physical properties of its explosive content may also have some influence) and (2)approaches aimed at directly detecting the explosive contents. Examples of techniques belonging to the first group are electromagnetic induction, ground probing radar and other high frequency electromagnetic techniques, acoustics and other mechanical techniques, and infrared. Trace explosive vapour detection, thermalneutron activation and nuclear quadrupole resonance are examples of the second group. Following a brief introduction to nature of the landmine problem and the many technologies that have been explored to solve it, the presentation will focus on some of the detection approaches based on electromagnetic techniques. In particular, the state of the art in electromagnetic induction detection will be reviewed and required future research and development in this area will be presented.

  10. Measurement and mapping of the GSM-based electromagnetic pollution in the Black Sea region of Turkey.

    Science.gov (United States)

    Tuysuz, Burak; Mahmutoglu, Yigit

    2017-01-01

    Electromagnetic pollution caused by mobile communication devices, a new form of environmental pollution, has been one of the most concerning problems to date. Consequences of long-term exposure to the electromagnetic radiation caused by cell phone towers are still unknown and can potentially be a new health hazard. It is important to measure, analyze and map the electromagnetic radiation levels periodically because of the potential risks. The electromagnetic pollution maps can be used for the detection of diseases caused by the radiation. With the help of the radiation maps of different regions, comparative analysis can be provided and distribution of the diseases can be investigated. In this article, Global System for Mobile communication (GSM)-based electromagnetic pollution map of the Rize Providence, which has high cancer rates because of the Chernobyl nuclear explosion, is generated. First, locations of the GSM base stations are identified and according to the antenna types of the base stations, safety distances are determined. Subsequently, 155 measurements are taken during November 2014 from the nearest living quarters of the Rize city center in Turkey. The measurements are then assessed statistically. Thenceforth, for visual judgment of the determined statistics, collected measurements are presented on the map. It is observed that national limits are not exceeded, but it is also discovered that the safety distance is waived at some of the measurement points and above the average radiation levels are noted. Even if the national limits are not exceeded, the long-term effects of the exposition to the electromagnetic radiation can cause serious health problems.

  11. Design and characterization of a novel toroidal split-ring resonator

    International Nuclear Information System (INIS)

    Bobowski, J. S.; Nakahara, Hiroko

    2016-01-01

    The design and characterization of a novel toroidal split-ring resonator (SRR) are described in detail. In conventional cylindrical SRRs, there is a large magnetic flux within the bore of the resonator. However, there also exists a non-negligible magnetic flux in the free space surrounding the resonator. The energy losses associated with this radiated power diminish the resonator’s quality factor. In the toroidal SRR, on the other hand, the magnetic field lines are strongly confined within the bore of the resonator resulting in high intrinsic quality factors and stable resonance frequencies without requiring additional electromagnetic shielding. This paper describes the design and construction of a toroidal SRR as well as an experimental investigation of its cw response in the frequency-domain and its time-domain response to a rf pulse. Additionally, the dependence of the toroidal SRR’s resonant frequency and quality factor on the strength of inductive coupling to external circuits is investigated both theoretically and experimentally

  12. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  13. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  14. Investigation of a double oscillating-fan cooling device using electromagnetic force

    International Nuclear Information System (INIS)

    Su, Hsien-Chin; Xu, Han Yang

    2016-01-01

    Highlights: • The characteristics of a double oscillating-fan cooling device using electromagnetic force was investigated. • The driving current can be either DC PWM or AC within 3–12 V. • The comparison between a double blower pair, the model and a synjet were examined. • A 50 mm ∗ 50 mm ∗ 15 mm model can provide the flow rate of 154.89 l/min while consuming 0.65 W. • The flow rate, sound pressure, power consumption and two thermal tests have been done. - Abstract: This study proposes a double oscillating-fan cooling device using electromagnetic force. The device consists of two oscillating-fans. It requires only one electromagnet and two fan sheets with one magnet on each of them. The electromagnet and fan sheets are situated on a base and arranged accordingly. The electromagnetic force generated by the electromagnet can actuate the fan sheets. The main advantage of the device is its simple structure because there is no bearing and motor in the device. The driving current can be either DC PWM (Pulse width modulation) or AC (Alternating current) within 3–12 V so it is compatible with most electronic devices. The dimensions of the proposed model are 50 mm ∗ 50 mm ∗ 15 mm during operation. Concerning flow rate, sound pressure, power consumption and resonant frequency tests, a comparison between the proposed model and different type of cooling devices has been completed. The result shows that the model can provide cooling ability similar to a rotary fan while consuming 40% of the power of the rotary fan. It shows not only a good cooling ability but also a great potential for structural reliability and design flexibility.

  15. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  16. Intralabyrinthine schwannoma shown by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Saeed, S.R.; Birzgalis, A.R.; Ramsden, R.T.

    1994-01-01

    Intralabyrinthine schwannomas are rare benign tumours which present with progressive or fluctuant audiovestibular symptoms and may mimic Menieres disease. The size and position of these lesions make preoperative diagnosis unusual and most are discovered incidentally at labyrinthectomy. A case is reported which was diagnosed on magnetic resonance imaging and confirmed at surgery. (orig.)

