Bosanac, Slobodan Danko
2016-01-01
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
Electromagnetic Interactions GenERalized (EIGER): Applications at Johnson Space Center
Dobbins, Justin A.; Fink, Patrick W.; Scully, Robert C.
2003-01-01
This slide presentation reviews the software framework for the analysis and design of complex electromagnetic systems. The system called Electromagnetic Interactions GenERalized (EIGER) is a hybrid finite element solution for wave equations and deru=ives boundary element solutions for integral equation formulations. Written in Fortran 90 Eiger uses object-oriented design methods to abstract key analysis components. EIGER has been applied to higher order modeling for analysis of antennas to assist in the design of the antennas of a mini-AERCam. EIGER might also be used to model the Ion Cyclotron Resonant heating stage for the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR).
Electromagnetic Interaction Equations
Zinoviev, Yury M.
2009-01-01
For the electromagnetic interaction of two particles the relativistic quantum mechanics equations are proposed. These equations are solved for the case when one particle has a small mass and moves freely. The initial wave functions are supposed to be concentrated at the coordinates origin. The energy spectrum of another particle wave function is defined by the initial wave function of the free moving particle. Choosing the initial wave function of the free moving particle it is possible to ob...
Problem of interactions: electromagnetic particles interaction
Sannikov-Proskuryakov, S S
2001-01-01
The electromagnetic interactions between charged particles are derived on the basis of the particles dynamic theory, proposed in the work of Sannikov. The electromagnetic interactions exist only in the relativistic model of the bihamiltonian system, based on the Heisenberg algebra. Existence of this type of interactions is connected with the U sub e (1)-degeneration of the basic state of the relativistic bihamiltonian system, lying in the basis of the given theory
Electromagnetic fields and interactions
Becker, Richard L
1964-01-01
For more than a century, ""Becker"" and its forerunner, ""Abraham-Becker,"" have served as the bible of electromagnetic theory for countless students. This definitive translation of the physics classic features both volumes of the original text.Volume I, on electromagnetic theory, includes an introduction to vector and tensor calculus, the electrostatic field, electric current and the field, and the theory of relativity. The second volume comprises a self-contained introduction to quantum theory that covers the classical principles of electron theory and quantum mechanics, problems involving
Electromagnetic Interactions of Muons
2002-01-01
This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...
Electromagnetic Wave Interactions with a Metamaterial Cloak
Chen, Hongsheng; Wu, Bae-Ian; Zhang, Baile; Kong, Jin Au
2007-08-01
We establish analytically the interactions of electromagnetic wave with a general class of spherical cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to ηt=μt/γt than nt=μtγt.
Electromagnetic aquametry electromagnetic wave interaction with water and moist substances
Kupfer, Klaus
2006-01-01
This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.
Interactions between electromagnetic fields and matter
Steiner, Karl-Heinz
2013-01-01
Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.
Dynamical theory of weak and electromagnetic interactions
Englert, F
1974-01-01
The gauge theory of unified weak and electromagnetic interactions is developed without the use of scalar mesons. It is shown that the Glashow Weinberg scheme is unrealistic, but that a similar such scheme is possible if one includes two pairs of leptons, identified with e-, νe and μ-, νμ.
Nonlinear Electromagnetic Interactions in Energetic Materials
Wood, M. A.; Dalvit, D. A. R.; Moore, D. S.
2016-01-01
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.
Nonlinear Electromagnetic Interactions in Energetic Materials
Wood, M A; Moore, D S
2016-01-01
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.
Electromagnetic Radiation Reaction in General Relativity.
O'Donnell, Nuala
Available from UMI in association with The British Library. This thesis examines the electromagnetic radiation reaction felt by a charged body falling freely in an external gravitational field in general relativity. The original objective was to find a new derivation of the radiation reaction force F^{i} of DeWitt and DeWitt^1 which was calculated for the special case of a point charge falling in slow motion in a weak, static gravitational field: F ^{i} = {2over 3}e^2R^{i}_{0j0 }v^{j}. This may be thought of as a local expression since it involves the particle's velocity v^{j } and the local Riemann curvature tensor R ^{i}_{0j0}. Its derivation involves integrals over the whole history of the particle, covering distances of approximately the length scale on which R^{i}_{0j0 } changes. This is different from calculations of the Abraham-Lorentz force of flat space-time involving integrals over distances only a few times the size of the charge. This work was motivated by the wish to find a "local" derivation of the local reaction force. Using Schutz's^2 local initial value method to solve the problem of a charged, rigid, spherically symmetric body moving in an external gravitational field of arbitrary metric. Calculations are done in a Riemann normal coordinate system ^3 and are only valid in a normal neighbourhood of the origin, where geodesics have not begun to cross one another. We solve Maxwell's equations for the self -force by making a slow-motion approximation and keeping terms to first order only in the Riemann tensor and velocity. It is surprising that we find no local radiation reaction. Consider two particles in a static spacetime with the same initial conditions at t = 0. Particle A is that of DeWitt and DeWitt; it feels a reaction force F^{i} = {2over 3}e^2R^{i }_{0j0}v^{j}. Particle B is accelerated from rest to the same small velocity; it feels no reaction force. The two particles therefore follow different trajectories. We conclude that there is a
Electromagnetic interactions in the MINOS detectors
Energy Technology Data Exchange (ETDEWEB)
Vahle, Patricia LaVern [Univ. of Texas, Austin, TX (United States)
2004-08-01
MINoS is a long-baseline neutrino experiment designed to observe the oscillation of neutrinos traveling between two detectors, a Near Detector at Fermi National Accelerator Laboratory and a Far Detector at the Soudan Underground Laboratory in northern Minnesota. Precision measurement of the oscillation parameters requires a better than 5% absolute energy calibration with is derived using a dedicated calibration detector, called CalDet. A smaller version of the MINOS detectors, the CalDet was exposed to particular beams in the CERN PS East Area test beams in 2001-2003. This document describes the conditions under which the CalDet beam data were taken, establishes selection criteria to identify a sample of electrons, and discusses the characteristics of electromagnetic interactions in the CalDet.
Generalized electromagnetism of subdimensional particles: A spin liquid story
Pretko, Michael
2017-07-01
It has recently been shown that there exists a class of stable gapless spin liquids in 3+1 dimensions described by higher-rank tensor U(1) gauge fields, giving rise to an emergent tensor electromagnetism. The tensor gauge field of these theories couples naturally to subdimensional particles (such as fractons), which are restricted by gauge invariance to move only along lower-dimensional subspaces of the system. Here we work out some of the basic generalized electromagnetic properties of subdimensional particles coupled to tensor electromagnetism, such as generalized electrostatic fields, potential formulations, Lorentz forces, Maxwell equations, and Biot-Savart laws. Some concepts from conventional electromagnetism will carry over directly, while others require significant modification.
Generalized-ray theory for electromagnetic fields in layered media
tumpf, M.; De Hoop, A.T.; Vandenbosch, G.A.E.
2013-01-01
Generalized-ray theory for time-domain electromagnetic fields in a horizontally layered medium is developed. After introducing appropriate integral transformations and source-type field representations in vertically inhomogeneous media, the solution is written out in terms of generalized ray
Interactive Visualization System for Education and Design in Electromagnetics
Okayama, Eiji; Cingoski, Vlatko; Noguchi, So; Kaneda, Kazufumi; Yamashita, Hideo
2000-01-01
A new interactive visualization system for educational and design purpose in 2D electromagnetics is proposed. The proposed system using numerically obtained result for several typical model configurations can display interactively electromagnetic field phenomena for any other model configuration bounded with the previously computed ones. It uses simple bilinear interpolation techniques in order to provide fast interactive display. This visualization system can be used for design purposes of p...
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Arrow of electromagnetic time and the generalized absorber theory
Energy Technology Data Exchange (ETDEWEB)
Cramer, J.G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler--Feynman absorber theory in an open expanding universe with a singularity at T = 0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
The electromagnetic basis of social interactions.
Liboff, A R
2017-01-01
It has been established that living things are sensitive to extremely low-frequency magnetic fields at vanishingly small intensities, on the order of tens of nT. We hypothesize, as a consequence of this sensitivity, that some fraction of an individual's central nervous system activity can be magnetically detected by nearby individuals. Even if we restrict the information content of such processes to merely simple magnetic cues that are unconsciously received by individuals undergoing close-knit continuing exposure to these cues, it is likely that they will tend to associate these cues with the transmitting individual, no less than would occur if such signals were visual or auditory. Furthermore, following what happens when one experiences prolonged exposure to visual and like sensory inputs, it can be anticipated that such association occurring magnetically will eventually also enable the receiving individual to bond to the transmitting individual. One can readily extrapolate from single individuals to groups, finding reasonable explanations for group behavior in a number of social situations, including those occurring in families, animal packs, gatherings as found in concerts, movie theaters and sports arenas, riots and selected predatory/prey situations. The argument developed here not only is consistent with the notion of a magnetic sense in humans, but also provides a new approach to electromagnetic hypersensitivity, suggesting that it may simply result from sensory overload.
GENERAL RELATIVITY AND DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE
Trunev A. P.
2016-01-01
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field are investigated. The multi-dimensional transient numerical model describing the processes of electromagnetic oscillations in a cavity with...
Chui, S T; Du, J J; Yau, S T
2014-11-01
To understand the nature of the electromagnetic resonances of finite metallic surfaces, we formulate a rigorous and rapidly convergent circuit theory for the interaction of a metallic disk and a metallic annulus with an electromagnetic field. Expressions for the current induced and the resonance condition are derived. A new understanding of the nature of the resonances is obtained. For half of the resonances we find a divergent electric field at the edge of the disk, even though it is smooth in shape. For the disk, we compare with previous results using vector spheroidal wave functions and found good agreement for the resonance condition. Our approach can be generalized to other finite surfaces.
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
Electromagnetic confinement via spin-orbit interaction in anisotropic dielectrics
Alberucci, Alessandro; Marrucci, Lorenzo; Assanto, Gaetano
2016-01-01
We investigate electromagnetic propagation in uniaxial dielectrics with a transversely varying orientation of the optic axis, the latter staying orthogonal everywhere to the propagation direction. In such a geometry, the field experiences no refractive index gradients, yet it acquires a transversely-modulated Pancharatnam-Berry phase, that is, a geometric phase originating from a spin-orbit interaction. We show that the periodic modulation of the geometric phase in propagation generates a longitudinally-invariant effective potential. Going beyond the recent report on periodically modulated systems [Nat. Photon. 10.1038/NPHOTON.2016.138 (2016)], we show that, in certain configurations, this geometric phase can provide transverse confinement and waveguiding. The theoretical findings are tested and validated against numerical simulations of the complete Maxwell's equations. Our results introduce and illustrate the role of geometric phases on electromagnetic propagation over distances well exceeding the diffracti...
Lyubarsky, Yuri
2018-02-01
This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.
Sensor Interaction as a Source of the Electromagnetic Field Measurement Error
Directory of Open Access Journals (Sweden)
Hartansky R.
2014-12-01
Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.
Rothwell, Edward J
2009-01-01
Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Energy Technology Data Exchange (ETDEWEB)
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Electromagnetic interactions between a fast electron beam and metamaterial cloaks
Xu, Jinying; Dong, Yunxia; Zhang, Xiangdong
2008-10-01
Relativistic energy loss and photon emission in the interaction of ideal and nonideal metamaterial cloaks with an external electron beam are studied based on the classical electrodynamics. The effects of various imperfect parameters on the efficiency of the cloak are emphasized. The energy-loss spectra and the photon emission for such structures with the different combinations of electron velocity and impact parameter are calculated. It is shown that the efficiency of nonideal electromagnetic cloaks and the effect of various nonideal parameters on the cloak invisibility can be exhibited in the electron energy loss spectroscopy. This means that the properties of cloak can be explored by scanning transmission electron microscopy.
Does "electromagnetic pollution" cause illness? An inquiry among Austrian general practitioners.
Leitgeb, Norbert; Schröttner, Jörg; Böhm, Michael
2005-05-01
More and more self-declared electromagnetic hypersensitive patients are entering physicians' practices seeking help. To assess the prevalence of cases and the opinion of Austrian physicians regarding the potential health-relevance of environmental electromagnetic fields ("electromagnetic pollution"), a statistical investigation among general practitioners was undertaken, with surprising results. Only one-third report on never having been asked about the health impact of electromagnetic pollution by patients. An overwhelming percentage of general practitioners (up to 96%) to some degree, or totally, believe in a health-relevant role of environmental electromagnetic fields, and only 39% have never associated health symptoms with "electromagnetic pollution". Two-thirds are consulted occasionally or even frequently by self-declared electromagnetic hypersensitive patients. However, sound information seems to be lacking. Knowledge on existing electromagnetic exposure limits and on environmental field levels in relation to them is poor. It is remarkable that authorities play a marginal role in informing physicians. Only 4% mention having received information on "electromagnetic pollution" from such a source. It is rather remarkable that there is such a widespread contradiction between physicians' opinions and established national and international health risk assessment. With respect to the frequency with which doctors are confronted with this issue, the results demonstrate an urgent need for action.
Borges, L. H. C.; Ferrari, A. F.; Barone, F. A.
2016-11-01
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources.
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C.; Ferrari, A.F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [Universidade Federal de Itajuba, IFQ, Itajuba, MG (Brazil)
2016-11-15
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources. (orig.)
Electromagnetically induced transparency with controlled van der Waals interaction
Wu, Huaizhi; Bian, Meng-Meng; Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao; Zheng, Shi-Biao
2014-10-01
We study the electromagnetically induced transparency (EIT) effect with two individually addressed four-level Rydberg atoms subjected to the interatomic van der Waals interaction. We derive an effectively atomic Raman transition model where two ladders of the usual Rydberg EIT setting terminating at the same upper Rydberg level of long radiative lifetime are turned into a Rydberg EIT λ setup via two-photon transitions, leaving the middle levels of each ladder largely detuned from the coupling and probe laser beams. It can hence overcome the limits of applications for EIT with atoms of the ladder-type level configuration involving a strongly decaying intermediate state by inducing coherence between two ground states. By probing one of the atoms, we observe four doublets of absorption induced by the Autler-Townes splitting and the van der Waals interaction. In particular, we find that the location of the EIT center remains unchanged compared to the interatomic-interaction-free case, which demonstrates that the interference among the multiple transition channels is basically destructive. The EIT with controlled Rydberg-Rydberg interaction among a few atoms provides a versatile tool for engineering the propagation dynamics of light.
Electromagnetic radiations from laser interaction with gas-filled Hohlraum
Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun
2018-01-01
The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.
Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking
Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria
One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...
Mishchenko, Michael I.
2017-10-01
The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.
Phenomenological description of spin effects in electromagnetic and strong interactions of quarks
Directory of Open Access Journals (Sweden)
Silenko Alexander J.
2017-01-01
Full Text Available Phenomenological description of interactions of relativistic quarks by the Dirac equation with the Cornell potential is given. The general form of the initial equation containing the vector and scalar parts of the Cornell potential is used at the arbitrary connection between these parts. The Hamiltonian in the Foldy-Wouthuysen representation is derived in the general form with allowance for the electromagnetic interactions. Unlike precedent investigations, it is relativistic and exact for terms of the zeroth and first powers in the Planck constant and also for such terms of the second power which describe contact interactions. General quantum mechanical equations of motion for the momentum and the spin are derived and the classical limit of the Hamiltonian and the equations of motion are found for the first time. A connection between the angular velocity of the quark spin precession and the force acting on it is determined. The energy of the spin-orbit interaction is rather high (of the order of 100 MeV. The terms describing the spin-orbit and contact interactions have opposite signs for the scalar and the vector parts of the Cornell potential. The evolution of the quark helicity and the spin-spin interaction of the quarks are also calculated.
Qiu, Cheng-Wei; Novitsky, Andrey; Ma, Hua; Qu, Shaobo
2009-07-01
An analytical method of electromagnetic wave interactions with a general radially anisotropic cloak is established. It is able to deal with arbitrary parameters [ ɛr(r) , μr(r) , ɛt(r) , and μt(r) ] of a radially anisotropic inhomogeneous shell. The general cloaking condition is proposed from the wave relations, in contrast to the method of transformation optics. Spherical metamaterial cloaks with improved invisibility performance are achieved with optimal nonlinearity in transformation and core-shell ratio.
Modeling of interactions of electromagnetic fields with human bodies
Caputa, Krzysztof
Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere
Retarded Electromagnetic Interaction and the Origin of Non-linear Phenomena in Optics
Xiaochun, Mei
2002-01-01
The non-linear relation between electric polarization and electric field strength is achieved through introducing the retarded electromagnetic interactions between classical charge particles. The result agrees with the phenomenological theory in current non-linear optics, means that the non-linear phenomena in optics come from the retarded electromagnetic interaction between charged particles. The result slao shows that that most of non-linear phenomenon in optics violate symmetry of time rev...
The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, Mats; Papadopoulos, Demetrios; Brodin, Gert
2010-01-01
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered d...
Generalizations of the Smarr formula for black holes with nonlinear electromagnetic fields
Gulin, Luka; Smolić, Ivica
2018-01-01
We present a direct, geometric derivation of the generalized Smarr formula for the stationary axially symmetric black holes with nonlinear electromagnetic fields. The additional term is proven to be proportional to the integral of the trace of the electromagnetic energy-momentum tensor and can be written as a product of two conjugate variables. From the novel relation we can deduce all previously proposed forms of the generalized Smarr formula, which were derived only for the spherically symmetric black holes, and provide the lowest order quantum correction to the classical relation from the Euler–Heisenberg Lagrangian.
A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
Directory of Open Access Journals (Sweden)
Yi Zheng
2015-01-01
Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.
How can the neutrino interact with the electromagnetic field?
Novello, M.; Ducap, C. E. L.
2018-01-01
Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic metric (e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged particles to the electromagnetic field may appear. Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FAPERJ (Fundação do Amparo Pesquisa do Rio de Janeiro, FINEP (Financiadora de Estudos e Projetos) and Coordenação do Aperfeiçoamento do Pessoal do Ensino Superior (CAPES)
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...
General Practitioners? Knowledge and Concern about Electromagnetic Fields
Gabriele Berg-Beckhoff; Jürgen Breckenkamp; Pia Veldt Larsen; Bernd Kowall
2014-01-01
Our aim is to explore general practitioners’ (GPs’) knowledge about EMF, and to assess whether different knowledge structures are related to the GPs’ concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs’ knowledge. Further, the GPs’ concern about EMF health risk was measured using a score comprising six items. The association between GPs’ co...
Prabhu, Kartik; Wald, Robert M.
2018-01-01
We consider arbitrary stationary and axisymmetric black holes in general relativity in (d +1) dimensions (with d ≥slant 3 ) that satisfy the vacuum Einstein equation and have a non-degenerate horizon. We prove that the canonical energy of axisymmetric electromagnetic perturbations is positive definite. This establishes that all vacuum black holes are stable to axisymmetric electromagnetic perturbations. Our results also hold for asymptotically de Sitter black holes that satisfy the vacuum Einstein equation with a positive cosmological constant. Our results also apply to extremal black holes provided that the initial perturbation vanishes in a neighborhood of the horizon.
Generalized Case ``Van Kampen theory for electromagnetic oscillations in a magnetized plasma
Bairaktaris, F.; Hizanidis, K.; Ram, A. K.
2017-10-01
The Case-Van Kampen theory is set up to describe electrostatic oscillations in an unmagnetized plasma. Our generalization to electromagnetic oscillations in magnetized plasma is formulated in the relativistic position-momentum phase space of the particles. The relativistic Vlasov equation includes the ambient, homogeneous, magnetic field, and space-time dependent electromagnetic fields that satisfy Maxwell's equations. The standard linearization technique leads to an equation for the perturbed distribution function in terms of the electromagnetic fields. The eigenvalues and eigenfunctions are obtained from three integrals `` each integral being over two different components of the momentum vector. Results connecting phase velocity, frequency, and wave vector will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE Grant DE-FG02-91ER-54109.
Do electromagnetic fields interact with electrons in the Na,K-ATPase?
Blank, Martin
2005-12-01
The effects of low frequency electric and magnetic fields on several biochemical systems, including the Na,K-ATPase, indicate that electromagnetic (EM) fields interact with electrons. The frequency optima for two enzymes in response to EM fields are very close to their turnover numbers, suggesting that these interactions directly affect reaction rates. Nevertheless, generally accepted ideas about Na,K-ATPase function and ion transport mechanisms do not consider interactions with electrons. To resolve the clash of paradigms, we hypothesize interaction with transient electrons and protons that arise from flickering of H-bonds in the hydrated protein. These transient charges in the enzyme could provide a trigger for the sequence of conformation changes that are part of the ion transport mechanism. If the distributions of transient electrons and protons in the membrane are affected by their concentration and the membrane potential, as expected from electric double layer theory, this can account for the different effects of low frequency electric and magnetic fields, as well as for the observation that membrane hyperpolarization reverses the ATPase reaction to generate ATP. Bioelectromagnetics (c) 2005 Wiley-Liss, Inc.
General Practitioners’ Knowledge and Concern about Electromagnetic Fields
Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Veldt Larsen, Pia; Kowall, Bernd
2014-01-01
Our aim is to explore general practitioners’ (GPs’) knowledge about EMF, and to assess whether different knowledge structures are related to the GPs’ concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs’ knowledge. Further, the GPs’ concern about EMF health risk was measured using a score comprising six items. The association between GPs’ concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly “don’t know”. There was no association between GPs’ latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication. PMID:25514150
General Practitioners’ Knowledge and Concern about Electromagnetic Fields
Directory of Open Access Journals (Sweden)
Gabriele Berg-Beckhoff
2014-12-01
Full Text Available Our aim is to explore general practitioners’ (GPs’ knowledge about EMF, and to assess whether different knowledge structures are related to the GPs’ concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs’ knowledge. Further, the GPs’ concern about EMF health risk was measured using a score comprising six items. The association between GPs’ concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3% GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly “don’t know”. There was no association between GPs’ latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.
General practitioners' knowledge and concern about electromagnetic fields.
Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd
2014-12-01
Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.
DEFF Research Database (Denmark)
Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian
2017-01-01
We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure...
Effect of frequency variation on electromagnetic pulse interaction with charges and plasma
Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.
2005-01-01
The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction
Interaction of Electromagnetic Radiation with Supercritical Magnetic Field
Shabad, A. E.
2003-01-01
It is pointed, that effects of refraction of electromagnetic radiation in the medium, formed by the magnetized vacuum, become essential already for relatively soft photons, not hard enough to create an electron-positron pair, including those belonging to soft gamma-, X-ray, optic and radio- range, if the magnetic field B exceeds the critical value of Bcr=m^2/e=4.4 10^13 Gauss. Three leading terms in the asymptotic expansion of the one-loop polarization operator in a constant magnetic field ar...
Energy Technology Data Exchange (ETDEWEB)
Hinschberger, Y. [Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); Hervieux, P.-A., E-mail: hervieux@ipcms.u-strasbg.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France)
2012-01-30
By means of the Foldy–Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin–field electronic Hamiltonian valid at any order in 1/m. -- Highlights: ► Coupling of an ultrafast electromagnetic field with the electron spin is investigated using a first-principles approach. ► May be involved in the coherent laser-induced demagnetization of ferromagnetic materials. ► A general expression of the direct spin–field electronic Hamiltonian is postulated.
Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions
Energy Technology Data Exchange (ETDEWEB)
Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)
2015-09-17
The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks
Singh, Kushpal; Nagaraj, Anup; Yousuf, Asif; Ganta, Shravani; Pareek, Sonia; Vishnani, Preeti
2016-01-01
Cell phones use electromagnetic, nonionizing radiations in the microwave range, which some believe may be harmful to human health. The present study aimed to determine the effect of electromagnetic radiations (EMRs) on unstimulated/stimulated salivary flow rate and other health-related problems between the general populations residing in proximity to and far away from mobile phone base stations. A total of four mobile base stations were randomly selected from four zones of Jaipur, Rajasthan, India. Twenty individuals who were residing in proximity to the selected mobile phone towers were taken as the case group and the other 20 individuals (control group) who were living nearly 1 km away in the periphery were selected for salivary analysis. Questions related to sleep disturbances were measured using Pittsburgh Sleep Quality Index (PSQI) and other health problems were included in the questionnaire. Chi-square test was used for statistical analysis. It was unveiled that a majority of the subjects who were residing near the mobile base station complained of sleep disturbances, headache, dizziness, irritability, concentration difficulties, and hypertension. A majority of the study subjects had significantly lesser stimulated salivary secretion (P mobile phone base stations on the health and well-being of the general population cannot be ruled out. Further studies are warranted to evaluate the effect of electromagnetic fields (EMFs) on general health and more specifically on oral health.
Neutrino propagation in matter with general interactions.
Energy Technology Data Exchange (ETDEWEB)
Grossman, yuval
1999-04-09
We present a general analysis of the effective potential for neutrino propagation in matter, assuming a generic set of Lorentz invariant non-derivative interactions. We find that in addition to the known vector and axial vector terms, in a polarized medium also tensor interactions can play an important role. We compute the effective potential arising from a tensor interaction. We show that the components of the tensor potential transverse to the direction of the neutrino propagation can induce a neutrino spin-flip, similar to the one induced by a transverse magnetic field.
A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave
Mahajan, Swadesh M.; Asenjo, Felipe A.
2016-05-01
A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Albooyeh, M.; Tretyakov, Sergei [Department of Radio Science and Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto (Finland); Simovski, Constantin [Department of Radio Science and Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto (Finland); Laboratory of Metamaterials, University for Information Technology, Mechanics and Optics (ITMO), 197101, St. Petersburg (Russian Federation)
2016-10-15
We present a general methodology for electromagnetic homogenization and characterization of bianisotropic metasurfaces formed by regular or random arrangements of small arbitrary inclusions at interfaces of two different isotropic media. The approach unites and generalizes the earlier theories developed independently by two joint research groups: that of profs. Holloway and Kuester and that of profs. Simovski and Tretyakov. We analyze the features of both formalisms and discuss their peculiarities in several example cases. Our theory can be used in the analysis and synthesis of a wide spectrum of metasurfaces. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Anto Sulaksono
2011-11-01
Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.
Electromagnetic microwaves in metal films with electron-phonon interaction and a dc magnetic field
DEFF Research Database (Denmark)
Hasselberg, L.E.
1976-01-01
A quantum-mechanical treatment of electromagnetic microwaves is performed for a metal film. The directions of the exterior ac and dc fields are taken to be arbitrary and boundary conditions for the electrons are assumed to be specular. The relation between the current and the electromagnetic fiel...... in the transmission spectrum can perhaps be obtained by assuming a finite Debye temperature and specular reflections of the electrons at the boundary surfaces. A sharp peak entirely caused by the finite electron-phonon interaction is also discussed....
Babin, Anatoli
2016-01-01
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...
Uysal, Ismail E.
2015-10-26
Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.
Tkachenko, Sergey V
2008-01-01
The evaluation of the electromagnetic field coupling to transmission lines is an important problem in electromagnetic compatibility. The unabated increase in the operating frequency of electronic products and the emergence of sources of disturbances with higher frequency content (such as High Power Microwave and Ultra-Wide Band systems) have led to a breakdown of the TL approximation's basic assumptions for a number of applications. In the last decade or so, the generalization of the TL theory to take into account high frequency effects has emerged as an important topic of study in electromagn
Chavanis, Pierre-Henri; Matos, Tonatiuh
2017-01-01
We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.