  17. Spectral light separator based on deep-subwavelength resonant apertures in a metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Büyükalp, Yasin; Catrysse, Peter B., E-mail: pcatryss@stanford.edu; Shin, Wonseok; Fan, Shanhui, E-mail: shanhui@stanford.edu [E. L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-07-07

    We propose to funnel, select, and collect light spectrally by exploiting the unique properties of deep-subwavelength resonant apertures in a metallic film. In our approach, each aperture has an electromagnetic cross section that is much larger than its physical size while the frequency of the collected light is controlled by its height through the Fabry-Pérot resonance mechanism. The electromagnetic crosstalk between apertures remains low despite physical separations in the deep-subwavelength range. The resulting device enables an extremely efficient, subwavelength way to decompose light into its spectral components without the loss of photons and spatial coregistration errors. As a specific example, we show a subwavelength-size structure with three deep-subwavelength slits in a metallic film designed to operate in the mid-wave infrared range between 3 and 5.5 μm.

  18. Application of electromagnetic and sound waves in nutritional assessment

    International Nuclear Information System (INIS)

    Heymsfield, S.B.; Rolandelli, R.; Casper, K.; Settle, R.G.; Koruda, M.

    1987-01-01

    Four relatively new techniques that apply electromagnetic or sound waves promise to play a major role in the study of human body composition and in clinical nutritional assessment. Computerized axial tomography, nuclear magnetic resonance, infrared interactance, and ultrasonography provide capabilities for measuring the following: total body and regional fat volume; regional skeletal muscle volume; brain, liver, kidney, heart, spleen, and tumor volume; lean tissue content of triglyceride, iron, and high-energy intermediates; bone density; and cardiac function. Each method is reviewed with regard to basic principles, research and clinical applications, strengths, and limitations.33 references

  19. Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Eguilior, S.

    2003-07-01

    Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.

  20. Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves

    International Nuclear Information System (INIS)

    Castejon, F.; Eguilior, S.

    2003-01-01

    Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs

  1. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  2. Resonator QED experiments with single {sup 40}Ca{sup +} ions; Resonator-QED-Experimente mit einzelnen {sup 40}Ca{sup +}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.

    2006-12-20

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  3. Resonant excitation and the decay of autoionization states in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Andryushin, A.I.; Kazakov, A.E.; Fedorov, M.V.

    1985-01-01

    Photoionization of atoms involving resonant excitation of the auto-ionization state is studied. The evolution of the total ionization probability, its dependence on the frequency of the resonance radiation and also the photoelectron energy spectrum are investigated. It is shown that the energy of the final state of the system may be localized either in the vicinity of E approximately Esub(α), where Esub(α) is the auto-ionization energy, or in the vicinity of E approximately Esub(α)+h/2πω where h/2πω is the quantum energy of the resonance radiation. The photoelectron specturum in the region E approximately Esub(α)+h/2πω as a whole is similar to the electron spectrum on photoionization of atoms involving resonance excitation of the bound state. A strong effect on the photoelectron spectrum in the region E approximately Esub(α) is exerted by interference of various decay channels of the ground state in the resonance field which leads to the appearance in the spectrum of a characteristic structure of the Fano type. Interence also affects the widths of the two spectral curves, the relatve amount of electrons in the two energy ranges and also other characteristics of the ionization process. It is shown that the presence of a noninterfering photoionization channel of the autoionization state ensures the finiteness of the swidths and heights of the spectral curves and the absence of complete ''coherency merging''

  4. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  6. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas

    International Nuclear Information System (INIS)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  7. The interaction of an electromagnetic wave with an inhomogeneous plasma slab

    International Nuclear Information System (INIS)

    Lacina, J.; Preinhaelter, J.

    1982-07-01

    In connection with the problem of plasma heating by high-frequency waves a numerical code was developed which makes it possible to study the incidence of an electromagnetic wave on an inhomogeneous plasma slab. Using a one-dimensional model, non-magnetized plasma is described by means of two-fluid equations with finite electron pressure and with the adiabatic condition for all processes. It is shown that at normal incidence of a wave on a cold plasma, the wave is reflected from the region of plasma resonance. A standing wave arises which generates an electrostatic standing wave of a double frequency. At the same time the density gradient sharply rises in this region. In a warm plasma the incident wave again creates a standing wave but nonlinear perturbations propagate from the region of plasma resonance at ion acoustic velocity to the whole plasma volume. In this case the density gradient does not change very much. In the region of plasma resonance ion acoustic waves are also generated. (author)

  8. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2016-05-01

    Full Text Available A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe, compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ∼14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. How did Cantor Discover Set Theory and Topology? S M Srivastava. General Article Volume 19 Issue 11 November 2014 pp 977-999. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. How Einstein Discovered the Special Theory of Relativity. Sriranjan Banerji. General Article Volume 11 Issue 2 February 2006 pp 27-42. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    International Nuclear Information System (INIS)

    Dugar-Zhabon, V D; Orozco, E A; González, J D

    2016-01-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread. (paper)

  12. Microwave microscopy applied to EMC problem: Visualisation of electromagnetic field in the vicinity of electronic circuit and effect of nanomaterial coating

    Directory of Open Access Journals (Sweden)

    J. Rossignol

    2017-05-01

    Full Text Available This proposal is devoted to a collaborative approach dealing with microwave microscopy experiments. The application is dedicated to an electromagnetic field cartography above circuits and the influence of nanometric material layer deposition on the circuits. The first application is associated to a microstrip ring resonator. The results match with the simulated fields. The second application is focused on the effects of a dielectric layer deposited on the circuit and its impact in terms of electromagnetic propagation.

  13. Electron Shell as a Resonator

    International Nuclear Information System (INIS)

    Karpeshin, F. F.

    2002-01-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  14. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    Science.gov (United States)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  15. Theoretical implications of the resonance anomalies in the e+-e- system

    International Nuclear Information System (INIS)

    Pakvasa, S.; Rajasekaran, G.; Tuan, S.F.

    1975-01-01

    The phenomenological properties of the recent resonance anomalies at 3.1 GeV and 3.7 GeV in e + -e - systems are confronted in a fairly systematic way with models presently known to us. These include charm-related models, neutral-intermediate-boson-type hypotheses, gauge-related models, and exotic suggestions that the resonant states may have abnormal C parity or that the electromagnetic current has a color triplet piece. We conclude that none of the schemes proposed represents a really satisfactory interpretation of the data

  16. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...

  17. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  18. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  19. Resonator QED experiments with single 40Ca+ ions

    International Nuclear Information System (INIS)

    Lange, B.

    2006-01-01

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  20. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  1. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).

    Science.gov (United States)

    Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; van de Lindt, Tessa; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf

    2015-09-22

    Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia

  2. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  3. Studying Lorentz-violating electromagnetic waves in confined media

    International Nuclear Information System (INIS)

    Viana, Davidson R.; Gomes, Andre H.; Fonseca, Jakson M.; Moura-Melo, Winder A.

    2009-01-01

    Full text. Planck energy scale is still far beyond current possibilities. A question of interest is whether the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly would be useful whenever building grand unified theories, in which general relativity is consistently accommodated. Here, we study a reminiscent of this possible symmetry violation, incorporated in the body of the so-called Standard Model Extension (SME). More precisely, we deal with the pure (Abelian) gauge sector, so that we have a modified classical electromagnetism in (3+1) dimensions, whose Lagrangian include a term proportional to a (constant) background tensor that breaks the Lorentz symmetry, but respecting CPT. Our attention is devoted to the wave-like solutions constrained to propagate inside confined media, like waveguides and resonant cavities. Our preliminary findings indicate that Lorentz-breaking implies in modifications of the standard results which are proportional to the (very small) violating parameters, but could be largely enhanced by diminishing the size of the confined media. Under study is the case of a toroidal cavity where the electromagnetic field should respect the additional requirement of being single-valued in the (toroidal) angular variable. Perhaps, such an extra feature combined with the usual boundary conditions could lead us to large effects of this violation, somewhat similar to those predicted for CPT- and Lorentz-odd electromagnetic waves constrained to propagate along a hollow conductor waveguide. (author)

  4. Understanding of increased diffuse scattering in regular arrays of fluctuating resonant particles

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Petrov, Mihail; Lavrinenko, Andrei

    2015-01-01

    In this presentation we will discuss the analytical and numerical approaches to modeling electromagnetic properties of geometrically regular subwavelength 2D arrays of random resonant plasmonic particles. Amorphous metamaterials and metasurfaces attract interest of the scientific community due...... with regular periodic arrangements of resonant nanoparticles of random polarizability/size/material at normal plane-wave incidence. We show that randomness of the polarizability is related to increase in diffused scattering and we relate this phenomenon to a modification of the dipoles’ interaction constant...

  5. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    Science.gov (United States)

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  6. Integrating electromagnetic radiation hazard info the unique occupational risk assessment document

    International Nuclear Information System (INIS)

    Demaret, P.; Donati, P.

    2011-01-01

    The number of industrial applications involving electromagnetic waves has significantly increased in recent years. These applications are likely to expose operators to electromagnetic fields exceeding the limits laid down by European Parliament and Council Directive 2004/40/CE of 29 April 2004. A survey has identified the equipment emitting the most radiation and this has been classified into 8 families: resistance welding, magnetization, induction heating, magneto-scopy, dielectric loss welding, electrolysis, magnetic resonance imagery, microwaves. The equipment numbers per family was estimated by a market surveys, which specifically identified several tens of thousands of resistance welding- or magnetization-type machines. This survey enabled us to deduce that at least 100,000 operators in France would be at risk of exposure to electromagnetic fields. An assessment of exposure levels for operators at their workstations was undertaken for each equipment family. A group comprising specialists from INRS and the 9 CARSAT/CRAM Physical Measurement Centres measured electromagnetic fields at 635 workstations fitted with radiation emitting machinery. For each measurement, a severity index corresponding to the ratio of the measured value to the action-triggering value (ATV) recommended by European Parliament and Council Directive 2004/40/CE of 29 April 2004 was calculated. The results show that, for 7 equipment families out of the 8 retained, 25 - 50% of measurements gave electromagnetic field values exceeding the corresponding ATV. These results demonstrate the need for prevention means. In most cases, exposure reduction is achieved by moving the workstation away from the radiation source. Technical solutions do exist for certain equipments, such as shielding for microwave ovens and high-frequency presses, a grounding pad for tarpaulin welding, etc. (authors)

  7. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  8. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage

    Science.gov (United States)

    2015-01-01

    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (pfreezing showed the size of ice crystal with a lower rate of increase than the air blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (pfreezing was higher than the air blast on 8 month (pfreezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef. PMID:26761797

  9. Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept

    Directory of Open Access Journals (Sweden)

    M. Y. Barabanenkov

    2012-07-01

    Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.