Chavanis, Pierre-Henri
2016-01-01
We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.
Effective Electromagnetic Interaction Potential in Flat and Curved Spacetimes
Caicedo, José Alexander; Urrutia, Luis F.
2010-07-01
We present a summary of the main steps in the construction of the effective relativistic interaction potential between two charged Dirac particles in the presence of a background weak gravitational field, by extending a procedure previously used for electrodynamics in Minkowski space. We consider the full two-body problem and apply the method to the hydrogen atom.
Directory of Open Access Journals (Sweden)
Felix Mihai
2015-01-01
Full Text Available Multiphysics problems arise naturally in several engineering and medical applications which often require the solution to coupled processes, which is still a challenging problem in computational sciences and engineering. Some examples include blood flow through an arterial wall and magnetic targeted drug delivery systems. For these, geometric changes may lead to a transient phase in which the structure, flow field, and electromagnetic field interact in a highly nonlinear fashion. In this paper, we consider the computational modeling and simulation of a biomedical application, which concerns the fluid-structure-electromagnetic interaction in the magnetic targeted drug delivery process. Our study indicates that the strong magnetic fields, which aid in targeted drug delivery, can impact not only fluid (blood circulation but also the displacement of arterial walls. A major contribution of this paper is modeling the interactions between these three components, which previously received little to no attention in the scientific and engineering community.
Textbook treatments of quantum electromagnetic interaction: pedagogical and conceptual problems
Fraile-Peláez, F. Javier
2001-07-01
In this paper we review and discuss the approaches used, almost universally, in textbooks dealing with quantum mechanics, and particularly those focused on optoelectronics devices, to explain the atom-field interactions. For this purpose, a true understanding and careful use of the first-order perturbation theory are necessary. By providing two alternative full derivations of the absorption/emission processes when the radiation is in a coherent multimode state, we highlight a number of conceptual and didactical failures in the usual textbook presentations, and propose more suitable and convincing strategies to improve them.
Kotoka, Jonas; Kriek, Jeanne
2014-01-01
The impact of computer simulations on the performance of 65 grade 11 learners in electromagnetism in a South African high school in the Mpumalanga province is investigated. Learners did not use the simulations individually, but teachers used them as an interactive demonstration tool. Basic concepts in electromagnetism are difficult to understand…
Rashid, M.
2011-01-01
A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have an interaction with a conducting electron which has a constant time
Ulku, Huseyin Arda
2015-02-01
An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.
Electromagnetic Structure and Electron Acceleration in Shock-Shock Interaction
Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru; Mazelle, Christian X.
2017-09-01
A shock-shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.
Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures
Raybould, Tim; Fedotov, Vassili; Papasimakis, Nikitas; Youngs, Ian; Zheludev, Nikolay
2016-02-01
We study the propagation properties and light-matter interactions of the focused doughnut pulses, broadband, single-cycle electromagnetic perturbations of toroidal topology first described by Hellwarth and Nouchi in 1996. We show how focused doughnuts are reflected and refracted at planar metallic and vacuum-dielectric interfaces leading to complex distortions of the field structure. We also identify the conditions under which these toroidal pulses excite dominant dynamic toroidal dipoles in spherical dielectric particles.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Energy Technology Data Exchange (ETDEWEB)
García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)
2014-12-01
Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.
Redfors, Andreas; Ryder, Jim
2001-01-01
Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)
Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions
Pétri, J.
2017-12-01
Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.
Directory of Open Access Journals (Sweden)
Benjamin M. Cowan
2013-04-01
Full Text Available We describe a modification to the finite-difference time-domain algorithm for electromagnetics on a Cartesian grid which eliminates numerical dispersion error in vacuum for waves propagating along a grid axis. We provide details of the algorithm, which generalizes previous work by allowing 3D operation with a wide choice of aspect ratio, and give conditions to eliminate dispersive errors along one or more of the coordinate axes. We discuss the algorithm in the context of laser-plasma acceleration simulation, showing significant reduction—up to a factor of 280, at a plasma density of 10^{23} m^{-3}—of the dispersion error of a linear laser pulse in a plasma channel. We then compare the new algorithm with the standard electromagnetic update for laser-plasma accelerator stage simulations, demonstrating that by controlling numerical dispersion, the new algorithm allows more accurate simulation than is otherwise obtained. We also show that the algorithm can be used to overcome the critical but difficult challenge of consistent initialization of a relativistic particle beam and its fields in an accelerator simulation.
Im, Hyungbin; Bae, Dae Sung; Chung, Jintai
2012-04-01
This paper presents a design sensitivity analysis of dynamic responses of a BLDC motor with mechanical and electromagnetic interactions. Based on the equations of motion which consider mechanical and electromagnetic interactions of the motor, the sensitivity equations for the dynamic responses were derived by applying the direct differential method. From the sensitivity equation along with the equations of motion, the time responses for the sensitivity analysis were obtained by using the Newmark time integration method. The sensitivities of the motor performances such as the electromagnetic torque, rotating speed, and vibration level were analyzed for the six design parameters of rotor mass, shaft/bearing stiffness, rotor eccentricity, winding resistance, coil turn number, and residual magnetic flux density. Furthermore, to achieve a higher torque, higher speed, and lower vibration level, a new BLDC motor was designed by applying the multi-objective function method. It was found that all three performances are sensitive to the design parameters in the order of the coil turn number, magnetic flux density, rotor mass, winding resistance, rotor eccentricity, and stiffness. It was also found that the torque and vibration level are more sensitive to the parameters than the rotating speed. Finally, by applying the sensitivity analysis results, a new optimized design of the motor resulted in better performances. The newly designed motor showed an improved torque, rotating speed, and vibration level.
Directory of Open Access Journals (Sweden)
Jixiong Xiao
2017-01-01
Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.
Chen, Yongpin P; Jiang, Li Jun; Meng, Min; Wu, Yu Mao; Chew, Weng Cho
2016-01-01
A novel unified Hamiltonian approach is proposed to solve Maxwell-Schrodinger equation for modeling the interaction between classical electromagnetic (EM) fields and particles. Based on the Hamiltonian of electromagnetics and quantum mechanics, a unified Maxwell-Schrodinger system is derived by the variational principle. The coupled system is well-posed and symplectic, which ensures energy conserving property during the time evolution. However, due to the disparity of wavelengths of EM waves and that of electron waves, a numerical implementation of the finite-difference time-domain (FDTD) method to the multiscale coupled system is extremely challenging. To overcome this difficulty, a reduced eigenmode expansion technique is first applied to represent the wave function of the particle. Then, a set of ordinary differential equations (ODEs) governing the time evolution of the slowly-varying expansion coefficients are derived to replace the original Schrodinger equation. Finally, Maxwell's equations represented b...
Shi, Yifei
2015-10-26
Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.
Interaction of electromagnetic pulse with commercial nuclear-power-plant systems
Energy Technology Data Exchange (ETDEWEB)
Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.
1983-02-01
This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.
Interaction of extremely-low-frequency electromagnetic fields with living systems
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1991-11-01
The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.
Energy Technology Data Exchange (ETDEWEB)
Atdaev, A.; Danilyuk, A. L.; Labunov, V. A.; Prischepa, S. L., E-mail: prischepa@bsuir.by [Belarusian State University of Informatics and Radioelectronics (Belarus); Pavlov, A. A. [Russian Academy of Sciences, Institute of Microelectronics Nanotechnologies (Russian Federation); Basaev, A. S.; Shaman, Yu. P. [SMC Technological Center (Russian Federation)
2016-12-15
The interaction of electromagnetic radiation with a magnetically functionalized nanocomposite based on carbon nanotubes (CNTs) is considered using the model of random distribution of ferromagnetic nanoparticles in the carbon matrix characterized by the presence of resistive–inductive–capacitive coupling (contours). The model is based on the representation of the nanocomposite as a system consisting of the CNT matrix, ferromagnetic nanoparticles, and the interfaces between CNTs and nanoparticles. The wide range of possible resonant phenomena caused both by the presence of contours and the properties of the CNT nanocomposite is shown.
Electromagnetic field interactions with the human body: Observed effects and theories
Raines, J. K.
1981-01-01
The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.
van Dongen, A.; Smid, T.; Timmermans, D.R.M.
2014-01-01
Aim: To investigate differences in health perception and electromagnetic fields (EMF) between people within the general population reporting sensitivity or non-sensitivity to EMF, and people who registered themselves as sensitive to EMF at a non-governmental organisation (NGO). Methods: Correlations
Food and drug interactions: a general review.
Ötles, Semih; Senturk, Ahmet
2014-01-01
Although it is well known and identified that drug-drug interactions exist, the recognition of importance of food and drug interactions to practice has been growing much slower. On the other hand, drug-food/nutrient interactions continue to grow with the common use of medications. Beside the awareness of this type of interactions, food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. Drug-food interactions take place mechanistically due to altered intestinal transport and metabolism, or systemic distribution, metabolism and excretion. In addition, some people have greater risk of food and drug interactions who have a poor diet, have serious health problems, childrens and pregnant women. In this article, basic informations about importance, classifications, transporters and enzymes of drug and nutrient interaction are given and some specific examples of both drug and nutrients and influences on each other are included.
Nonlinear interaction of electromagnetic waves with 3-component relativistic quantum plasma
Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus
2017-05-01
The interaction of intense circularly polarized electro-magnetic (CPEM) wave with 3-component relativistic-quantum plasma consisting of relativistic-degenerate electrons and positrons, and dynamic degenerate ions is theoretically studied. A mathematical model is structured by coupling Klein-Gordon equations for the electrons and positrons, and Schrödinger equation for the ions with Maxwell equations through Poisson equations. The solutions of the dispersion relation are plotted for relativistic quantum plasma in the density-range of ˜ 10 30 → 10 36 m - 3 for several positron concentrations. Three wave modes are observed: electrons, ions, and positrons. The pair branch mode having a possible association with the positron states stays unaltered by variation in the positron concentration but varies significantly with a change in the quantum parameter defined in terms of the particles number density. The addition of positron to the plasma and increasing the positron concentration suggest enhancement of the opacity of the relativistic quantum plasma. The nonlinear interaction of large amplitude CPEM waves with the plasma leads to self-induced transparency. The transparency decreases with increasing positron concentration. The model so developed is then applied to study stimulated Raman scattering, modulational instability, and stimulated Brillouin scattering of intense CPEM waves in such plasmas. The results show that the growth rates are affected by the positron concentration, the quantum parameter of the plasma, as well as by the amplitude of the incident electromagnetic wave.
DEFF Research Database (Denmark)
Houmark-Nielsen, Jakob; Nielsen, Torben Roland; Mørk, Jesper
2009-01-01
We investigate the impact of many-body interactions on group-velocity slowdown achieved via electromagnetically induced transparency in quantum dots using three different coupling-probe schemes (ladder, V, and Lambda, respectively). We find that for all schemes many-body interactions have an impo...
Directory of Open Access Journals (Sweden)
Röösli Martin
2006-10-01
Full Text Available Abstract Background Five percent of the Swiss population attribute symptoms to electromagnetic fields (EMF. General practitioners (GPs might play a key role in recognising an emerging health risk, since they are the first to observe and follow up persons who attribute symptoms to EMF. It is unclear to what extent EMFs have become an issue in general practice and which experiences GPs report from the consultations. Methods We conducted telephone interviews in a random sample of GPs in Switzerland in order to assess the frequency of consultations in primary care due to EMF and the GPs' experience with these patients. Results 342 general practitioners were interviewed, corresponding to a response rate of 28.2%. 69% of the GPs reported at least one consultation due to EMF, but GPs with a certificate in complementary medicine were much more likely to report EMF consultations. The median of EMF consultation numbers within one year was three. An overview of the most recent EMF-related consultation per GP yielded sleep disorders, headaches and fatigue as the most often reported symptoms and mobile phone base stations, power lines and the own use of mobile phones as the main EMF sources suspected to be associated to symptoms. GPs judged the association between EMF and the symptoms to be plausible in 54% of the cases. There was no combination of symptoms and EMF sources that was remarkably and consistently judged to be a plausible cause of the symptoms. Conclusion In our survey, GPs often judged the association between the health problems and the suspected exposure to be plausible. This plausibility assessment seems to be based on grounds of preventive positions in a situation of scientific uncertainty. More research effort is needed to obtain more insight on a potential association between long term EMF exposure and unspecific symptoms.
Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.
2017-10-01
Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.
Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2013-06-01
The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.
Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.
Directory of Open Access Journals (Sweden)
Yanjie Liu
2016-03-01
Full Text Available Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.
Kinetic effects during the interaction between high density microplasma and electromagnetic wave
Levko, Dmytro; Raja, Laxminarayan
2017-10-01
The interaction between a high-density microplasma and high-power electromagnetic wave is studied by one-dimensional Particle-in-Cell Monte Carlo collisions model coupled with the Maxwell's equations. We find the value of the amplitude of the wave field above which a fully ionized plasma is generated on the picosecond time scale. This fully ionized plasma is obtained only in the skin layer while the ionization degree of the plasma bulk is 20%. The simulation results show that such non-homogeneous distribution of plasma and gas density influences significantly the heating of plasma electrons and time evolution of the electron energy probability function. Air Force Office of Scientific Research (AFOSR) through a Multi-University Research Initiative (MURI) Grant titled ``Plasma-Based Reconfigurable Photonic Crystals and Metamaterials'' with Dr. Mitat Birkan as the program manager.
Akasofu, S. I.
1974-01-01
Physical phenomena associated with the interaction between auroral particles and electromagnetic fields, auroral energy flow, and the propagation of auroral effects to low altitudes are discussed in detail. It is concluded that energy deposition of soft auroral X-rays would be negligible at stratospheric altitudes. New data from incoherent backscatter measurements of neutral winds in the auroral region indicate a lack of correlation between stratospheric winds and winds in the auroral ionosphere. Magnetograms are used to show that sector boundary crossings with a time scale of approximately one hour (as opposed to the sector structure itself with a time scale of several days) do not couple effectively with the magnetosphere and are not significant energy inputs to it.
Investigations of the structure and electromagnetic interactions of few-body systems
Energy Technology Data Exchange (ETDEWEB)
Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.
1992-07-01
In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.
Directory of Open Access Journals (Sweden)
Irena Cosic
2016-06-01
Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2018-01-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107
Electromagnetic Education in India
Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan
2016-01-01
Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…
Topological Foundations of Electromagnetism
Barrett, Terrence W
2008-01-01
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field
Atdayev, Agylych; Danilyuk, Alexander L; Prischepa, Serghej L
2015-01-01
The interaction of electromagnetic radiation with a magnetic nanocomposite based on carbon nanotubes (CNT) is considered within the model of distributed random nanoparticles with a core-shell morphology. The approach is based on a system composed of a CNT conducting resistive matrix, ferromagnetic inductive nanoparticles and the capacitive interface between the CNT matrix and the nanoparticles, which form resonance resistive-inductive-capacitive circuits. It is shown that the influence of the resonant circuits leads to the emergence of specific resonances, namely peaks and valleys in the frequency dependence of the permeability of the nanocomposite, and in the frequency dependence of the reflection and transmission of electromagnetic radiation.
Directory of Open Access Journals (Sweden)
Agylych Atdayev
2015-04-01
Full Text Available The interaction of electromagnetic radiation with a magnetic nanocomposite based on carbon nanotubes (CNT is considered within the model of distributed random nanoparticles with a core–shell morphology. The approach is based on a system composed of a CNT conducting resistive matrix, ferromagnetic inductive nanoparticles and the capacitive interface between the CNT matrix and the nanoparticles, which form resonance resistive–inductive–capacitive circuits. It is shown that the influence of the resonant circuits leads to the emergence of specific resonances, namely peaks and valleys in the frequency dependence of the permeability of the nanocomposite, and in the frequency dependence of the reflection and transmission of electromagnetic radiation.
Giardina, Giorgio; Sandorfi, Andrew; Pedroni, Paolo
2013-03-01
The International Seminar 'Strong and Electromagnetic Interaction in High Energy Collisions' was held in the Conference Hall 'Ettore Majorana' of the Department of Physics in Messina, Italy on October 12, 2012. The Seminar was organized by the University of Messina and 'Fondazione Bonino-Pulejo', with the aim of presenting and discussing the results of the current experiments and also new plans involving research at INFN-LNF (Italy), JLAB (USA), LHC-CERN, ELSA (Bonn), MAMI (Mainz). The main purpose of this Seminar was to deal with aspects of electromagnetic and strong forces by meson photoproduction and the electron-positron collider, and to search for dark energy. The recent results on hadron contributions to the muon anomalous magnetic moment and kaon interferometry at the DAFNE facility were also discussed. Editors: Giorgio Giardina (University of Messina), Andrew M Sandorfi (Thomas Jefferson National Accelerator Facility, Newport News, USA), Paolo Pedroni (INFN 'Sezione di Pavia') Organizing Committee: Chairman: G Giardina (Messina - Italy) Co-Chairman: A M Sandorfi (Newport News, USA) Co-Chairman: P Pedroni (Pavia - Italy) Scientific Secretary: G Mandaglio (University of Messina - Italy) Organizing Institutions: University of Messina Fondazione Bonino-Pulejo (Messina) Topics: Meson photoproduction and baryon resonances Muon anomaly (g-2) Recent results in experiments at the Large Hadron Collider Kaon interferometry Local Organizing Committee: F Curciarello, V De Leo, G Fazio, G Giardina, G Mandaglio, M Romaniuk Sponsored by: University of Messina, Fondazione Bonino-Pulejo (Messina), INFN Sezione di Catania Web-Site: http://newcleo.unime.it/IntSem2012
On Generalizations of the Gravitational Interaction
Halpern, L.
Views of Einstein and Schrödinger on the limitations of the validity of the general theory of relativity are compared with the mainstream view held today.A modernized relativistic version of the principle if inertia serves as guideline for the formulation of a theory which describes elementary particle spin as the analog of a gravitational charge generalizing the character of a gauge theory and removing some of the isolation of gravitation from the rest of physics.The relativistic version of the principle of inertia is formulated on the manifold of the Anti De Sitter group G,SO(3,2). It prescribes the orbits of structureless and spinning test particles as the natural projection π: G B of orbits of one-dimensional subgroups on the Anti De Sitter universe B which is the space of right cosets B=G/H with H=SO(3,1) the Lorentz subgroup. Einstein`s equations with a cosmological member are fulfilled on the group manifold for the Cartan-Killing metric γ. They project with π on Einstein`s equations on B with the corresponding projected metric g.P(G,H,,) forms a principal fibre bundle with typical fibre H. A connection is chosen by defining four tangent vector fields as horizontal and the tangent vectors of H everywhere as vertical; it is a metric connection if horizontal and vertical vector fields are mutually perpendicular with respect to a generalized metric γ for which the vertical vectors retain the Killing property and the commutation relations of the group H. Only the commutation relations of the horizontal vectors are generalized; they determine the curvature two-form of a gauge formalism. Restricting such geometries to solutions of Einstein`s equations results in a Kaluza-Klein formalism, the only one in which the metric g and the curvature two-form are truly unified and determine the geometry on B. The curvature produces the correct force on a spinning particle`s orbit (an orbit which includes vertical components). The spin precession is however not taken into
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-07-01
Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
Electromagnetic reciprocity in antenna theory
Stumpf, Martin
2018-01-01
The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.
Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber
Energy Technology Data Exchange (ETDEWEB)
Caratelli, David [Columbia U.
2018-01-01
This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel ! e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from 0 decay in the 30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.
Yang, Shengpeng; Zhou, Qing; Tang, Changjian; Chen, Shaoyong
2017-12-01
This particle-in-cell simulation study finds that the system of a long relativistic electron beam passing through an overdense plasma can produce high harmonic terahertz electromagnetic radiation. In this process, the electron beam is self-modulated to create a periodic electromagnetic structure which will resonate with the plasma wakefield and excite the electromagnetic instability in the nonlinear stage of the self-modulation. The study also finds that when the radiation is achieved, the self-modulated electron beam will be destroyed due to the self-consistent interaction among the radiation, the electron beam, and the plasma. Meanwhile, the radiation will gradually attenuate, which also coincides with the physical explanation of the radiation.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Tamburini, Fabrizio; De Laurentis, Mariafelicia; Amati, Lorenzo; Thidé, Bo
2017-11-01
We propose a new energy extraction mechanism from the rotational energy of a Kerr-Newman black hole by a gravitating massive photon field generated by electromagnetic and gravitational field coupling effects. Numerical studies show that this mechanism that depends on the black hole rotation parameter, a , shows a clear dependence on the black hole mass, M , and charge, Q , and can extract energies up to 1 054 erg for a black hole of the solar mass size. With this mechanism we can set a lower bound on the coupling ξ ˜10-38 between electromagnetic and gravitational fields that might be used to explain the hypothetical extremely high energy release, >1053 erg, suggested by the observations of some gamma-ray bursts in the controversial "energy crisis" problem if and when gamma-ray bursts seem not to show evidence for collimated emission.
Explicit high-order symplectic integrators for charged particles in general electromagnetic fields
Tao, Molei
2016-01-01
This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motio...
Uysal, Ismail Enes
2016-08-09
Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Shen, Chao; Wang, Yuming; Wang, Shui
2013-06-01
Electromagnetic ion cyclotron (EMIC) waves are long suggested to account for the rapid loss of radiation belt relativistic electrons. Here we perform both theoretical analysis and numerical simulation to comprehensively investigate the nonlinear interaction between EMIC wave and relativistic electrons. In particular, we emphasize the dependence of nonlinear processes on the electron initial latitude. The nonlinear phase trapping yields negative equatorial pitch angle transport, with efficiency varying over the electron initial latitude, implying that it can increase the loss rate predicted by quasilinear theory. The nonlinear channel effect phase bunching produces positive equatorial pitch angle transport, less dependent on the electron initial latitude, suggesting that it can decrease the loss rate predicted by quasilinear theory. The nonlinear cluster effect phase bunching alternately causes positive and negative equatorial pitch angle transport, quasi-periodically dependent on the electron initial latitude, suggesting that it can either decrease or increase the loss rate predicted by the quasilinear theory. Such latitudinal dependence of nonlinear processes should be taken into account in the evaluation of radiation belt electron loss rate driven by EMIC waves.
Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves
Corke, Thomas; Matlis, Eric
2016-11-01
The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.
Li, Renxian; Han, Xiang'e; Ren, Kuan Fang
2009-03-01
The Debye series expansion expresses the Mie scattering coefficients into a series of Fresnel coefficients and gives physical interpretation of different scattering modes, but when an infinite multilayered cylinder is obliquely illuminated by electromagnetic plane waves, the scattering process becomes very complicated because of cross polarization. Based on the relation of boundary conditions between global scattering process and local scattering processes, the generalized Debye series expansion of plane wave scattering by an infinite multilayered cylinder at oblique incidence is derived in this paper. The formula and the code are verified by the comparison of the results with that of Lorenz-Mie theory in special cases and those presented in the literatures.
DEFF Research Database (Denmark)
Kowall, Bernd; Breckenkamp, Jürgen; Berg-Beckhoff, Gabriele
2015-01-01
OBJECTIVE: General practitioners (GPs) play a key role in consulting patients worried about health effects of electromagnetic fields (EMF). We compared GPs using conventional medicine (COM) with GPs using complementary and alternative medicine (CAM) concerning their perception of EMF risks...... use can lead to head warming of more than 1°C (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.5-3.3), more often distrusted the Federal Office for Radiation Protection (OR = 2.2, 95% CI = 1.4-3.6), were more often concerned about mobile phone base stations (OR = 2.4, 95% CI = 1.6-3.6), more...
Fukushima, Toshio
2017-12-01
We developed a numerical method to compute the electromagnetic field of arbitrary static and axisymmetric current distribution. The method (i) numerically evaluates a double integral of the electrostatic and magnetostatic potentials of an infinitely thin ring current by the split quadrature method using the double exponential rules, and (ii) derives the electrostatic field and the magnetostatic induction by numerically differentiating the numerically integrated potentials by the central difference formula. A comparison with the exact solution for a poloidal current distribution with an anisotropic Gaussian damping confirmed the 14- and 9-digit accuracy of the potential and the field/induction computed by the new method.
General aviation design synthesis utilizing interactive computer graphics
Galloway, T. L.; Smith, M. R.
1976-01-01
Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.
An unusual source of electromagnetic interference: a device-device interaction.
Kowalski, Marcin; Shepard, Richard K; Kalahasty, Gautham; Wood, Mark A; Ellenbogen, Kenneth A
2010-08-01
Implantable cardioverter-defibrillators (ICDs) are susceptible to oversensing of extracardiac signals, also known as electromagnetic interference (EMI). We report a case of an unusual source of electrical interference of only the high voltage (HV) impedance measurement in the Teligen ICD (Boston Scientific, St. Paul, MN, USA) caused by electrical interference from an electrosurgical generator with an electrocautery patch located in close proximity to the ICD pulse generator. A patient underwent an uneventful implant of a Boston Scientific Teligen 100 ICD. Once the device was inserted in a pocket, interrogation of the device repeatedly demonstrated HV electrode impedance measurements between <20 and 40 Omega and noise only on the HV electrode. A new lead and generator were implanted without a change in the interrogation results. The erroneous measurements of HV impedance were caused by a combination of the close proximity of the electrocautery patch to the ICD generator. The continuous low-amplitude current emitted by the contact quality monitoring system of the electrosurgical cautery generator interfered with an equally weak current delivered through the lead by the device to measurement HV impedance. The Medtronic Virtuoso (Medtronic Inc., Minneapolis, MN, USA) ICD and the St. Jude Medical Current DR (St. Jude Medical, St. Paul, MN, USA) ICD were not affected by the patch due to greater magnitude of current delivered by the device to measure HV electrode impedance. It is important that the operator must be aware of any potential source of EMI, as it may affect the device and require immediate troubleshooting. Failure to recognize this interaction may result in inappropriate and unnecessary pulse generator replacement.
Electromagnetic fields in biological systems
Lin, James C
2016-01-01
As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...
A derivation of generalized Maxwell's equations for electromagnetism that permit net charge creation
Hampshire, D P
2015-01-01
Maxwell's four differential equations that describe electromagnetism are amongst the most famous equations in science. Feynman said they provide four of the seven fundamental laws of classical Physics. However, Coulomb's law of electrostatics and the Biot-Savart law of magnetostatics are used to justify two of the equations, an ad hoc addition of Maxwell's displacement current density term is used to complete the third equation, and the fourth is a description of Faraday's experimental data. This mixed approach has provided the standard pedagogical introduction to these equations for more than a century. It leaves uncertain whether Maxwell's equations should be considered axioms. Here we show that all four of Maxwell's equations (including Faraday's Law) can be derived by simultaneously solving Coulomb's law, the Biot-Savart law and the conservation of charge. We also derive generalised Maxwell's equations that in contrast to the standard forms, allow the creation of net charge. We argue that Coulomb's law, a...
Xing, Jing Tang; Sun, Zhe; Zhou, Sulian; Tan, Mingyi
2017-04-01
An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.