  10. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor

    Directory of Open Access Journals (Sweden)

    Hongjie Lei

    2018-05-01

    Full Text Available This paper presents a flame retardant 4 (FR4-based electromagnetic scanning micromirror, which aims to overcome the limitations of conventional microelectromechanical systems (MEMS micromirrors for the large-aperture and low-frequency scanning applications. This micromirror is fabricated through a commercial printed circuit board (PCB technology at a low cost and with a short process cycle, before an aluminum-coated silicon mirror plate with a large aperture is bonded on the FR4 platform to provide a high surface quality. In particular, an electromagnetic angle sensor is integrated to monitor the motion of the micromirror in real time. A prototype has been assembled and tested. The results show that the micromirror can reach the optical scan angle of 11.2 ∘ with a low driving voltage of only 425 mV at resonance (361.8 Hz. At the same time, the signal of the integrated angle sensor also shows good signal-to-noise ratio, linearity and sensitivity. Finally, the reliability of the FR4 based micro-mirror has been tested. The prototype successfully passes both shock and vibration tests. Furthermore, the results of the long-term mechanical cycling test (50 million cycles suggest that the maximum variations of resonant frequency and scan angle are less than 0.3% and 6%, respectively. Therefore, this simple and robust micromirror has great potential in being useful in a number of optical microsystems, especially when large-aperture or low-frequency is required.

  11. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  12. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  13. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  14. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  15. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  16. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  17. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  18. Electromagnetic fission of 238U at 600 and 1000 MeV per nucleon

    International Nuclear Information System (INIS)

    Rubehn, T.; Mueller, W.F.J.; Bassini, R.; Begemann-Blaich, M.; Blaich, T.; Gross, C.; Imme, G.; Iori, I.; Kunde, G.J.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlemkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-05-01

    Electromagnetic fission of 238 U projectiles at E/A=600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsaecker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium. (orig.)

  19. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  20. Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations

    Science.gov (United States)

    Fistul, M. V.

    2002-03-01

    We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing small Josephson junctions. The current-voltage characteristics of such systems display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that in the quantum regime as the system is driven on the resonance, coherent Rabi oscillations between the quantum levels of EOs occur. At variance with the classical regime the magnitude and the width of resonances are determined by the frequency of Rabi oscillations that in turn, depends in a peculiar manner on an externally applied magnetic field and the parameters of the system.

  1. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....

  2. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

    Science.gov (United States)

    Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola

    2018-04-01

    This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

  3. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Nano-Materials Research Center, Korea Institute of Science and Technology, 39-1 Haweoulgog-dong, Sungbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: swkim@kist.re.kr; Yoon, Chong S. [Division of Advanced Materials Science, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2007-09-15

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  4. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  5. Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories

    KAUST Repository

    Ahmad, Mahmoud Al

    2012-07-23

    This work proposes a novel methodology for estimating the power output of piezoelectric generators. An analytical model that estimates for the first time the loss ratio and output power of piezoelectric generators based on the direct mechanical-to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line theory allows deduction of the equivalent electromechanical loss of the piezoelectric generator. By knowing the mechanical input power and the loss of the network, calculation of the output power of the piezoelectric device becomes a straightforward procedure. Experimental results based on published data are also presented to validate the analytical solution. In order to fully benefit from the well-established electromagnetic transmission line and electric circuit theories, further analyses on the resonant frequency, bandwidth, and sensitivity are presented. Compared to the conventional modeling methods currently being adopted in the literature, the proposed method provides significant additional information that is crucial for enhanced device operation and quick performance optimization. © 2011 IOP Publishing Ltd.

  6. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  7. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    Science.gov (United States)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  8. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  9. Polarization observables in the process d + p → d+ X and electromagnetic form factors of N → N* transitions

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    We analyze the properties of the inclusive d + p-reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (ω-,σ-, n- exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances excitation. Existing data on the tensor analyzing power are in agreement with the predictions based on the ω-exchange model. (authors)

  10. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu; Di Falco, Andrea; Molinari, Diego P.; Khan, Yasser; Ooi, Boon S.; Krauss, Thomas F.; Fratalocchi, Andrea

    2013-01-01

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  11. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu

    2013-05-05

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  12. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  13. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan

    2007-01-01

    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  14. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  15. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  16. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  17. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  18. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  19. Off-resonant transitions in the collective dynamics of multi-level atomic ensembles

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Mølmer, Klaus

    2013-01-01

    We study the contributions of off-resonant transitions to the dynamics of a system of N multi-level atoms sharing one excitation and interacting with the quantized vector electromagnetic field. The rotating wave approximation significantly simplifies the derivation of the equations of motion...... describing the collective atomic dynamics, but it leads to an incorrect expression for the dispersive part of the atom–atom interaction terms. For the case of two-level atoms and a scalar electromagnetic field, it turns out that the atom–atom interaction can be recovered correctly if integrals over...... the photon mode frequencies are extended to incorporate negative values. We explicitly derive the atom–atom interaction for multi-level atoms, coupled to the full vector electromagnetic field, and we recover also in this general case the validity of the results obtained by the extension to negative...