Venkatapathi, Murugesan
This thesis involves a study of the interaction of laser beams with micro channels and micro particles/cells using the electromagnetic field approach. This problem is relevant to the next generation cytometry, in particular to model based design of flow cytometers. The field approach is applied to study light scatter from particles/cells and also internal and scattered fields of cylindrical micro channels that are important for optical interrogation of particles and cells flowing through. Though current flow cytometers use qualitative fluorescence measurements for biological analysis, other viable optical interrogation techniques like light scatter, quantitative fluorescence and Coherent anti-stokes Raman scatter (CARS) are being studied for application to flow cytometry. The light scatter from particles and cells in a flow cytometer has been studied with the objective of extracting useful information about the particles using scatter measurements. First, the correlation between the size of particles and the current forward scatter measurements was both analytically modeled and experimentally determined. These results indicated that integrated scatter measurements currently used in flow cytometry (forward and side scatter) cannot be used to unambiguously estimate size, shape or refractive index of particles for classification. It is shown that multi-angle scatter measurements can be used to classify micro spheres of different sizes/refractive indices and different bacteria species, provided the scatter measurements are designed based on numerical scatter models. The numerical scatter models were then also used to do a preliminary study of correlation of scatter with internal structure of simple cells like stem cells. A few multivariate statistical methods have been applied for the classification of such particles in flow cytometry using scatter and multi-spectral fluorescence measurements. Typically the micro channels used in flow cytometry have square or circular
Taflove, A.; Umashankar, K. R.
1987-01-01
The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.
Markov, M.; Levin, V.; Markova, I.
2018-02-01
The paper presents an approach to determine the effective electromagnetic parameters of suspensions of ellipsoidal dielectric particles with surface conductivity. This approach takes into account the existence of critical porosity that corresponds to the maximum packing volume fraction of solid inclusions. The approach is based on the Generalized Differential Effective Medium (GDEM) method. We have introduced a model of suspensions containing ellipsoidal inclusions of two types. Inclusions of the first type (phase 1) represent solid grains, and inclusions of the second type (phase 2) contain material with the same physical properties as the host (phase 0). In this model, with increasing porosity the concentration of the host decreases, and it tends to zero near the critical porosity. The proposed model has been used to simulate the effective electromagnetic parameters of concentrated suspensions. We have compared the modeling results for electrical conductivity and dielectric permittivity with the empirical equations. The results obtained have shown that the GDEM model describes the effective electrical conductivity and dielectric permittivity of suspensions in a wide range of inclusion concentrations.
Electromagnetic fields and their impacts
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Effect of electromagnetic nanopulses on C. elegans fertility.
Bojjawar, Tripura; Jalari, Madan; Aamodt, Eric; Ware, Matthew F; Haynie, Donald T
2006-10-01
Electromagnetic nanopulse exposure results in decreased fertility of C. elegans, a well studied, multicellar organism. Experiments indicate that this effect is unlikely to be due to heating. Instead, nanopulses interfere with fertilization or development by an as yet undetermined mechanism. Study of nanopulse exposure of C. elegans could help to understand more generally how living organisms interact with electromagnetic fields.
Aspects of the theory of atoms and coherent matter and their interaction with electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Nilsen, Halvor Moell
2002-07-01
In the present work I have outlined and contributed to the time-dependent theory of the interaction between atoms and electromagnetic fields and the theory of Bose-Einstein condensates. New numerical methods and algorithms have been developed and applied in practice. Calculations have exhibited certain new dynamical features. All these calculations are in a regime where the applied field is of the same magnitude as the atomic field. In the case of BEC we have investigated the use of time-dependent methods to calculate the excitation frequencies. We also investigated the possibility of nonlinear coupling for a scissors mode and found no such contributions to damping which is consistent with other studies . Special emphasis has also been paid to the gyroscopic motion of rotating BEC where several models were investigated. Briefly, the main conclusions are: (1) Rydberg wave packets appear for direct excitations of Rydberg atoms for long pulses. (2) The survival of just a few states is decided by symmetry of the Hamiltonian. (3) For few cycle intense pulses classical and quantum mechanics show remarkable similarity. (4) Time-dependent methods for finding excitation frequencies have been shown to be very efficient. (5) New dynamical features is shown in gyroscopic motion of BEC. (6) It was shown that no nonlinear mixing of scissors modes occur in the standard Gross-Pitaevskii regime. As mentioned in the introduction, this work is a part of very active research fields and new progress is constantly reported. Thus, the present work cannot be concluded as a closed loop. The fast development of grid based numerical solutions for atoms in intense fields will surely make great contribution to solve many of today's problems. It is a very important area of research to understand both nonperturbative atomic response and highly nonlinear optics. In the field of Bose-Einstein condensation the new experimental achievements constantly drive the field forward. The new
DEFF Research Database (Denmark)
Kowall, Bernd; Breckenkamp, Jürgen; Heyer, Kristina
2010-01-01
OBJECTIVES: The proportion of general practitioners (GPs) in Germany who assume health impacts of electromagnetic fields (EMF) is assessed. Moreover, factors associated with this risk perception are examined. METHODS: A 7% random sample was drawn from online lists of all the GPs working in Germany...... there are persons whose health complaints are caused by EMF when legal limit values are met". A late responder analysis for the survey with the short questionnaire led to a still lower estimate of 29% for GPs believing in health-relevant effects of EMF. CONCLUSION: About a third of German GPs associate EMF...... with health complaints and thus deviate considerably from current scientific knowledge. To avoid a strong selection bias in the surveys of the perception of EMF risks, use of short questionnaires and late responder analysis are recommended....
Medical Information Management System (MIMS): A generalized interactive information system
Alterescu, S.; Friedman, C. A.; Hipkins, K. R.
1975-01-01
An interactive information system is described. It is a general purpose, free format system which offers immediate assistance where manipulation of large data bases is required. The medical area is a prime area of application. Examples of the system's operation, commentary on the examples, and a complete listing of the system program are included.
THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.
ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS
van Dongen, Diana; Smid, Tjabe; Timmermans, Daniëlle R M
2014-05-01
To investigate differences in health perception and electromagnetic fields (EMF) between people within the general population reporting sensitivity or non-sensitivity to EMF, and people who registered themselves as sensitive to EMF at a non-governmental organisation (NGO). Correlations and regression analysis to compare a sample of the general population recruited via internet panel to individuals with idiopathic environmental intolerance to EMF (IEI-EMF) recruited via an interest group. The general population sensitive group was more similar to the non-sensitive group in personal characteristics than to the NGO sensitive group. They experienced more - and more frequent - non-specific symptoms, reported higher perceived risk of EMF, and attributed their symptoms more to EMF than the non-sensitive group, but less than the NGO sensitive group. There was a positive association between attribution of symptoms to EMF and reported intensity of non-specific symptoms, which was stronger for the NGO sensitive subjects than for the general population. People sensitive to EMF and recruited via an internet panel differ from people sensitive to EMF and recruited via an NGO, who reported a higher frequency of non-specific symptoms. Attribution of symptoms to EMF is one of the predictors of the intensity of physical symptoms. Changing the perceived association between EMF and health problems in individuals with IEI-EMF might contribute to a better health experience.
A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William John [George Washington Univ., Washington, DC (United States); Strakovsky, Igor I. [George Washington Univ., Washington, DC (United States); Workman, Ronald L. [George Washington Univ., Washington, DC (United States)
2015-08-31
The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilities and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental γ - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of π0, η, 2π0, π0η, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to
Directory of Open Access Journals (Sweden)
Atena Dashtizadeh
2015-02-01
Full Text Available Background: Deferoxamine (DFO is an iron chelator. In the present research, the synergic effects of deferoxamine and electromagnetic field (with 50 H frequency and 100 Gauss intensity on angiogenesis of chick chorioallantoic membrane were investigated. Materials and Methods: In this experimental study 80 fertilized egg used and randomly divided 8 group: control group, laboratory control groups of 1 and 2, experimental group 1 (treatment with electromagnetic field, 2 and 3 (treatment with deferoxamine 10, 100 µmol, respectively, 4 and 5 (treatment both deferoxamine 10 and 100 µmol respectively and electromagnetic field. On 8th day of incubation, 2 and 4 groups were incubated with 10 µL deferoxamine and for 3 and 5 groups were incubated with 10 µL deferoxamine 100 µmol. On 10th day, 1, 4 and 5 groups were put in electromagnetic field. On 12th day, the number and length of vessels in all samples was measured by Image J software. Data were analyzed by SPSS-19, ANOVA and t-test. Results: The mean number and length of vessels in the control and experimental cases did not show any significant differences. Comparison between mean number of vessels in the control and group 2, 3, 4, 5 showed a significant decrease (p<0.05 and groups 2 and 4 was showed a significant decrease in the mean length of vessels compared with the controls (p<0.05. Conclusion: Using deferoxamine with low frequency electromagnetic field (50 Hz and 100 G cause inhibition of angiogenesis in chick embryo chorioallantoic membrane.
Interacting holographic dark energy models: A general approach
Som, S
2014-01-01
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density $\\rho_d=3(\\alpha H^2+\\beta\\dot{H})$. Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy(RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for $\\beta>0.5$ irrespective of the presence of interaction. A choice of $\\alpha=1$ and $\\beta=2/3$ leads to a varying $\\Lambda$-like model introducing an IR cutoff length $\\Lambda^{-1/2}$. It is concluded that among the popular choices an interaction of the form $Q\\propto H\\rho_m$ suits the best in avoiding the coincidence problem in this model.
Kosugi, Taichi; Matsushita, Yu-Ichiro
2017-09-21
For inhomogeneous interacting electronic systems under a time-dependent electromagnetic perturbation, we derive the linear equation for response functions in a quantum mechanical manner. It is a natural extension of the original semi-classical Singwi-Tosi-Land-Sjölander (STLS) approach for an electron gas. The factorization ansatz for the two-particle distribution is an indispensable ingredient in the STLS approaches for the determination of the response function and the pair correlation function. In this study, we choose an analytically solvable interacting two-electron system as the target for which we examine the validity of the approximation. It is demonstrated that the STLS response function reproduces well the exact one for low-energy excitations. The interaction energy contributed from the STLS response function is also discussed.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
Fluctuation-induced interactions between dielectrics in general geometries.
Pasquali, S; Maggs, A C
2008-07-07
We study thermal Casimir and quantum nonretarded Lifshitz interactions between dielectrics in general geometries. We map the calculation of the classical partition function onto a determinant, which we discretize and evaluate with the help of Cholesky factorization. The quantum partition function is treated by path integral quantization of a set of interacting dipoles and reduces to a product of determinants. We compare the approximations of pairwise additivity and proximity force with our numerical methods. We propose a "factorization approximation" that gives rather good numerical results in the geometries that we study.
DEFF Research Database (Denmark)
Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen
2005-01-01
, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...... properties of PEMF-induced electrical fields and explain the typical set up for coils and pulse patterns. Furthermore, we discuss possible models that can account for mechanisms by which induced electric fields are able to enhance cellular signaling. We have emphasized the currently well-documented effects......In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic...
High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk
Haswell, C. A.; Tajima, T.; Sakai, J.-I.
1992-01-01
By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.
Eremin, Yu. A.; Sveshnikov, A. G.
2017-07-01
Energy relations are used to generalize the Optical Theorem to the case of a local body excited by a multipole source, including in the presence of a half-space. It is shown that the extinction cross section can be represented in an explicit analytical form. This circumstance considerably facilitates the computation of the fluorescence quantum yield or the efficiency of an optical antenna.
The evolution of generalized reciprocity in social interaction networks.
Voelkl, Bernhard
2015-09-01
Generalized reciprocity has been proposed as a mechanism for enabling continued cooperation between unrelated individuals. It can be described by the simple rule "help somebody if you received help from someone", and as it does not require individual recognition, complex cognition or extended memory capacities, it has the potential to explain cooperation in a large number of organisms. In a panmictic population this mechanism is vulnerable to defection by individuals who readily accept help but do not help themselves. Here, I investigate to what extent the limitation of social interactions to a social neighborhood can lead to conditions that favor generalized reciprocity in the absence of population structuring. It can be shown that cooperation is likely to evolve if one assumes certain sparse interaction graphs, if strategies are discrete, and if spontaneous helping and reciprocating are independently inherited. Copyright © 2015 Elsevier Inc. All rights reserved.
Risk factors for potential drug interactions in general practice
DEFF Research Database (Denmark)
Bjerrum, Lars; Gonzalez Lopez-Valcarcel, Beatriz; Petersen, Gert
2008-01-01
Objective: To identify patient- and practice-related factors associated with potential drug interactions. Methods: A register analysis study in general practices in the county of Funen, Denmark. Prescription data were retrieved from a population-based prescription database (Odense University...... Pharmacoepidemiologic Database, OPED) covering prescriptions to all inhabitants in the county of Funen, Denmark. All individuals exposed to concurrent use of two or more drugs (polypharmacy) were identified. Combinations of drugs with potential interactions were registered and classified as major, moderate, or minor......, depending on the severity of outcome and the quality of documentation. A two-level random coefficient logistic regression model was used to investigate factors related to potential drug interactions. Results: One-third of the population was exposed to polypharmacy, and 6% were exposed to potential drug...
General pharmacology of pidotimod and testing for drug interactions.
Manzardo, S; Falcone, A; Pinzetta, A; Ieva, G; Coppi, G
1994-12-01
Pidotimod ((R)-3-[(S)-(5-oxo-2-pyrrolidinyl) carbonyl]-thiazolidine-4-carboxylic acid, PGT/1A, CAS 121808-62-6) is a new biological response modifier. General pharmacology and interactions with some drugs were tested. The drug, at doses of 200 mg/kg i.p. and 400 mg/kg p.o., did not affect the normal behaviour, did not modify the responses to stimulation of autonomic nervous system or central nervous system. Pidotimod did not display any cardiovascular or respiratory effect up to 125 mg/kg i.v. in 3 animal species. The drug did not show antimicrobial or antifungal activities nor interact with some of the most common therapeutics (antibiotics, tolbutamide, pentobarbital, antihypertensives, chlorothiazide, warfarin, non-steroidal antiinflammatory agents). On the basis of these results pidotimod shows a safe profile; moreover it does not interact with many therapeutic agents.
The evolution of generalized reciprocity on social interaction networks.
van Doorn, Gerrit Sander; Taborsky, Michael
2012-03-01
Generalized reciprocity (help anyone, if helped by someone) is a minimal strategy capable of supporting cooperation between unrelated individuals. Its simplicity makes it an attractive model to explain the evolution of reciprocal altruism in animals that lack the information or cognitive skills needed for other types of reciprocity. Yet, generalized reciprocity is anonymous and thus defenseless against exploitation by defectors. Recognizing that animals hardly ever interact randomly, we investigate whether social network structure can mitigate this vulnerability. Our results show that heterogeneous interaction patterns strongly support the evolution of generalized reciprocity. The future probability of being rewarded for an altruistic act is inversely proportional to the average connectivity of the social network when cooperators are rare. Accordingly, sparse networks are conducive to the invasion of reciprocal altruism. Moreover, the evolutionary stability of cooperation is enhanced by a modular network structure. Communities of reciprocal altruists are protected against exploitation, because modularity increases the mean access time, that is, the average number of steps that it takes for a random walk on the network to reach a defector. Sparseness and community structure are characteristic properties of vertebrate social interaction patterns, as illustrated by network data from natural populations ranging from fish to primates. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Li, Ping
2015-10-15
Use of the discontinuous Galerkin time-domain (DGTD) method for analyzing electromagnetic field interactions on microwave structures loaded with thin wires has been very limited despite its well-known advantages. Direct application of the three dimensional (3D) DGTD method to such structures calls for very fine volumetric discretizations in the proximity of the thin wires. In this work, to avoid this possible source of computational inefficiency, electromagnetic field interactions on thin wires and the rest of the structures are modeled separately using the modified telegrapher and Maxwell equations, respectively. Then, 1D and 3D DGTD methods are used to discretize them. The coupling between the two resulting matrix systems is realized by introducing equivalent source terms in each equation set. A weighted electric field obtained from the 3D discretization around the wire is introduced as a voltage source in the telegrapher equations. A volume current density obtained from the 1D discretization on the wire is introduced as a current source in the Ampere law equation. © 2015 IEEE.
Pegarkov, A. I.
2001-07-01
The intense interactions between short-wavelength (SW) electromagnetic radiation with a wavelength λ ≥ 1 Å and intensity up to 1014 W/cm2 and simple and polyatomic molecules are studied with the coherent excitations of high-lying Rydberg and autoionizing states taken into account. The Hamiltonian of a system "molecule + SW radiation" is obtained by using the methods of quantum electrodynamics. Conditions for the applicability of the dipole approximation to describe the interactions of molecules with radiation of the UV, VUV, XUV, and soft X-ray range are found. The fundamentals of the theory of resonance scattering of SW radiation from diatomic, triatomic, and symmetric-and asymmetric-top polyatomic molecules are outlined.
Giannetto, Enrico R. A.
2009-01-01
The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German "Naturphilosophie" and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the…
Evolutionary dynamics of general group interactions in structured populations
Li, Aming; Broom, Mark; Du, Jinming; Wang, Long
2016-02-01
The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.
Energy Technology Data Exchange (ETDEWEB)
Dragnea, Bogdan G. [Indiana Univ., Bloomington, IN (United States)
2017-05-03
Achievements which resulted from previous DOE funding include: templated virus-like particle assembly thermodynamics, development of single particle photothermal absorption spectroscopy and dark- field spectroscopy instrumentation for the measurement of optical properties of virus-like nanoparticles, electromagnetic simulations of coupled nanoparticle cluster systems, virus contact mechanics, energy transfer and fluorescence quenching in multichromophore systems supported on biomolecular templates, and photo physical work on virus-aptamer systems. A current total of eight published research articles and a book chapter are acknowledging DOE support for the period 2013-2016.
Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David
2013-09-09
The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.
Bowling, Mark R; Kohan, Matthew W; Walker, Paul; Efird, Jimmy; Ben Or, Sharon
2015-01-01
Navigational bronchoscopy is utilized to guide biopsies of peripheral lung nodules and place fiducial markers for treatment of limited stage lung cancer with stereotactic body radiotherapy. The type of sedation used for this procedure remains controversial. We performed a retrospective chart review to evaluate the differences of diagnostic yield and overall success of the procedure based on anesthesia type. Electromagnetic navigational bronchoscopy was performed using the superDimension software system. Once the targeted lesion was within reach, multiple tissue samples were obtained. Statistical analysis was used to correlate the yield with the type of sedation among other factors. A successful procedure was defined if a diagnosis was made or a fiducial marker was adequately placed. Navigational bronchoscopy was performed on a total of 120 targeted lesions. The overall complication rate of the procedure was 4.1%. The diagnostic yield and success of the procedure was 74% and 87%, respectively. Duration of the procedure was the only significant difference between the general anesthesia and IV sedation groups (mean, 58 vs. 43 min, P=0.0005). A larger tumor size was associated with a higher diagnostic yield (P=0.032). All other variables in terms of effect on diagnostic yield and an unsuccessful procedure did not meet statistical significance. Navigational bronchoscopy is a safe and effective pulmonary diagnostic tool with relatively low complication rate. The diagnostic yield and overall success of the procedure does not seem to be affected by the type of sedation used.
Generalization Through the Recurrent Interaction of Episodic Memories
Kumaran, Dharshan; McClelland, James L.
2012-01-01
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995), and empirical support for its role in generalization and flexible relational memory (Cohen & Eichenbaum, 1993; Eichenbaum, 1999). Our account provides a means by which to resolve this conflict, by demonstrating that the basic representational scheme envisioned by complementary learning systems theory (McClelland et al., 1995), which relies upon orthogonalized codes in the hippocampus, is compatible with efficient generalization—as long as there is recurrence rather than unidirectional flow within the hippocampal circuit or, more widely, between the hippocampus and neocortex. We propose that recurrent similarity computation, a process that facilitates the discovery of higher-order relationships between a set of related experiences, expands the scope of classical exemplar-based models of memory (e.g., Nosofsky, 1984) and allows the hippocampus to support generalization through interactions that unfold within a dynamically created memory space. PMID:22775499
Zaininger, H. W.
1984-08-01
A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP), high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. Typical electrical power system characteristics for EMP analysis are defined. Reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms are determined.
Electromagnetic pulse (EMP) radiation by laser interaction with a solid H.sub.2./sub. ribbon
Czech Academy of Sciences Publication Activity Database
De Marco, Massimo; Krása, Josef; Cikhardt, J.; Velyhan, Andriy; Pfeifer, Miroslav; Dudžák, Roman; Dostál, Jan; Krouský, Eduard; Limpouch, J.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Ullschmied, Jiří; Giuffrida, Lorenzo; Chatain, D.; Perin, J.P.; Margarone, Daniele
2017-01-01
Roč. 24, č. 8 (2017), s. 1-6, č. článku 083103. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162; GA ČR GA16-07036S; GA MŠk(CZ) LD14089; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * electromagnetic pulse * solid hydrogen ribbon Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.115, year: 2016
Electromagnetic Wave Interactions with 2D Arrays of Single-Wall Carbon Nanotubes
Directory of Open Access Journals (Sweden)
Taha A. Elwi
2011-01-01
Full Text Available We report, for the first time, the scattering, absorption, and reflection characteristics of 2D arrays of finite-length, armchair, single-walled carbon nanotubes (SWNTs in the visible frequency regime. The analysis is based on the Finite-Element-Method formulation of Maxwell's equations and a 3D quantum electrical conductivity function. Three geometrical models have been considered: solid cylinder, hollow cylinder, and honeycomb. We demonstrate that classical electromagnetic theory is sufficient to evaluate the scattering and absorption cross sections of SWNTs, which revealed excellent agreement against measurements without the need to invoke the effective impedance boundary conditions. The solid and hollow cylindrical models fail to provide accurate results, when both scattering and absorption are considered. Finally, it is shown that reflection and transmission characteristics of both individual and arrays of SWNTs, which are essential for solar cell applications, are strongly influenced by the length and the phenomenological parameters of the SWNT.
Energy Technology Data Exchange (ETDEWEB)
Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering)
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Energy Technology Data Exchange (ETDEWEB)
Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Wang, Xueen; Fan, Zhaozhong; Tang, Tiantong
2006-04-01
A method is proposed, on the basis of the vector electromagnetic theory, for the numerical calculation of the diffraction of a converging electromagnetic wave by a circular aperture by using Borgnis potentials as auxiliary functions. The diffraction problem of vector electromagnetic fields is simplified greatly by solving the scalar Borgnis potentials. The diffractive field is calculated on the basis of the boundary integral equation, taking into consideration the contribution of the field variables on the diffraction screen surface, which is ignored in the Kirchhoff assumption. An example is given to show the effectiveness and suitability of this method and the distinctiveness of the diffractive fields caused by the vector characteristics of the electromagnetic fields.
Sayed, Sadeed Bin
2014-07-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua
2010-06-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Review on Computational Electromagnetics
Directory of Open Access Journals (Sweden)
P. Sumithra
2017-03-01
Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations. In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
van Dongen Diana; Smid Tjabe; Timmermans Daniëlle RM
2011-01-01
Abstract Background The amount of exposure to electromagnetic fields (EMF) at work is mainly determined by an individual's occupation and may differ from exposure at home. It is, however, unknown how different occupational groups perceive possible adverse health effects of EMF. Methods Three occupational groups, the general Dutch working population (n = 567), airport security officers who work with metal detectors (n = 106), and MRI radiographers who work with MRI (n = 193), were compared on ...
Lyu, Z.; Tran, N.; Boeck, T.; Karcher, C.
2017-07-01
Lorentz force velocimetry (LFV) is a non-contact electromagnetic flow measurement technique for electrically conductive liquids. It is based on measuring the flow-induced force acting on an external permanent magnet. Motivated by extending LFV to liquid metal two-phase flow measurement, in a first test we consider the free rising of a non-conductive spherical particle in a thin tube of liquid metal (GaInSn) initially at rest. Here the measured force is due to the displacement flow induced by the rising particle. In this paper, numerical results are presented for three different analytical solutions of flows around a moving sphere under a localized magnetic field. This simplification is made since the hydrodynamic flow is difficult to measure or to compute. The Lorentz forces are compared to experiments. The aim of the present work is to check if our simple numerical model can provide Lorentz forces comparable to the experiments. The results show that the peak values of the Lorentz force from the analytical velocity fields provide us an upper limit to the measurement results. In the case of viscous flow around a moving sphere we recover the typical time-scale of Lorentz force signals.
Kowall, Bernd; Breckenkamp, Jürgen; Berg-Beckhoff, Gabriele
2015-01-01
General practitioners (GPs) play a key role in consulting patients worried about health effects of electromagnetic fields (EMF). We compared GPs using conventional medicine (COM) with GPs using complementary and alternative medicine (CAM) concerning their perception of EMF risks. Moreover, we assessed whether the kind of alternative medicine has an influence on the results. A total of 2795 GPs drawn randomly from lists of German GPs were sent an either long or short self-administered postal questionnaire on EMF-related topics. Adjusted logistic regression models were fitted to assess the association of an education in alternative medicine with various aspects of perceiving EMF risks. Concern about EMF, misconceptions about EMF, and distrust toward scientific organizations are more prevalent in CAM-GPs. CAM-GPs more often falsely believed that mobile phone use can lead to head warming of more than 1°C (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.5-3.3), more often distrusted the Federal Office for Radiation Protection (OR = 2.2, 95% CI = 1.4-3.6), were more often concerned about mobile phone base stations (OR = 2.4, 95% CI = 1.6-3.6), more often attributed own health complaints to EMF (OR = 3.2, 95% CI = 1.8-5.6), and more often reported at least 1 EMF consultation (OR = 2.5, 95% CI = 1.6-3.9). GPs using homeopathy perceived EMF as more risky than GPs using acupuncture or naturopathic treatment. Concern about common EMF sources is highly prevalent among German GPs. CAM-GPs perceive stronger associations between EMF and health problems than COM-GPs. There is a need for evidence-based information about EMF risks for GPs and particularly for CAM-GPs. This is the precondition that GPs can inform patients about EMF and health in line with current scientific knowledge. © The Author(s) 2014.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Safari, Mahdi; Mosleminiya, Navid; Abdolali, Ali
2017-10-01
Since the development of communication devices and expansion of their applications, there have been concerns about their harmful health effects. The main aim of this study was to investigate laptop thermal effects caused by exposure to electromagnetic fields and thermal sources simultaneously; propose a nondestructive, replicable process that is less expensive than clinical measurements; and to study the effects of positioning any new device near the human body in steady state conditions to ensure safety by U.S. and European standard thresholds. A computer simulation was designed to obtain laptop heat flux from SolidWorks flow simulation. Increase in body temperature due to heat flux was calculated, and antenna radiation was calculated using Computer Simulation Technology (CST) Microwave Studio software. Steady state temperature and specific absorption rate (SAR) distribution in user's body, and heat flux beneath the laptop, were obtained from simulations. The laptop in its high performance mode caused 420 (W/m2 ) peak two-dimensional heat flux beneath it. The cumulative effect of laptop in high performance mode and 1 W antenna radiation resulted in temperatures of 42.9, 38.1, and 37.2 °C in lap skin, scrotum, and testis, that is, 5.6, 2.1, and 1.4 °C increase in temperature, respectively. Also, 1 W antenna radiation caused 0.37 × 10-3 and 0.13 × 10-1 (W/kg) peak three-dimensional SAR at 2.4 and 5 GHz, respectively, which could be ignored in reference to standards and temperature rise due to laptop use. Bioelectromagnetics. 38:550-558, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Biological General Repository for Interaction Datasets (BioGRID)
U.S. Department of Health & Human Services — BioGRID is an online interaction repository with data on raw protein and genetic interactions from major model organism species. All interaction data are freely...
Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
Directory of Open Access Journals (Sweden)
I.A. Kostiukov
2013-09-01
Full Text Available Works studying ways of reducing magnetic fields of cross-linked polyethylene power cable lines are reviewed. Different aspects of single-phase power cable shield construction influence on thermal conditions of a three-phase power cable line are analyzed. Questions concerning electromagnetic compatibility of power cables are considered.
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David F.
2014-11-01
A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories
Blok, H.; van den Berg, P.M.
2011-01-01
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc.
Optimal Scaling of Interaction Effects in Generalized Linear Models
van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F.
2009-01-01
Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…
Energy Technology Data Exchange (ETDEWEB)
García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)
2017-02-28
Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.
Electromagnetic fields in biological systems
National Research Council Canada - National Science Library
Lin, James C
2012-01-01
"Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...
Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1994-07-01
Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1992-06-01
There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.
Energy Technology Data Exchange (ETDEWEB)
Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.
1993-07-01
The emphasis of the nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim is to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. A central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question.
Health hazards and electromagnetic fields.
Saunders, T
2003-11-01
Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may
Stalnaker, J. L.; Everett, M. E.
2002-12-01
A solution for the response of multiple buried plates in a host medium to controlled-source electromagnetic (CSEM) stimulation has been found. This solution accounts for the interaction between the plates and the host medium. The solution for a plate in free space is well-known and analytic. However, adding a second plate or a conducting host medium increases the complexity of the solution. Time-varying currents induced by the source in the plates and the host medium introduce new magnetic flux to the system that in turn modify the currents via mutual inductance. This solution is obtained by solving the (A,φ ) potential formulation of Maxwell's equations using the finite element method. The finite element mesh generator allows for local refinement of the mesh in regions where greater resolution is desirable. This allows finer meshing in the region of the plates, which allows for more accurate modeling of the nuances in the induced currents caused by the interaction between the plates and the host medium. The effect of mutual induction and the efficacy of the locally refined finite element solution are demonstrated. The response of a model containing two plates within a host medium is compared to the sum of the responses of the two plates modeled separately. The plates are 2 m by 2 m, with a separation distance of 1 m, buried at a depth of 1 m. The plates have a conductivity of 100 S/m, and are within a host medium of conductivity 0.01 S/m. The system is excited by a source with a frequency between 1 and 100 kHz. It is shown that the model response of a two-plate system differs from the sum of the responses of two one-plate systems. The interaction between the two plates and the host medium must be properly modeled. An accurate model of the interaction of buried conductors excited by a controlled source is necessary to properly discriminate and classify buried targets. This is particularly true in the near-surface region of the earth where complex heterogeneity is
Energy Technology Data Exchange (ETDEWEB)
Bourdier, A
1999-07-01
This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)
General purpose computer program for interacting supersonic configurations: Programmer's manual
Crill, W.; Dale, B.
1977-01-01
The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.
Visualizing cellular interactions with a generalized proximity reporter.
Sellmyer, Mark A; Bronsart, Laura; Imoto, Hiroshi; Contag, Christopher H; Wandless, Thomas J; Prescher, Jennifer A
2013-05-21
Interactions among neighboring cells underpin many physiological processes ranging from early development to immune responses. When these interactions do not function properly, numerous pathologies, including infection and cancer, can result. Molecular imaging technologies, especially optical imaging, are uniquely suited to illuminate complex cellular interactions within the context of living tissues in the body. However, no tools yet exist that allow the detection of microscopic events, such as two cells coming into close proximity, on a global, whole-animal scale. We report here a broadly applicable, longitudinal strategy for probing interactions among cells in living subjects. This approach relies on the generation of bioluminescent light when two distinct cell populations come into close proximity, with the intensity of the optical signal correlating with relative cellular location. We demonstrate the ability of this reporter strategy to gauge cell-cell proximity in culture models in vitro and then evaluate this approach for imaging tumor-immune cell interactions using a murine breast cancer model. In these studies, our imaging strategy enabled the facile visualization of features that are otherwise difficult to observe with conventional imaging techniques, including detection of micrometastatic lesions and potential sites of tumor immunosurveillance. This proximity reporter will facilitate probing of numerous types of cell-cell interactions and will stimulate the development of similar techniques to detect rare events and pathological processes in live animals.
Electromagnetic field and cosmic censorship
Düztaş, Koray
2013-01-01
We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.
Directory of Open Access Journals (Sweden)
G. Ahirwar
2006-08-01
Full Text Available The effect of parallel electric field on the growth rate, parallel and perpendicular resonant energy and marginal stability of the electromagnetic ion-cyclotron (EMIC wave with general loss-cone distribution function in a low β homogeneous plasma is investigated by particle aspect approach. The effect of the steepness of the loss-cone distribution is investigated on the electromagnetic ion-cyclotron wave. The whole plasma is considered to consist of resonant and non-resonant particles. It is assumed that resonant particles participate in the energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effect of the parallel electric field with the general distribution function is to control the growth rate of the EMIC waves, whereas the effect of steep loss-cone distribution is to enhance the growth rate and perpendicular heating of the ions. This study is relevant to the analysis of ion conics in the presence of an EMIC wave in the auroral acceleration region of the Earth's magnetoplasma.
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
A General Field Theory for Vortex Structure and Interaction,
1983-10-03
that the ’field strength’ existed everywhere and it was a mere accident that the material particle was needed for the demonstration of its existence...application of a simple two part vortex to a model of the two dimensional general circualtion for the inner planets, including earth. Appendix C outlines a
Collaboration and interaction of first responders with the general public
Emmerik, M. van; Dinesen, C.; Rijk, R. van; Bird, M.; Wester, M.; Hansen, L.J.; Vinther-Larsen, L.; Padron, C.; Boswinkel, R.; Ven, J. van de
2016-01-01
There is an increased focus on the need for collaboration between first responders and the general public. This type of collaboration requires soft skills that are not necessarily included in more traditional command and control trainings for first responders. Learning to collaborate with the
Generalized interactions using virtual tools within the spring framework: cutting
Montgomery, Kevin; Bruyns, Cynthia D.
2002-01-01
We present schemes for real-time generalized mesh cutting. Starting with the a basic example, we describe the details of implementing cutting on single and multiple surface objects as well as hybrid and volumetric meshes using virtual tools with single and multiple cutting surfaces. These methods have been implemented in a robust surgical simulation environment allowing us to model procedures ranging from animal dissection to cleft lip correction.
van Dongen, Diana; Smid, Tjabe; Timmermans, Daniëlle R M
2011-11-09
The amount of exposure to electromagnetic fields (EMF) at work is mainly determined by an individual's occupation and may differ from exposure at home. It is, however, unknown how different occupational groups perceive possible adverse health effects of EMF. Three occupational groups, the general Dutch working population (n = 567), airport security officers who work with metal detectors (n = 106), and MRI radiographers who work with MRI (n = 193), were compared on perceived risk of and positive and negative feelings towards EMF in general and of different EMF sources, and health concerns by using analyses of variances. Data were collected via an internet survey. Overall, MRI radiographers had a lower perceived risk, felt less negative, and more positive towards EMF and different sources of EMF than the general working population and the security officers. For security officers, feeling more positive about EMF was not significantly related to perceived risk of EMF in general or EMF of domestic sources. Feeling positive about a source did not generalize to a lower perceived risk, while negative feelings were stronger related to perceived risk. MRI radiographers had fewer health concerns regarding EMF than the other two groups, although they considered it more likely that EMF could cause physical complaints. These data show that although differences in occupation appear to be reflected in different perceptions of EMF, the level of occupational exposure to EMF as such does not predict the perceived health risk of EMF. © 2011 van Dongen et al; licensee BioMed Central Ltd.
Directory of Open Access Journals (Sweden)
van Dongen Diana
2011-11-01
Full Text Available Abstract Background The amount of exposure to electromagnetic fields (EMF at work is mainly determined by an individual's occupation and may differ from exposure at home. It is, however, unknown how different occupational groups perceive possible adverse health effects of EMF. Methods Three occupational groups, the general Dutch working population (n = 567, airport security officers who work with metal detectors (n = 106, and MRI radiographers who work with MRI (n = 193, were compared on perceived risk of and positive and negative feelings towards EMF in general and of different EMF sources, and health concerns by using analyses of variances. Data were collected via an internet survey. Results Overall, MRI radiographers had a lower perceived risk, felt less negative, and more positive towards EMF and different sources of EMF than the general working population and the security officers. For security officers, feeling more positive about EMF was not significantly related to perceived risk of EMF in general or EMF of domestic sources. Feeling positive about a source did not generalize to a lower perceived risk, while negative feelings were stronger related to perceived risk. MRI radiographers had fewer health concerns regarding EMF than the other two groups, although they considered it more likely that EMF could cause physical complaints. Conclusions These data show that although differences in occupation appear to be reflected in different perceptions of EMF, the level of occupational exposure to EMF as such does not predict the perceived health risk of EMF.
Electromagnetic Education in India
Directory of Open Access Journals (Sweden)
Bajpai Shrish
2016-06-01
Full Text Available Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases. Electromagnetism has played a vital role in the progress of human kind ever since it has been understood. Electromagnets are found everywhere. One can find them in speakers, doorbells, home security systems, anti-shoplifting systems, hard drives, mobiles, microphones, Maglev trains, motors and many other everyday appliances and products. Before diving into the education system, it is necessary to reiterate its importance in various technologies that have evolved over time. Almost every domain of social life has electromagnetic playing its role. Be it the mobile vibrators you depend upon, a water pump, windshield wipers during rain and the power windows of your car or even the RFID tags that may ease your job during shopping. A flavor of electromagnetics is essential during primary level of schooling for the student to understand its future prospects and open his/her mind to a broad ocean of ideas. Due to such advancements this field can offer, study on such a field is highly beneficial for a developing country like India. The paper presents the scenario of electromagnetic education in India, its importance and numerous schemes taken by the government of India to uplift and acquaint the people about the importance of EM and its applications.
Directory of Open Access Journals (Sweden)
Mehrdad Behmanesh
2014-03-01
Full Text Available Effects of magnetic and electromagnetic fields on the living organisms have drawn attention in the recent years, but their exact mechanisms are still unclear. In the present study, the effects of 10 kHz electromagnetic magnetic field on some physiological parameters of wheat (Triticum aestivum L. were evaluated. The plants in their reproductive phase were treated for 4 days, each 5 h. Then the iron content, ratio of Fe-bound proteins to total proteins, content, size and secondary structure of ferritin nanoparticles as well as activity of antioxidant system were evaluated. The results showed that in comparison with the control plants, treatment with electromagnetic field significantly increased the iron contents of all organs except seeds and ratio of Fe-bound proteins to total proteins of seeds. The content and secondary structure of ferritin nanoparticles in edible parts of magnetic field treated plants were decreased significantly, but the hydrodynamic diameter was increased significantly compared to the control plants. This treatment also caused the significant increase of catalase activity and remarkably decreased peroxidase activity of wheat seeds, which in turn led to maintenance of membrane lipid peroxidation. These results suggested that electromagnetic field with applied frequency affected wheat plants by changing the content of total iron, Fe-bound proteins special ferritin and its characteristics and activation of antioxidant system.
Gizhko, Vasiliy V.; Sit'ko, S. P.
1994-08-01
Analysis of semiclassic theory of radiation interaction is done in respect to the millimeter range wave lengths and water milien of biological objects. General characteristics of electromagnetic limit cicles are analyzed with respect to the peculiarity of human anatomy, the correspondence between these characteristics and laws of classical acupuncture system topography is determined. General condition of multicellular organism's stability on all of development stages are formulated as a space quantum conditions for eigen electromagnetic field's states.
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Karpowicz, Jolanta; Gryz, Krzysztof
2013-01-01
Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both-GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment).
Directory of Open Access Journals (Sweden)
Jolanta Karpowicz
2013-01-01
Full Text Available Leakage of electromagnetic fields (EMF from short-wave radiofrequency physiotherapeutic diathermies (SWDs may cause health and safety hazards affecting unintentionally exposed workers (W or general public (GP members (assisting patient exposed during treatment or presenting there for other reasons. Increasing use of electronic active implantable medical devices (AIMDs, by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users. Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated. Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment.
Anomalous electromagnetic coupling via entanglement at the nanoscale
Slepyan, Gregory; Boag, Amir; Mordachev, Vladimir; Sinkevich, Eugene; Maksimenko, Sergey; Kuzhir, Polina; Miano, Giovanni; Portnoi, Mikhail E.; Maffucci, Antonio
2017-02-01
Understanding unwanted mutual interactions between devices at the nanoscale is crucial for the study of the electromagnetic compatibility in nanoelectronic and nanophotonic systems. Anomalous electromagnetic coupling (crosstalk) between nanodevices may arise from the combination of electromagnetic interaction and quantum entanglement. In this paper we study in detail the crosstalk between two identical nanodevices, each consisting of a quantum emitter (atom, quantum dot, etc), capacitively coupled to a pair of nanoelectrodes. Using the generalized susceptibility concept, the overall system is modeled as a two-port within the framework of the electrical circuit theory and it is characterized by the admittance matrix. We show that the entanglement changes dramatically the physical picture of the electromagnetic crosstalk. In particular, the excitation produced in one of the ports may be redistributed in equal parts between both the ports, in spite of the rather small electromagnetic interactions. Such an anomalous crosstalk is expected to appear at optical frequencies in lateral GaAs double quantum dots. A possible experimental set up is also discussed. The classical concepts of interference in the operation of electronic devices, which have been known since the early days of radio-communications and are associated with electromagnetic compatibility, should then be reconsidered at the nanoscale.
Computational electromagnetic-aerodynamics
Shang, Joseph J S
2016-01-01
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Milson, James L.
1990-01-01
Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)
1981-06-01
In (i) AR ’Bn(i) x TxiB B-1-t"w $ (i) G.) 1i n+l . n+l * )II/ 4B ) /> (5.3.9.2)C ~ B !B lI~ (i)- In (i..l +B VB+I 2) 6 x B A 277 In the above equations...8. Nanevicz, J.E., R.T. Bly and R..C. Adams, " Airborne Measurement cf Electromagnetic Environments Near Thunderstorm Cells (TRIP-76)," AFFDL-TR-77
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
The electromagnetic momentum of static charge-current distributions
Franklin, Jerrold
2013-01-01
The origin of electromagnetic momentum for general static charge-current distributions is examined. The electromagnetic momentum for static electromagnetic fields is derived by implementing conservation of momentum for the sum of mechanical momentum and electromagnetic momentum. The external force required to keep matter at rest during the production of the final static configuration produces the electromagnetic momentum. Examples of the electromagnetic momentum in static electric and magneti...
Thomas, David T; Hartnett, James P; Hughes, William F
1973-01-01
The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...
Electromagnetic Interference in Implantable Rhythm Devices - The Indian Scenario
Directory of Open Access Journals (Sweden)
Johnson Francis
2002-07-01
Full Text Available Implantable rhythm device (IRD is the generic name for the group of implantable devices used for diagnosis and treatment of cardiac arrhythmias. Devices in this category include cardiac pacemakers, implantable cardioverter defibrillators and implantable loop recorders. Since these devices have complex microelectronic circuitry and use electromagnetic waves for communication, they are susceptible to interference from extraneous sources of electromagnetic radiation and magnetic energy. Electromagnetic interference (EMI is generally not a major problem outside of the hospital environment. The most important interactions occur when a patient is subjected to medical procedures such as magnetic resonance imaging (MRI, electrocautery and radiation therapy. Two articles in this issue of the journal discusses various aspects of EMI on IRD1,2 . Together these articles provide a good review of the various sources of EMI and their interaction with IRD for the treating physician.
DEFF Research Database (Denmark)
Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse
2015-01-01
Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....
Das, Ashok
2013-01-01
These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari
Compton Sources of Electromagnetic Radiation
Energy Technology Data Exchange (ETDEWEB)
Geoffrey Krafft,Gerd Priebe
2011-01-01
When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.
Faraday: Father of Electromagnetism
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Faraday: Father of Electromagnetism. S V Bhat. General Article Volume 7 Issue 3 March 2002 pp 46-50. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/03/0046-0050. Keywords. Faraday ...
Energy Technology Data Exchange (ETDEWEB)
Dauvergne, D
2006-07-15
The author gathers in this document several papers he has already published in order to shed light on different aspects concerning ion-crystal interactions. This document is divided into 3 chapters. In the first chapter the author presents results obtained from experiments dedicated to charge exchanges and energy released by heavy ions in channeling conditions. Different processes involved in ion-electron interactions are considered: The tri-electronic recombination, the electron capture through nuclear excitation (NEEC), resonant transfer and excitation (RTE), resonant transfer and double excitation (RTDE) and electron impact ionization (EII). The second chapter deals with the measurement of nuclear fission times through crystal blocking experiments. The crystal blocking technique allows the measurement in a model-independent way of the recoil distance covered by the excited nucleus during the whole fission process (starting from the initial collision and ending at the scission point). The last chapter is dedicated to the photon impact ionization through the conversion of a high-energy photon into an electron-positron pair.
Directory of Open Access Journals (Sweden)
Feng Xue
2015-11-01
Full Text Available A simple model is proposed to investigate the interaction problem for a circular nonsuperconducting inclusion embedded in a high-TC superconducting matrix which contains an inclined crack, oriented at an arbitrary angle from the direction of the critical currents. The electromagnetic behavior is described by the critical state, the original Bean model. The perturbation brought upon by the circular inclusion and the crack on the critical current density is assumed to be negligible and not considered in this model. The distribution dislocation technology is applied to formulate the current problem. The stress intensity factors (SIFs are obtained by solving the formulated singular integral equations. The effects of the crack angle, the elastic modulus, the inclusion-crack distance and the inclusion-crack size on the stress intensity factors are discussed in detail.
The theory of electromagnetism
Jones, D S
1964-01-01
The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The
Energy Technology Data Exchange (ETDEWEB)
Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.
1992-07-01
In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.
An electromagnetic interrogation technique utilizing pressure-dependent polarization
Raye, Julie Knowles
This dissertation focuses on an interrogation technique that uses traveling acoustic wavefronts as a virtual reflector for an oncoming electromagnetic wave. Electromagnetic interrogation techniques in general have the potential for wide applicability in practical problems and this technique in particular enjoys that potential. We begin by developing a viable model for pressure-dependent orientational (Debye) polarization. We then incorporate it into a one-dimensional Maxwell system to describe the electromagnetic/acoustic interaction. This system may be generalized to include a wider class of electromagnetic behavior; we establish well-posedness, enhanced regularity, and convergence results for this general system. Under the framework provided by the mathematical theory, we obtain computational results for sample forward and inverse problems relating to the interrogation technique. Our numerical algorithms for the forward problem involve finite difference approximations in time and finite element approximations with piecewise linear basis elements in space. Solving the inverse problem entails least squares minimization using a gradient-free Nelder Mead optimization routine. Finally, as a first step in developing a model in which the pressure wave may be modulated by the electromagnetic wave (unlike the one-way coupling in the model presented here), we consider the system describing an acoustic wave propagating through a layered medium. We derive a weak formulation for this system and present computational findings.
Fast and general tests of genetic interaction for genome-wide association studies.
Frånberg, Mattias; Strawbridge, Rona J; Hamsten, Anders; de Faire, Ulf; Lagergren, Jens; Sennblad, Bengt
2017-06-01
A complex disease has, by definition, multiple genetic causes. In theory, these causes could be identified individually, but their identification will likely benefit from informed use of anticipated interactions between causes. In addition, characterizing and understanding interactions must be considered key to revealing the etiology of any complex disease. Large-scale collaborative efforts are now paving the way for comprehensive studies of interaction. As a consequence, there is a need for methods with a computational efficiency sufficient for modern data sets as well as for improvements of statistical accuracy and power. Another issue is that, currently, the relation between different methods for interaction inference is in many cases not transparent, complicating the comparison and interpretation of results between different interaction studies. In this paper we present computationally efficient tests of interaction for the complete family of generalized linear models (GLMs). The tests can be applied for inference of single or multiple interaction parameters, but we show, by simulation, that jointly testing the full set of interaction parameters yields superior power and control of false positive rate. Based on these tests we also describe how to combine results from multiple independent studies of interaction in a meta-analysis. We investigate the impact of several assumptions commonly made when modeling interactions. We also show that, across the important class of models with a full set of interaction parameters, jointly testing the interaction parameters yields identical results. Further, we apply our method to genetic data for cardiovascular disease. This allowed us to identify a putative interaction involved in Lp(a) plasma levels between two 'tag' variants in the LPA locus (p = 2.42 ⋅ 10-09) as well as replicate the interaction (p = 6.97 ⋅ 10-07). Finally, our meta-analysis method is used in a small (N = 16,181) study of interactions in myocardial
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
Directory of Open Access Journals (Sweden)
Tsung-han Tsai
2013-05-01
Full Text Available There is some confusion in political science, and the social sciences in general, about the meaning and interpretation of interaction effects in models with non-interval, non-normal outcome variables. Often these terms are casually thrown into a model specification without observing that their presence fundamentally changes the interpretation of the resulting coefficients. This article explains the conditional nature of reported coefficients in models with interactions, defining the necessarily different interpretation required by generalized linear models. Methodological issues are illustrated with an application to voter information structured by electoral systems and resulting legislative behavior and democratic representation in comparative politics.
Hansman, R. J., Jr.
1982-01-01
The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.
Itina, Tatiana E.
2017-02-01
Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
DEFF Research Database (Denmark)
Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina
2015-01-01
Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...
... cancers. Studies in adults did not prove that EMF exposure causes cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones do give off radio-frequency energy (RF), a form of electromagnetic radiation. So far, scientific evidence has not found a ...
Energy Technology Data Exchange (ETDEWEB)
Harper, E P; Lehman, D R; Prats, F
1980-11-07
Considerable progress has been made on the long-range problems described in the original proposal document (1 February 1979 to 31 January 1980) and on the shorter-range problems described in the last renewal proposal (1 February 1980 to 31 January 1981). This progress concerns few-body structure problems (e.g., the existence of isobar components in /sup 3/H, predictions of few-body-hypernuclei properties as a test of hyperon-nucleon interactions, investigation of the A = 6 ground states with exact three-body calculations, and the relation of triton D-state properties to the deuteron's D-state percentage) and electromagnetic properties and interactions of few-body nuclei (e.g., Coulomb effects in calculating and measuring asymptotic normalization constants, and ..gamma.. + /sup 3/He breakup reaction mechanisms at intermediate energies). Descriptions of the progress made indicate where each subject stands at present, and emphasize the significant results obtained. A publication list is attached.
Directory of Open Access Journals (Sweden)
Jamshidkhan Chamani
2011-11-01
Full Text Available The present study describes an investigation by fluorescence quenching, circular dichroism and UV-visible spectroscopy of the interaction between norfloxacin (NRF and human serum albumin (HSA in the presence of electromagnetic fields (EMFs. The results obtained from this study indicated that NRF had a strong ability to quench HSA at λex = 280 nm. In addition, a slight blue shift occurred, which suggested that the microenvironment of the protein became more hydrophobic after addition of NRF. The interaction between the NRF and HSA, whether in the absence or presence of an EMF, was considered to be a static quenching mechanism. Moreover, synchronous fluorescence demonstrated that the microenvironment around Trp became modified. Data of HSA-NRF in the presence of EMFs between 1 Hz–1 MHz confirmed the results of quenching and blue shifts. Corresponding Stern-Volmer plots were also drawn and the resultant Ksv and kq values were compared. Moreover, the binding parameters, including the number of binding sites, the binding constant and the distance, r, between donor and acceptor, were calculated based on Förster’s non-radiative energy transfer theory. According to far and near UV-CD, the formation of the complex caused changes of the secondary and tertiary structures of HSA. The obtained results are significant for patients who are subjected to high-frequency radiation as this was found to reduce the affinity of NRF to HSA.
Electromagnetic segregation of cast parts
Langejurgen, M.; Nacke, B.
2007-06-01
The Electromagnetic Induced Segregation (EIS) of cast parts is an innovative technology for diecasting aluminium alloys. Using numerical simulation, an inductor system has been developed to produce a primary silicon concentration gradient during casting. The report shows the advantages of numerical simulation in research and development. A suitable inductor has been designed and its electromagnetic field optimized for the EIS. The numerical model is 2D for geometries with cylindrical symmetry and 3D for non-symmetric products. The inductor system is implemented in a pilot installation. With the metallurgical results, the interaction between the electromagnetic field and the location of primary silicon is investigated. Figs 7, Refs 1.
Transformation electromagnetics and metamaterials fundamental principles and applications
Werner, Douglas H
2013-01-01
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices.Transformation Electromagnetics and Metamaterials: Fundamental Princ
The law of electromagnetic force
Directory of Open Access Journals (Sweden)
V.J. Kutkovetskyy
2014-06-01
Full Text Available Calculation peculiarities for Lorentz force, Ampere force, interaction of parallel electric currents, and the moment of electrical machines are analyzed. They have exceptions on application, and they are the rules which result from the law of electromagnetic force as coordinate derivative of the operating magnetic flow. An addition to the direction of electromagnetic force action is proposed. Standards of salient-pole electrical machine designing are considered.
Consistency of multi-time Dirac equations with general interaction potentials
Energy Technology Data Exchange (ETDEWEB)
Deckert, Dirk-André, E-mail: deckert@math.lmu.de; Nickel, Lukas, E-mail: nickel@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität Theresienstr. 39, 80333 München (Germany)
2016-07-15
In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills the physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.
Diaz, A.; Ramos, J. G.; Friedman, J. S.
2017-09-01
We developed a web-based instructional and research tool that demonstrates the behavior of electromagnetic waves as they propagate through a homogenous medium and through an interface where the second medium can be characterized by an effective complex permittivity and permeability. Either p- or s-polarization wave components can be chosen and the graphical interface includes 2D wave and 3D component representations. The program enables the study of continuity of electromagnetic components, critical angle, Brewster angle, absorption and amplification, behavior of light in sub-unity and negative-index materials, Poynting vector and phase velocity behavior, and positive and negative Goos- Hänchen shifts.
Differential forms on electromagnetic networks
Balasubramanian, N V; Sen Gupta, D P
2013-01-01
Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app
A primer on electromagnetic fields
Frezza, Fabrizio
2015-01-01
This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.
Electromagnetic studies of nucleon and nuclear structure
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.
1993-06-01
Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.
Dedkov, G. V.; Kyasov, A. A.
2009-01-01
It is shown that the limiting transition from the geometrical configuration "plate -plate" to configuration "small particle -plate" being frequently used in the theory of Lifshitz -Pitaevskii, is not continually true. On the other hand, the known solution to the problem in the last configuration can be used to verify the generalizations of the theory being worked out in the former configuration.