  20. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  1. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  2. Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. II. Four-level system

    International Nuclear Information System (INIS)

    Wilson, E. A.; Manson, N. B.; Wei, C.

    2005-01-01

    The effect a perturbing field has on an electromagnetically induced transparency within a three-level Λ system is presented. The perturbing field is applied resonant between one of the lower levels of the Λ system and a fourth level. The electromagnetically induced transparency feature is split and this is measured experimentally for both single and bichromatic driving fields. In the single-driving-field case a density matrix treatment is shown to be in reasonable agreement with experiment and in both single and bichromatic cases the structure in the spectrum can be explained using a dressed-state analysis

  3. Predictions of baryon form factors for the electromagnetic and weak interaction

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.

    1978-05-01

    The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de

  4. Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Kumar, Asheel; Tripathi, V.K.

    2005-01-01

    Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential

  5. Compact HTS bandpass filter employing CPW quarter-wavelength resonators with strongly-coupled open stubs

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, K; Koizumi, D; Narahashi, S [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagwa, 239-8536 (Japan)], E-mail: satokei@nttdocomo.co.jp

    2008-02-01

    This paper presents a novel compact high temperature superconducting (HTS) bandpass filter (BPF) that employs a newly developed miniaturized coplanar-waveguide (CPW) quarter-wavelength resonators with strongly-coupled open stubs. The proposed resonator has a structure in which the open stubs are aligned close to the center conductor of the resonator. This is because strongly-coupled resonators have widely-split resonant frequencies, and the lowest resonant frequency is employed as the fundamental resonant frequency of the resonator in order to achieve miniaturization. The proposed resonator is 1.7 mm or less in length for use in the 5-GHz band, whereas the conventional straight resonator is approximately 6.4 mm long. A four-pole Chebyshev HTS BPF is designed and fabricated using the proposed CPW resonators. The entire length of the proposed four-pole filter is 15 mm. The frequency response of the fabricated filter agrees well with the electromagnetic simulation results. The proposed filter achieves a size reduction of at least 50% compared to previously reported filters without any degradation in the frequency characteristics.

  6. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu

    2012-01-01

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  7. Artificial magnetic metamaterial design by using spiral resonators

    OpenAIRE

    Baena, J.D.; Marqués Sillero, Ricardo; Medina Mena, Francisco; Martel Villagrán, Jesús

    2004-01-01

    A metallic planar particle, that will be called spiral resonator (SR), is introduced as a useful artificial atom for artificial magnetic media design and fabrication. A simple theoretical model which provides the most relevant properties and parameters of the SR is presented. The model is validated by both electromagnetic simulation and experiments. The applications of SR's include artificial negative magnetic permeability media (NMPM) and left-handed-media (LHM) design. The main advantages o...

  8. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  9. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  10. Study of a prototype electromagnetic calorimeter in the CALICE experiment under the Linear Collider International project

    International Nuclear Information System (INIS)

    Benyamna, Mustapha

    2010-01-01

    This thesis is conducted within the framework of the International Linear Collider and the international collaboration so called CALICE. This work focuses on a study of a prototype of the electromagnetic calorimeter. This prototype has been used in various test period at CERN, DESY and FNAL. The author presents two subjects of study: The first part is about the instrumentation for the resolution of the square event discovered during the taking data in 2006 at CERN. To explain the origin and solve the problem caused by crosstalk between peripherals pixels and the guard ring that surrounds the sensor, two studies were made: a simulation study using SILVACO software and a test bench to study several kinds of sensors. The second part of this thesis is a study on the identification of photons using estimators that are related to the parameters of the electromagnetic pattern of the shower. (author)

  11. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  12. Electromagnetic radiation and scattering from small canonical structures of double-negative metamaterials

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2007-01-01

    aspects associated with DNG materials, and was subsequently extended to investigations of the radiation and scattering from two- and three-dimensional (2D and 3D) MTM-based canonical problems in electromagnetic theory. As to the theoretical aspects of DNG materials, the sign, or more generally the branch......, cylindrical and spherical configurations to design electrically small, resonant structures such as cavities, waveguides, scatterers and radiators. These ideas are extended here to canonical antenna and scattering configurations which consist of electrically small resonant cylindrical and spherical MTM......-based structures excited by an arbitrarily located electric line source and an arbitrarily located and oriented electric Hertzian dipole, respectively. Exact analytical solutions, based on eigenfunction series, are derived and then numerically evaluated to study the radiation and scattering from these structures...

  13. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. Optical Resonance of A Three-Level System in Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The optical resonance of a three-level system of the strongly correlated electrons in the twolevel semiconductor quantum dot interacting with the linearly polarized monochromatic electromagnetic radiation is studied. With the application of the Green function method the expressions of the state vectors and the energies of the stationary states of the system in the regime of the optical resonance are derived. The Rabi oscillations of the electron populations at different levels as well as the Rabi splitting of the peaks in the photon emission spectra are investigated. PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc

  15. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  16. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    International Nuclear Information System (INIS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-01

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM 020 mode of reflector to higher-order TM 021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device

  17. Coupling constants deduced for the resonances in kaon photo-production

    International Nuclear Information System (INIS)

    Cheoun, M. K.; Kim, K. S.; Choi, T. K.

    2004-01-01

    We deduced the coupling constants of nucleon and hyperon resonances, which participate in kaon productions as intermediate states that are formed by electro-magnetic probes and that finally decay into hadronic final states. We used an isobaric model based on an effective Lagrangian approach to describe the processes, in which relevant coupling constants regarding related resonances are effectively determined by fitting available experimental data. Our scheme to deduce the coupling constants was as follows: First, we calculated the lower and the upper limits on the coupling constants by using the experimental decay data available until now and/or theoretical predictions, such as those from quark models and SU(3) symmetry. Second, we exploited those limits as physical constraints on our fitting scheme for the kaon photo-production data. Finally, the deduced values and regions of the coupling constants, which satisfy not only the reaction data but also the decay data, are presented as figures with respect to the strong and the electro-magnetic coupling constants, and their multiplicative values. Our results for the coupling constants give physical values that are more restricted than those allowed by the experimental data nowadays.

  18. Microtubules in biological cells as circular waveguides and resonators

    Czech Academy of Sciences Publication Activity Database

    Jelínek, František; Pokorný, Jiří

    2001-01-01

    Roč. 20, č. 1 (2001), s. 75-80 ISSN 1061-9526. [Electromagnetic Aspects of Selforganization in Biology. Prague, 09.07.2000-12.07.2000] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244BIS.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : cellular biophysics * waveguides * resonators Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.333, year: 2001

  19. Optical bistability of a thin film of resonant atoms in a phase-sensitive thermostate

    International Nuclear Information System (INIS)

    Basharov, A.M.

    1995-01-01

    It is shown theoretically that when a thin film of two-level atoms interacting with a resonant coherent electromagnetic wave is additionally illuminated with a squeezed field, a bistable transmission/reflection regime for coherent waves is obtained. This regime depends strongly on the phase difference between the coherent and the squeezed fields. New regimes, including a bistable regime, for the interaction of a coherent field with a film of resonant atoms are predicted based on this phenomenon. 14 refs., 5 figs

  20. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  1. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  2. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  3. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  4. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  5. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  6. Damping System for Torsional Resonances in Generator Shafts Using a Feedback Controlled Buffer Storage of Magnetic Energy at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Kaesemann, C.-P.; Huart, M.; Mueller, P.; Sigalov, A.

    2006-01-01

    The electrical power and energy for ASDEX Upgrade (AUG) is provided by three separate pulsed networks based on flywheel generators. Major damages at couplings of the shaft of the synchronous generator EZ4 (220 MVA / 600 MWs) were discovered during a routine check. The damage can only be explained by torsional resonances in the generator shaft which are excited by active power transients from the converter loads. For generator protection, torque sensors were installed near the coupling between the flywheel and the rotor. They cause an early termination of plasma experiments if a predefined torque level is exceeded. These terminations limited the achievable plasma current flattop time of AUG significantly. Since a low natural damping of the torsional resonances was identified as a major cause of the phenomena observed, novel feedback controlled DC circuits were developed providing electromagnetic damping for the generator shafts in case of excitation. Each damping circuit consists of a DC choke, acting as a buffer storage of magnetic energy, fed by a thyristor converter. The current reference for the converter is derived from the torque sensor signals. This enables the choke current to alternate with the measured natural frequency of the shaft assembly. Thus, with proper phasing, torsional resonances in generator shaft systems weighing more than 100 tons can be damped with little additional power. Since April 2003, the damping circuits have been routinely operated during all plasma experiments. Despite the low damping power used, torsional resonances could be reduced to a value that avoids a trip signal from the torque sensors. This paper describes the results from analysing, designing and testing of the feedback controlled buffer storage of magnetic energy, representing an effective and low cost solution for damping torsional resonances in electric power systems. It will present the layout, analyse the results of measurements obtained during commissioning and

  7. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  8. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  9. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  10. Influence of external fields and environment on the dynamics of a phase-qubit-resonator system

    International Nuclear Information System (INIS)

    Berman, G. P.; Chumak, A. A.

    2011-01-01

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown.

  11. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  12. Data systematics and semidirect decay probability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Kapitonov, I.M.; Tutyn', I.A.

    1998-01-01

    Information on probability of semidirect decay of giant dipole resonance of nuclei of sd- and fp-shells (A = 16-58) is elaborated on the base of the recent (γ, χγ ' ) experimental results. The shell effect in A-dependence of this probability is discovered

  13. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  14. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    Science.gov (United States)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the

  15. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    Science.gov (United States)

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  16. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  17. Resonances and surface waves in bounded plasmas

    International Nuclear Information System (INIS)

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-01-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device

  18. A novel reconfigurable electromagnetically induced transparency based on S-PINs

    Science.gov (United States)

    Xue, Feng; Liu, Shao-Bin; Zhang, Hai-Feng; Wen, Yong-Diao; Kong, Xiang-Kun; Li, Hai-Ming

    2018-02-01

    In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.