Broom, Mark; Rychtář, Jan
2012-06-07
Recently, models of evolution have begun to incorporate structured populations, including spatial structure, through the modelling of evolutionary processes on graphs (evolutionary graph theory). One limitation of this otherwise quite general framework is that interactions are restricted to pairwise ones, through the edges connecting pairs of individuals. Yet, many animal interactions can involve many players, and theoretical models also describe such multiplayer interactions. We shall discuss a more general modelling framework of interactions of structured populations with the focus on competition between territorial animals, where each animal or animal group has a "home range" which overlaps with a number of others, and interactions between various group sizes are possible. Depending upon the behaviour concerned we can embed the results of different evolutionary games within our structure, as occurs for pairwise games such as the Prisoner's Dilemma or the Hawk-Dove game on graphs. We discuss some examples together with some important differences between this approach and evolutionary graph theory. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Guoqing Tang
2004-02-01
Full Text Available In this paper we present an approach of incorporating interactive and media-enhanced lectures to promote active learning in Calculus and General Physics courses. The pedagogical practice of using interactive techniques in lectures to require "heads-on" and "hands-on" learning, and involve students more as active participants than passive receivers is a part of academic curricular reform efforts undertaken currently by the mathematics, physics and chemistry departments at North Carolina A&T State University under the NSF funded project "Talent-21: Gateway for Advancing Science and Mathematics Talents."
Martens, Astrid L|info:eu-repo/dai/nl/375286063; Slottje, Pauline|info:eu-repo/dai/nl/299345351; Timmermans, Danielle R M; Kromhout, Hans|info:eu-repo/dai/nl/074385224; Reedijk, Marije|info:eu-repo/dai/nl/413319431; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Smid, Tjabe
2017-01-01
We assessed associations between modeled and perceived exposure to radio-frequency electromagnetic fields (RF-EMF) from mobile-phone base stations and the development of nonspecific symptoms and sleep disturbances over time. A population-based Dutch cohort study, the Occupational and Environmental
Energy Technology Data Exchange (ETDEWEB)
Medeiros Ritter, Oswaldo de
1991-10-01
We discuss the Lie method and apply it to differential equations obtaining their symmetries. We also discuss methods of how to obtain first integrals from these symmetries. We apply these methods to some interesting physical problems, all of them involving charged particles in electromagnetic fields. (author). 77 refs.
Computational Electromagnetics
Rylander, Thomas; Bondeson, Anders
2013-01-01
Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...
Dai, Chao-Qing; Zhang, Jie-Fang
In this paper, first, the general projective Riccati equation method (PREM) is applied to derive variable separation solutions of (2 + 1)-dimensional systems. By further studying, we find that these variable separation solutions obtained by PREM, which seem independent, actually depend on each other. A common formula with some arbitrary functions is obtained to describe suitable physical quantities for some (2 + 1)-dimensional models such as the generalized Nizhnik-Novikov-Veselov system, Broer-Kaup-Kupershmidt equation, dispersive long wave system, Boiti-Leon-Pempinelli model, generalized Burgers model, generalized Ablowitz-Kaup-Newell-Segur system and Maccari equation. The universal formula in Tang, Lou, and Zhang [2] can be simplified to the common formula in the present paper. Second, this method is successfully generalized to (1 + 1)-dimensional systems, such as coupled integrable dispersionless equations, shallow water wave equation, Boiti system and negative KdV model, and is able to obtain another common formula to describe suitable physical fields or potentials of these (1 + 1)-dimensional models, which is similar to the one in (2 + 1)-dimensional systems. Finally, based on the common formula for (2 + 1)-dimensional systems and by selecting appropriate multivalued functions, elastic and inelastic interactions among special dromion, special peakon, foldon and semi-foldon are investigated. Furthermore, the explicit phase shifts for all the local excitations offered by the common formula have been given, and are applied to these novel interactions in detail.
Electromagnetic theory for electromagnetic compatibility engineers
Toh, Tze-Chuen
2013-01-01
Engineers and scientists who develop and install electronic devices and circuits need to have a solid understanding of electromagnetic theory and the electromagnetic behavior of devices and circuits. In particular, they must be well-versed in electromagnetic compatibility, which minimizes and controls the side effects of interconnected electric devices. Designed to entice the practical engineer to explore some worthwhile mathematical methods, and to reorient the theoretical scientist to industrial applications, Electromagnetic Theory for Electromagnetic Compatibility Engineers is based on the
Ida, Nathan
2015-01-01
This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...
Mu, ChengFu; Zhang, DaLi
2018-01-01
We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).
Pegarkov, A. I.
2001-07-01
Within the framework of the nonadiabatic approach developed in the preceding paper, the resonance scattering, resonance Raman scattering, and resonance fluorescence are studied in detail for diatomic and triatomic molecules, and polyatomic symmetric and antisymmetric top molecules, which interact with the field of short-wavelength radiation with a wavelength λ ≥ Å and an intensity up to 1014 W/cm2. The coherent excitations of high-lying Rydberg and autoionizing states are taken into account. Analytical expressions for calculating the tensors and cross sections of the above processes are derived.
Energy Technology Data Exchange (ETDEWEB)
Bergeaud, V
2000-12-01
In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from
Test for interactions between a genetic marker set and environment in generalized linear models.
Lin, Xinyi; Lee, Seunggeun; Christiani, David C; Lin, Xihong
2013-09-01
We consider in this paper testing for interactions between a genetic marker set and an environmental variable. A common practice in studying gene-environment (GE) interactions is to analyze one single-nucleotide polymorphism (SNP) at a time. It is of significant interest to analyze SNPs in a biologically defined set simultaneously, e.g. gene or pathway. In this paper, we first show that if the main effects of multiple SNPs in a set are associated with a disease/trait, the classical single SNP-GE interaction analysis can be biased. We derive the asymptotic bias and study the conditions under which the classical single SNP-GE interaction analysis is unbiased. We further show that, the simple minimum p-value-based SNP-set GE analysis, can be biased and have an inflated Type 1 error rate. To overcome these difficulties, we propose a computationally efficient and powerful gene-environment set association test (GESAT) in generalized linear models. Our method tests for SNP-set by environment interactions using a variance component test, and estimates the main SNP effects under the null hypothesis using ridge regression. We evaluate the performance of GESAT using simulation studies, and apply GESAT to data from the Harvard lung cancer genetic study to investigate GE interactions between the SNPs in the 15q24-25.1 region and smoking on lung cancer risk.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Dong, Yao-Jun
2017-10-29
Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.
Impact of generalized Yukawa interactions on the lower Higgs-mass bound
Gies, Holger; Sondenheimer, René; Warschinke, Matthias
2017-11-01
We investigate the impact of operators of higher canonical dimension on the lower Higgs-mass consistency bound by means of generalized Higgs-Yukawa interactions. Analogously to higher-order operators in the bare Higgs potential in an effective field theory approach, the inclusion of higher-order Yukawa interactions, e.g., φ ^3\\bar{ψ }ψ , leads to a diminishing of the lower Higgs-mass bound and thus to a shift of the scale of new physics towards larger scales by a few orders of magnitude without introducing a metastability in the effective Higgs potential. We observe that similar renormalization group mechanisms near the weak-coupling fixed point are at work in both generalizations of the microscopic action. Thus, a combination of higher-dimensional operators with generalized Higgs as well as Yukawa interactions does not lead to an additive shift of the lower mass bound, but it relaxes the consistency bounds found recently only slightly. On the method side, we clarify the convergence properties of different projection and expansion schemes for the Yukawa potential used in the functional renormalization group literature so far.
Östergren, Per-Olof; Canivet, Catarina; Moghadassi, Mahnaz; Lindeberg, Sara; Karasek, Robert; Isacsson, Sven-Olof
2010-01-01
Purpose Little is known about the interaction between job control and social support at work on common mental disorders. To examine whether there is a synergistic interaction effect between job control and social support at work on general psychological distress and whether it differs by the level of job demands. Methods About 1,940 male and female workers from the Malmö Shoulder and Neck Study were chosen for this cross-sectional study. Job control, social support at work, and job demands were measured by the Swedish version of the Job Content Questionnaire, and general psychological distress was assessed by the General Health Questionnaire. Results A significant excessive risk increase for general psychological distress was observed when workers had both low job control and low social support at work in both men and women. The synergistic effect was stronger in women, when job demands were low (Rothman’s synergy index was 2.16 vs. 1.51 when job demands were high). However, in male workers, while a strong synergistic effect between job control and social support at work was found when job demands were low (synergy index was 9.25), there was an antagonistic effect when job demands were high (synergy index was 0.52). Conclusions There was a synergistic interaction effect between job control and social support at work on general psychological distress, but the synergistic effect or its effect size differed by the level of job demands and gender. An atomic, additive approach to the risk assessment of the psychosocial work characteristics on common mental disorders could be misleading or lead to a risk underestimation. PMID:20582551
Wei, Jiawei
2011-07-01
We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.
The YEATS family member GAS41 interacts with the general transcription factor TFIIF
Directory of Open Access Journals (Sweden)
Ruggieri Alessia
2010-07-01
Full Text Available Abstract Background In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41 has been associated with TFIIF via its YEATS domain. Results Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (RAP30 and the large subunit (RAP74 of TFIIF in vitro. The in vivo interaction of GAS41 and endogenous RAP30 and RAP74 was confirmed by co-immunoprecipitation. GAS41 binds to two non-overlapping regions of the C-terminus of RAP30. There is also an ionic component to the binding between GAS41 and RAP30. There was no evidence for a direct interaction between GAS41 and TBP or between GAS41 and RNA polymerase II. Conclusions Our results demonstrate binding between endogenous GAS41 and the endogenous TFIIF subunits (RAP30 and RAP74. Since we did not find evidence for a binding of GAS41 to TBP or RNA polymerase II, GAS41 seems to preferentially bind to TFIIF. GAS41 that does not contain a DNA-binding domain appears to be a co-factor of TFIIF.
Gao, Wenlong; Qiao, Xiaowei; Wang, Yuhong; Wan, Liping; Wang, Zengwu; Wang, Xin; Di, Zhaoxin; Liu, Xiaoyu
2016-01-01
To evaluate the interactive association between obesity with different anthropometry indices and prevalence of hypertension in rural Lanzhou. A cross-sectional survey was conducted in rural Lanzhou from April to July in 2013. The available information of 1275 rural residents aged more than 35 years was collected with a unified questionnaire and their blood pressure and anthropometry indices were measured in the field. The male-to-female ratio was 1:1.1. A generalized estimate equation (GEE) linear model was used to determine the association between obesity with different indexes and hypertension. There was a moderate prevalence of general obesity (~11%) and very high prevalence of central obesity (53.2~67%) among the adults of rural Lanzhou. The prevalence of hypertension approximated 28%. GEE linear models showed that obesity with any one of anthropometry indices was associated significantly with the increased prevalence of hypertension among both males and females. In females, general obesity increased the prevalence of hypertension by 37% (0.37, 95%CI: 0.27,0.47) but in males by 23% (0.23, 95%CI: 0.12,0.35). The hypertensive effect of all central obesity was much lower than that of general obesity but approximately comparable to that of overweight. In addition, the interactions of the classified body mass index (BMI) and central obesity showed that when general obesity or overweight coexisted with any one of central obesity, the prevalence of hypertension was increased significantly, and this effect was a little higher than the corresponding main effect of general obesity or overweight in females but was much higher in males. In addition, general obesity or overweight which did not coexist with central obesity was not significantly associated with the increased prevalence of hypertension, nor were the other situations of central obesity in the normal weight or underweight except for the situation of central obesity with waist-to-hip ratio in the males of normal
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Amaya, N.; Weiss, F.; Schmitt, A.
1991-04-18
An electromagnet, particularly for use in switching valves for the direct control of a fuel injection quantity on fuel injection pumps, has a magnet pot (25) made of soft magnetic material, an annular excitation coil (30) and a magnet armature (29), which is situated with a working air gap in front of the magnet pot (25). To improve the dynamic behaviour of the electromagnet (20), ie: to achieve extremely low switching times with simple manufacture of the magnetic circuit, the magnet pot (25) and/or the magnet armature (29) made as a solid part is provided with an even number of at least four radial slots (41), which pass through the magnet pot (25) or the magnet armature (29) over their whole axial length. Successive radial slots (41a, 41b) extend alternately from the outside or from the inside jacket surface (311 or 321) to near the inside or the outside jacket surface (321 or 311) respectively and end there, always leaving a bar of material (42 or 43).
Electromagnetic microactuators
Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.
2013-05-01
High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.
Anderson, Charles F; Felitsky, Daniel J; Hong, Jiang; Record, M Thomas
2002-12-10
In solutions consisting of solvent water (component '1') and two solute components ('2' and '3'), various thermodynamic effects of differences between solute-solute and solute-solvent interactions are quantitatively characterized by state functions commonly called 'preferential interaction coefficients': gamma(mu(1),mu(3)) triple bond (delta(m3)/delta(m2))(T,mu(1),mu(3)) and gamma(mu(k)) triple bond (delta(m3)/delta(m2))(T,P,mu(k)), where k = 1,2 or 3. These different derivatives are not all directly accessible to experimental determination, nor are they entirely equivalent for analyses and interpretations of thermodynamic and molecular effects of preferential interactions. Consequently, various practical and theoretical considerations arise when, for a given system, different kinds of preferential interaction coefficients have significantly different numerical values. Previously we derived the exact relationship linking all three coefficients of the type gamma(mu(k), and hence identified the physical origins of the differences between gamma(mu(1)) and gamma(mu(3)) that have been experimentally determined for each of various common biochemical solutes interacting with a protein [J. Phys. Chem. B, 106 (2002) 418-433]. Continuing our investigation of exact thermodynamic linkages among different types of preferential interaction coefficients, we present here a generalized derivation of the relationship linking gamma(mu(1),mu(3)), gamma(mu(3)) and gamma(mu(1)), with no restrictions on m(2), m(3) or any physical characteristic of either solute component (such as partial molar volume). Hence, we show that (gamma(mu(1),mu(3)) - gamma(mu(3))) is related directly to (gamma(mu(3)) - gamma(mu(1))), for which the physical determinants have been considered in detail previously, and to a factor dependent on the ratio of the partial molar volumes V3/V1. Our generalized expression also provides a basis for calculating gamma(mu(1),mu(3)), even in situations where preferential
Plant Responses to High Frequency Electromagnetic Fields
Directory of Open Access Journals (Sweden)
Alain Vian
2016-01-01
Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.
Plant Responses to High Frequency Electromagnetic Fields
Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre
2016-01-01
High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524
Condensation transition in a conserved generalized interacting zero-range process.
Khaleque, Abdul; Sen, Parongama
2016-04-01
A conserved generalized zero-range process is considered in which two sites interact such that particles hop from the more populated site to the other with a probability p. The steady-state particle distribution function P(n) is obtained using both analytical and numerical methods. The system goes through several phases as p is varied. In particular, a condensate phase appears for p_{l}condensate phase using a known scaling form shows there is universal behavior in the short-range process while the infinite range process displays nonuniversality. In the noncondensate phase above p_{c}, two distinct regions are identified: p_{c}0.5; a scale emerges in the system in the latter and this feature is present for all ranges of interaction.
Direct calculation of the lattice Green function with arbitrary interactions for general crystals.
Yasi, Joseph A; Trinkle, Dallas R
2012-06-01
Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.
Dynamics of interacting generalized cosmic Chaplygin gas in brane-world scenario
Rudra, Prabir
2012-12-01
In this work we explore the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of Generalized Cosmic Chaplygin gas is consistent with the late cosmic acceleration, but not without satisfying certain conditions. It has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities were studied and our models were declared totally free from any types of such singularities. Finally, some cosmographic parameters were also briefly studied. Our investigation led to the fact that although Generalized cosmic Chaplygin gas with a far lesser negative pressure compared to other dark energy models, can overcome the relatively weaker gravity of RS II brane, with the help of the negative brane tension, yet for the DGP brane model with much higher gravitation, the incompetency of Generalized cosmic Chaplygin gas is exposed, and it cannot produce the accelerating scenario until it reaches the phantom era.
Indian Academy of Sciences (India)
Page S20: NMR compound 4i. Page S22: NMR compound 4j. General: Chemicals were purchased from Fluka, Merck and Aldrich Chemical Companies. All the products were characterized by comparison of their IR, 1H NMR and 13C NMR spectroscopic data and their melting points with reported values. General procedure ...
It's Hard to Learn How Gravity and Electromagnetism Couple
Chu, Yi-Zen; Ng, Yifung; Starkman, Glenn D
2010-01-01
We construct the most general effective Lagrangian coupling gravity and electromagnetism up to mass dimension 6 by enumerating all possible non-minimal coupling terms respecting both diffeomorphism and gauge invariance. In all, there are only two unique terms after field re-definitions; one is known to arise from loop effects in QED while the other is a parity violating term which may be generated by weak interactions within the standard model of particle physics. We show that neither the cosmological propagation of light nor, contrary to earlier claims, solar system tests of General Relativity are useful probes of these terms. These non-minimal couplings of gravity and electromagnetism may remain a mystery for the foreseeable future.
Modeling and analysis of aerosol processes in an interactive chemistry general circulation model
Verma, Sunita; Boucher, O.; Reddy, M. S.; Upadhyaya, H. C.; Le van, P.; Binkowski, F. S.; Sharma, O. P.
2007-02-01
An "online" aerosol dynamics and chemistry module is included in the Laboratoire de Météorologie Dynamique general circulation model (LMDZ), so that the chemical species are advected at each dynamical time step and evolve through chemical and physical processes that have been parameterized consistently with the meteorology. These processes include anthropogenic and biogenic emissions, over 50 gas/aqueous phase chemical reactions, transport due to advection, vertical diffusion and convection, dry deposition and wet scavenging. We have introduced a size-resolved representation of aerosols which undergo various processes such as coagulation, nucleation and dry and wet scavenging. The model considers 16 prognostic tracers: water vapor, liquid water, dimethyl sulfide (DMS), hydrogen sulfide (H2S), dimethyl sulphoxide (DMSO), methanesulphonic acid (MSA), sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), nitric acid (HNO3), ozone (O3), hydrogen peroxide (H2O2), sulfate mass and number for Aitken and accumulation modes. The scheme accounts for two-way interactions between tropospheric chemistry and aerosols. The oxidants and chemical species fields that represent the sulfate aerosol formation are evolved interactively with the model dynamics. A detailed description on the coupled climate-chemistry interactive module is presented with the evaluation of chemical species in winter and summer seasons. Aqueous phase reactions in cloud accounted for 71% of sulfate production rate, while only 45% of the sulfate burden in the troposphere is derived from in-cloud oxidation.
Nanocomposites for electromagnetic radiation protection
Petrunin, V. F.
2016-12-01
Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.
Nanocomposites for electromagnetic radiation protection
Energy Technology Data Exchange (ETDEWEB)
Petrunin, V. F., E-mail: VFPetrunin@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)
2016-12-15
Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.
Immunity of electronic devices against radio-frequency electromagnetic fields
Directory of Open Access Journals (Sweden)
Urbancokova Hana
2017-01-01
Full Text Available One of the major types of electromagnetic interference, which affect electronic devices in their normal operation, is the interference with radio-frequency electromagnetic fields. This interference is generated by the mainly radio and television transmitters, industrial equipment and other transmitters and receivers in general use for communication. Testing of electromagnetic susceptibility of electronic devices on radiated radio-frequency electromagnetic field is governed by the basic standard IEC 61000-4-3 and the equipment under test are exposed to test electromagnetic fields with an intensity from 1 V/m to 30 V/m, the most often in the frequency range from 80 MHz to 2 GHz. The aim of this paper is to explain the issue of electromagnetic susceptibility and to present sample the electromagnetic immunity tests of the basic set of the intrusion and hold-up alarm system against the radio-frequency electromagnetic field according to the relevant electromagnetic compatibility standards.
Electromagnetic Properties of a Hot and Dense Medium
Masood, Samina
2016-01-01
We study the properties of an electromagnetically interacting medium in the presence of high concentration of electrons at extremely high temperatures and chemical potentials. We show that the electromagnetic properties of a medium such as the electric permittivity, magnetic permeability, magnetic moments and the propagation speed of electromagnetic waves as well as the corresponding particle processes depend on temperature and density of the medium. Electromagnetic properties of neutrinos ar...
Mathematical methods of electromagnetic theory
Friedrichs, Kurt O
2014-01-01
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el
Scattering by an electromagnetic radiation field
Bini, D.; Geralico, A.
2012-02-01
Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term à la Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle’s rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin (1)/(2) and electromagnetic (spin 1) fields, is studied too.
Relativistic approach to electromagnetic imaging
Budko, Neil
2004-01-01
A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source a...
Erickson, Thane M; Newman, Michelle G
2007-12-01
Persons with chronic worry and generalized anxiety disorder (GAD) report maladaptive social cognitions, interpersonal behaviors, and emotional regulation. Because research has neither investigated these processes in actual social situations nor explored whether they take heterogeneous forms, the present study provides the first attempt to do so in a laboratory investigation. GAD analogue participants and nonanxious controls interacted with confederates in an unstructured collaborative story construction task and an emotional disclosure task with standardized confederate behavior. In both tasks, relative to controls, some GAD analogues highly overestimated, whereas others markedly underestimated, their negative (Hostile-Submissive) interpersonal impact on confederates. Although GAD analogues, as a group, exhibited greater sad affect during disclosures than controls, their openness during disclosures and liking by confederates varied with their level of misestimation of negative interpersonal impact. Results underscore the need to further explore interpersonal processes in chronic worriers and how they may exacerbate or maintain dysfunction.
Generalized analysis of a muffler with any number of interacting ducts
Kar, T.; Munjal, M. L.
2005-07-01
The muffler elements that use perforated elements for acoustic attenuation are common in practice. In typical commercial mufflers perforated elements are used involving two, three, four or more interacting ducts. Analysis of such configurations involves writing down the basic governing equations of mass continuity, momentum balance, etc., and then elimination of velocity variables to obtain the coupled ordinary differential equations in terms of acoustic pressure variables. Mathematical modelling and the consequent analytical derivation of the transmission loss for these multi-duct acoustical elements become increasingly tedious, as just not the number of ducts, but also their relative arrangement along with the boundary conditions dictate the analysis considerably. In the present paper, authors have proposed a generalization and thus an algebraic algorithm to directly produce the system matrix, eliminating the tedium of writing the basic governing equations and elimination of velocity variables. Also, a convenient approach for applying the boundary conditions is outlined here.
Contributions of Maxwell to Electromagnetism
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 5. Contributions of Maxwell to Electromagnetism. P V Panat. General Article Volume 8 Issue 5 May 2003 pp 17-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/05/0017-0029. Keywords.
Hao, Pan; Sun, Jianwei; Xiao, Bing; Ruzsinszky, Adrienn; Csonka, Gábor I; Tao, Jianmin; Glindmeyer, Stephen; Perdew, John P
2013-01-08
Among the computationally efficient semilocal density functionals for the exchange-correlation energy, meta-generalized-gradient approximations (meta-GGAs) are potentially the most accurate. Here, we assess the performance of three new meta-GGAs (revised Tao-Perdew-Staroverov-Scuseria or revTPSS, regularized revTPSS or regTPSS, and meta-GGA made simple or MGGA_MS), within and beyond their "comfort zones," on Grimme's big test set of main-group molecular energetics (thermochemistry, kinetics, and noncovalent interactions). We compare them against the standard Perdew-Burke-Ernzerhof (PBE) GGA, TPSS, and Minnesota M06L meta-GGAs, and Becke-3-Lee-Yang-Parr (B3LYP) hybrid of GGA with exact exchange. The overall performance of these three new meta-GGA functionals is similar. However, dramatic differences occur for different test sets. For example, M06L and MGGA_MS perform best for the test sets that contain noncovalent interactions. For the 14 Diels-Alder reaction energies in the "difficult" DARC subset, the mean absolute error ranges from 3 kcal mol(-1) (MGGA_MS) to 15 kcal mol(-1) (B3LYP), while for some other reaction subsets the order of accuracy is reversed; more generally, the tested new semilocal functionals outperform the standard B3LYP for ring reactions. Some overall improvement is found from long-range dispersion corrections for revTPSS and regTPSS but not for MGGA_MS. Formal and universality criteria for the functionals are also discussed.
Electromagnetic Fields and Waves in Fractional Dimensional Space
Zubair, Muhammad; Naqvi, Qaisar Abbas
2012-01-01
This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's
Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato
2017-11-01
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.
Piotrowska, M. J.; Bodnar, M.
2018-01-01
We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.
Circuit modeling for electromagnetic compatibility
Darney, Ian B
2013-01-01
Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference
Muegge, I; Martin, Y C
1999-03-11
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach
Generalized space-translated Dirac and Pauli equations for superintense laser-atom interactions
Boca, Madalina; Florescu, Viorica; Gavrila, Mihai
2012-02-01
We obtain a generalization of the nonrelativistic space-translation transformation to the Dirac equation in the case of a unidirectional laser pulse. This is achieved in a quantum-mechanical representation connected to the standard Dirac representation by a unitary operator T transforming the Foldy-Wouthuysen free-particle basis into the Volkov spinor basis. We show that a solution of the transformed Dirac equation containing initially low momenta p (p/mc≪1) will maintain this property at all times, no matter how intense the field or how rapidly it varies (within present experimental capabilities). As a consequence, the transformed four-component equation propagates independently electron and positron wave packets, and in fact the latter are propagated via two two-component Pauli equations, one for the electron, the other for the positron. These we shall denote as the Pauli low-momentum regime (LMR) equations, equivalent to the Dirac equation for the laser field. Successive levels of dynamical accuracy appear depending on how accurately the operator T is approximated. At the level of accuracy considered in this paper, the Pauli LMR equations contain no spin matrices and are in fact two-component Schrödinger equations containing generalized time-dependent potentials. The effects of spin are nevertheless included in the theory because, in the calculation of observables which are formulated in the laboratory frame, use is made of the spin-dependent transformation operator T. In addition, the nonrelativistic limit of our results reproduces known results for the laboratory frame with spin included. We show that in intense laser pulses the generalized potentials can undergo extreme distortion from their unperturbed form. The Pauli LMR equation for the electron is applicable to one-electron atoms of small nuclear charge(αZ≪1) interacting with lasers of all intensities and frequencies ω≪mc2.
Xu, Haozhi
Students' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis, cognitive processing, and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work. In general, our results elicit trends and highlight issues
Clark, T. L.; Mccollum, M. B.; Trout, D. H.; Javor, K.
1995-01-01
The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.
Gill, A B; Bartlett, M; Thomsen, F
2012-07-01
The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow
Broadband low‐frequency electromagnetic waves in the inner magnetosphere
National Research Council Canada - National Science Library
Chaston, C. C; Bonnell, J. W; Kletzing, C. A; Hospodarsky, G. B; Wygant, J. R; Smith, C. W
2015-01-01
A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field...
Electromagnetic scattering theory
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
Energy Technology Data Exchange (ETDEWEB)
Hein, R.; Dameris, M.; Schnadt, C. [and others
2000-01-01
An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)
A coupled general circulation model for the Late Jurassic including fully interactive carbon cycling
Williams, J.; Valdes, P. J.; Leith, T. L.; Sagoo, N.
2011-12-01
The climatology of a coupled atmosphere - ocean (including sea ice) general circulation model for the Late Jurassic epoch (Kimmeridgian stage) is presented. The simulation framework used is the FAMOUS climate model [Jones et al, Climate Dynamics 25, 189-204 (2005)], which is a reduced resolution configuration of the UK Met Office model HadCM3 [Pope et al, Climate Dynamics 16, 123-46 (2000)]. In order to enable computation of carbon fluxes through the Earth System, fully interactive terrestrial and oceanic carbon cycle modules are added to FAMOUS. These include temporally evolving vegetation on land and populations of zooplankton, phytoplankton and nitrogenous nutrients in the ocean. The Kimmeridgian was a time of significantly enhanced carbon dioxide concentrations in the atmosphere (roughly four times preindustrial) and as such is a useful test bed for "paleocalibration" of a future climate perturbed by anthropogenic emissions of greenhouse gases [Barron et al, Paleoceanography 10 (5) 953-962 (1995) for example]. From a geological perspective, the Kimmeridgian was also a time of significant laying down of hydrocarbon reserves (particularly in the North Sea) and thus the inclusion of a fully interactive carbon cycle in FAMOUS enables the study of the dysoxic (low oxygen) and circulatory conditions relevant to their formation and preservation. The parameter space of both the terrestrial and oceanic carbon cycles was explored using the Latin Hypercube method [Mckay, Proceedings of the 24th conference on winter simulation, ACM Press, Arlington, Virginia, 57-564 (1992)], which enables efficient yet rigorous sampling of multiple covarying parameters. These parameters were validated using present day observations of meteorological, vegetative and biological parameters since the data available for the Jurassic itself is relatively scarce. To remove subjective bias in the validation process, the "Arcsine Mielke" skill score was used [Watterson, Int. J. Climatology, 16, 379
Directory of Open Access Journals (Sweden)
R. Hein
Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Energy Technology Data Exchange (ETDEWEB)
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Electromagnetic Interference on Large Wind Turbines
Directory of Open Access Journals (Sweden)
Florian Krug
2009-11-01
Full Text Available Electromagnetic interference (EMI can both affect and be transmitted by mega-watt wind turbines. This paper provides a general overview on EMI with respect to mega-watt wind turbines. Possibilities of measuring all types of electromagnetic interference are shown. Electromagnetic fields resulting from a GSM transmitter mounted on a mega-watt wind turbine will be analyzed in detail. This cellular system operates as a real-time communication link. The method-of-moments is used to analytically describe the electro-magnetic fields. The electromagnetic interference will be analyzed under the given boundary condition with a commercial simulation tool. Different transmitter positions are judged on the basis of their radiation patterns. The principal EMI mechanisms are described and taken into consideration.
COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,
ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA
Martens, Astrid L; Slottje, Pauline; Timmermans, Danielle R M; Kromhout, Hans; Reedijk, Marije; Vermeulen, Roel C H; Smid, Tjabe
2017-07-15
We assessed associations between modeled and perceived exposure to radiofrequency electromagnetic fields (RF-EMF) from mobile-phone base stations and the development of nonspecific symptoms and sleep disturbances over time. A population-based Dutch cohort study, the Occupational and Environmental Health Cohort Study (AMIGO) (n = 14,829; ages 31-65 years), was established in 2011/2012 (T0), with follow-up of a subgroup (n = 3,992 invited) in 2013 (T1; n = 2,228) and 2014 (T2; n = 1,740). We modeled far-field RF-EMF exposure from mobile-phone base stations at the home addresses of the participants using a 3-dimensional geospatial model (NISMap). Perceived exposure (0 = not at all; 6 = very much), nonspecific symptoms, and sleep disturbances were assessed by questionnaire. We performed cross-sectional and longitudinal analyses, including fixed-effects regression. We found small correlations between modeled and perceived exposure in AMIGO participants at baseline (n = 14,309; rSpearman = 0.10). For 222 follow-up participants, modeled exposure increased substantially (>0.030 mW/m2) between T0 and T1. This increase in modeled exposure was associated with an increase in perceived exposure during the same time period. In contrast to modeled RF-EMF exposure from mobile-phone base stations, perceived exposure was associated with higher symptom reporting scores in both cross-sectional and longitudinal analyses, as well as with sleep disturbances in cross-sectional analyses. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The eighth national electromagnetics meeting. Extended abstracts
Energy Technology Data Exchange (ETDEWEB)
Eloranta, E.; Jokela, K. [eds.
1998-09-01
The National Electromagnetics Meeting has been arranged annually since 1991 in Finland. The purpose of the meeting is to convene the persons working with problems of electromagnetics and to enhance the interaction between different research groups in different disciplines. The eighth meeting was held at the Radiation and Nuclear Safety Authority (STUK) August 27, 1998. The meeting is also the national meeting of the URSI (L`Union Radio-Scientifique Internationals)(Commission B: Fields and Waves) and the IEEE MTT/AP/ED Finland Chapter (Institute of Electrical and Electronics Engineers, Inc.). The report includes the extended abstracts of the presentations given in the National Electromagnetics Meeting at STUK. (orig.)
Kang, Yoonyoung
While vast resources have been invested in the development of computational models for cost-benefit analysis for the "whole world" or for the largest economies (e.g. United States, Japan, Germany), the remainder have been thrown together into one model for the "rest of the world." This study presents a multi-sectoral, dynamic, computable general equilibrium (CGE) model for Korea. This research evaluates the impacts of controlling COsb2 emissions using a multisectoral CGE model. This CGE economy-energy-environment model analyzes and quantifies the interactions between COsb2, energy and economy. This study examines interactions and influences of key environmental policy components: applied economic instruments, emission targets, and environmental tax revenue recycling methods. The most cost-effective economic instrument is the carbon tax. The economic effects discussed include impacts on main macroeconomic variables (in particular, economic growth), sectoral production, and the energy market. This study considers several aspects of various COsb2 control policies, such as the basic variables in the economy: capital stock and net foreign debt. The results indicate emissions might be stabilized in Korea at the expense of economic growth and with dramatic sectoral allocation effects. Carbon dioxide emissions stabilization could be achieved to the tune of a 600 trillion won loss over a 20 year period (1990-2010). The average annual real GDP would decrease by 2.10% over the simulation period compared to the 5.87% increase in the Business-as-Usual. This model satisfies an immediate need for a policy simulation model for Korea and provides the basic framework for similar economies. It is critical to keep the central economic question at the forefront of any discussion regarding environmental protection. How much will reform cost, and what does the economy stand to gain and lose? Without this model, the policy makers might resort to hesitation or even blind speculation. With
Bianchi, G; Popper, M
2000-12-01
This paper offers an overview about the application of the newly designed WHO/UNAIDS Rapid Assessment and Response Guide (SEX-RAR) for research on interaction between psychoactive substance use and sexual risks in the very specific environment during mandatory military service in the Slovak Republic. Presented results outline general, specific (sociocultural) and individual behaviour patterns concerning interaction of substance (alcohol) use and sexual behaviour, as well as proposed recommendations for intervention activities.
Platelet activation and platelet-leukocyte interaction in generalized aggressive periodontitis.
Zhan, Yalin; Lu, Ruifang; Meng, Huanxin; Wang, Xian'e; Hou, Jianxia
2016-11-01
Generalized aggressive periodontitis (GAgP) is an inflammatory disease of host response to bacterial challenge. To explore the role of platelets in host-microbial interactions in patients with periodontitis, 124 patients with GAgP and 57 healthy subjects were enrolled. Reliable indicators of subclinical platelet functional status, platelet count (PLT), platelet large cell ratio (PLCR), and mean platelet volume (MPV), were significantly lower in the GAgP group than in the control group and were negatively correlated with clinical periodontal parameters. The levels of important cytosolic protein in neutrophils, calprotectin (S100A8/A9) in plasma, and gingival crevicular fluid (GCF) were significantly higher in patients with GAgP compared with healthy subjects. Moreover, the GCF calprotectin level was negatively correlated with PLCR and MPV values. To explore the possible mechanisms of changes in platelet indices in periodontitis, flow cytometry analysis was performed, and patients with GAgP were found to have a higher status of platelet activation compared with healthy controls. Porphyromonas gingivalis (P. gingivalis) and recombinant human S100A8/A9 (rhS100A8/A9) induced platelet activation and facilitated platelet-leukocyte aggregate formation in whole blood of healthy subjects. In response to P. gingivalis and rhS100A8/A9, platelets from patients with GAgP increased activation and increased formation of platelet-leukocyte aggregates compared with those from healthy subjects. Platelet aggregates and platelets attached to leukocytes were found on gingival tissues from patients with GAgP, suggesting that decreased platelet size and count in the circulation might be related to consumption of large, activated platelets at inflamed gingiva. Platelets may have a previously unrecognized role in host response to periodontal infection. © Society for Leukocyte Biology.
Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components
Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.
2018-01-01
There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).
On steady electromagnetic equilibria
Lehnert, B.
1986-12-01
The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Health effects of electromagnetic fields.
Peter Gajšek
1990-01-01
Abstract: Devices that emit electromagnetic fields (EMF) have become a part of our daily life and can be found in telecommunications, industry, traffic, science, medicine and in every household. Due to the fact that general public is massively exposed to the EMF, even very small health effects could become a serious public health problem. Many studies show that the EMF above a certain threshold can have a negative health impact. The studies, which could explain the question of health risks as...
Electromagnetic forces in photonic crystals
Antonoyiannakis, M. I.; Pendry, J. B.
1998-01-01
We develop a general methodology for numerical computations of electromagnetic (EM) fields and forces in matter, based on solving the macroscopic Maxwell's equations in real space and adopting the Maxwell Stress Tensor formalism. Our approach can be applied to both dielectric and metallic systems of frequency-dependent dielectric function; as well as to objects of any size and geometrical properties in principle. We are particularly interested in calculating forces on nanostructures. We find ...
Mu, Keli; Siegel, Ellin B.; Allinder, Rose M.
2000-01-01
A study examined the social status of six high school students with moderate or severe disabilities in general education cooking classes. Although no participants were classified as popular among their peers, the majority obtained average social status ratings. Students with disabilities were involved in fewer social interactions than their peers.…
Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom
Clark, Ted M.; Chamberlain, Julia M.
2014-01-01
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Bosco, James; Wagner, Jerry
1988-01-01
Describes evaluation that assessed the effectiveness of the Interactive Laser Disc System (ILDS) Training Program in comparison with classroom instruction with videotape for training of General Motors workers. Topics discussed include achievement test, attitude scales, opinion surveys, user preference questionnaires, interviews, and variables that…
Cook, Clayton R.; Grady, Erin A.; Long, Anna C.; Renshaw, Tyler; Codding, Robin S.; Fiat, Aria; Larson, Madeline
2017-01-01
The aim of this study was to isolate and evaluate the impact of increasing teachers' ratios of positive-to-negative interactions with their students. Training teachers on the 5:1 ratio was evaluated using a randomized-block pre-post control design with general education classroom teachers (N = 6) that were characterized by a higher ratio of…
Electromagnetic radiation from a rapidly rotating magnetized star in orbit
Hacyan, Shahen
2016-02-01
A general formula for the electromagnetic energy radiated by a rapidly rotating magnetic dipole in arbitrary motion is obtained. For a pulsar orbiting in a binary system, it is shown that the electromagnetic radiation produced by the orbital motion is usually weaker than the gravitational radiation, but not entirely negligible for general relativistic corrections.
Electromagnetic properties of neutrinos
Energy Technology Data Exchange (ETDEWEB)
Ould-Saada, F. [Zurich Univ. (Switzerland). Inst. fuer Physik
1996-11-01
Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.
Debnath, Ujjal
2010-01-01
We have considered a cosmological model of holographic dark energy interacting with dark matter and another unknown component of dark energy of the universe. We have assumed two interaction terms $Q$ and $Q'$ in order to include the scenario in which the mutual interaction between the two principal components (i.e., holographic dark energy and dark matter) of the universe leads to some loss in other forms of cosmic constituents. Our model is valid for any sign of $Q$ and $Q'$. If $Q
Basic Electromagnetism and Materials
Moliton, André
2007-01-01
Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Kumaran, Dharshan; McClelland, James L.
2012-01-01
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus…
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Energy Technology Data Exchange (ETDEWEB)
Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)
2017-02-15
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.
Directory of Open Access Journals (Sweden)
Carlos O. Maidana
2017-02-01
Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.
Static electromagnetic frequency changers
Rozhanskii, L L
1963-01-01
Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work
Electromagnetic Radiation Analysis
1978-04-10
A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to
Gryz, Krzysztof; Karpowicz, Jolanta
2014-01-01
Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.
Chao, Hsun-Chin; Chang, Hsueh-Ling
2017-02-01
To investigate the differences in eating behaviors between picky and nonpicky eaters, and to correlate parental management of children's eating problems with qualities of general development in children. This was a cross-sectional analysis of parental observations on their children's eating behavior, sampled from three major cities in Taiwan. We used a structured questionnaire during face-to-face interviews to collect information on each child's picky eating habits and behaviors, caregiver-child interaction and intervention during feeding, and the child's qualities of general development. Analysis of variance was used to determine significant differences between picky and nonpicky eaters. Sixty-two percent of the children were considered to be picky eaters. Lack of appropriate caregiver-child interactions (e.g., repeated food attempt, persuasion, and encouragement) and the presence of inappropriate parental interactions (e.g., threatening, snacking, and nutrient supplementation) were significantly more common in picky eaters. Picky eaters also tended to exhibit low development quality in the domains of learning ability, interpersonal relationships, and physical performance, particularly in their attention span and uncooperativeness. There is a relationship between inappropriate parental interaction and interventions in children's eating problems and the low quality of general development in picky eaters. Copyright © 2016. Published by Elsevier B.V.
Properties of dynamical electromagnetic metamaterials
Padilla, Willie J.; Averitt, Richard D.
2017-08-01
Electromagnetic metamaterials consist of two or three dimensional arrays of tailored metallic and/or dielectric inclusions and provide unprecedented sub-wavelength control over light-matter interactions. Metamaterials are fashioned to yield a specific response to the electric and magnetic components of light and may be treated as effective media, described by effective optical constants {μ }{{eff}} and {{ɛ }}{{eff}}, and have realized a multitude of exotic properties difficult to achieve with natural materials. An inductive-capacitive unit cell geometry provides enhanced values of optical constants, as well as the ability to dynamically control the novel responses exhibited by electromagnetic metamaterials. The ability of metamaterials to achieve real-time dynamic properties has realized novel applications and has made them relevant for the next revolution in advanced materials and related devices.
Electromagnetic Interface Testing Facility
Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...
Electromagnetically Clean Solar Arrays
Stem, Theodore G.; Kenniston, Anthony E.
2008-01-01
The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the
Interactive specialization: a domain-general framework for human functional brain development?
Johnson, Mark H
2011-01-01
A domain-general framework for interpreting data on human functional brain development is presented. Assumptions underlying the general theory and predictions derived from it are discussed. Developmental functional neuroimaging data from the domains of face processing, social cognition, word learning and reading, executive control, and brain resting states are used to assess these predictions. Finally, potential criticisms of the framework are addressed and challenges for the future presented. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dark matter self-interactions from a general spin-0 mediator
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian
2017-08-01
Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.
Test for interactions between a genetic marker set and environment in generalized linear models
Lin, Xinyi; Lee, Seunggeun; Christiani, David C.; Lin, Xihong
2013-01-01
We consider in this paper testing for interactions between a genetic marker set and an environmental variable. A common practice in studying gene–environment (GE) interactions is to analyze one single-nucleotide polymorphism (SNP) at a time. It is of significant interest to analyze SNPs in a biologically defined set simultaneously, e.g. gene or pathway. In this paper, we first show that if the main effects of multiple SNPs in a set are associated with a disease/trait, the classical single SNP...
A number-projected model with generalized pairing interaction in application to rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Satula, W. [Warsaw Univ. (Poland)]|[Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)]|[Royal Institute of Technology, Stockholm (Sweden); Wyss, R. [Royal Institute of Technology, Stockholm (Sweden)
1996-12-31
A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.
Wu, Chia-Yi; Lin, Yi-Yin; Yeh, Mei Chang; Huang, Lian-Hua; Chen, Shaw-Ji; Liao, Shih-Cheng; Lee, Ming-Been
2014-11-01
The evidence of suicide prevention training for nurses is scarce. Strategies to enhance general nurses' ability in suicide risk assessment are critical to develop effective training programs in general medical settings. This study was aimed to examine the effectiveness of an interactive discussion group in a suicide prevention training program for general nurses. In this randomized study with two groups of pre-post study design, the sample was recruited from the Medical, Surgical, and Emergency/Intensive Care Sectors of a 2000-bed general hospital via stratified randomization. Among the 111 nurses, 57 participants randomly assigned to the control group received a two-hour baseline suicide gatekeeper lecture, and 54 participants assigning to the experimental group received an additional five-hour group discussion about suicide risk assessment skills. Using a case vignette, the nurses discussed and assessed suicide risk factors specified in a 10-item Chinese SAD PERSONS Scale during a group discussion intervention. The findings revealed that the nurses achieved significant and consistent improvements of risk identification and assessment after the intervention without influencing their mental health status for assessing suicide risks. The result suggested an effective approach of interactive group discussion for facilitating critical thinking and learning suicide risk assessment skills among general nurses. Copyright © 2014 Elsevier Ltd. All rights reserved.
EMC of Electrical Systems - Electromagnetic Coupling ( Part II
Directory of Open Access Journals (Sweden)
KOVACOVA, I.
2007-04-01
Full Text Available The paper deals with the general analysis of one part of the electromagnetic compatibility (EMC problem - the electromagnetic coupling applied in the field of power electrical systems. The verification simulation analyses and practical measurements of the electromagnetic coupling, which are confirming the correctness of results obtained from theoretical analyses (part I., are presented in part II. So they can be used for predictive stating of EMC quality of individual new electrotechnical products.
Natural and man-made terrestrial electromagnetic noise: an outlook
Bianchi, C.; Meloni, A.
2007-01-01
The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR), i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly descri...
A general system for studying protein-protein interactions in gram-negative bacteria
Energy Technology Data Exchange (ETDEWEB)
Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.
2008-08-01
One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.
A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria
Energy Technology Data Exchange (ETDEWEB)
Pelletier, Dale A [ORNL; Auberry, Deanna L [ORNL; Buchanan, Michelle V [ORNL; Cannon, Bill [Pacific Northwest National Laboratory (PNNL); Daly, Don S. [Pacific Northwest National Laboratory (PNNL); Doktycz, Mitchel John [ORNL; Foote, Linda J [ORNL; Hervey, IV, William Judson [ORNL; Hooker, Brian [Pacific Northwest National Laboratory (PNNL); Hurst, Gregory {Greg} B [ORNL; Kennel, Steve J [ORNL; Lankford, Patricia K [ORNL; Larimer, Frank W [ORNL; Lu, Tse-Yuan S [ORNL; McDonald, W Hayes [ORNL; McKeown, Catherine K [ORNL; Morrell-Falvey, Jennifer L [ORNL; Owens, Elizabeth T [ORNL; Schmoyer, Denise D [ORNL; Shah, Manesh B [ORNL; Wiley, Steven [Pacific Northwest National Laboratory (PNNL); Wang, Yisong [ORNL; Gilmore, Jason [Pacific Northwest National Laboratory (PNNL)
2008-01-01
Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.
Ormanci, Ummuhan; Cepni, Salih; Deveci, Isa; Aydin, Ozhan
2015-01-01
In Turkey and many other countries, the importance of the interactive whiteboard (IWB) is increasing, and as a result, projects and studies are being conducted regarding the use of the IWB in classrooms. Accordingly, in these countries, many issues are being researched, such as the IWB's contribution to the education process, its use in classroom…
Reintjes, Moritz
2015-01-01
We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from $C^{0,1}$ to $C^{1,1}$ in a neighborhood of points of shock wave collision in General Relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier RSPA-publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to $C^{1,1}$, cannot exist. Thus, our result implies that regularity singularities, (a type of mild singularity introduced in our RSPA-paper), do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension o...
DomPep--a general method for predicting modular domain-mediated protein-protein interactions.
Directory of Open Access Journals (Sweden)
Lei Li
Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.
Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas
Gaelzer, R.
2015-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334
Itoh, Tamitake; Yamamoto, Yuko S.
2017-11-01
Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.
High frequency electromagnetic dosimetry
Sánchez-Hernández, David A
2009-01-01
Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.
Electromagnetic compatibility overview
Davis, K. C.
1980-01-01
An assessment of the electromagnetic compatibility impact of the Satellite Power System is discussed. The discussion is divided into two parts: determination of the emission expected from SPS including their spatial and spectral distributions, and evaluation of the impact of such emissions on electromagnetic systems including considerations of means for mitigating effects.
Electromagnetically Operated Counter
Goldberg, H D; Goldberg, M I
1951-12-18
An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.
Tunability enhanced electromagnetic wiggler
Schlueter, R.D.; Deis, G.A.
1992-03-24
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.
Classical electromagnetic radiation
Heald, Mark A
2012-01-01
Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.
An Electromagnetic Beam Converter
DEFF Research Database (Denmark)
2009-01-01
The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...
Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal
2018-02-01
We consider a generalized double Jaynes–Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity–cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.
Bone composition and healing: open electromagnetic and biomechanical problems.
Biggane, Peter; Jackson, Xavier; Nazarian, Ara
2016-08-01
In this paper, we present a review of some electromagnetic interactions in bone matter. Special attention is paid to pulsed electromagnetic therapy, which is potentially a promising therapeutic method for bone healing. We review and compare existing setups and their applications.
[Dynamics of biomacromolecules in coherent electromagnetic radiation field].
Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I
2014-01-01
It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.
Natural science and electromagnetic pollution; Naturwissenschaft und Elektrosmog
Energy Technology Data Exchange (ETDEWEB)
Nimtz, G. [Koeln Univ. (Germany). II. Physikalisches Inst.
2004-07-01
Electromagnetic pollution is frequently said to affect wellness and to cause illness. Plenty of controversal reports and discussions are found in newspapers and TV programs. The question arises whether the apparent interaction of electromagnetic pollution (often called electrosmog) with biological systems is a matter of natural science, or of psychology. The following article deals with this question. (orig.)
Physics of classical electromagnetism
Fujimoto, Minoru
2007-01-01
The classical electromagnetism described by the Maxwell equations constitutes a fundamental law in contemporary physics. Even with the advent of sophisticated new materials, the principles of classical electromagnetism are still active in various applied areas in today’s advanced communication techniques. Physics of Classical Electromagnetism, by Minoru Fujimoto, is written with concise introductory arguments emphasizing the original field concept, with an aim at understanding objectives in modern information technology. Following basic discussions of electromagnetism with a modernized approach, this book will provide readers with an overview of current problems in high-frequency physics. To further the reader’s understanding of the concepts and applications discussed, each illustration within the book shows the location of all active charges, and the author has provided many worked-out examples throughout the book. Physics of Classical Electromagnetism is intended for students in physics and engineering ...
Erickson, Thane M.; Newman, Michelle G.
2007-01-01
Persons with chronic worry and generalized anxiety disorder (GAD) report maladaptive social cognitions, interpersonal behaviors, and emotional regulation. Because research has neither investigated these processes in actual social situations nor explored whether they take heterogeneous forms, the present study provides the first attempt to do so in…
The Utility of Interaction Analysis for Generalizing Characteristics of Science Classrooms
Crippen, Kent J.; Sangueza, Cheryl R.
2013-01-01
Validating and generalizing from holistic observation protocols of classroom practice have proven difficult. These tools miss crucial classroom characteristics, like the type of instruction, the organization of learners, and the level of cognitive engagement that occur differentially in the time span of a lesson. As a result, this study examined…
Probing the imprints of generalized interacting dark energy on the growth of perturbations
Mifsud, Jurgen; van de Bruck, Carsten
2017-11-01
We extensively study the evolution and distinct signatures of cosmological models, in which dark energy interacts directly with dark matter. We first focus on the imprints of these coupled models on the cosmic microwave background temperature power spectrum, in which we discuss the multipole peak separation together with the integrated Sachs-Wolfe effect. We also address the growth of matter perturbations, and disentangle the interacting dark energy models using the expansion history together with the growth history. We find that a disformal coupling between dark matter and dark energy induces intermediate-scales and time-dependent damped oscillatory features in the matter growth rate function, a unique characteristic of this coupling. Apart from the disformal coupling, we also consider conformally coupled models, together with models which simultaneously make use of both couplings.
Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert
2017-07-01
Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
The problem of interaction in a dynamical theory of particles (general questions). 2
Sannikov-Proskuryakov, S S
2002-01-01
We continue the consideration of the interaction problem in the frame of a new field particle theory. Here a new correspondence principle and the connection between bilocal and usual local fields are discussed. The method of second quantization of bilocal fields is formulated and a scattering matrix is built. Explicit form of smearing operators and formfactors is found. Comparison of a new particle field theory with the old (local) axiomatic approach is given.
Generalized framework for a user-aware interactive texture segmentation system
Gururajan, Arunkumar; Sari-Sarraf, Hamed; Hequet, Eric
2012-07-01
We present a new framework for an interactive image delineation technique, which we term as interactive texture-snapping system (IT-SNAPS). One of the unique features of IT-SNAPS stems from the fact that it can effectively aid the user in accurately segmenting images with complex texture, without placing undue burden on the user. This is made possible through the formulation of IT-SNAPS, which enables it to be user-aware, i.e., it unobtrusively elicits information from the user during the segmentation process, and hence, adapts itself on-the-fly to the boundary being segmented. In addition to generating an accurate segmentation, it is shown that the framework of IT-SNAPS allows for extraction of useful information post-segmentation, which can potentially assist in the development of customized automatic segmentation algorithms. The afore mentioned features of IT-SNAPS are demonstrated on a set of texture images, as well as on a real-world biomedical application. Using appropriate segmentation protocols in conjunction with expert-provided ground truth, experiments are designed to quantitatively evaluate and compare the segmentation accuracy and user-friendliness of IT-SNAPS with another popular interactive segmentation technique. Promising results indicate the efficacy of IT-SNAPS and its potential to positively impact a broad spectrum of computer vision applications.
PECULIARITIES OF THE EFFECTS OF ELECTROMAGNETIC WAVES OF THE VISIBLE RANGE ON LIVING ORGANISMS
Directory of Open Access Journals (Sweden)
S. A. Gulyar
2016-08-01
Full Text Available Our experimental studies and a set of the published data allow one to conclude that animals and humans can perceive visible light not only with mediation of the visual sensory system, but also due to the existence of specific extraocular photoreceptors. In the latter system, we can classify three separate stable levels of interaction with exogeneous electromagnetic waves (EMW of the visible range. The first, most simple level is the cellular level (cells possessing sensor proteins reactable to EMW. The next, higher level is based on interaction of EVW with specialized electromagnetoreceptors; acupuncture points and meridians providing the maintenance of electromagnetic homeostasis of the organism cam be considered such a receptor system. Finally, the most complex level involves specialized sensory pathways and central brain structures controlling general homeostasis of the organism with mediation of the processes of metabolism.
Energy Technology Data Exchange (ETDEWEB)
Rangi, P.S.; Partridge, W.J. [Charing Cross Hospital, Department of Imaging, London (United Kingdom); Newlands, E.S. [Charing Cross Hospital, Department of Oncology, London (United Kingdom); Waldman, A.D. [Charing Cross Hospital, Department of Imaging, London (United Kingdom); Institute of Neurology, Dementia Research Group, London (United Kingdom)
2005-08-01
A 49-year-old woman who had previously received treatment with cytotoxic drugs for metastatic gestational trophoblastic disease (GTD) presented with a witnessed tonic-clonic seizure, headache, confusion and blindness, 6 days after the uneventful administration of a general anaesthetic and 2 months after cessation of chemotherapy. Magnetic resonance imaging showed relatively symmetrical, subcortical, white matter abnormalities, predominantly affecting the occipital, posterior temporal and parietal lobes and the cerebellum. T2-dependent abnormalities and elevated regional apparent diffusion coefficient were present in a pattern typical for posterior reversible encephalopathy syndrome (PRES). The clinical and radiological manifestations were resolved completely with supportive therapy. This case of PRES may be a late complication of gemcitabine or cisplatin therapy precipitated by a general anaesthetic, or associated electrolyte or blood pressure disturbance. (orig.)
Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models
Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)
2001-01-01
Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.
Directory of Open Access Journals (Sweden)
Lian eDuan
2015-07-01
Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.
Directory of Open Access Journals (Sweden)
James Baker-Jarvis
2009-11-01
Full Text Available Current research is probing transport on ever smaller scales. Modeling of the electromagnetic interaction with nanoparticles or small collections of dipoles and its associated energy transport and nonequilibrium characteristics requires a detailed understanding of transport properties. The goal of this paper is to use a nonequilibrium statistical-mechanical method to obtain exact time-correlation functions, fluctuation-dissipation theorems (FD, heat and charge transport, and associated transport expressions under electromagnetic driving. We extend the time-symmetric Robertson statistical-mechanical theory to study the exact time evolution of relevant variables and entropy rate in the electromagnetic interaction with materials. In this exact statistical-mechanical theory, a generalized canonical density is used to define an entropy in terms of a set of relevant variables and associated Lagrange multipliers. Then the entropy production rate are defined through the relevant variables. The influence of the nonrelevant variables enter the equations through the projection-like operator and thereby influences the entropy. We present applications to the response functions for the electrical and thermal conductivity, specific heat, generalized temperature, Boltzmann’s constant, and noise. The analysis can be performed either classically or quantum-mechanically, and there are only a few modifications in transferring between the approaches. As an application we study the energy, generalized temperature, and charge transport equations that are valid in nonequilibrium and relate it to heat flow and temperature relations in equilibrium states.
Broadband electromagnetic analysis of compacted kaolin
Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander
2017-01-01
The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.
Plasma scattering of electromagnetic radiation
Sheffield, John
1975-01-01
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge
Continuum mechanics of electromagnetic solids
Maugin, GA
1988-01-01
This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e
Leferink, Frank Bernardus Johannes; Malabiau, R.
2006-01-01
The European Commission (EC) would like to improve the competitiveness of the European Defence Industry. The large number of (national) standards, more than 10.000, is recognised by EC as a major constraint and cost driver [1]. Electromagnetic Compatibility (EMC) and more generally Electromagnetic
General two-order-parameter Ginzburg-Landau model with quadratic and quartic interactions.
Ivanov, I P
2009-02-01
The Ginzburg-Landau model with two-order parameters appears in many condensed-matter problems. However, even for scalar order parameters, the most general U(1)-symmetric Landau potential with all quadratic and quartic terms contains 13 independent coefficients and cannot be minimized with straightforward algebra. Here, we develop a geometric approach that circumvents this computational difficulty and allows one to study properties of the model without knowing the exact position of the minimum. In particular, we find the number of minima of the potential, classify explicit symmetries possible in this model, establish conditions when and how these symmetries are spontaneously broken, and explicitly describe the phase diagram.
Hamre, Bridget; Hatfield, Bridget; Pianta, Robert; Jamil, Faiza
2014-01-01
This study evaluates a model for considering domain-general and domain-specific associations between teacher-child interactions and children's development, using a bifactor analytic strategy. Among a sample of 325 early childhood classrooms there was evidence for both general elements of teacher-child interaction (responsive teaching) and…
Interaction of local and general anaesthetics with liposomal membrane models: a QCM-D and DSC study.
Paiva, José Gabriel; Paradiso, Patrizia; Serro, Ana Paula; Fernandes, Anabela; Saramago, Benilde
2012-06-15
The behaviour of four local anaesthetics (lidocaine, levobupivacaine, ropivacaine and tetracaine) and one general anaesthetic (propofol) is compared when interacting with two types of model membranes: supported layers of liposomes and liposomes in solution. Several liposomal compositions were tested: dimyristoylphosphatidylcholine (DMPC), binary mixtures of DMPC with cholesterol (CHOL), and ternary mixtures of dipalmitoylphosphatidylcholine (DPPC), DMPC, and CHOL. A quartz crystal microbalance with dissipation, QCM-D, was used to assess changes in the properties of supported layers of liposomes. The effect of the anaesthetics on the phase behaviour of the liposomes in suspension was determined by differential scanning calorimetry. Both techniques show that all anaesthetics have a fluidizing effect on the model membranes but, apparently, the solid supported liposomes are less affected by the anaesthetics than the liposomes in solution. Although the different anaesthetics were compared at different concentrations, tetracaine and propofol seem to induce the strongest perturbation on the liposome membrane. The resistance of the liposomes to the anaesthetic action was found to increase with the presence of cholesterol, while adding DPPC to the binary mixture DMPC+CHOL does not change its behaviour. The novelty of the present work resides upon three points: (1) the use of supported layers of liposomes as model membranes to study interactions with anaesthetics; (2) application of QCM-D to assess changes of the adsorbed liposomes; (3) a comparison of the effect of local and general anaesthetics interacting with various model membranes in similar experimental conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Cebolla, Vicente L; Mateos, Elena; Garriga, Rosa; Jarne, Carmen; Membrado, Luis; Cossío, Fernando P; Gálvez, Eva M; Matt, Muriel; Delgado-Camón, Arantzazu
2012-01-16
Changes in fluorescence emission due to non-covalent analyte-fluorophore interactions in silica gel plates are studied and used as a general detection procedure for thin-layer chromatography (TLC). The presence of the analyte modifies the microenvironment of the fluorophore and thus changes the balance between radiative (k(r)) and non-radiative (k(nr)) emission constants. A model is proposed for analyte-fluorophore induced electrostatic interactions, which depend on analyte polarizability and are responsible for fluorescence enhancements. As consequence of these induced interactions, the analyte creates an apolar environment that prevents non-fluorescent decay mechanisms, decreasing k(nr). On the other hand, the effect of an increase in refractive index on k(r) is investigated, as it contributes to some extent to fluorescence enhancements in silica gel medium. Changes in fluorescence emission should be regarded as a general property of fluorophores in the presence of analytes, and criteria that fluorophores should meet to be used as sensitive TLC probes are discussed here. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hepler, Justin; Wang, Wei; Albarracin, Dolores
2013-01-01
Although exercise is recognized as a powerful tool to combat obesity, remarkably few US adults pursue adequate amounts of exercise, with one major impediment being a lack of motivation for active behaviors. Recent empirical work has demonstrated that behavior can be guided by goals to be generally active or inactive. In the present paper, an experiment is presented in which participants played or observed a video game, were primed with action or inaction goals, and practiced a stretching exercise for as long as desired. Exposure to environmental action cues led to increased time spent exercising. This effect was moderated by past behavior, such that individuals who had just engaged in an active task (played a videogame) were insensitive to attempts to motivate general action. This suggests that the effectiveness of attempts to motivate activity (“just do it”, “be active”) hinges on the recent past-behavior of the targeted individuals. An implication of this work is that participation in certain leisure activities, such as playing videogames, may be causally related to a lack of motivation for exercise. PMID:23606776
Computer techniques for electromagnetics
Mittra, R
1973-01-01
Computer Techniques for Electromagnetics discusses the ways in which computer techniques solve practical problems in electromagnetics. It discusses the impact of the emergence of high-speed computers in the study of electromagnetics. This text provides a brief background on the approaches used by mathematical analysts in solving integral equations. It also demonstrates how to use computer techniques in computing current distribution, radar scattering, and waveguide discontinuities, and inverse scattering. This book will be useful for students looking for a comprehensive text on computer techni
Electromagnetic and gravitational outputs from binary-neutron-star coalescence.
Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick
2013-08-09
The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy.
Angular momentum and the electromagnetic top
Indian Academy of Sciences (India)
2016-07-06
Jul 6, 2016 ... Abstract. The electric charge–magnetic dipole interaction is considered. If em is the electromagnetic and mech the ... presence of an electric field, one must consider the. 'paradox' pointed out by Shockley and James ... Specifically, key to understanding the nonlocality of the Aharonov–Casher effect [6] is the ...
Electromagnetic signals of quark gluon plasma
Indian Academy of Sciences (India)
Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...
Energy Technology Data Exchange (ETDEWEB)
Fedorov, M. V., E-mail: fedorov@gmail.com [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2016-03-15
Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.
Atomicrex—a general purpose tool for the construction of atomic interaction models
Stukowski, Alexander; Fransson, Erik; Mock, Markus; Erhart, Paul
2017-07-01
We introduce atomicrex, an open-source code for constructing interatomic potentials as well as more general types of atomic-scale models. Such effective models are required to simulate extended materials structures comprising many thousands of atoms or more, because electronic structure methods become computationally too expensive at this scale. atomicrex covers a wide range of interatomic potential types and fulfills many needs in atomistic model development. As inputs, it supports experimental property values as well as ab initio energies and forces, to which models can be fitted using various optimization algorithms. The open architecture of atomicrex allows it to be used in custom model development scenarios beyond classical interatomic potentials while thanks to its Python interface it can be readily integrated e.g., with electronic structure calculations or machine learning algorithms.
NAO-ocean circulation interactions in a coupled general circulation model
Energy Technology Data Exchange (ETDEWEB)
Bellucci, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, S.; Navarra, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Scoccimarro, E. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)
2008-12-15
The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. (orig.)
Electromagnetic fields in fractal continua
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
Electromagnetic fields, environment and health
Perrin, Anne
2013-01-01
A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r
Olds, S. E.; Bartel, B. A.
2016-12-01
Hands-on demonstrations are an effective way for novice learners, whether they are students, public, or museum visitors, to experience geoscience processes. UNAVCO and community members have developed hands-on demonstrations of a variety of geophysical processes highlighting the geodetic techniques used to measure these processes. These demonstrations illustrate how observations of changes at the earth's surface can be quantified and inform us about forces within the earth that we can't see. They also emphasize the societal impact of research related to each earth process. In this presentation, we will provide descriptions of a suite of these demonstrations, major concepts covered, materials needed, instructions for assembly and how to lead the demonstration, sample questions to ask participants, weaknesses inherent in the model, and a list of supporting handouts that augment the demonstration. Some of the demonstrations to be highlighted include: volcanic deformation using flour or an augmented-reality sandbox; isostatic rebound from glacial melt using flubber; compression of the Pacific Northwest using springs; and tsunami early warning using a tub of water and foam buoys. We will also discuss the process of developing interactive demonstrations and provide initial feedback from classroom and science festival events. Write-ups of the demonstrations are freely available on the UNAVCO Education website (search terms: UNAVCO geodetic demonstrations).
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
Energy Technology Data Exchange (ETDEWEB)
Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)
2011-05-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
Adams, M. L.; Padovan, J.; Fertis, D. G.
1980-01-01
A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases.
Directory of Open Access Journals (Sweden)
Yohei Ban
2008-12-01
Full Text Available For 2 x 2 x K contingency tables, Tomizawa considered a Shannon entropy type measure to represent the degree of departure from a log-linear model of no three-factor interaction (the NOTFI model. This paper proposes a generalization of Tomizawa's measure for 2 x 2 x K tables. The measure proposed is expressed by using Patil-Taillie diversity index or Cressie-Read power-divergence. A special case of the proposed measure includes Tomizawa's measure. The proposed measure would be useful for comparing the degrees of departure from the NOTFI model in several tables.
BGO* electromagnetic calorimeter
CERN
1988-01-01
* Short for Bismuth-Germanium-Oxyde, a scintillator of high atomic number Z used in electromagnetic crystal calorimeters. BGO is characterized by fast rise time (a few nanoseconds) and short radiation length (1.11 cm).
Broadband Electromagnetic Technology
2011-06-23
The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Purely electromagnetic spacetimes
Ivanov, B. V.
2007-01-01
Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.
Yan, Zhenya; Chen, Yong
2017-07-01
We investigate the nonlinear Schrödinger (NLS) equation with generalized nonlinearities and complex non-Hermitian potentials and present the novel parity-time-( P T -) symmetric potentials for the NLS equation with power-law nonlinearities supporting some bright solitons. For distinct types of P T -symmetric potentials including Scarf-II, Hermite-Gaussian, and asymptotically periodic potentials, we, respectively, explore the phase transitions for the linear Hamiltonian operators. Moreover, we analytically find stable bright solitons in the generalized NLS equations with several types of P T -symmetric potentials, and their stability is corroborated by the linear stability spectrum and direct wave-propagation simulations. Interactions of two solitons are also explored. More interestingly, we find that the nonlinearity can excite the unstable linear modes (i.e., possessing broken linear P T -symmetric phase) to stable nonlinear modes. The results may excite potential applications in nonlinear optics, Bose-Einstein condensates, and relevant fields.
Biological effects of electromagnetic fields | Yalçın | African Journal ...
African Journals Online (AJOL)
Recently, the possible effects of extra low frequency electromagnetic fields on the public health have become an interesting subject. Generally, electromagnetic fields occur around the high voltage lines. However, electromagnetic fields also occur with some electrical machines use for fun and TV used routinely at our home ...
Electromagnetic Compatibility in Railways Analysis and Management
Ogunsola, Ade
2013-01-01
A railway is a complex distributed engineering system: the construction of a new railway or the modernisation of a existing one requires a deep understanding of the constitutive components and their interaction, inside the system itself and towards the outside world. The former covers the various subsystems (featuring a complex mix of high power sources, sensitive safety critical systems, intentional transmitters, etc.) and their interaction, including the specific functions and their relevance to safety. The latter represents all the additional possible external victims and sources of electromagnetic interaction. EMC thus starts from a comprehension of the emissions and immunity characteristics and the interactions between sources and victims, with a strong relationship to electromagnetics and to system modeling. On the other hand, the said functions are achieved and preserved and their relevance for safety is adequately handled, if the related requirements are well posed and managed throughout the process f...
Electromagnetic reverberation chambers
Besnier, Philippe
2013-01-01
Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc
Electromagnetic rotational actuation.
Energy Technology Data Exchange (ETDEWEB)
Hogan, Alexander Lee
2010-08-01
There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.
Grid computing for electromagnetics
Tarricone, Luciano
2004-01-01
Today, more and more practitioners, researchers, and students are utilizing the power and efficiency of grid computing for their increasingly complex electromagnetics applications. This cutting-edge book offers you the practical and comprehensive guidance you need to use this new approach to supercomputing for your challenging projects. Supported with over 110 illustrations, the book clearly describes a high-performance, low-cost method to solving huge numerical electromagnetics problems.
Correlations between human mobility and social interaction reveal general activity patterns.
Mollgaard, Anders; Lehmann, Sune; Mathiesen, Joachim
2017-01-01
A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between different activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71% of the activity and 85% of the inactivity involved in communication, mobility, and physical proximity. Surprisingly, individual level statistics only result in marginally better predictions, indicating that a majority of activity patterns are shared across our sample population. Finally, we predict short-term activity patterns using a generalized linear model, which suggests that a simple linear description might be sufficient to explain a wide range of actions, whether they be of social or of physical character.
Alekseev, G A; Griffiths, J B
2001-11-26
A method is presented for solving the characteristic initial-value problem for the collision and subsequent nonlinear interaction of plane gravitational or gravitational and electromagnetic waves in a Minkowski background. This method generalizes the monodromy-transform approach to fields with nonanalytic behavior on the characteristics inherent to waves with distinct wave fronts. The crux of the method is in a reformulation of the main nonlinear symmetry reduced field equations as linear integral equations whose solutions are determined by generalized ("dynamical") monodromy data which evolve from data specified on the initial characteristics (the wave fronts).
Simulation of electromagnetic fluctuations in thermal magnetized plasma
López, Rodrigo A.; Yoon, Peter H.
2017-11-01
The present paper carries out a particle-in-cell (PIC) simulation in order to validate the recently formulated theory of electromagnetic fluctuations emitted spontaneously in thermal magnetized plasmas (Yoon and López 2017 Phys. Plasmas 24 022117). Numerical plots of theoretically constructed fluctuation spectra and computer simulated fluctuation spectra are compared. While the two results produce an overall favorable agreement for subluminous regime in angular frequency versus wave number space, namely, the domain characterized by phase speed less than the speed of light in vacuo, the present PIC simulation also shows that fluctuation spectra are highly enhanced in the close vicinity of linear eigenmodes, which includes superluminal range that does not satisfy the linear cyclotron wave-particle resonance condition. Since the theory of electromagnetic spontaneous emission, which is based upon linear plasma response and linear wave-particle resonant interactions, strictly forbids emissions in such a regime, the PIC code simulation can only be understood in terms of nonlinear wave-particle interaction. This calls for nonlinear generalization of the spontaneous emission theory.
Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms
Godina-Nava, J. J.
2010-10-01
There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.
Scattering by an electromagnetic radiation field
Bini, Donato; Geralico, Andrea
2014-01-01
Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the elect...
Spectral perspective on the electromagnetic activity of cells.
Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal
2015-01-01
In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.
Combined Approach for Solving the Electromagnetic Induction ...
African Journals Online (AJOL)
Inverse electromagnetic induction is an imaging technique for reconstructing the conductivity and permeability distributions in a region of interest from measurements of impedance made at its boundary. In general, there are two approaches to the reconstruction problem: the pixel-based approach and the parameter-based ...
A New Era of Exotic Electromagnetism
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. A New Era of Exotic Electromagnetism. K Porsezian Ancemma Joseph. General Article Volume 17 Issue 2 February 2012 pp 163-176. Fulltext. Click here to view fulltext PDF. Permanent link:
Stochastic electromagnetic radiation of complex sources
Naus, H.W.L.
2007-01-01
The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a
Interactive Analysis of General Beam Configurations using Finite Element Methods and JavaScript
Hernandez, Christopher
Advancements in computer technology have contributed to the widespread practice of modelling and solving engineering problems through the use of specialized software. The wide use of engineering software comes with the disadvantage to the user of costs from the required purchase of software licenses. The creation of accurate, trusted, and freely available applications capable of conducting meaningful analysis of engineering problems is a way to mitigate to the costs associated with every-day engineering computations. Writing applications in the JavaScript programming language allows the applications to run within any computer browser, without the need to install specialized software, since all internet browsers are equipped with virtual machines (VM) that allow the browsers to execute JavaScript code. The objective of this work is the development of an application that performs the analysis of a completely general beam through use of the finite element method. The app is written in JavaScript and embedded in a web page so it can be downloaded and executed by a user with an internet connection. This application allows the user to analyze any uniform or non-uniform beam, with any combination of applied forces, moments, distributed loads, and boundary conditions. Outputs for this application include lists the beam deformations and slopes, as well as lateral and slope deformation graphs, bending stress distributions, and shear and a moment diagrams. To validate the methodology of the GBeam finite element app, its results are verified using the results from obtained from two other established finite element solvers for fifteen separate test cases.
Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)
2001-01-01
Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.
Reintjes, Moritz; Temple, Blake
2015-05-08
We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.
Reintjes, Moritz
2014-01-01
We prove that spacetime is locally inertial at points of shock wave collision in General Relativity. The result applies for collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. We give a constructive proof that there exist coordinate transformations which raise the regularity of the gravitational metric tensor from $C^{0,1}$ to $C^{1,1}$ in a neighborhood of such points of shock wave interaction, and a $C^{1,1}$ metric regularity suffices for locally inertial frames to exist. This result corrects an error in our earlier RSPA-publication, which led us to the wrong conclusion that such coordinate transformations, which smooth the metric to $C^{1,1}$, cannot exist. Our result here proves that regularity singularities, (a type of mild singularity introduced in our RSPA-publication), do \\emph{not exist} at points of interacting shock waves from different families in spherically symmetric spacetimes, and this generalizes Israel's famous 1966 result to th...
Ultra-Wideband, Short Pulse Electromagnetics 9
Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9
2010-01-01
Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Khoa, D T
2000-01-01
A generalized double-folding model for elastic and inelastic nucleus-nucleus scattering is presented. It is designed to accommodate effective nucleon-nucleon (NN) interactions that depend upon the density of nuclear matter in which the two nucleons are immersed. A recently parametrized density dependent M3Y interaction, based on the G-matrix elements of the Paris NN potential, has been used in the present folding calculation. The effects of knock-on exchange of the interacting nucleon pair are included in an accurate local approximation. Examples of the application of this model to study the refractive elastic and inelastic scattering data of sup 1 sup 2 C+ sup 1 sup 2 C and alpha+ sup 5 sup 8 sup , sup 6 sup 0 Ni systems are presented. A detailed comparison of the use of deformed optical potential (DP) and microscopic folded potential in the analysis of inelastic scattering has shown that the use of DP fails to reproduce the inelastic sup 1 sup 2 C+ sup 1 sup 2 C scattering data measured over a wide angular ...
The power and beauty of electromagnetic fields
Morgenthaler, Frederic R
2011-01-01
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.
Directory of Open Access Journals (Sweden)
Pietro Bia
2016-01-01
Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.
Electromagnetic radiation from beam-plasma instabilities
Pritchett, P. L.; Dawson, J. M.
1983-01-01
A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.
Energy Technology Data Exchange (ETDEWEB)
Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2004-07-01
An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)
Energy Technology Data Exchange (ETDEWEB)
Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2004-07-01
An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)
Electromagnetic Wave Absorption Coating Material with Self-Healing Properties.
Wang, Ya-Min; Pan, Min; Liang, Xiang-Yong; Li, Bang-Jing; Zhang, Sheng
2017-11-02
Electromagnetic wave absorption coatings can effectively minimize electromagnetic radiation and are widely used in the military and civil field. However, even small scratches on the coating can lead to a large decline of absorption ability and bring serious consequences. To enhance the lifetime of electromagnetic wave absorbing coating, a kind of self-healing electromagnetic wave absorbing coating is developed by introducing host-guest interactions between the absorbing fillers and polymer matrix. After being damaged, the cracks on this coating can be healed completely with the aid of small amounts of water. Simultaneously, the electromagnetic absorbing ability of the coating is restored along with the self-healing process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aircraft electromagnetic compatibility
Clarke, Clifton A.; Larsen, William E.
1987-06-01
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aircraft electromagnetic compatibility
Clarke, Clifton A.; Larsen, William E.
1987-01-01
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Sulieman, Munther
2005-05-01
High tech dentistry now involves the routine use of lasers in general dental practice for various procedures once thought only possible with the conventional dental drill or scalpel. In 1990, the first dental laser, the dLase 300 (American Dental Lasers, Corpus Christi,TX 78405 USA), was introduced to the profession. There are now many different types of laser used in dentistry using a variety of wavelengths. Each laser wavelength is absorbed differently by soft and hard tissues and the efficiency of the laser has been determined by the ability of the tissue to absorb or reflect that wavelength. This and the following article hope to give a broad overview of dental lasers and their clinical uses. This article gives an overview of the relevant laser physics and highlights the laser-tissue interactions.
Directory of Open Access Journals (Sweden)
Salzwedel Karl
2009-08-01
cross-talk between subunits, the functional determinants on one defective protomer can cooperatively interact to trigger the functional determinants on an adjacent protomer(s harboring a different defect, leading to fusion. Cooperative subunit interaction is a general feature of the Env trimer, based on complementation activities observed for a highly diverse range of functional defects.
Grau-Perez, Maria; Pichler, Gernot; Galan-Chilet, Inma; Briongos-Figuero, Laisa S; Rentero-Garrido, Pilar; Lopez-Izquierdo, Raul; Navas-Acien, Ana; Weaver, Virginia; García-Barrera, Tamara; Gomez-Ariza, Jose L; Martín-Escudero, Juan C; Chaves, F Javier; Redon, Josep; Tellez-Plaza, Maria
2017-09-01
The interaction of cadmium with genes involved in oxidative stress, cadmium metabolism and transport pathways on albuminuria can provide biological insight on the relationship between cadmium and albuminuria at low exposure levels. We tested the hypothesis that specific genotypes in candidate genes may confer increased susceptibility to cadmium exposure. Cadmium exposure was estimated by inductively coupled plasma mass spectrometry (ICPMS) in urine from 1397 men and women aged 18-85years participating in the Hortega Study, a representative sample of a general population from Spain. Urine albumin was measured by automated nephelometric immunochemistry. Abnormal albuminuria was defined as urine albumin greater than or equal to 30mg/g. The weighted prevalence of abnormal albuminuria was 6.3%. The median level of urine cadmium was 0.39 (IQR, 0.23-0.65) μg/g creatinine. Multivariable-adjusted geometric mean ratios of albuminuria comparing the two highest to the lowest tertile of urine cadmium were 1.62 (95% CI, 1.43-1.84) and 2.94 (95% CI, 2.58-3.35), respectively. The corresponding odds ratios of abnormal albuminuria were 1.58 (0.83, 3.02) and 4.54 (2.58, 8.00). The association between urine cadmium and albuminuria was observed across all participant subgroups evaluated including participants without hypertension, diabetes or chronic kidney disease. We observed Bonferroni-corrected statistically significant interactions between urine cadmium levels and polymorphisms in gene SLC30A7 and RAC1. Increasing urine cadmium concentrations were cross-sectionally associated with increased albuminuria in a representative sample of a general population from Spain. Genetic variation in oxidative stress and cadmium metabolism and transport genes may confer differential susceptibility to potential cadmium effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electromagnetic compatibility engineering
Ott, Henry W
2009-01-01
Praise for Noise Reduction Techniques IN electronic systems ""Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others.""-EE Times Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications t
Electromagnetic clutches and couplings
Vorob'Yeva, T M; Fry, D W; Higinbotham, W
2013-01-01
Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli
Improved Electromagnetic Brake
Martin, Toby B.
2004-01-01
A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may
Volcano-electromagnetic effects
Johnston, Malcolm J. S.
2007-01-01
Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.
Energy Technology Data Exchange (ETDEWEB)
Abla, G
2012-11-09
The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.
Moon, Chung-Man; Yang, Jong-Chul; Jeong, Gwang-Woo
2017-01-01
The functional neuroanatomy for explicit memory in conjunction with the major anxiety symptoms in patients with generalized anxiety disorder (GAD) has not yet been clearly identified. To investigate the brain activation patterns on the interaction between emotional and cognitive function during the explicit memory tasks, as well as its correlation with clinical characteristics in GAD. The participants comprised GAD patients and age-matched healthy controls. The fMR images were obtained while the participants performed an explicit memory task with neutral and anxiety-inducing words. Patients showed significantly decreased functional activities in the putamen, head of the caudate nucleus, hippocampus, and middle cingulate gyrus during the memory tasks with the neutral and anxiety-inducing words, whereas the precentral gyrus and ventrolateral prefrontal cortex were significantly increased only in the memory tasks with the anxiety-inducing words. Also, the blood oxygenation level-dependent (BOLD) signal changes in the hippocampus were positively correlated with the recognition accuracy for both neutral and anxiety-inducing words. This study identified the brain areas associated with the interaction between emotional regulation and cognitive function in the explicit memory tasks in patients with GAD. These findings would be helpful to understand the neural mechanism on the explicit memory-related cognitive deficits and emotional dysfunction with GAD symptoms. © The Foundation Acta Radiologica 2016.
Electromagnetic fields in stratified media
Li, Kai
2009-01-01
Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.
ABOUT THE URBAN ELECTROMAGNETIC POLLUTION
National Research Council Canada - National Science Library
Marius Lolea; Simona Dzitac
2016-01-01
This paper presents a brief statement of electromagnetic pollution generated by public sources of electromagnetic field, wich are distributed on the territory of City of Oradea, Bihor County, Romania...
On electromagnetic field problems in inhomogeneous media
Mohsen, A.
1973-01-01
Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.
Ideal and nonideal electromagnetic cloaks
Zharova, Nina A.; Shadrivov, Ilya V.; Zharov, Alexander A.; Kivshar, Yuri S.
2008-01-01
We employ the analytical results for the spatial transformation of the electromagnetic fields to obtain and analyze explicit expressions for the structure of the electromagnetic fields in invisibility cloaks, beam splitters, and field concentrators. We study the efficiency of nonideal electromagnetic cloaks and discuss the effect of scattering losses on the cloak invisibility.
Hundert, Joel; Rowe, Sarah; Harrison, Erin
2014-01-01
One of the challenges in supporting young children with Autism Spectrum Disorder (ASD) in inclusive classrooms is the generalization of improved social behaviors. Using a multiple-baseline design across participants, this study examined the generalized effects of social script training alone and combined with peer buddies on the interactive play…
Graser, Gerson; Walters, Frederick S; Burns, Andrea; Sauve, Alaina; Raybould, Alan
2017-01-01
A shift toward transgenic crops which produce combinations of insecticidal proteins has increased the interest (Syngenta Seeds, Inc., Minnetonka, MN) in studying the potential for interactions amongst those proteins. We present a general testing method which accommodates proteins with nonoverlapping spectrums of activity. Our sequential testing approach first investigates groups of the proteins with overlapping activity; e.g., proteins active against Lepidoptera or Coleoptera, respectively. The Colby method is used to test for interactions within each respective group. Subsequently, the mixture of proteins within each group is regarded as a single entity and tests for interactions between the groups (when combined) is conducted using analysis of variance. We illustrate the method using Cry1Ab, Vip3Aa20, and Cry1F (a mixture of proteins active against Lepidoptera), and mCry3A and eCry3.1Ab (a mixture of proteins active against Coleoptera). These insecticidal proteins are produced by Bt11 × MIR162 × TC1507 × MIR604 × 5307 maize. We detected no interactions between Cry1Ab, Vip3Aa20, and Cry1F in tests using larvae of two different lepidopteran species, and possible slight antagonism between mCry3A and eCry3.1Ab with a coleopteran test species. We detected no effect of (eCry3.1Ab + mCry3A) on the potency of (Cry1Ab + Vip3Aa20 + Cry1F) to lepidopteran larvae, and no effect of (Cry1Ab + Vip3Aa20 + Cry1F) on the potency of (mCry3A + eCry3.1Ab) to coleopteran larvae. We discuss implications of these results for characterization of Bt11 × MIR162 × TC1507 × MIR604 × 5307 maize, and the value of the method for characterizing other transgenic crops that produce several insecticidal proteins. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Electromagnetic radiation detector
Benson, Jay L.; Hansen, Gordon J.
1976-01-01
An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.
Introduction to electromagnetic compatibility
Paul, Clayton R.
A formal and extensive treatment of electromagnetic compatibility (EMC) is presented. Basic principles are reviewed in detail, including reasons for EMC in electronic design. Also discussed are: nonideal behavior of components, signal spectra, radiated emission and susceptibility, conducted emissions and susceptibility, crosstalk, shielding, electrostatic discharge, and system design for EMC.
What Are Electromagnetic Fields?
... them to quickly heat food. At radio frequencies, electric and magnetic fields are closely interrelated and we typically measure their levels as power densities in watts per square metre (W/m 2 ). Key points: The electromagnetic spectrum encompasses both natural and ...
Electromagnetic distance measurement
1967-01-01
This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.
Simple Superconducting "Permanent" Electromagnet
Israelson, Ulf E.; Strayer, Donald M.
1992-01-01
Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.
Nanofocusing of electromagnetic radiation
DEFF Research Database (Denmark)
Gramotnev, D. K.; Bozhevolnyi, Sergey I.
2014-01-01
Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Electromagnetic structure of nuclei
Energy Technology Data Exchange (ETDEWEB)
Arnold, R.G.
1986-07-01
A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs. (LEW)
A 3D-printed metamaterial with electromagnetically induced transmission
Qin, Zhengpeng; Chen, Xiran; Zheng, Yawei; Wei, Guochao; Qin, Luman; Zhang, Nangang; Liu, Kan; Li, Songzhan; Wang, Shengxiang
2017-10-01
Metamaterials have recently enabled coupling electromagnetic transparency due to interference effects in coupled sub-wavelength resonators. In this work, it presents a three dimensional (3D) metamaterial designed with hollow cube whose simulation shows electromagnetically induced transparency in GHz regime with polarization insensitive to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. Influences of various parameters including incident angle and frequency have been investigated numerically in detail. The simulation shows significant transmission magnitude of 99.8% at ∼12GHz.
Directory of Open Access Journals (Sweden)
Keshav C. Das
2009-10-01
Full Text Available The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology
SCATTERING OF ELECTROMAGNETIC WAVES FROM THE DISTURBANCE CAUSED BY A RAPIDLY MOVING BODY IN PLASMAS,
The scattering of electromagnetic waves by a body moving in a plasma is discussed in detail. General theory covering scattering phenomena is...conditions. The general theory is extended to investigate the following two problems: the scattering of electromagnetic waves from the disturbance caused...by a rapidly moving body in the ionosphere and the scattering of electromagnetic waves from the turbulent wake produuced by a re-entry vehicle. In
Human Health and Exposure to Electromagnetic Radiation
1992-07-01
expected that the basis for extrapolation will be refined in future as interactions of electromagnetic fields with the body are better quantified and an...control study of male physiotherapists who may have used shortwave, microwave, infrared and acoustic equipment for therapeutic purposes indicated no...study of female physiotherapists who gave birth to children with malformations suggested that the number of ,.ch children was higher among those who
Resonant Electromagnetic Shunt Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...... resonance and a resistor to dissipate the correct amount of vibration energy. The modal interaction with residual vibration forms not targeted by the resonant shunt is represented by supplemental flexibility and inertia terms. This leads to modified calibration formulae that maintain the desired damping...
Natural and man-made terrestrial electromagnetic noise: an outlook
Directory of Open Access Journals (Sweden)
A. Meloni
2007-06-01
Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.
Health Effects of Electromagnetic Fields
Directory of Open Access Journals (Sweden)
Peter Gajšek
2011-02-01
Full Text Available Abstract: Devices that emit electromagnetic fields (EMF have become a part of our daily life and can be found in telecommunications, industry, traffic, science, medicine and in every household. Due to the fact that general public is massively exposed to the EMF, even very small health effects could become a serious public health problem. Many studies show that the EMF above a certain threshold can have a negative health impact. The studies, which could explain the question of health risks as a result of chronic exposure to low intensities, are often contradictory and deficient. In this review the state of the art in the field of health risks associated with the EMF exposure in our environment is presented.
Electromagnetic oscillations of the Earth's upper atmosphere (review
Directory of Open Access Journals (Sweden)
A. G. Khantadze
2010-07-01
Full Text Available A complete theory of low-frequency MHD oscillations of the Earth's weakly ionized ionosphere is formulated. Peculiarities of excitation and propagation of electromagnetic acoustic-gravity, MHD and planetary waves are considered in the Earth's ionosphere. The general dispersion equation is derived for the magneto-acoustic, magneto-gravity and electromagnetic planetary waves in the ionospheric E- and F-regions. The action of the geomagnetic field on the propagation of acoustic-gravity waves is elucidated. The nature of the existence of the comparatively new large-scale electromagnetic planetary branches is emphasized.
Electromagnetic probes of strongly interacting matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... Keywords. Hadrons, quark gluon plasma; photons; dileptons; heavy flavours; hydrodynamic flow. Abstract. The nuclear matter under extreme conditions of temperatures () and baryonic densities () undergoes a phase transition to quark gluon plasma (QGP). It is expected that such extreme conditions ...
Electromagnetic instability induced by neutrino interaction
Bhatt, Jitesh R.; George, Manu
We consider the generation and evolution of magnetic field in a primordial plasma at temperature T ≤ 1MeV in the presence of asymmetric neutrino background, i.e. the number densities of right-handed and left-handed neutrinos are not the same. Semi-classical equations of motion of a charged fermion are derived using the effective low-energy Lagrangian. We show that the spin degree of freedom of the charged fermion couples with the neutrino background. Using this kinetic equation, we study the collective modes of the plasma. We find that there exist an unstable mode. This instability is closely related with the instability induced by chiral-anomaly in high temperature T ≥ 80TeV plasma where right and left-handed electrons are out of equilibrium. We find that at the temperatures below the neutrino decoupling this instability can produce magnetic field in the universe. We discuss cosmological implications of the results.
Electromagnetic probes of strongly interacting matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... The v2 of dileptons can also be used to test the validity and efficiency of the extrap- olation required for hadronic v2. The pT-integrated M distribution of lepton pairs with. M(>mφ) originating from the early time, providing information of the partonic phase and pairs with M % mρ are chiefly produced later from ...
Complex space source theory of spatially localized electromagnetic waves
Seshadri, SR
2013-01-01
The author highlights that there is a need obtain exact full-wave solutions that reduce to the paraxial beams in the appropriate limit. Complex Space Source Theory of Spatially Localized Electromagnetic Waves treats the exact full-wave generalizations of all the basic types of paraxial beam solutions. These are developed by the use of Fourier and Bessel transform techniques and the complex space source theory of spatially localized electromagnetic waves is integrated as a branch of Fourier optics.
Search For Gravitational Waves Through the Electromagnetic Faraday Rotation
Halilsoy, Mustafa; Gürtuğ, Özay
2006-01-01
A method is given which renders indirect detection of strong gravitational waves possible. This is based on the reflection (collision) of a linearly polarized electromagnetic shock wave from (with) a cross polarized impulsive and shock gravitational waves in accordance with the general theory of relativity. This highly non-linear process induces a detectable Faraday rotation in the polarization vector of the electromagnetic field. The file in this item is the publisher version (published v...
Low frequency electromagnetic radiation and hearing.
Morales, J; Garcia, M; Perez, C; Valverde, J V; Lopez-Sanchez, C; Garcia-Martinez, V; Quesada, J L
2009-11-01
To analyse the possible impact of low and extremely low frequency electromagnetic fields on the outer hairs cells of the organ of Corti, in a guinea pig model. Electromagnetic fields of 50, 500, 1000, 2000, 4000 and 5000 Hz frequencies and 1.5 microT intensity were generated using a transverse electromagnetic wave guide. Guinea pigs of both sexes, weighing 100-150 g, were used, with no abnormalities on general and otic examination. Total exposure times were: 360 hours for 50, 500 and 1000 Hz; 3300 hours for 2000 Hz; 4820 hours for 4000 Hz; and 6420 hours for 5000 Hz. One control animal was used in each frequency group. The parameters measured by electric response audiometer included: hearing level; waves I-IV latencies; wave I-III interpeak latency; and percentage appearance of waves I-III at 90 and 50 dB sound pressure level intensity. Values for the above parameters did not differ significantly, comparing the control animal and the rest of each group. In addition, no significant differences were found between our findings and those of previous studies of normal guinea pigs. Prolonged exposure to electromagnetic fields of 50 Hz to 5 KHz frequencies and 1.5 microT intensity, produced no functional or morphological alteration in the outer hair cells of the guinea pig organ of Corti.
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Electromagnetic Polarizabilities of Mesons
Aleksejevs, A.; Barkanova, S.
2016-04-01
The Chiral Perturbation Theory (CHPT) has been very successful in describing low-energy hadronic properties in the non-perturbative regime of Quantum Chromodynamics. The results of ChPT, many of which are currently under active experimental investigation, provide stringent predictions of many fundamental properties of hadrons, including quantities such as electromagnetic polarizabilities. Yet, even for the simplest hadronic system, a pion, we still have a broad spectrum of polarizability measurements (MARK II, VENUS, ALEPH, TPC/2g, CELLO, Belle, Crystal Ball). The meson polarizability can be accessed through Compton scattering, so we can measure it through Primakoff reaction. This paper will provide an analysis of the CHPT predictions of the SU(3) meson electromagnetic polarizabilities and outline their relationship to the Primakoff cross section at the kinematics relevant to the planned JLab experiments.
The KLOE electromagnetic calorimeter
Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P
2002-01-01
The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
DEFF Research Database (Denmark)
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...
Introduction to electromagnetic theory
Owen, George E
2003-01-01
A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele
Gravitation and electromagnetism
Sidharth, B. G.
2002-01-01
Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or...
2017-01-01
The Beam 1 (represented in blue) and the Beam 2 (represented in red) are colliding with an angle at the Interaction Point (IP). The angle is needed to avoid unwanted multiple collisions along the interaction region. Despite of the separation introduced by the angle, the two beams interact via their electromagnetic field, the so called "beam-beam" interaction.
On electromagnetic and quantum invisibility
Mundru, Pattabhiraju Chowdary
The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic
Brooks, Samantha K; Del Busso, Lilliana; Chalder, Trudie; Harvey, Samuel B; Hatch, Stephani L; Hotopf, Matthew; Madan, Ira; Henderson, Max
2014-07-17
To explore the views of sick doctors on their experiences with the General Medical Council (GMC) and their perception of the impact of GMC involvement on return to work. Qualitative study. Doctors who had been away from work for at least 6 months with physical or mental health problems, drug or alcohol problems, GMC involvement or any combination of these, were eligible for inclusion into the study. Eligible doctors were recruited in conjunction with the Royal Medical Benevolent Fund, the GMC and the Practitioner Health Programme. These organisations approached 77 doctors; 19 participated. Each doctor completed an in-depth semistructured interview. We used a constant comparison method to identify and agree on the coding of data and the identification of central themes. 18 of the 19 participants had a mental health, addiction or substance misuse problem. 14 of the 19 had interacted with the GMC. 4 main themes were identified: perceptions of the GMC as a whole; perceptions of GMC processes; perceived health impacts and suggested improvements. Participants described the GMC processes they experienced as necessary, and some elements as supportive. However, many described contact with the GMC as daunting, confusing and anxiety provoking. Some were unclear about the role of the GMC and felt that GMC communication was unhelpful, particularly the language used in correspondence. Improvements suggested by participants included having separate pathways for doctors with purely health issues, less use of legalistic language, and a more personal approach with for example individualised undertakings or conditions. While participants recognised the need for a regulator, the processes employed by the GMC and the communication style used were often distressing, confusing and perceived to have impacted negatively on their mental health and ability to return to work. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence
Fadlallah, Racha; Nas, Hala; Naamani, Dana; El-Jardali, Fadi; Hammoura, Ihsan; Al-Khaled, Lina; Brax, Hneine; Kahale, Lara; Akl, Elie A
2016-01-01
To systematically review the evidence on the knowledge, beliefs, and attitudes of patients and the general public towards the interactions of physicians with the pharmaceutical and the device industry. We included quantitative and qualitative studies addressing any type of interactions between physicians and the industry. We searched MEDLINE and EMBASE in August 2015. Two reviewers independently completed data selection, data extraction and assessment of methodological features. We summarized the findings narratively stratified by type of interaction, outcome and country. Of the 11,902 identified citations, 20 studies met the eligibility criteria. Many studies failed to meet safeguards for protecting from bias. In studies focusing on physicians and the pharmaceutical industry, the percentages of participants reporting awareness was higher for office-use gifts relative to personal gifts. Also, participants were more accepting of educational and office-use gifts compared to personal gifts. The findings were heterogeneous for the perceived effects of physician-industry interactions on prescribing behavior, quality and cost of care. Generally, participants supported physicians' disclosure of interactions through easy-to-read printed documents and verbally. In studies focusing on surgeons and device manufacturers, the majority of patients felt their care would improve or not be affected if surgeons interacted with the device industry. Also, they felt surgeons would make the best choices for their health, regardless of financial relationship with the industry. Participants generally supported regulation of surgeon-industry interactions, preferably through professional rather than governmental bodies. The awareness of participants was low for physicians' receipt of personal gifts. Participants also reported greater acceptability and fewer perceived influence for office-use gifts compared to personal gifts. Overall, there appears to be lower awareness, less concern and
Directory of Open Access Journals (Sweden)
Racha Fadlallah
Full Text Available To systematically review the evidence on the knowledge, beliefs, and attitudes of patients and the general public towards the interactions of physicians with the pharmaceutical and the device industry.We included quantitative and qualitative studies addressing any type of interactions between physicians and the industry. We searched MEDLINE and EMBASE in August 2015. Two reviewers independently completed data selection, data extraction and assessment of methodological features. We summarized the findings narratively stratified by type of interaction, outcome and country.Of the 11,902 identified citations, 20 studies met the eligibility criteria. Many studies failed to meet safeguards for protecting from bias. In studies focusing on physicians and the pharmaceutical industry, the percentages of participants reporting awareness was higher for office-use gifts relative to personal gifts. Also, participants were more accepting of educational and office-use gifts compared to personal gifts. The findings were heterogeneous for the perceived effects of physician-industry interactions on prescribing behavior, quality and cost of care. Generally, participants supported physicians' disclosure of interactions through easy-to-read printed documents and verbally. In studies focusing on surgeons and device manufacturers, the majority of patients felt their care would improve or not be affected if surgeons interacted with the device industry. Also, they felt surgeons would make the best choices for their health, regardless of financial relationship with the industry. Participants generally supported regulation of surgeon-industry interactions, preferably through professional rather than governmental bodies.The awareness of participants was low for physicians' receipt of personal gifts. Participants also reported greater acceptability and fewer perceived influence for office-use gifts compared to personal gifts. Overall, there appears to be lower awareness
Shevchenko, A. F.; Shevchenko, L. G.
2017-10-01
Results of the electromagnetic torque calculation for the synchronous motor with modulated magnetic flux and a smooth harmonic rotor are presented in this paper. The value of the torque is determined from the electromagnetic forces, which appear due to interaction of magnetic field in the gap with the rotor surface elements. The obtained analytical expression makes it possible to determine easily the electromagnetic torque for the considered motor in the MathCAD environment.
A STUDY OF NONLINEAR PHENOMENA IN THE PROPAGATION OF ELECTROMAGNETIC WAVES IN A WEAKLY IONIZED GAS.
This paper is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magneto...static field. The present study is restricted to the nonlinear phenomena arising from the interaction of electromagnetic waves in the ionized gas. The...the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas semi-infinite extent. (Author)
Propagation of electromagnetic waves in Bose-Einstein condensate of atoms with dipole moments
Poluektov, Yu. M.; Tanatarov, I. V.
2014-01-01
We study the propagation of electromagnetic waves in the Bose-Einstein condensate of atoms with both intrinsic dipole moments and those induced by the electric field. The modified Gross--Pitaevskii equation is used, which takes into account relaxation and interaction with the electromagnetic field. Two cases are considered: 1) when the dispersion curves of the electromagnetic wave and of the condensate excitations do not intercross and 2) when the condensate excitations' spectrum has a gap an...
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...
Wu, Ning
2006-01-01
For a long time, it is generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnet...
Electromagnetic Scattering and Material Characterization
Omar, Abbas
2011-01-01
Based on the author's more-than 30 years of experience, this first-of-its-kind volume presents a comprehensive and systematic analysis of electromagnetic fields and their scattering by material objects. The book considers all three categories of scattering environments commonly used for material measurements – unbounded regions, waveguides, and cavity resonators. The book covers such essential topics as electromagnetic field propagation, radiation, and scattering, containing mathematically rigorous approaches for the computation of electromagnetic fields and the explanation of their behavior.
Electromagnetic Meissner-Effect Launcher
Robertson, Glen A.
1990-01-01
Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.
Electromagnetic fields stress living cells.
Blank, Martin; Goodman, Reba
2009-08-01
Electromagnetic fields (EMF), in both ELF (extremely low frequency) and radio frequency (RF) ranges, activate the cellular stress response, a protective mechanism that induces the expression of stress response genes, e.g., HSP70, and increased levels of stress proteins, e.g., hsp70. The 20 different stress protein families are evolutionarily conserved and act as 'chaperones' in the cell when they 'help' repair and refold damaged proteins and transport them across cell membranes. Induction of the stress response involves activation of DNA, and despite the large difference in energy between ELF and RF, the same cellular pathways respond in both frequency ranges. Specific DNA sequences on the promoter of the HSP70 stress gene are responsive to EMF, and studies with model biochemical systems suggest that EMF could interact directly with electrons in DNA. While low energy EMF interacts with DNA to induce the stress response, increasing EMF energy in the RF range can lead to breaks in DNA strands. It is clear that in order to protect living cells, EMF safety limits must be changed from the current thermal standard, based on energy, to one based on biological responses that occur long before the threshold for thermal changes.
Artificial Nonlinearity Generated from Electromagnetic Coupling Metamolecule
Wen, Yongzheng; Zhou, Ji
2017-04-01
A purely artificial mechanism for optical nonlinearity is proposed based on a metamaterial route. The mechanism is derived from classical electromagnetic interaction in a metamolecule consisting of a cut-wire meta-atom nested within a split-ring meta-atom. Induced by the localized magnetic field in the split-ring meta-atom, the magnetic force drives an anharmonic oscillation of free electrons in the cut-wire meta-atom, generating an intrinsically nonlinear electromagnetic response. An explicit physical process of a second-order nonlinear behavior is adequately described, which is perfectly demonstrated with a series of numerical simulations. Instead of "borrowing" from natural nonlinear materials, this novel mechanism of optical nonlinearity is artificially dominated by the metamolecule geometry and possesses unprecedented design freedom, offering fascinating possibilities to the research and application of nonlinear optics.
Electromagnetic terrorism – threats in buildings
Directory of Open Access Journals (Sweden)
Marek Kuchta
2015-06-01
Full Text Available The paper presents the impact of electromagnetic pulses (high power and high frequency pulses — weapon E on technical infrastructure of buildings [1]. The use of modern technologies in intelligent building management i.e. human resources, control and automation systems, efficient buildings space management, requires using a large number of integrated electronic systems. From technical point of view, the intelligent building is a building in which all subsystems (e.g. technical security, air conditioning, ventilation, lighting, power, electricity, etc., interact with each other and create human-friendly environment. The use of specialized electronic systems, processors, microcontrollers in these subsystems may be a trigger of the use of weapons E as an alternative of terrorist attack— disabling automatic building management systems.[b]Keywords[/b]: electromagnetic weapons, distortion, sensitivity, susceptibility
Potential physics measurement with ALICE electromagnetic calorimeters
Energy Technology Data Exchange (ETDEWEB)
Zhou, D.C., E-mail: dczhou@mail.ccnu.edu.c [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Mao, Y.X.; Wan, R.Z. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Schutz, Y. [CERN, Geneva CH-1211, Switzerland and SUBATECH, IN2P3, Nantes (France); Yin, Z.-B.; Wang, Y.P.; Ma, K. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Conesa, G. [Laboratori Nazionale Di Frascati, INFN, Via Enrico Fermi, 40, P.O box 13, I-00044 Frascati (Italy); Kharlov, Y. [Institute for High Energy Physics, Protvino, 142281 (Russian Federation); Wang, M.L.; Zhu, X.R.; Yin, X.; Cai, X. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China)
2010-03-01
We present the two electromagnetic calorimeters of the ALICE (A Large Ion Collider Experiment) experiment at LHC (Large Hadron Collider). One is the high-resolution PHOton Spectrometer (PHOS) made of lead tungsten crystals and the other is the ElectroMagnetic Calorimeter (EMCal), a Lead-Scintillator sampling calorimeter. They are dedicated to the measurement and identification of direct photons, light neutral mesons such as pi{sup 0}, eta and omega(782), and jets emitted in proton-proton and heavy-ion collisions at the LHC energies. The PHOS is capable of precisely detecting photons with momentum range between 0.1 GeV/c and 100 GeV/c and the EMCal can extend the prompt photon and light neutral meson momentum measurement beyond 200 GeV/c. The objective of the study is to explore the physics of strongly interacting QCD matter under extreme conditions of energy density.
Electromagnetic probes in heavy-ion collisions
Directory of Open Access Journals (Sweden)
van Hees H.
2015-01-01
Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.
Battlefield Electromagnetic Environments Office (BEEO)
Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...
Method of moments in electromagnetics
Gibson, Walton C
2007-01-01
Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t
[Safety and electromagnetic compatibility in sanitary field].
Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L
2012-01-01
In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.
Handbook of electromagnetic compatibility
1995-01-01
This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E
Introduction to electromagnetic engineering
Harrington, Roger E
2003-01-01
This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a pr
Electromagnetic Meissner effect launcher
Robertson, Glen A. (Inventor)
1991-01-01
An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.
Maciejewski, D.F.; van Lier, P.A.C.; Neumann, A.; van der Giessen, D.; Branje, S.T.J.; Meeus, W.H.J.; Koot, H.M.
2014-01-01
This study explored the influence of adolescent mood variability on the symptom development of generalized anxiety and depression in the context of parent-adolescent negative interactions. Participants were 456 adolescents (55.7 % male) from a community sample, who were followed from age 13 to 16
Electromagnetic gyrokinetic simulation in GTS
Ma, Chenhao; Wang, Weixing; Startsev, Edward; Lee, W. W.; Ethier, Stephane
2017-10-01
We report the recent development in the electromagnetic simulations for general toroidal geometry based on the particle-in-cell gyrokinetic code GTS. Because of the cancellation problem, the EM gyrokinetic simulation has numerical difficulties in the MHD limit where k⊥ρi -> 0 and/or β >me /mi . Recently several approaches has been developed to circumvent this problem: (1) p∥ formulation with analytical skin term iteratively approximated by simulation particles (Yang Chen), (2) A modified p∥ formulation with ∫ dtE∥ used in place of A∥ (Mishichenko); (3) A conservative theme where the electron density perturbation for the Poisson equation is calculated from an electron continuity equation (Bao) ; (4) double-split-weight scheme with two weights, one for Poisson equation and one for time derivative of Ampere's law, each with different splits designed to remove large terms from Vlasov equation (Startsev). These algorithms are being implemented into GTS framework for general toroidal geometry. The performance of these different algorithms will be compared for various EM modes.
Electromagnetic radiation absorbers and modulators comprising polyaniline
Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid
1992-01-01
A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.