  19. Overview of the electromagnetic production of strange mesons at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, P., E-mail: patrick@kph.uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Gómez Rodríguez, M. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Tsukada, K. [Department of Physics, Tohoku University, 980-8578 Sendai (Japan); Ayerbe Gayoso, C.; Böhm, R. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Borodina, O. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bosnar, D. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Bozkurt, V. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bydžovský, P. [Nuclear Physics Institute, 25068 Řež near Prague (Czech Republic); Debenjak, L. [University of Ljubljana and Institut “Jožef Stefan”, 1000 Ljubljana (Slovenia); Distler, M.O.; Esser, A. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Friščić, I. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Fujii, Y.; Gogami, T.; Hashimoto, O.; Hirose, S.; Kanda, H.; Kaneta, M. [Department of Physics, Tohoku University, 980-8578 Sendai (Japan); Kim, E. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); and others

    2013-09-20

    The Mainz Microtron MAMI provides a continuous-wave unpolarized or spin-polarized electron beam with energies up to 1.6 GeV and high degrees of polarization. Electro-production of strange mesons is performed in the multi-spectrometer facility with the KAOS spectrometer for kaon detection and a high-resolution spectrometer for electron detection in plane or out of plane. Differential cross section measurements of exclusive p(e,e{sup ′}K{sup +})Λ,Σ{sup 0} reactions at low four-momentum transfers in the nucleon's third resonance region have been done, followed by a measurement of the beam helicity asymmetry for p(e{sup →},e{sup ′}K{sup +})Λ. These studies are important for the understanding of the effective coupling of photons to the hadrons and their resonances and electromagnetic form factors entering different effective Lagrangian models for photo- and electro-production of strangeness. The polarized structure function, extracted from the beam helicity asymmetry, shows an especially high sensitivity to model parameters.

  20. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

    DEFF Research Database (Denmark)

    Tian, Jingyi; Yang, Yuanqing; Qiu, Min

    2017-01-01

    We employ ferroelectrics to study the multipolar scattering in all-dielectric metasurfaces based on KTiOPO4 (KTP) micro-disks for efficient manipulation of electromagnetic waves in the THz spectral region (0.6-1.5 THz). By adjusting the aspect ratio of the disks near the multipolar resonances, we...

  1. Verification of the effects of Schumann frequency range electromagnetic fields on the human cardiovascular system

    Science.gov (United States)

    Tuzhilkin, D. A.; Borodin, A. S.

    2017-11-01

    The results of the study of variations in the electromagnetic background parameters of the Schumann resonator frequency range and the variability indices of the human heart period during its free activity are presented on the basis of 24-hour synchronous monitoring data. It is shown that the integral evaluation of the conjugacy of the heart rate variability indices from the Schumann resonance parameters is extremely weak. In this case, the differential evaluation of this dependence with separation into characteristic time intervals of the day, characterized by different motor activity of the subjects, becomes significantly higher. The number of volunteers whose conjugacy is characterized by a strong correlation in some cases reaches 35 percent of the sample.

  2. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul; Bagci, Hakan

    2012-01-01

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design

  3. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.

    Science.gov (United States)

    Liu, Keng-Ku; Tadepalli, Sirimuvva; Wang, Zheyu; Jiang, Qisheng; Singamaneni, Srikanth

    2017-11-20

    Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.

  4. Nanoantennas for surface enhanced infrared spectroscopy: Effects of interaction and higher order resonant excitations

    Directory of Open Access Journals (Sweden)

    J. Aizpurua

    2011-09-01

    Full Text Available The sensitivity in surface enhanced infrared spectroscopy (SEIRS strongly depends on where the resonant excitation is spectrally located compared to the molecular vibration that is to be enhanced. In this contribution, we study the effect of coupling in the electromagnetic properties of 2D gold nanorod arrays in the IR. We also study the SEIRS activity of higher order resonant excitations in long nanoantennas to identify polaritonic signals of a supporting SiO2 layer with nanometer thickness (3 nm on a silicon substrate.

  5. Discovering Hands - México

    OpenAIRE

    Salamanca Cárdenas, Daniela; Castelblanco Domínguez, Junio Andrés; Aguilar Ardila, Laura Andrea

    2016-01-01

    El modelo de Discovering Hands ha sido reconocido internacionalmente como un proyecto innovador que se ha expandido por diferentes países del mundo, como Austria, y se ha empezado a estudiar la propuesta en países como República Checa, India y Colombia. (Discovering Hands, 2016). Esto se debe a que no solo mejora el tratamiento de cáncer de mama, sino que también reduce los costos totales de tratamiento de la enfermedad y aumenta la fuerza laborar de los países donde esté presente. Al represe...

  6. An automated phase correction algorithm for retrieving permittivity and permeability of electromagnetic metamaterials

    Directory of Open Access Journals (Sweden)

    Z. X. Cao

    2014-06-01

    Full Text Available To retrieve complex-valued effective permittivity and permeability of electromagnetic metamaterials (EMMs based on resonant effect from scattering parameters using a complex logarithmic function is not inevitable. When complex values are expressed in terms of magnitude and phase, an infinite number of permissible phase angles is permissible due to the multi-valued property of complex logarithmic functions. Special attention needs to be paid to ensure continuity of the effective permittivity and permeability of lossy metamaterials as frequency sweeps. In this paper, an automated phase correction (APC algorithm is proposed to properly trace and compensate phase angles of the complex logarithmic function which may experience abrupt phase jumps near the resonant frequency region of the concerned EMMs, and hence the continuity of the effective optical properties of lossy metamaterials is ensured. The algorithm is then verified to extract effective optical properties from the simulated scattering parameters of the four different types of metamaterial media: a cut-wire cell array, a split ring resonator (SRR cell array, an electric-LC (E-LC resonator cell array, and a combined SRR and wire cell array respectively. The results demonstrate that the proposed algorithm is highly accurate and effective.

  7. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  8. Magnetic resonance: safety measures and biological effects

    International Nuclear Information System (INIS)

    Gordillo, I.; Lafuente, J.; Fernandez, C.; Barbero, M.J.; Cascon, E.

    1997-01-01

    The biological effects of electromagnetic fields is currently a subject of great controversy. For this reason, magnetic resonance imaging (MRI) and spectroscopy are constantly under investigation. The source of the risk in MRI is associated with the three types of electromagnetic radiation to which the patient is exposed: the static magnetic field, variable (gradient) magnetic fields and radiofrequency fields. Each is capable of producing significant biological effects when employed at sufficient intensity. Patients exposed to risk sources are those situated within the lines of force of the magnetic field, ellipsoid lines that are arranged around the magnet, representing the strength of the surrounding field. To date, at the intensity normally utilized in MRI(<2T) and respecting the field limit recommendations established by the US Food and Drug Administration (FDA) for clinical use of this technique no adverse secondary biological effects have been reported. The known biological effects and other possible secondary effects are reviewed, and the recommended safety measures are discussed. (Author)

  9. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  10. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  11. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    Science.gov (United States)

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  12. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  13. Studies on the resonant properties in the asymmetric dipole-array terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Zhou, Qingli; Li, Chenyu; Shi, Lan; Liu, Changxiang; Zhang, Cunlin

    2018-01-01

    Artificial metamaterials with appropriate design can exhibit unique electromagnetic phenomena which do not exist in natural materials. Some studies have shown that the method of breaking the geometric symmetry is capable to modify the electromagnetic response, such as the metamaterial induced transparency in the Fano resonators. In this work, by using the finite-difference time-domain method, we firstly simulate the process that terahertz wave interacts with double-bar structures, in which one bar length is fixed at 36 μm and the other bar length is set to be 12, 24, 36, 48, and 56 μm, respectively. The incident terahertz polarization is along the bar direction. Simulated results show when the variable bar length is less than 36 μm, there is only one obvious resonant dip in transmission spectrum. Meanwhile, with the decreased bar length, this dip frequency presents a slight blueshift. Additionally, by tuning the spacing vertical to bar direction between these two bars, it still exhibits one dip. This result indicates the short bar less than 36 μm does not play important role and the coupling between vertical bars is weak. However, when the variable bar length is larger than 36 μm there are two obvious Fano-shaped resonant dips. With the increased bar length, the low-frequency dip shows a remarkable redshift, while the high-frequency one is almost unchanged. By further tuning the bar spacing vertical to the bar direction, two dips always exist. This phenomenon implies that the coupling between horizontal bars is dominated in this process. Moreover, the metamaterial induced transparency window is found between two resonant dips. The appearance of the resonances is attributed to the excitation of trapped mode. Our obtained results indicate that such metamaterials with very simple configuration could also provide the potential application in the field of terahertz slow-light devices, amplitude and phase modulators.

  14. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  15. Probing evolution of binaries influenced by the spin–orbit resonances

    International Nuclear Information System (INIS)

    Gupta, A; Gopakumar, A

    2014-01-01

    We evolve isolated comparable mass spinning compact binaries experiencing Schnittman’s post-Newtonian spin–orbit resonances in an inertial frame associated with j 0 , the initial direction of the total angular momentum. We argue that accurate gravitational wave (GW) measurements of the initial orientations of the two spins and orbital angular momentum from j 0 should allow us to distinguish between the two possible families of spin–orbit resonances. Therefore, these measurements have the potential to provide direct observational evidence of possible binary formation scenarios. The above statements should also apply for binaries that do not remain in a resonant plane when they become detectable by GW interferometers. The resonant plane, characterized by the vanishing scalar triple product involving the two spins and the orbital angular momentum, naturally appears in the one parameter family of equilibrium solutions, discovered by Schnittman. We develop a prescription to compute the time-domain inspiral templates for binaries residing in these resonant configurations and explore their preliminary data analysis consequences. (paper)

  16. Resonances at the LHC beyond the Higgs. The scalar/tensor case

    International Nuclear Information System (INIS)

    Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen; Sekulla, Marco; High Energy Accelerator Research Organization; Karlsruher Institut fuer Technologie, Karlsruhe

    2015-11-01

    We study in a bottom-up approach the theoretically consistent description of additional resonances in the electroweak sector beyond the discovered Higgs boson as simplified models. We focus on scalar and tensor resonances. Our formalism is suited for strongly coupled models, but can also be applied to weakly interacting theories. The spurious degrees of freedom of tensor resonances that would lead to bad high-energy behavior are treated using a generalization of the Stueckelberg formalism. We calculate scattering amplitudes for vector-boson and Higgs boson pairs. The high-energy region is regulated by the T-matrix unitarization procedure, leading to amplitudes that are well behaved on the whole phase space. We present numerical results for complete partonic processes that involve resonant vector-boson scattering, for the current and upcoming runs of LHC.

  17. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  18. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  19. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    Science.gov (United States)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  20. Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier

    OpenAIRE

    Phillips A. H.; Mina A. N.

    2011-01-01

    The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavio...