WorldWideScience

Sample records for electromagnetic energy electrons

  1. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    International Nuclear Information System (INIS)

    Stanev, T.; Vankov, C.; Petrov, S.; Elbert, J.W.

    1981-01-01

    We discuss the angular distribution of the electrons with threshold energy 20 MeV in electromagnetic showers. Our electrons are at much smaller angles to the shower axis compared with these of Messel and Crawford. This fact will have a serious impact on the angular distribution of the Cerenkov light in air. We also present approximations for the shower profiles of electrons with the same threshold and the lateral distribution of the electron energy flux

  2. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  3. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  4. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    Science.gov (United States)

    Stanev, T.; Vankov, Kh.; Petrov, S.; Elbert, J. W.

    The angular distribution of electrons with threshold energies of 20 MeV (the lowest energy at which electrons radiate Cerenkov photons in the air) are considered. The results are based on Monte Carlo calculations of the development of electromagnetic cascades. A set of showers with energy thresholds equals 20 MeV and primary photon energies equals 10, 20, 30, and 100 GeV is simulated. Information about the particle properties (energy, angle, and radial displacement) is provided at each radiation length of depth. The electrons are at much smaller angles to the shower axis than were those of Messel and Crawford (1970); this explains the discrepancy in angular distribution of Cerenkov light in air between the two.

  5. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    Science.gov (United States)

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  6. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  7. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  8. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  9. Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS

    CERN Document Server

    AUTHOR|(CDS)2075753; Mandelli, Luciano

    2007-01-01

    The Atlas LAr electromagnetic calorimeter is designed to provide a precise measurement of electrons and photons energies, in order to meet the requirements coming from the LHC physics program. This request of precision makes important to understand the behavior of the detector in all its aspect. Of fundamental importance to achieve the best possible performances is the calibration of the EM calorimeter, and this is the topic of this thesis. With detailed Monte Carlo simulations of single electrons and photons in the Atlas detector, we find a method to calibrate the electromagnetic calorimeter, based only on the informations that come from it. All the informations needed to develop a calibration method come from the simulations made with the technique of the Calibration Hits, that allows to know the en- ergy deposited in all the materials inside the detector volume, and not only in the active layer of each subdetector as possible in the standard simulations. This technique required a big effort for the develop...

  10. Electromagnetic Pulse Coupling Analysis of Electronic Equipment

    OpenAIRE

    Hong Lei; Qingying LI

    2017-01-01

    High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.

  11. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  12. ELECTROMAGNETIC THERMAL INSTABILITY WITH MOMENTUM AND ENERGY EXCHANGE BETWEEN ELECTRONS AND IONS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nekrasov, Anatoly K.

    2011-01-01

    Thermal instability in an electron-ion magnetized plasma, which is relevant in the intragalactic medium of galaxy clusters, solar corona, and other two-component plasma objects, is investigated. We apply the multicomponent plasma approach where the dynamics of all species are considered separately through electric field perturbations. General expressions for the dynamical variables obtained in this paper can be applied over a wide range of astrophysical and laboratory plasmas also containing neutrals and dust grains. We assume that background temperatures of electrons and ions are different and include the energy exchange in thermal equations for electrons and ions along with the collisional momentum exchange in equations of motion. We take into account the dependence of collision frequency on density and temperature perturbations. The cooling-heating functions are taken for both electrons and ions. A condensation mode of thermal instability has been studied in the fast sound speed limit. We derive a new dispersion relation including different electron and ion cooling-heating functions and other effects mentioned above and find its simple solutions for growth rates in limiting cases. We show that the perturbations have an electromagnetic nature and demonstrate the crucial role of the electric field perturbation along the background magnetic field in the fast sound speed limit. We find that at the conditions under consideration, condensation must occur along the magnetic field while the transverse scale sizes can be both larger and smaller than the longitudinal ones. The results obtained can be useful for interpretating observations of dense cold regions in astrophysical objects.

  13. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  14. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  15. Electron Reconstruction in the CMS Electromagnetic Calorimeter

    CERN Document Server

    Meschi, Emilio; Seez, Christopher; Vikas, Pratibha

    2001-01-01

    This note describes the reconstruction of electrons using the electromagnetic calorimeter (ECAL) alone. This represents the first step in the High Level Trigger reconstruction and selection chain. By making "super-clusters" (i.e. clusters of clusters) much of the energy radiated by bremsstrahlung in the tracker material can be recovered. Representative performance figures for energy and position resolution in the barrel are given.

  16. Classical electromagnetic radiation of the Dirac electron

    Science.gov (United States)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  17. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    Science.gov (United States)

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  18. Radiation dose distributions close to the shower axis calculated for high energy electron initiated electromagnetic showers in air

    International Nuclear Information System (INIS)

    Geer, S.; Gsponer, A.

    1983-01-01

    Absorbed radiation doses produced by 500, 1,000 and 10,000 MeV electron initiated electromagnetic showers in air have been calculated using a Monte Carlo program. The radial distributions of the absorbed dose near to the shower axis are found to be significantly narrower than predicted by simple analytical shower theory. For a 500 MeV, 10 kA, 100 ns electron beam pulse, the region in which the total dose is in excess of 1 krad and the dose rate in excess of 10 10 rad/s is a cigar-shaped envelope of radius 1 m and length 200 m. (orig.) [de

  19. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  20. Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, S. A.; Koryagin, S. A., E-mail: koryagin@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2012-06-15

    A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

  1. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  2. Electron-electron interaction in strong electromagnetic fields The two-electron contribution to the ground-state energy in He-like uranium

    CERN Document Server

    Gumberidze, A; Barnás, D; Beckert, Karl; Beller, Peter; Beyer, H F; Bosch, F; Cai, X; Stöhlker, T; Hagmann, S; Kozhuharov, C; Liesen, D; Nolden, F; Ma, X; Mokler, P H; Orsic-Muthig, A; Steck, Markus; Sierpowski, D; Tashenov, S; Warczak, A; Zou, Y

    2004-01-01

    Radiative recombination transitions into the ground state of cooled bare and hydrogen-like uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248 ± 9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z He-like ions and the accuracy reaches already the size of the specific two-electron radiative QED corrections.

  3. Electromagnetic Radiation Originating from Unstable Electron Oscillations

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Pécseli, Hans

    1975-01-01

    Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....

  4. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    Acoustics; energy harvesting; electromagnetic; Helmholtz resonator; sound pressure level; suspended coil. ... WSNs, which are supposed to operate for longer period of time. However ... several ambient energies such as wind, thermal, vibration, and solar are ..... textile plants in Northern India with specific reference to noise.

  5. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    CERN Document Server

    Adloff, C.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Gottlicher, P.; Gunter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P.D.; Magnan, A.M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.

    2011-01-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of faked signals is smaller than 1x10^{-5} for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  6. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Francis, K.; Repond, J.; Marčišovský, Michal; Šícho, Petr; Vrba, Václav; Zálešák, Jaroslav

    2011-01-01

    Roč. 654, č. 1 (2011), s. 97-109 ISSN 0168-9002 R&D Projects: GA MŠk LA09042; GA MŠk LA08032 Grant - others:EC(XE) RII3-CT-2006-026126 Institutional research plan: CEZ:AV0Z10100502 Keywords : lepton collider * electromagnetic calorimeter * embedded electronics * fake hits Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://arxiv.org/pdf/arXiv:1102.3454v2

  7. On electromagnetic radiation of ultrarelativistic electrons in crystals

    International Nuclear Information System (INIS)

    Podgoretskij, M.I.

    1977-01-01

    Electromagnetic radiation is considered caused by ultrarelativistic channeling electrons moving inside cylindrical regions formed with nuclear heat oscillations of a crystal lattice. An energy asymmetry is predicted for electrons and positrons, generated by γ-quanta falling to a crystal along the crystallographic axes. A possible connection of the above mentioned radiation with the anomalous multiphoton Schein showers is discussed

  8. Temporary acceleration of electrons while inside an intense electromagnetic pulse

    Directory of Open Access Journals (Sweden)

    Kirk T. McDonald

    1999-12-01

    Full Text Available A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron, and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons.

  9. Electromagnetic wave analogue of an electronic diode

    International Nuclear Information System (INIS)

    Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I

    2011-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of rotation of the polarization state and is also a key component in optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinarily strong nonlinear wave propagation effect in the same way as the electronic diode function is provided by the nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differs by a factor of 65.

  10. Tracking Electromagnetic Energy With SQUIDs

    Science.gov (United States)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  11. Electromagnetic Dissociation and Spacecraft Electronics Damage

    Science.gov (United States)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  12. Electromagnetic energy and food processing

    International Nuclear Information System (INIS)

    Mudgett, R.

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1 st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1 st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plant products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy. (33 refs.)

  13. Design of electromagnetically compatible electronics

    NARCIS (Netherlands)

    Reitsma, G.P.

    2005-01-01

    EMC is a channel capacity problem, where with the help of adaptation the signal coding and signal processing and reduction of unintentional coupling, the chance of corruption of the transferred signal information is minimized. For the topology of an electronic circuit this implies that with the help

  14. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  15. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  16. Spontaneous generation of electromagnetic waves in plasmas with electron thermal flux

    International Nuclear Information System (INIS)

    Okada, Toshio

    1977-01-01

    Spontaneous generation of propagating electromagnetic fields due to a microinstability is investigated for plasmas which convey electron thermal fluxes. The following two cases are examined: 1) Electromagnetic fields spontaneously excited by electrons in a velocity distribution of skewed Maxwellian type. 2) Electromagnetic waves generated by electrons in a velocity distribution which consists of a main part and a high energy part. In this case, the electron thermal flux can be very high. In both cases, induced electromagnetic waves with relatively low frequencies propagate parallel to the direction of Thermal flux. (auth.)

  17. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    International Nuclear Information System (INIS)

    Villalon, E.

    1989-01-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency

  18. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  19. Perturbations in electromagnetic dark energy

    International Nuclear Information System (INIS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.; Koivisto, Tomi S.; Mota, David F.

    2009-01-01

    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM

  20. Electron scattering in the presence of an intense electromagnetic field

    International Nuclear Information System (INIS)

    Mohan, M.; Chand, P.

    1977-03-01

    The general theory of electron scattering in the presence of an external electromagnetic field, provided by an intense laser beam, accompanied by absorption of n photons, each with energy hω, is discussed. The calculation leads to many summations over intermediate states. A general method for exactly evaluating several sums is described in detail. Numerical results show that the cross-section varies with intensity in a power law fashion

  1. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  2. Polarization phenomena in electromagnetic interactions at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1990-01-01

    Recent results of polarization measurements in electromagnetic interactions at intermediate energies are discussed. Prospects of polarization experiments at the new CW electron accelerators, as well as on upgraded older machines are outlined. It is concluded that polarization experiments will play a very important role in the study of the structure of the nucleon and of light nuclei. 72 refs

  3. Military electronic equipment shelter electrical wiring design of electromagnetic compatibility

    International Nuclear Information System (INIS)

    Yang Xuemei

    2012-01-01

    Electromagnetic compatibility is the military electronics shelter design is an important indicator of the shelter's electrical wiring is the key to the design of electromagnetic compatibility. Introduces the basic concepts of electromagnetic compatibility, and focusing on the shelter layout design problems that need attention, and to solve these problems. (authors)

  4. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  5. Electromagnetic or other directed energy pulse launcher

    Science.gov (United States)

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  6. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    Science.gov (United States)

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  7. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  8. Coherent states of an electron in a quantized electromagnetic wave

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  9. Interactions of free electrons with an electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zel' dovich, Ya B [AN SSSR, Moscow. Inst. Prikladnoj Matematiki

    1975-02-01

    The interaction of a chaotic field of electromagnetic radiation with free electrons in plasma is considered as applied to astrophysical problems, in particular, to the theory of establishing thermodynamic equilibrium of radiation in the hot universe. The kinetic equation describes a change in the spectrum; particular attention is paid to the induced scattering and to the classical interpretation of the induced transfer of energy and momentum. In spectra of radiosources with a high brightness temperature the induced scattering may lead to the Bose condensation of photons, shock wave and appearance of solutions. The scattering of strong low-frequency waves is considered as applied to pulsars and laboratory coherent generators.

  10. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  11. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  12. Absorption of resonant electromagnetic radiation in electron-atom collisions

    International Nuclear Information System (INIS)

    Arslanbekov, T.U.; Pazdzerskii, V.A.; Usachenko, V.I.

    1986-01-01

    Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons

  13. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  14. Electromagnetic and gravitational scattering at Planckian energies

    International Nuclear Information System (INIS)

    Das, S.; Majumdar, P.

    1994-11-01

    The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude. (author). 20 refs

  15. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  16. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  17. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  18. Electronic front-end for LHCb electromagnetic and hadronic calorimeters

    International Nuclear Information System (INIS)

    Beigbeder, Ch.

    2000-11-01

    The electronic front-end of the LHCb electromagnetic and hadronic calorimeters will be described. It consists of a 9U 32 channel board, each channel including shaper-integrator, 12 bit ADC and look-up tables allowing to code the transverse energy information both for readout and for the Level 0 trigger. The readout information is stored in a fixed latency followed by a derandomizer. The trigger information is processed further on the board by FPGA, performing channel addition and comparison to extract the highest transverse energy local cluster for further processing. The system is fully synchronous and allows to extract candidates for calorimetric trigger at every 40 MHz clock cycle. The operation and characteristics (noise, linearity etc.) of a prototype board will be described. (author)

  19. Approximate theory the electromagnetic energy of solenoid in special relativity

    International Nuclear Information System (INIS)

    Prastyaningrum, I; Kartikaningsih, S.

    2017-01-01

    Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)

  20. Hydrodynamic view of electrodynamics: energy rays and electromagnetic effective stress

    International Nuclear Information System (INIS)

    Chou, Chia-Chun; Wyatt, Robert E

    2011-01-01

    Energy rays ('photon trajectories') based upon the hydrodynamic formulation of electrodynamics are presented for time-dependent electromagnetic wave propagation. We derive Cauchy's equation of motion for the electromagnetic effective force governing the dynamics of energy rays. The effective force generated by the electromagnetic effective stress provides a surface force acting on the energy fluid element. For the head-on collision of two electromagnetic Gaussian pulses, the electromagnetic effective force, analogous to the role played by the quantum force in Bohmian mechanics, guides these non-crossing energy rays. For an electromagnetic pulse traveling from free space to a dielectric medium, the energy rays guided by the electromagnetic effective stress display reflection and refraction at the interface.

  1. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    SPLs) both in ... several ambient energies such as wind, thermal, vibration, and solar are available and have been successfully trans- ..... mentsTM data acquisition (DAQ) card and NI LabVIEW software is used to acquire the signals from the ...

  2. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Jia-Wen; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  3. Electromagnetic effects of neutrinos in an electron gas

    International Nuclear Information System (INIS)

    Nieves, Jose F.; Sahu, Sarira

    2005-01-01

    We study the electromagnetic properties of a system that consists of an electron background and a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy for this system is characterized by the usual transverse and longitudinal polarization functions, and two additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained, which depend on the neutrino number densities and involve momentum integrals over the electron distribution functions, and are valid for any value of the photon momentum and general conditions of the electron gas. Those expressions are evaluated explicitly for several special cases and approximations which are generally useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric and permeability constants plus two additional ones related to the photon self-energy functions. As an illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale magnetic fields in the early Universe as a consequence of the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well defined context, with a broader scope and from a very different point of view

  4. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  5. Strong and Electromagnetic Interactions at SPS Energies

    CERN Document Server

    Ribicki, Andrzej

    2009-01-01

    Particle production in peripheral Pb+Pb collisions has been measured at a beam energy of 158 GeV per nucleon, corresponding to psNN 17.3 GeV. The measurements provide full double differential coverage in a wide range of longitudinal and transverse momenta, including the central (“mid-rapidity”) area and extending far into the projectile fragmentation region. The resulting analysis shows the heavy ion reaction as a mixture of different processes. In particular, surprising phenomena, like the presence of large and strongly varying structures in the shape of the double differential cross section d2s /dxFd pT , are induced by the final state electromagnetic interaction between produced particles and the charged spectator system. This effect is largest at low transverse momenta, where it results in a deep valley in the xF -dependence of the produced p+/p− ratio. The basic characteristics of the electromagnetic phenomenon described above agree with the results of a theoretical analysis, performed by means of ...

  6. Electronic circuit for control rod attracting electromagnet

    International Nuclear Information System (INIS)

    Ito, Koji.

    1991-01-01

    The present invention provides a discharging circuit for control rod attracting electromagnet used for a reactor which is highly reliable and has high performance. The resistor of the circuit comprises a non-linear resistor element and a blocking rectification element connected in series. The discharging circuit can be prevented from short-circuit by selecting a resistor having a resistance value about ten times as great as the coil resistance, even in a case where the blocking rectification element and the non-linear resistor element are failed. Accordingly, reduction of attracting force and the increase of scream releasing time can be minimized. (I.S.)

  7. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  8. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  9. Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Karyotakis, Y.; Repond, J.; Cvach, Jaroslav; Havránek, Miroslav; Janata, Milan; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2009-01-01

    Roč. 608, č. 3 (2009), s. 372-383 ISSN 0168-9002 R&D Projects: GA MŠk LA09042 Institutional research plan: CEZ:AV0Z10100502 Keywords : CALICE * ILC * electromagnetic calorimeter * silicon detector * electron reconstruction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.317, year: 2009

  10. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  11. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  12. Effects of electromagnetic shielding cases for semiconductor-type electronic personal dosimeters on preventing electromagnetic interference

    International Nuclear Information System (INIS)

    Deji, Shizuhiko; Ito, Shigeki; Nishizawa, Kunihide; Saze, Takuya; Mori, Kazuyuki

    2005-01-01

    Performance of electromagnetic shielding cases for preventing malfunction of semiconductor-type electronic personal dosimeters (SEPDs) caused by high frequency electromagnetic fields emitted from a digital cellular telephone (cell phone) and a card reader of access control system were analyzed. The cases were handcrafted by using cloth of activated carbon fiber, polyester film laminated metal, and two kinds of metal netting. Five kinds of SEPDs put in the cases were exposed to the high frequency electromagnetic fields for 50 sec or 1 min. The cases prevented perfectly the malfunction due to the cell phone. The cases shortened distances required to prevent the malfunction due to the card reader, but did not prevent the malfunction. The electromagnetic immunity level of SEPD inserted in the cases increased from greater than 11.2 to greater than 18.7 times for the cell phone and from 1.1 to greater than 4.3 times for the card reader. The maximum of electromagnetic shielding effectiveness of each case was greater than 18.7 times for the cell phone and greater than 4.3 times for the card reader. (author)

  13. CEBAF at higher energies and the kaon electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  14. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  15. Path integral approach to electron scattering in classical electromagnetic potential

    International Nuclear Information System (INIS)

    Xu Chuang; Feng Feng; Li Ying-Jun

    2016-01-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. (paper)

  16. Auroral electron energies

    International Nuclear Information System (INIS)

    McEwan, D.J.; Duncan, C.N.; Montalbetti, R.

    1981-01-01

    Auroral electron characteristic energies determined from ground-based photometer measurements of the ratio of 5577 A OI and 4278 A N 2 + emissions are compared with electron energies measured during two rocket flights into pulsating aurora. Electron spectra with Maxwellian energy distributions were observed in both flights with an increase in characteristic energy during each pulsation. During the first flight on February 15, 1980 values of E 0 ranging from 1.4 keV at pulsation minima to 1.8 keV at pulsation maxima were inferred from the 5577/4278 ratios, in good agreement with rocket measurements. During the second flight on February 23, direct electron energy measurements yielded E 0 values of 1.8 keV rising to 2.1 keV at pulsation maxima. The photometric ratio measurements in this case gave inferred E 0 values about 0.5 keV lower. This apparent discrepancy is considered due to cloud cover which impaired the absolute emission intensity measurements. It is concluded that the 5577/4278 ratio does yield a meaningful measure of the characteristic energy of incoming electrons. This ratio technique, when added to the more sensitive 6300/4278 ratio technique usable in stable auroras can now provide more complete monitoring of electron influx characteristics. (auth)

  17. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  18. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  19. Utilizing scalar electromagnetics to tap vacuum energy

    International Nuclear Information System (INIS)

    Sweet, F.; Bearden, T.E.

    1991-01-01

    Based on E.T. Whittaker's previously unnoticed 1903-1904 papers which established a hidden bidirectional EM wave structure in a standing forcefield free scalar potential, a method of directly engineering the ambient potential of the vacuum has been developed and realized experimentally. Adding Whittaker's engineerable hidden variable theory to classical electromagnetic, quantum mechanics, and general relativity produces supersets of each discipline. These supersets are joined by the common Whittaker subset, producing a unified field theory that is engineerable and tested. By treating the nucleus of the atom as a pumped phase conjugate mirror, several working model energy units have been produced which excite and organize the local vacuum, increase the local virtual photon flux between local vacuum and nucleus, establish coherent self-oscillations between the local excited vacuum and the affected nuclei, utilized the self-oscillating standing wave for self-pumping of the nuclei/mirrors, introduce a very tiny signal wave to the mirrors, and output into an external load circuit a powerful, amplified, time-reversed phase conjugate replica wave at 60 Hertz frequency and nominal 120 volt sine wave power. Several models have been built, ranging from 6 watts early on to one of 5 kilowatts. Both closed battery-less systems with damped positive feedback and open loop systems with battery-powered input have been successfully built. Open loop power gains of from 5 x 10 4 to 1.5 x 10 6 have been achieved. Antigravity experiments have also been successfully conducted where the weight of the unit was reduced by 90% in controlled experiments, with a signal wave input of 175 microwatts and an output of 1 kilowatt. The basic theory of the device is briefly explained and experimental results presented

  20. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  1. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  2. Response of the CALICE Si-W Electromagnetic Calorimeter Physics Prototype to Electrons

    CERN Document Server

    Adloff, C.; Repond, J.; Yu, J.; Eigen, G.; Hawkes, C.M.; Mikami, Y.; Miller, O.; Watson, N.K.; Wilson, J.A.; Goto, T.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Krim, M.; Benyamna, M.; Boumediene, D.; Brun, N.; Carloganu, C.; Gay, P.; Morisseau, F.; Blazey, G.C.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Lima, G.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; D'Ascenzo, N.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Gottlicher, P.; Jung, T.; Karstensen, S.; Korbel, V.; Lucaci-Timoce, A.-I.; Lutz, B.; Meyer, N.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Groll, M.; Haller, J.; Heuer, R.-D.; Richter, S.; Samson, J.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kim, E.J.; Baek, N.I.; Kim, D-W.; Lee, K.; Lee, S.C.; Kawagoe, K.; Tamura, Y.; Bowerman, D.A.; Dauncey, P.D.; Magnan, A.-M.; Yilmaz, H.; Zorba, O.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Faucci Giannelli, M.; Green, M.G.; Salvatore, F.; Bedjidian, M.; Kieffer, R.; Laktineh, I.; Bailey, D.S.; Barlow, R.J.; Kelly, M.; Thompson, R.J.; Danilov, M.; Tarkovsky, E.; Baranova, N.; Karmanov, D.; Korolev, M.; Merkin, M.; Voronin, A.; Frey, A.; Lu, S.; Prothmann, K.; Simon, F.; Bouquet, B.; Callier, S.; Cornebise, P.; Fleury, J.; Li, H.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Ruan, M.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J-C.; Gaycken, G.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Rouge, A.; Vanel, J-Ch.; Videau, H.; Park, K-H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Belmir, M.; Nam, S.W.; Park, I.H.; Yang, J.; Chai, J.-S.; Kim, J.-T.; Kim, G.-B.; Kang, J.; Kwon, Y.-J.

    2009-01-01

    A prototype Silicon-Tungsten electromagnetic calorimeter (ECAL) for an International Linear Collider (ILC) detector was installed and tested during summer and autumn 2006 at CERN. The detector had 6480 silicon pads of dimension 1x1 cm^2. Data were collected with electron beams in the energy range 6 to 45 GeV. The analysis described in this paper focuses on electromagnetic shower reconstruction and characterises the ECAL response to electrons in terms of energy resolution and linearity. The detector is linear to within approximately the 1% level and has a relative energy resolution of (16.6 +- 0.1)/ \\sqrt{E(GeV}) + 1.1 +- 0.1 (%). The spatial uniformity and the time stability of the ECAL are also addressed.

  3. Some consequences of the law of local energy conservation in electromagnetic field

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    At electromagnetic interactions of particles there arise defects of masses, i.e. the energy is liberated since the particles of the different charges are attracted. It is shown that this change of the effective mass of a particle in the external electric field (of a nucleus) results in displacement of atomic levels of electrons. The expressions describing these velocity changes and displacement of energy levels of electrons in the atom are obtained

  4. Parametric excitation of electromagnetic waves by electron Bernstein waves

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1992-01-01

    A parametric instability involving the decay of a standing electron Bernstein pump into electromagnetic sidebands and lower-hybrid decay waves is studied. A general dispersion relation is derived and analyzed. Threshold fields and growth rates are obtained for the two cases that the electron Bernstein pump is introduced near the X-mode cutoff layer or introduced in the region between the upper-hybrid resonance layer and the O-mode cutoff layer. Applications of these results to the recent observation [P. Stubbe and H. Kopka, Phys. Rev. Lett. 65, 183 (1990)] of stimulated electromagnetic emission (SEE) with a broad symmetrical structure (BSS) in the ionospheric modifications by powerful high-frequency (HF) wave are discussed

  5. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  6. Energy and thermodynamic considerations involving electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Cole, Daniel C.

    1999-01-01

    There has been recent speculation and controversy regarding whether electromagnetic zero-point radiation might be the next candidate in the progression of plentiful energy sources, ranging, for example, from hydrodynamic, chemical, and nuclear energy sources. Certainly, however, extracting energy from the vacuum seems counter intuitive to most people. Here, these ideas are clarified, drawing on simple and common examples. Known properties of electromagnetic zero-point energy are qualitatively discussed. An outlook on the success of utilizing this energy source is then discussed

  7. Algebraic structure of general electromagnetic fields and energy flow

    International Nuclear Information System (INIS)

    Hacyan, Shahen

    2011-01-01

    Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  8. Electronic calibration developed for the CMS electromagnetic calorimeter

    CERN Document Server

    Baek, Y W; David, P Y; Ditta, J; Hermel, V; Fouque, N; Mendiburu, J P; Nédélec, P; Peigneux, J P; Poireau, V; Rebecchi, P; Silou, D

    2004-01-01

    An electronic system, designed to provide a relative calibration for the readout of the CMS electromagnetic calorimeter (CMS-ECAL), is described. On request, this system injects a pulse at the input of a predetermined group of preamplifiers with preselected amplitude and a shape identical to the one produced by the photodetectors. Several chips, in DMILL 0.8 mu m technology, have been developed for integration on the front-end electronics. We describe the principle, the testing, the measurement of their precision, and radiation hardness. (6 refs).

  9. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  10. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  11. Statistical modeling in phenomenological description of electromagnetic cascade processes produced by high-energy gamma quanta

    International Nuclear Information System (INIS)

    Slowinski, B.

    1987-01-01

    A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)

  12. High energy electromagnetic particle transportation on the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  13. Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection

    International Nuclear Information System (INIS)

    Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma

    2016-01-01

    Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)

  14. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    International Nuclear Information System (INIS)

    Dugar-Zhabon, V D; Orozco, E A; González, J D

    2016-01-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread. (paper)

  15. Electron energies in metals

    International Nuclear Information System (INIS)

    Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1991-01-01

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m e . This should be compared to the band mass found from optical conductivity m*/m e = 1.01 ± 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs

  16. Electromagnetic energy applied to and gained from lunar materials

    International Nuclear Information System (INIS)

    Meek, T.T.; Vaniman, D.T.; Blake, R.D.; Cocks, F.H.

    1986-01-01

    Electromagnetic energy may be useful in microwave frequencies for in-situ melting or sintering of lunar regolith. Simple configurations of magnetron or gyrotron tubes might be constructed for unique melting geometries. For energy production, lunar ilmenite has potential applications in photovoltaic devices. 11 refs., 11 figs

  17. Vacuum energy of the electromagnetic field in a rotating system

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.

    1986-01-01

    The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)

  18. Electromagnetic energy flow lines as possible paths of photons

    Energy Technology Data Exchange (ETDEWEB)

    Davidovic, M [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Arsenovic, D; Bozic, M [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)], E-mail: milena@grf.bg.ac.yu, E-mail: asanz@imaff.cfmac.csic.es, E-mail: arsenovic@phy.bg.ac.yu, E-mail: bozic@phy.bg.ac.yu, E-mail: s.miret@imaff.cfmac.csic.es

    2009-07-15

    Motivated by recent experiments where interference patterns behind a grating are obtained by accumulating single photon events, we provide here an electromagnetic energy flow-line description to explain the emergence of such patterns. We find and discuss an analogy between the equation describing these energy flow lines and the equation of Bohmian trajectories used to describe the motion of massive particles.

  19. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  20. Dispersion self-energy of the electron

    International Nuclear Information System (INIS)

    Hawton, M.

    1991-01-01

    Electron mass renormalization and the Lamb shift have been investigated using the dispersion self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transitions frequencies are considered, absorption from the electromagnetic field is canceled by emission due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency condition that the field seen by the electron is the same as the field produced by the expectation value of current. The radiation present can thus be viewed as arising from emission and subsequent reabsorption by matter. As developed here, the numerical predictions of dispersion theory are identical to those of quantum electrodynamics. The physical picture implied by dispersion theory is discussed in the context of semiclassical theories and quantum electrodynamics

  1. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    Energy Technology Data Exchange (ETDEWEB)

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  2. Periodic position dependence of the energy measured in the CMS electromagnetic calorimeter

    CERN Document Server

    Descamps, Julien

    2006-01-01

    A uniform energy measurement response of the CMS electromagnetic calorimeter ECAL is essential for precision physics at the LHC. The ECAL barrel calorimeter consists of 61200 lead tungstate crystals arranged in a quasi-projective geometry. The energy of photons reaching the ECAL will be reconstructed by summing the channels corresponding to matrices of 3x3 or 5x5 crystals centred on the crystal with the largest energy deposit. The energy measured using such matrices of fixed size has been studied using electron test beam data taken in 2004. The variation of the energy containment with the incident electron impact position on the central crystal leads to a degradation of the energy resolution. A method using only the calorimeter information is presented to correct for the position dependent response. After correction, the energy resolution performance for uniform impact distributions of the electrons on the front face of a crystal approaches that obtained for maximal containment with a central impact. The univ...

  3. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  4. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  5. submitter Energy Resolution Of Si/Fe And Si/Pb Electromagnetic Calorimeters

    CERN Document Server

    Bosetti, M; Pensotti, S.; Penzo, A.; Rancoita, P.G.; Rattaggi, M.; Redaelli, M.; Salvato, G.; Terzi, G.

    1993-01-01

    The energy resolution of electromagnetic sampling calorimeters using silicon mosaics as active medium, has been measured for Pb and Fe absorbers at incoming electron energies E of 2, 4, and 6 GeV. The energy resolution, found for the Si/Pb sented by a(E)/E = pling frequency. The energy resolution can be rewritten as a function of the dead area energy losses (D): a(E)/E = (KO + all))% ,/- with KO = (17.6 f 0.3)%, (24.1&0.8)%, for Si/Pb, Si/Fe, respectively; a1 = 1.2f0.3 for both absorbers.

  6. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  7. Energy conservation law for randomly fluctuating electromagnetic fields

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.; James, D.

    1999-01-01

    An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society

  8. Propagation of electromagnetic waves in the plasma near electron cyclotron resonance: Undulator-induced transparency

    International Nuclear Information System (INIS)

    Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.

    2005-01-01

    Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations

  9. Electromagnetic interactions in an electron-hole plasma

    International Nuclear Information System (INIS)

    1977-01-01

    Certain problems electromagnetic interactions both of external SHF radiation with an electron-hole (eh) plasma and in the plasma itself are considered. The production and properties of a non-equilibrium eh plasma in semiconductors, pinch effect in a plasma of solids, strong electric fields in a plasma of inhomogeneous semiconductors and heat effects in a semiconductor plasma are discussed. The influence of a surface, kinetics of recombination processes in the semiconductor volume and the plasma statistics the spatial distribution of carriers, current characteristics and plasma recombination radiation under the conditions of pinch effect is described. The diagnostics methods of the phenomena are presented. The behaviour of diode structures with pn transitions in strong SHF fields is discussed. Special attention is paid to collective phenomena in the plasma of semiconductor devices and the variation of carrier density in strong fields. The appearance of electromotive force in inhomogeneous diode structures placed in strong SHF fields is considered

  10. Structures, systems and methods for harvesting energy from electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  11. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  12. Optimizing the energy measurement of the ATLAS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lampl, W.

    2005-12-01

    This PhD-thesis addresses the calibration of the ATLAS electromagnetic calorimeter. ATLAS is a high-energy physics experiment at the Large Hadron Collider (LHC) which is currently under construction at CERN in Geneva. LHC and ATLAS are foreseen to start up in 2007. In summer 2004, an extensive beam-test was carried out. This means that individual detector modules are exposed to a particle beam of known energy in order to verify the detector performance. At this occasion, all ATLAS subdetectors where operated together for the first time. The thesis contains a comprehensive description of the ATLAS electromagnetic calorimeter, the reconstruction software and the test-beam experiment that was carried out at CERN in 2004. Furthermore, the physics of the electromagnetic shower is discussed in detail. Data from the test beam as well as a detailed Monte-Carlo simulation are used to develop a novel energy-reconstruction method for the ATLAS EM calorimeter that achieves an excellent energy resolution (sampling term ∼ 11 %) as well as a very good linearity (< 0.4 %). Data taken during the beam test is also used to verify the accuracy of the simulation and to test the new energy-reconstruction method. (author)

  13. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  14. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  15. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  16. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    Science.gov (United States)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  17. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  18. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  19. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  20. Modeling of an Integrated Electromagnetic Generator for Energy Scavenging

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2007-01-01

    The ubiquitous deploying of wireless electronic devices due to pervasive computing results in the idea of Energy Scavenging, i.e., harvesting ambient energy from surroundings of the electronic devices. As an approach to possible practical realization of such an energy scavenger, we aim at the

  1. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Dirac electron in a chiral space-time crystal created by counterpropagating circularly polarized plane electromagnetic waves

    Science.gov (United States)

    Borzdov, G. N.

    2017-10-01

    The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.

  3. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  4. Experimental research on electromagnetic radiation in inductive energy storage accelerator

    International Nuclear Information System (INIS)

    Zhong Jianzhong; Liu Lie; Li Limin; Wen Jianchun

    2008-01-01

    There exists strong electromagnetic radiation in inductive energy storage accelerators. In can destroy a measuring device at a distance. By repeated experiments, we found that it is a wide-spectrum electromagnetic wave with a main frequency of 75 MHz. The effector such as coaxial transmission line is effected strongly in short distance. The current in the coaxial transmission line can be measured in Rogowski coils. The strength of field in it is about 500 V/m and the peak current is 217 mA. The radiation source may be LC oscillating or electric exploding opening switch. Through the experimental research, we think it probably may be caused by the LC oscillating in the circuit when the switches conduct. And its strength is correlated to current change ratio. The change rate in secondary circuit is stronger than in primary circuit. So the radiation generated in secondary circuit is stronger than in primary circuit. It may be a reference for further research in inductive energy storage accelerators and shielding electromagnetic disturbing. (authors)

  5. Strong interactions and electromagnetism in low-energy hadron physics

    International Nuclear Information System (INIS)

    Kubis, B.

    2002-10-01

    In the present work, we study various aspects of the entanglement of the strong and electromagnetic interactions as it is manifest in low-energy hadron physics. In the framework of chiral perturbation theory, two aspects are investigated: the test of the structure of baryons as probed by external electromagnetic currents, and the modification of reactions mediated by the strong interactions in the presence of internal (virtual) photons. In the first part of this work, we study the electromagnetic form factors of nucleons and the ground state baryon octet, as well as strangeness form factors of the nucleon. Emphasis is put on the comparison of a new relativistic scheme for the calculation of loop diagrams to the heavy-baryon formalism, and on the convergence of higher-order corrections in both schemes. The new scheme is shown to yield both a phenomenologically more successful description of the data and better convergence behaviour. In the second part, we study isospin violation in pion-kaon scattering as mediated by virtual photon effects and the light quark mass difference. This investigation is of particular importance for the extraction of scattering lengths from measurements of lifetime and energy levels in pion-kaon atoms. The isospin breaking corrections are shown to be small and sufficiently well under control. (orig.)

  6. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  7. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    Science.gov (United States)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  8. Electromagnetic interference of mobile phones with electronic implants

    International Nuclear Information System (INIS)

    Kainz, W.

    2000-03-01

    Chapter 1:Interference matrix: The objective of Chapter 1 was to give an overview of the implants used at present and their electromagnetic compatibility (EMC). The evaluation of the available literature provides an estimate of the probability of electronic implants being influenced by various interference sources. A literature search at the AKH (Allgemeines Krankenhaus) in Vienna and at the Technical University of Vienna in the FIZ (Fach-Informations-Zentrum) -Biomedizinische Technik, Medline, Pascal Biomed, CC Search und Embase databases yielded 236 relevant publications. At present 12 different implants are used: pacemaker, defibrillator, cochlear and brain-stem implants, neurostimulators, spinal-cord stimulators, spinal-fusion stimulators, telemetry systems, artificial hearts, drug-delivery systems, neurological pulse generators, visual prosthetics and implantable patient chips. The frequency with which they are used and the EMC on exposure to the various interference sources was summarized. Publications on EMC were found only for the first six implant types and only for 30% of the possible combinations of implant type and interference source. Based on the number of the implants examined, the probability of interference was calculated and summarized in the interference matrix. Chapter 2:Measurements on the phantom: No publication on the electromagnetic compatibility of neurological pulse generators (NPG) could be found. This implant has been used increasingly in the last few years to treat Parkinson's disease. A phantom was built to examine this implant at 900 MHz. The electromagnetic compatibility was measured by exposing the NPG to the fields of ten different 900 MHz GSM mobile phones. Every mobile phone was tested in three different positions relative to the phantom, with four electrode configurations and four stimulation parameters. No interference was found even at a maximum transmit power of 2 watts. Further tests with half-wave dipoles and increased

  9. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  10. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  11. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  12. The electromagnetic pulse (EMP) as a danger for the world of electronics

    International Nuclear Information System (INIS)

    Horak, O.

    1984-01-01

    After discussing the characteristics and formation of a nuclear electromagnetic pulse, the author considers the effects such a pulse would have on various types of electronic systems. Finally he discusses what protection there is against such pulses. (Auth.)

  13. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  14. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  15. Energy Measurement with the ATLAS Electromagnetic Calorimeter at the Per Mill Accuracy Level

    CERN Document Server

    Teischinger, Florian; Fabjan, Christian

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. It is made up of various sub-detectors to measure the properties of all the particles produced at the proton-proton collision. Over the last three years of running around 20 x 10^14 collisions of proton data have been recorded. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry and for hadronic calorimetry in the end-caps. The Inner Detector, on the other hand, measures the transverse momentum of charged particles down to a momentum of 0.5 GeV. This thesis deals with the absolute measurement of the energy in the electromagnetic calorimeter and the improvement of the systematic uncertainties. A method using the ratio of the energy E in the calorimeter and the momentum measurement p in the Inner Detector (E/p) was used to extract the energy scale of the electromagnetic LAr calorimeter for electrons and positrons. To investigate and further reduce the syst...

  16. Device for converting electromagnetic radiation energy into electrical energy and method of manufacturing such a device

    NARCIS (Netherlands)

    2007-01-01

    Device (10) for converting electromagnetic radiation energy into electrical energy, comprising at least a photovoltaic element (11) with a radiation-sensitive surface, wherein a covering layer (12) of a material comprising a silicon compound, to which a rare earth element has been added, is present

  17. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Missevitch, O V; Yarman, T

    2011-01-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  18. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)

    2011-05-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  19. Calculation of transformers leakage reactance using electromagnetic energy technique

    International Nuclear Information System (INIS)

    Feiz, J.; Mohseni, H.; Sabet Marzooghi, S.; Naderian Jahromi, A.

    2004-01-01

    Determination of transformer leakage reactance using magnetic cores has long been an area of interest to engineers involved in the design of power and distribution transformers. This is required for predicting the performance of transformers before actual assembly of the transformers. In this paper a closed form solution technique applicable to the leakage reactance calculations for transformers is presented. An emphasis is on the development of a simple method to calculate the leakage reactance of the distribution transformers and smaller transformers. Energy technique procedure for computing the leakage reactances in distribution transformers is presented. This method is very efficient compared with the use of flux element and image technique and is also remarkably accurate. Examples of calculated leakage inductances and the short circuit impedance are given for illustration. For validation, the results are compared with the results obtained using test. This paper presents a novel technique for calculation of the leakage inductance in different parts of the transformer using the electromagnetic stored energy

  20. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  1. On the zero point energy of the electromagnetic field in the presence of material media

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1980-12-01

    The Van der Waals force between two semi-infinite material media separated by a piece of a third material is calculated. In this calculation, a generalization of some works on this theme is made, considering the radiation field delay effect, and impose no kind of electric and magnetic permeability dependence on the field frequency. The zero point energy of electromagnetic field in the presence of rectangular cavities with perfectly conducting walls (epsilon →i infinite) and/or infinitely permeable walls (μ→ infinite), is also calculated. Two kinds of regularization are made. In view of the results obtained modifications in the Casimir's model for the electron are suggested [pt

  2. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  3. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    International Nuclear Information System (INIS)

    Bizen, Teruhiko; Asano, Yoshihiro; Marechal, Xavier-Marie; Seike, Takamitsu; Aoki, Tsuyoshi; Fukami, Kenji; Hosoda, Naoyasu; Yonehara, Hiroto; Takagi, Tetsuya; Hara, Toru; Tanaka, Takashi; Kitamura, Hideo

    2007-01-01

    High-energy electron-beam bombardment of Nd 2 Fe 14 B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small

  4. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Bizen, Teruhiko [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)]. E-mail: bizen@spring8.or.jp; Asano, Yoshihiro [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Marechal, Xavier-Marie [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Seike, Takamitsu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Aoki, Tsuyoshi [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukami, Kenji [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yonehara, Hiroto [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takagi, Tetsuya [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Tanaka, Takashi [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kitamura, Hideo [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-11

    High-energy electron-beam bombardment of Nd{sub 2}Fe{sub 14}B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small.

  5. Dynamics of electrons in a parabolic magnetic field perturbed by an electromagnetic wave

    International Nuclear Information System (INIS)

    Neishtadt, Anatoly; Vainchtein, Dmitri; Vasiliev, Alexei

    2011-01-01

    In this paper we study the resonance interaction between monochromatic electromagnetic waves and fully magnetized electrons in a model parabolic magnetic field (like, e.g., in the Earth's magnetotail). The smallness of certain physical parameters allows us to approach this problem using perturbation theory for multiscale (slow-fast) systems: the study of the global interaction is reduced to the analysis of slow passages of particles through a resonance. At the resonance, two important phenomena occur: capture into resonance and scattering on resonance. We show that while the primary adiabatic invariant (magnetic moment or Larmor radius) remains conserved, these processes result in destruction of the second, longitudinal, adiabatic invariant. We find significant acceleration of particles by capture into resonance, while the scatterings on resonances lead to decrease in energy and chaotization of particles.

  6. Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

    Science.gov (United States)

    Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.

    2018-03-01

    The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

  7. Energy flow in a bound electromagnetic field: resolution of apparent paradoxes

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Yarman, T

    2008-01-01

    In this paper, we present a resolution of apparent paradoxes formulated in (Kholmetskii A L 2006 Apparent paradoxes in classical electrodynamics: the energy-momentum conservation law for a bound electromagnetic field Eur. J. Phys. 27 825-38; Kholmetskii A L and Yarman T 2008 Apparent paradoxes in classical electrodynamics: a fluid medium in an electromagnetic field Eur. J. Phys. 29 1127) and dealing with the energy flux in a bound electromagnetic field

  8. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    International Nuclear Information System (INIS)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun

    2015-01-01

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications

  9. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-02-15

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

  10. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  11. Ultrashort electromagnetic clusters formation by two-stream superheterodyne free electron lasers

    DEFF Research Database (Denmark)

    Kulish, Viktor V.; Lysenko, Alexander V.; Volk, Iurii I.

    2016-01-01

    A cubic nonlinear self-consistent theory of multiharmonic two-stream superheterodyne free electron lasers (TSFEL) of a klystron type, intended to form powerful ultrashort clusters of an electromagnetic field is constructed. Plural three-wave parametric resonant interactions of wave harmonics have...... been taken into account. An amplitude, phase and spectral analyses of the processes occurring in such devices have been carried out. The conditions necessary for the forming of the ultrashort clusters of an electromagnetic field have been found out. The possibility of the ultrashort electromagnetic...

  12. Energy reconstruction and calibration algorithms for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Delmastro, M

    2003-01-01

    The work of this thesis is devoted to the study, development and optimization of the algorithms of energy reconstruction and calibration for the electromagnetic calorimeter (EMC) of the ATLAS experiment, presently under installation and commissioning at the CERN Large Hadron Collider in Geneva (Switzerland). A deep study of the electrical characteristics of the detector and of the signals formation and propagation is conduced: an electrical model of the detector is developed and analyzed through simulations; a hardware model (mock-up) of a group of the EMC readout cells has been built, allowing the direct collection and properties study of the signals emerging from the EMC cells. We analyze the existing multiple-sampled signal reconstruction strategy, showing the need of an improvement in order to reach the advertised performances of the detector. The optimal filtering reconstruction technique is studied and implemented, taking into account the differences between the ionization and calibration waveforms as e...

  13. Electromagnetic microwaves in metal films with electron-phonon interaction and a dc magnetic field

    DEFF Research Database (Denmark)

    Hasselberg, L.E.

    1976-01-01

    A quantum-mechanical treatment of electromagnetic microwaves is performed for a metal film. The directions of the exterior ac and dc fields are taken to be arbitrary and boundary conditions for the electrons are assumed to be specular. The relation between the current and the electromagnetic field...... in the transmission spectrum can perhaps be obtained by assuming a finite Debye temperature and specular reflections of the electrons at the boundary surfaces. A sharp peak entirely caused by the finite electron-phonon interaction is also discussed....

  14. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  15. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  16. Interaction of electromagnetic energy with biological material - relation to food processing

    NARCIS (Netherlands)

    Ponne, C.T.; Bartels, P.V.

    1995-01-01

    For food scientists and technologists, the interaction of electromagnetic energy with enzymes, microorganisms and other food compounds is important in optimizing process efficiency and/or product quality. To be able to implement research findings on interaction of electromagnetic energy with matter;

  17. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  18. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  19. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    Science.gov (United States)

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  20. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  1. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  2. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  3. Enhanced electromagnetic emission from plasmas containing positive dust grains and electrons

    International Nuclear Information System (INIS)

    Shukla, P.K.; Shukla, Nitin; Stenflo, L.

    2007-01-01

    Large amplitude high-frequency (HF) electromagnetic (EM) waves can scatter off dust-acoustic waves in plasmas containing positive dust grains and electrons, and can thus be responsible for HF enhanced electromagnetic emissions (EEE). An expression for the ensemble average of the squared HF-EEE vector potential is therefore derived, following the standard parametric interaction formalism and adopting the Rostoker superposition principle. The results should be useful for deducing the dust plasma parameters (e.g. the dust number density and dust charge) in situ, and HF intense EM beams can thus be used for diagnosis of positive dust-electron plasmas in space and laboratories

  4. Electromagnetic pulse compression and energy localization in quantum plasmas

    International Nuclear Information System (INIS)

    Hefferon, Gareth; Sharma, Ashutosh; Kourakis, Ioannis

    2010-01-01

    The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of ∼1.35 attosecond and a spatial size of ∼1.08.10 -3 cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of ∼0.6 attosecond and a spatial size of ∼2.4.10 -3 cm.

  5. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  6. FR4-based electromagnetic energy harvester for wireless sensor nodes

    Science.gov (United States)

    Hatipoglu, G.; Ürey, H.

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

  7. FR4-based electromagnetic energy harvester for wireless sensor nodes

    International Nuclear Information System (INIS)

    Hatipoglu, G; Ürey, H

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s −2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire–road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature

  8. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 74, č. 10 (2014), "3071-1"-"3071-48" ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : photon * energy * calibration * detector * resolution * showers * electromagnetic * electron * transverse energy * CERN LHC Coll * calorimeter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  9. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.

    Science.gov (United States)

    Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie

    2018-06-07

    Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron-photon and electron-electron interactions in the presence of strong electromagnetic fields

    International Nuclear Information System (INIS)

    Surzhykov, A.; Fritzsche, S.; Stoehlker, Th.

    2010-01-01

    During the last decade, photon emission from highly-charged, heavy ions has been in the focus of intense studies at the GSI accelerator and storage ring facility in Darmstadt. These studies have revealed unique information about the electron-electron and electron-photon interactions in the presence of extremely strong nuclear fields. Apart from the radiative electron capture processes, characteristic photon emission following collisional excitation of projectile ions has also attracted much interest. In this contribution, we summarize the recent theoretical studies on the production of excited ionic states and their subsequent radiative decay. We will pay special attention to the angular and polarization properties of Kα emission from helium-like ions produced by means of dielectronic recombination. The results obtained for this (resonant) capture process will be compared with the theoretical predictions for the characteristic X-rays following Coulomb excitation and radiative recombination of few-electron, heavy ions. Work is supported by Helmholtz Association and GSl under the project VH-NG--421. (author)

  11. Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtichyan, G. S., E-mail: hay-13@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2015-07-15

    The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.

  12. Energy resolution of a lead scintillating fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Glagolev, V.

    1993-01-01

    A calorimeter module was fabricated using profiled lead plates and scintillating fibers with diameter 1 mm and attenuation length about 80 cm. The absorber-to-fiber volume ratio was 1.17 and the module average radiation length X 0 = 1.05 cm. The energy resolution of the module was investigated using the electron beams of U-70 at Serpukhov and of the SPS at CERN in the energy range 5-70 GeV. The energy resolution at θ = 3 0 (the angle between the fiber axis and the beam direction) may be expressed by the formula σ/E(%) = 13.1/√E ± 1.7. The energy resolution was also simulated by Monte Carlo and good agreement with the experiment has been achieved. 12 refs.; 13 figs.; 4 tabs

  13. Magnetic energy analyser for slow electrons

    International Nuclear Information System (INIS)

    Limberg, W.

    1974-08-01

    A differential spectrometer with high time and energy resolution has been developed using the principle of energy analysis with a longitudinal homogeneous magnetic field. This way it is possible to measure the energy distribution of low energy electrons (eV-range) in the presence of high energy electrons without distortions by secondary electrons. The functioning and application of the analyzer is demonstrated by measuring the energy distributions of slow electrons emitted by a filament. (orig.) [de

  14. PENTrack-a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Science.gov (United States)

    Schreyer, W.; Kikawa, T.; Losekamm, M. J.; Paul, S.; Picker, R.

    2017-06-01

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products-protons and electrons-and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at github.com/wschreyer/PENTrack.git.

  15. Dissipation Effects in Schrödinger and Quantal Density Functional Theories of Electrons in an Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Xiao-Yin Pan

    2018-03-01

    Full Text Available Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, there is an internal field whose components are representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, kinetic effects, and density. There is also an internal contribution due to the magnetic field. The response of the electron is governed by the current density field in which a damping coefficient appears. The law leads to further insights into Schrödinger theory, and in particular the intrinsic self-consistent nature of the Schrödinger equation. It is proved that in the presence of dissipative effects, the basic variables (gauge-invariant properties, knowledge of which determines the Hamiltonian are the density and physical current density. Finally, a local effective potential theory of dissipative systems—quantal density functional theory (QDFT—is developed. This constitutes the mapping from the interacting dissipative electronic system to one of noninteracting fermions possessing the same dissipation and basic variables. Attributes of QDFT are the separation of the electron correlations due to the Pauli exclusion principle and Coulomb repulsion, and the determination of the correlation contributions to the kinetic energy. Hence, Schrödinger theory in conjunction with QDFT

  16. Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire

    International Nuclear Information System (INIS)

    Miller, E.K.; Deadrick, F.J.; Landt, J.A.

    1975-01-01

    Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire is examined. Energy collected by the wire, load energy, peak load currents, and peak load voltages are found for a wide range of parameters, with particular emphasis on nuclear electromagnetic pulse (EMP) phenomena. A series of time-sequenced plots is used to illustrate pulse propagation on wires when loads and wire ends are encountered

  17. Modeling and Experimental Verification of an Electromagnetic and Piezoelectric Hybrid Energy Harvester

    Directory of Open Access Journals (Sweden)

    Fan Yuanyuan

    2016-11-01

    Full Text Available This paper describes mathematical models of an electromagnetic and piezoelectric hybrid energy harvesting system and provides an analysis of the relationship between the resonance frequency and the configuration parameters of the system. An electromagnetic and piezoelectric energy harvesting device was designed and the experimental results showed good agreement with the analytical results. The maximum load power of the hybrid energy harvesting system achieved 4.25 mW at a resonant frequency of 18 Hz when the acceleration was 0.7 g, which is an increase of 15% compared with the 3.62 mW achieved by a single electromagnetic technique.

  18. Electromagnetic Energy Converters - Rotating Motors and Linear Generators

    Energy Technology Data Exchange (ETDEWEB)

    Ekergaard, Boel

    2011-07-01

    This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System

  19. Study of position resolution and electron-hadron separation of electromagnetic calorimeter with a silicon structure

    International Nuclear Information System (INIS)

    Gorodnichev, V.B.; Kachanov, V.A.; Khodyrev, V.Yu.; Kurchaninov, L.L.; Rykali, V.V.; Solovianov, V.L.; Ukhalov, M.N.

    1993-01-01

    The maximum shower silicon strip detectors embedded in a module of sandwich-type electromagnetic calorimeter have been tested. The position resolution at different depths of the silicon structure has been measured. The results on electron-hadron separation obtained as a byproduct in this study are presented, and possibility of their improvement is discussed. 8 refs., 10 figs., 1 tab

  20. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  1. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  2. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    International Nuclear Information System (INIS)

    Yu, Haining; Du, Jiulin

    2014-01-01

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions

  3. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haining; Du, Jiulin, E-mail: jldu@tju.edu.cn

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  4. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  5. Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives

    Directory of Open Access Journals (Sweden)

    Viraht Sahni

    2017-03-01

    Full Text Available The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem. (The time-independent law, a special case, provides a similar description of stationary-state theory. These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d with the Schrödinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum

  6. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  7. Atomic systems with one and two active electrons in electromagnetic fields: Ionization and high harmonics generation

    International Nuclear Information System (INIS)

    Ivanov, I A; Kheifets, A S

    2010-01-01

    We describe a theoretical procedure for solving the time-dependent Schroedinger equation (TDSE) for atomic systems with one or two valence electrons. Motion of the valence electrons is described by means of the Hartree-Fock potential including the exchange interaction. We apply the procedure to various physical phenomena occurring in atoms exposed to strong electromagnetic fields. As an illustration, we consider below the processes of high harmonics generation and attosecond pulses production.

  8. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  9. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-01-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector

  10. On the energy resolution of the projective prototype of the 'Shashlik' electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bityukov, S.I.; Obraztsov, V.F.; Ostankov, A.P.

    1994-01-01

    The dependences of the energy resolution of a lead/scintillator electromagnetic calorimeter 'Shashlik' type on the attenuation length of fibers and on the dead material between cells have been investigated for gamma-radiation with energy 20,50 and 100 GeV. The simulation includes a projective geometry for the electromagnetic calorimeter and uses the maps of the light collection efficiency. 6 refs., 12 figs

  11. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  12. Vertex function of an electron in a constant electromagnetic field

    International Nuclear Information System (INIS)

    Morozov, D.A.; Narozhnyj, N.B.; Ritus, V.I.

    1981-01-01

    The third order with respect to radiation field vertex function for an electron located in a constant crossed field of arbitrary intensity is determined. It is shown that radiative interaction smears out the Airy function which describes the intensity of the interaction between electrons and photons in an external field as a function of the nonconserving momentum component. The qualitative relation Vsup((3)) approximately αchisup(2/3)Vsup((1)) between the third and first order vertex functions is found for large values of the dynamic parameter chi=((eFp)sup(2))sup(1/2)msup(-2). It is also shown that radiative interaction does not alter the order of magnitude of the squared mass of the system transferred at the vertex. The vertex function satisfies the Ward identity modified by the external field [ru

  13. Solutions for the motion of an electron in electromagnetic fields

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Jushin, A.V.

    1975-01-01

    New exact solutions of the Lorentz, Hamilton--Jacobi, Klein--Gordon, and Dirac equations for an electron moving in the field of a plane wave and in electric and magnetic fields were found. The electric and magnetic fields are parallel to the direction of propagation of the plane wave. The magnetic field is constant and the electric field is an arbitrary function of the combination ct-z

  14. Radiation of electrons in an electromagnetic axial trap

    International Nuclear Information System (INIS)

    Toropova, A.I.

    1998-01-01

    The version of a trap. wherein particles move in a homogeneous constant magnetic field and electrostatic field, formed by two equipotential planes and rotation axial surface, is proposed. The solution of canonic equations is found. It is shown that interaction of electrons with the radiation field leads to damping parametric resonance. The trap model, accounting for the finite conductivity of the resonator walls and losses by collisions with gas, is studied

  15. Cosmological constraints on exotic injection of electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Vivian; Serpico, Pasquale D. [LAPTh, Université Savoie Mont Blanc and CNRS, 9 Chemin de Bellevue BP 110 Annecy-le-Vieux F-74941 Annecy Cedex (France); Lesgourgues, Julien, E-mail: Vivian.Poulin@lapth.cnrs.fr, E-mail: Pasquale.Serpico@lapth.cnrs.fr, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-03-01

    We compute cosmic microwave background (CMB) anisotropy constraints on exotic forms of energy injection in electromagnetic (e.m.) channels over a large range of timescales. We show that these constraints are very powerful around or just after recombination, although CMB keeps some sensitivity e.g. to decaying species with lifetimes as long as 10{sup 25} s. These bounds are complementary to CMB spectral distortions and primordial nucleosynthesis ones, which dominate at earlier timescales, as we also review here. For the first time, we describe the effects of the e.m. energy injection on the CMB power spectra as a function of the injection epoch , using the lifetime of a decaying particle as proxy. We also identify a suitable on-the-spot approximation, that can be used to derive accurate constraints, and describe its differences with the most up-to-date treatment. Our results are of interest not only for early universe relics constituting (a fraction of) the dark matter, but also for other exotic injection of e.m. radiation. For illustration, we apply our formalism to: i) Primordial black holes of mass 10{sup 13.5} g ∼< M ∼< 10{sup 16.8} g, showing that the constraints are comparable to the ones obtained from gamma-ray background studies and even dominate below ∼ 10{sup 14} g. ii) To a peculiar mass-mixing range in the sterile neutrino parameter space, complementary to other astrophysical and laboratory probes. iii) Finally, we provide a first estimate of the room for improvement left for forthcoming 21 cm experiments, comparing it with the reach of proposed CMB spectral distortion (PiXiE) and CMB angular power spectrum (CORE) missions. We show that the best and most realistic opportunity to look for this signal (or to improve over current constraints) in the 21 cm probe is to focus on the Cosmic Dawn epoch, 15 ∼< z ∼< 30, where the qualitatively unambiguous signature of a spectrum in emission can be expected for models that evade all current constraints.

  16. Effects of high frequency electromagnetic field emitted from digital cellular telephones on electronic pocket dosimeters

    International Nuclear Information System (INIS)

    Shizuhiko, Deji; Kunihide, Nishizawa

    2002-01-01

    High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 ± 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283μ Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection

  17. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    Science.gov (United States)

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  18. Effects of high frequency electromagnetic field emitted from digital cellular telephones on electronic pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Shizuhiko, Deji; Kunihide, Nishizawa [Nagoya Univ., Nagoya (Japan)

    2002-07-01

    High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 {+-} 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283{mu} Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection.

  19. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  20. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    Science.gov (United States)

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.

    2008-05-01

    A Very-Front-End (VFE) card is an important part of the on-detector read-out electronics of the CMS (Compact Muon Solenoid) electromagnetic calorimeter that is made of ∼ 76.000 radiation hard scintillating crystals PbWO 4 and operates on the Large Hadron Collider (LHC) at CERN. Almost 16.000 VFE cards that shape, amplify and digitize incoming signals from photodetectors generated by interacting particles. Since any maintenance of any part of the calorimeter is not possible during the 10-year lifetime of the experiment, the extensive screening program was employed throughout the whole manufacture process. As a part of readout electronics quality assurance program, the systems for burn-in and precise calibration of the VFE boards were developed and successfully used at IPN Lyon. In addition to functionality tests, all relevant electrical properties of each card were measured and analyzed in detail to obtain their full characterization and to build a database with all required parameters which will serve for the initial calibration of the whole calorimeter. In order to evaluate the calorimeter performance and also to deliver the most precise calibration constants, several fully equipped super-modules were extensively studied and calibrated during the test beam campaigns at CERN. As an important part of these tests, accurate studies of the electronics noise and relative gains, which are needed for measurement in high energy range, were carried out to optimize amplitude reconstruction procedure and thus improve the precision of the calorimeter energy determination. The heart of the thesis consists of the calibration of all VFE boards, including optimization of the laboratory calibration system and precise analysis of measured values to delivered desired calibration constants. The second half of the thesis is focused on the accurate evaluation and optimization of the read-out electronics in real data taking conditions. The results obtained in the laboratory at IPN Lyon

  2. Green functions for an electron in an external electromagnetic field

    International Nuclear Information System (INIS)

    Khokhlov, I.A.

    1982-01-01

    New representations permitting to considerably simplify their calculation have been obtained for the Green functions of electron. These representations are based on an idea, used in the quantum electrodynamics formulation in variables of a zero plane, of writing down the Dirac field operator psi through its part psisub((-)). It is shown that T product of psi and psi + operators can be expressed through T product of their parts psisub((-)) and psisub((-))sup(+). At that, if the anticommutator of the operators psisub((-)) and psisub((-))sup(+) satisfies the initial condition, the operations of the chronological ordering of the operator product psi(-) and psisub((-))sup(+) with respect to variable x 0 and variable u 0 playing a part of time in the formulation of the zero plane (Pu 0 product) coincide. In correspondence with this fact all the Green functions of electron can be expressed depending on the convenience of concrete calculations through vacuum averages of either from T product or from Pu 0 product of psisub((-)) and psisub((-))sup(+) operators only [ru

  3. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  4. Electromagnetic interactions of nucleons and nuclei at low energy and momentum transfer

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1994-01-01

    In these lectures I concentrate on the manifestation of subnuclear degrees of freedom in terms of meson and isobar degrees of freedom in electromagnetic processes where their presence usually is described in terms of so-called exchange or interaction currents. In Section 2 I first discuss the general properties of the electromagnetic interaction, the gauge conditions and low-energy theorems which follow from gauge invariance, the charge and current density operators for a non-relativistic system of nucleons and the Siegert theorem. In Section 3 I sketch the basic ideas and construction methods for the exchange current operators as effective operators and in Section 4 the model of nuclear isobar configurations introducing explicitly isobar degrees of freedom into the nuclear wave function. The general features of one- and two-photon processes are discussed in Section 5. First the expressions for the cross sections of photoabsorption and electron scattering are reviewed. As a specific but important example, I then discuss the two-body break-up of the deuteron since it permits the cleanest analysis and provides one of the best evidences for the presence of subnuclear degrees of freedom due to its simple two-body structure within the classical nuclear physics framework. This is a unique situation because in more complex nuclei the analysis is often hampered by presently still unavoidable approximations of the many-body problem. I furthermore discuss the role of meson exchange currents in the photonuclear TRK sum rule, in particular, I carefully analyse what determines the enhancement. This section ends with a brief discussion of elastic photon scattering with special emphasis on the low-energy theorem for the scattering amplitude and the sum rule relations for the low-energy parameters. (orig.)

  5. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  6. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.

    2016-01-01

    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  7. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    Science.gov (United States)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  8. Investigation of the surface current excitation by a relativistic electron electromagnetic field

    International Nuclear Information System (INIS)

    Naumenko, G; Shevelev, M; Potylitsyn, A; Popov, Yu; Sukhikh, L

    2010-01-01

    Surface current method and pseudo-photon ones are widely used in the problems of diffraction and transition radiation of relativistic electron in conductive targets. The simple analysis disclosed the contradiction between these methods in respect to the surface current excitation on target surfaces. This contradiction was resolved experimentally by the measurement of a surface current on the upstream and downstream target surfaces in diffraction radiation geometry. The experimental test showed, that no surface current is induced on the target downstream surface under the influence of a relativistic electron electromagnetic field in contrast to the upstream surface. This is important for the understanding of a forward transition and diffraction radiation nature and electromagnetic field evolution in interaction processes.

  9. Electron-positron pair production in inhomogeneous electromagnetic fields

    International Nuclear Information System (INIS)

    Kohlfürst, C.

    2015-01-01

    The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de

  10. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  11. A study on the apron shielding ratio according to electromagnetic radiation energy

    International Nuclear Information System (INIS)

    Jang, Dong Gun; Lee, Sang Ho; Choi, Hyung Seok; Son, Joo Chul; Yoon, Chang Yong; Ji, Yung Sik; Cho, Yong In; Lee, Hong Je; Yang, Seoung Oh

    2014-01-01

    The medical institution has been used electromagnetic radiation of various energy. But researchers are divided on whether using apron for radiation shielding will be effective or not. The purpose of present study was to analyze electromagnetic radiation shielding effect of apron by using Monte Carlo simulation. 1 MBq electromagnetic radiation was emitted from 10-500 keV at 10 keV increments in Monte Carlo simulation. Then shielded radiation dose difference was confirmed, when 0.25 mmPb shield use for shielding. As a results, shielding ratio was markedly decreased in high energy electromagnetic radiation. The radiation dose was inversely increased with 0.25 mmPb shielding

  12. A study on the apron shielding ratio according to electromagnetic radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dong Gun; Lee, Sang Ho; Choi, Hyung Seok; Son, Joo Chul; Yoon, Chang Yong; Ji, Yung Sik; Cho, Yong In; Lee, Hong Je; Yang, Seoung Oh [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of)

    2014-12-15

    The medical institution has been used electromagnetic radiation of various energy. But researchers are divided on whether using apron for radiation shielding will be effective or not. The purpose of present study was to analyze electromagnetic radiation shielding effect of apron by using Monte Carlo simulation. 1 MBq electromagnetic radiation was emitted from 10-500 keV at 10 keV increments in Monte Carlo simulation. Then shielded radiation dose difference was confirmed, when 0.25 mmPb shield use for shielding. As a results, shielding ratio was markedly decreased in high energy electromagnetic radiation. The radiation dose was inversely increased with 0.25 mmPb shielding.

  13. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  14. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  15. Electron acceleration by an obliquely propagating electromagnetic wave in the regime of validity of the Fokker-Planck-Kolmogorov approach

    Science.gov (United States)

    Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.

    1989-01-01

    The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.

  16. FULL ELECTROMAGNETIC SIMULATION OF FREE-ELECTRON LASER AMPLIFIER PHYSICS VIA THE LORENTZ-BOOSTED FRAME APPROACH

    International Nuclear Information System (INIS)

    Fawley, William M.; Vay, Jean-Luc

    2009-01-01

    Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good example is that of short wavelength free-electron lasers (FELs) in which a high energy electron beam interacts with a static magnetic undulator. In the optimal boost frame with Lorentz factor gamma F , the red-shifted FEL radiation and blue shifted undulator have identical wavelengths and the number of required time-steps (presuming the Courant condition applies) decreases by a factor of 2(gamma F )**2 for fully electromagnetic simulation. We have adapted the WARP code to apply this method to several FEL problems involving coherent spontaneous emission (CSE) from pre-bunched ebeams, including that in a biharmonic undulator.

  17. Effect of electromagnetic field in fusion facility on electronic personal dosimeter

    International Nuclear Information System (INIS)

    Yamada, Junya; Kawano, Takao; Uda, Tatsuhiko; Shimo, Michikuni

    2010-01-01

    The effect of electromagnetic field on electronic personal dosimeters in a nuclear fusion facility was examined in a Magnetic Resonance Imaging (MRI) examination room instead of a nuclear fusion facility. Three types of electronic personal dosimeters, the PDM-111, the 112, and the 117, were used as typical ones. We surveyed the electromagnetic field distribution and dosimeters were placed at locations with various strengths of the electromagnetic field. The natural radiation dose was measured for about one week. We found that while dosimeters were not affected by the electric field, they were affected by the magnetic one. Dosimeters detected radiation levels less sensitively as the magnetic field strength was increased up to 150 mT. The dosimeters underestimated the environmental radiation dose rates by about 10-30% when the magnetic field strength was larger than 150 mT. We assumed that hall-effect caused the reduction in radiation sensitivity. We concluded that the strength of the magnetic field needs to be carefully considered when an electronic personal dosimeter is used for monitoring both personal and area dose in a nuclear fusion facility. (author)

  18. Some characteristics of the development of high energy electromagnetic cascades in the atmosphere

    International Nuclear Information System (INIS)

    Jablonski, Z.; Tomaszewski, A.; Wrotniak, J.A.

    1977-01-01

    Results of the calculations of some characteristics of electromagnetic cascades induced by cosmic radiation are showed. The cascade parameters are influenced by effect of threshold energy of gamma quanta registration in emulsion chambers. Ratio of integral gamma quanta energies in cascade to initial particle energy and mean energy weighted radius as a function of primary interaction hight, as well as total energy and number of gamma quanta in the cascade are calculated. (S.B.)

  19. Low-energy analysis of the nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Kubis, Bastian.; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q 2 ≅0.4 GeV 2

  20. Influence on electron coherence from quantum electromagnetic fields in the presence of conducting plates

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Lee, D.-S.

    2006-01-01

    The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the electron is derived by the method of influence functional. We find that the plate boundary anisotropically modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal case. The presence of the second parallel plate is found to boost these effects. The potential relation between the amplitude change and phase shift of interference fringes is pointed out. The finite conductivity effect on electron coherence is discussed

  1. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    International Nuclear Information System (INIS)

    Xi Xiao-Wen; Chai Chang-Chun; Liu Yang; Yang Yin-Tang; Fan Qing-Yang; Shi Chun-Lei

    2016-01-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. (paper)

  2. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  3. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  4. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin [Sensors and Instruments Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  5. Influence of pulse electromagnetic fields on electronic equipment and systems in smart buildings

    Directory of Open Access Journals (Sweden)

    Jacek Paś

    2016-07-01

    Full Text Available The article presents information about the impact of electromagnetic fields’ impulses on technical infrastructure of electronic equipment and systems in intelligent buildings. The use of modern technical solutions in intelligent building management, i.e., human resources control and automation systems, efficient building space management, requires a large number of integrated electronic systems. Impulse interference, lightning or electricity as natural phenomena are among the most responsible for the occurrence of interference in buses, transmission lines systems, electrical installations, equipment and electronic systems used in intelligent buildings. To a large extent, it is associated with catastrophic damages that may occur in electronic devices or in completed systems such as intelligent building, e.g. ICT, security, etc. under the influence of induced voltages and interfering signals’ currents. Keywords: noise, static electricity, lightning

  6. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    Science.gov (United States)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  7. Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2012-12-01

    Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian

  8. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  9. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  10. Study of the electromagnetic form factors of Helium-3 and Tritium nuclei by electron scattering

    International Nuclear Information System (INIS)

    Amroun, A.

    1989-01-01

    Accurate measurements of the tritium electromagnetic form factor demonstrated that, when the exchange currents are included, the theoretical and the experimental data are in agreement. Similar calculations carried out on helium-3 were not satisfactory. In this investigation, a new electromagnetic form factor of helium-3 is measured. The transfer zone of the diffraction spectra concerning the first minimum and the second maximum is considered. The aim of the study is to test on both nuclei the validity and the uncertainties of the models. The scattering of electrons on helium-3 is analyzed. The experiment was performed in the Saclay linear accelerator. The isoscalar and isovector form factors could be differentiated. By comparing the theoretical and the experimental data, it is demonstrated that the use of three body forces in the calculations has no effect on the form factor results [fr

  11. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  12. Test beam results on Atlas electromagnetic end-cap calorimeter: Electrons-jets separation; Resultats des tests en faisceau sur les bouchons du calorimetre electromagnetique d'ATLAS - separation electrons-jets

    Energy Technology Data Exchange (ETDEWEB)

    Serfon, C

    2005-05-15

    ATLAS is one of the four experiments being built on the future proton-proton collider at CERN: the LHC. This experiment has a large physics program, from Standard Model to new physics. The search for the Higgs boson in two photons or in four leptons, or the search of Z' or W' needs a good energy resolution for the electromagnetic calorimeter. This thesis describes the beam tests performed on three modules of the electromagnetic end cap calorimeter. A 0.6% non-uniformity, and a 0.7% energy resolution global constant term (dominant at high energy) has been obtained. Moreover, a study on the separation between electrons and jets is also performed. This study shows that a jets rejection factor of 10{sup 5} can be obtained keeping an electron efficiency better than 78%. (author)

  13. Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Kumar, Asheel; Tripathi, V.K.

    2005-01-01

    Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential

  14. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  15. Conversion of the energy of a high-current REB into electromagnetic wave energy

    International Nuclear Information System (INIS)

    Kurilko, V.I.; Kharchenko, I.F.

    2000-01-01

    Results are presented from a theoretical investigation and quantitative analysis of the physical processes that govern the efficiency of a coaxial device aimed at converting the energy of a relativistic electron beam into the energy of a TEM wave (a wave in a circular cylindrical coaxial waveguide). The key diffractional problem is solved exactly using a simplified theoretical model, which makes it possible to understand the mechanisms for the formation of a TEM wave and determine how the beam parameters and the design parameters of the converter affect the relative fractions of the kinetic energy of a relativistic electron beam and the energy of its own magnetic and electric fields that are transferred into the energy of the TEM wave field. The results obtained are analyzed quantitatively, and prospects for further theoretical and experimental research in this area are outlined

  16. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  17. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  18. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  19. On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave

    International Nuclear Information System (INIS)

    Milantiev, V.P.

    1994-01-01

    By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity ν p is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave (ν p < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process

  20. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    International Nuclear Information System (INIS)

    Koide, Shinji; Baba, Tamon

    2014-01-01

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  1. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  2. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  3. Effects of high frequency electromagnetic fields emitted from digital cellular telephones on electronic pocket dosimeters

    International Nuclear Information System (INIS)

    Deji, Shizuhiko; Nishizawa, Kunihide

    2003-01-01

    Electric field strength distribution around the digital cellular telephone (cell phone) transmitting 1.5GHz band was analyzed by using an isotropic probe. Five types of electronic pocket dosimeters (EPDs) were exposed to the fields for 50sec under four kinds of configurations relative to the cell phone. The field distribution expanded around the antenna and had a maximum strength level of 36.5±0.3V/m. The cell phone caused abnormally high values (wrong dosages) to four EPDs out of five due to electromagnetic interference. Three out of the four EPDs exceeded the upper limits of dose range depending on the configurations, and the maximum value of wrong dosage among the EPDs was 1,283 μSv. The minimum distance preventing electromagnetic interference (protection distance) differed with each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of EPD-1, 2, 3, 4 and 5 were 13.3, ≥35, ≥32, 9.2 and ≥35 V/m, respectively. Although the immunity levels were either equal to or greater than the IEC-standard level, those of the EPDs should be enhanced greater than the IEC-standard from the standpoint of radiation protection. (author)

  4. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    Science.gov (United States)

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  5. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  6. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    International Nuclear Information System (INIS)

    Vagin, K. Yu.; Uryupin, S. A.

    2013-01-01

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function

  7. Weakly nonlinear electromagnetic waves in an electron-ion positron plasma

    International Nuclear Information System (INIS)

    Rizzato, F.B.; Schneider, R.S.; Dillenburg, D.

    1987-01-01

    The modulation of a high-frequency electromagnetic wave which is circulary polarized and propagates in a plasma made up of electrons, ions and positrons is investigated. The coefficient of the cubic nonlinear term in the Schroedinger equation may change sign as the relative particle concentrations vary, and consequently a marginal state of modulation instability may exist. To described the system in the neighbourhood of this state an appropriate equation is derived. Particular stationary solutions of this equation are envelope solitary waves, envelope Kinks and envelope hole solitary waves. The dependence of the amplitude of the solutions on the propagation velocity and the particle concentrations is discussed. (author) [pt

  8. Slowing of a fast electron beam in a plasma in an intense electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, R.V.; Fedorov, M.V.

    1980-01-01

    The slowing of a fast electron beam as it penetrates into a plasma in a strong external electromagnetic field is studied. The effective collision frequency ..nu../sub p/ which is responsible for the slowing is derived in the dipole approximation; many-photon stimulated bremsstrahlung and inverse bremsstrahlung are taken into account. The asymptotic behavior of ..nu../sub p/ in strong wave fields E/sub 0/ is found. The results show that ..nu../sub p/ falls off with increasing E/sub 0/, because of a decrease in the frequency of collisions with plasma ions proportional to E/sub 0//sup -1/.

  9. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads

    International Nuclear Information System (INIS)

    Zhang, Xingtian; Zhang, Zutao; Pan, Hongye; Salman, Waleed; Yuan, Yanping; Liu, Yujie

    2016-01-01

    Graphical abstract: In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power supplies for rail-side equipment. The proposed system consists of a mechanical transmission and a rectifier. Acting as the energy input and transmission, Gears and a rack amplify the small vibrations of the track, and one-way bearings enhance efficiency by transforming bidirectional motion to unidirectional rotation. Supercapacitors are used in the energy harvesting system for the first time. The supercapacitors permit the storage of energy from rapidly changing transient currents and a steady power supply for external loads. The proposed system is demonstrated through dynamic simulations, which show the rapid response of the system. An efficiency of 55.5% is demonstrated in bench tests, verifying that the proposed electromagnetic energy harvesting system is effective and practical in renewable energy applications for railroads. - Highlights: • A frequently ignored source of energy, railroad track vibrations, is harvested. • A novel conversion mechanism is designed to maximize efficiency. • Supercapacitors are included in the electromagnetic energy harvesting system. • A portable design is proposed for wider application. - Abstract: As the demand for alternative sources of energy has increased, harvesting abundant environmental energy such as vibration energy including track vibrations in railway systems has attracted greater attention. In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power

  10. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  11. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  12. Comment on ''Vacuum stress-energy tensor of the electromagnetic field in rotating frames''

    International Nuclear Information System (INIS)

    Mane, S.R.

    1991-01-01

    Hacyan and Sarmiento have found that an observer accelerating in a circle will detect a nonzero energy flux (Poynting vector) caused by the vacuum electromagnetic fluctuations in that frame. I wish to suggest that the above flux is related to synchrotron radiation. I treat only the leading order of perturbation theory

  13. Electromagnetic separation of stable isotopes at the Institute of Atomic Energy, Academia Sinica

    International Nuclear Information System (INIS)

    Hua, M.; Li, G.; Su, S.; Mao, N.; Lu, H.

    1981-01-01

    For almost 20 years the Institute of Atomic Energy, Academia Sinica has been separating stable isotopes of the elements by electromagnetic separators and supplying these materials to research work in many fields of our country. In this article we shall attempt to outline the growth of the effort and describe the present situation. (orig.)

  14. Generalized design formulas for low energy electromagnetic quads

    International Nuclear Information System (INIS)

    Liska, D.J.

    1994-06-01

    This technical note is the result of the quadrupole magnet design efforts that went into the development of proposals for large high-powered linear accelerators such as the Accelerator for Production of Tritium (APT), Accelerator for Base Conversion (of Plutonium) (ABC), and Accelerator for Treatment of (radioactive) Waste (ATW). In all these applications it was necessary to develop designs for numerous (hundreds) of electromagnetic quadrupoles (EMQs). EMQs are required since long-term reliability, radiation damage potential, and large aperture dictate against the use of permanent magnet quadrupoles (PMQs) for these powerful machines. One object of the magnet design effort was to provide a quick, reliable, and easy means of converting raw physics requirements (magnetic impulse, focal length, and boretube aperture) into realistic electrical, cooling, facility interface, and mechanical specifications and configurations--in other words, to easily convert physics requirements to a reliable design that could be drawn on paper, shown to vendors, and presented to peer review committees as a well-developed and believable concept. The empirical formulas that were derived have been gathered together in this technical note. They will be useful for other designers interested in an easy way of coming up with a rather complete mechanical as well as electrical and magnetic design for EMQs. Included are lab tests of designs derived from these formulas and comparisons with other real EMQ designs. These demonstrate the good accuracy of the empirical formulas

  15. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  16. Energy loss and thermalization of low-energy electrons

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Mozumder, A.; Notre Dame Univ., IN

    1984-01-01

    Various processes involved in the moderation of low-energy electrons (< 10 keV in energy) have been delineated in gaseous and liquid media. The discussion proceeds in two stages. The first stage ends and the second stage begins when the electron energy equals the first excitation potential of the medium. The second stage ends with thermalization. Cross sections for electronic excitation and for the excitation (and de-excitation) of sub-electronic processes have been evaluated and incorporated in suitable stopping power and transport theories. Comparison between experiment and theory and intercomparisons between theories and experiments have been provided where possible. (author)

  17. Source of vacuum electromagnetic zero-point energy and Dirac's large numbers hypothesis

    International Nuclear Information System (INIS)

    Simaciu, I.; Dumitrescu, G.

    1993-01-01

    The stochastic electrodynamics states that zero-point fluctuation of the vacuum (ZPF) is an electromagnetic zero-point radiation with spectral density ρ(ω)=ℎω 3 / 2π 2 C 3 . Protons, free electrons and atoms are sources for this radiation. Each of them absorbs and emits energy by interacting with ZPF. At equilibrium ZPF radiation is scattered by dipoles.Scattered radiation spectral density is ρ(ω,r) ρ(ω).c.σ(ω) / 4πr 2 . Radiation of dipole spectral density of Universe is ρ ∫ 0 R nρ(ω,r)4πr 2 dr. But if σ atom P e σ=σ T then ρ ρ(ω)σ T R.n. Moreover if ρ=ρ(ω) then σ T Rn = 1. With R = G M/c 2 and σ T ≅(e 2 /m e c 2 ) 2 ∝ r e 2 then σ T .Rn 1 is equivalent to R/r e = e 2 /Gm p m e i.e. the cosmological coincidence discussed in the context of Dirac's large-numbers hypothesis. (Author)

  18. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA

    Science.gov (United States)

    Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Dziewiecki, M.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Hillert, W.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rezinko, T.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-07-01

    The array of 3 × 3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter from the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  19. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at the ELSA

    International Nuclear Information System (INIS)

    Anosov, V.A.; Anfimov, N.V.; Barth, J.

    2015-01-01

    The array of 3x3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter on the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  20. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  1. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  2. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    Directory of Open Access Journals (Sweden)

    Ping Li

    2018-03-01

    Full Text Available In this paper, performances of vibration energy harvester combined piezoelectric (PE and electromagnetic (EM mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it’s found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power.

  3. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  4. NaI(Tl) electron energy resolution

    CERN Document Server

    Mengesha, W

    2002-01-01

    NaI(Tl) electron energy resolution eta sub e was measured using the Modified Compton Coincidence Technique (MCCT). The MCCT allowed detection of nearly monoenergetic internal electrons resulting from the scattering of incident 662 keV gamma rays within a primary NaI(Tl) detector. Scattered gamma rays were detected using a secondary HPGe detector in a coincidence mode. Measurements were carried out for electron energies ranging from 16 to 438 keV, by varying the scattering angle. Measured HPGe coincidence spectra were deconvolved to determine the scattered energy spectra from the NaI(Tl) detector. Subsequently, the NaI(Tl) electron energy spectra were determined by subtracting the energy of scattered spectra from the incident source energy (662 keV). Using chi-squared minimization, iterative deconvolution of the internal electron energy spectra from the measured NaI(Tl) spectra was then used to determine eta sub e at the electron energy of interest. eta sub e values determined using this technique represent va...

  5. Influence of inhomogeneities in scintillating fibre electromagnetic calorimeter on its energy resolution

    International Nuclear Information System (INIS)

    Stavina, P.; Tokar, S.; Budagov, Yu.A.; Chirikov-Zorin, I.; Pantea, D.

    1998-01-01

    The specific aspects related to the discrete structure of the scintillating fibre electromagnetic calorimeter are investigated by means of Monte-Carlo simulation. It is shown that the structure inhomogeneity leads to an additional contribution to the systematic term in the energy resolution parametrization formula which weakly depends on energy and to the distortion of the Gaussian form of response distribution. The investigation was carried out for small tilt angles and for the absorber-to-fibre ratio 4:1

  6. Electromagnetic energy and momentum from a charged particle

    International Nuclear Information System (INIS)

    Marx, E.

    1975-01-01

    The flux of the stress-energy tensor across a tube surrounding the world line of a charged particle is computed. By slight modifications of the definition of the Coulomb energy-momentum, the resulting expression contains the radiation reaction term (proportional to the square of the four-acceleration) but not the Schott term (proportional to the derivative of the acceleration). The equation of motion for the particle derived from this expression implies a variable rest mass. (author)

  7. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  8. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    Science.gov (United States)

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  9. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  10. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  11. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  12. Energy Recovery from a Non-Linear Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2018-03-01

    Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.

  13. A Belleville-spring-based electromagnetic energy harvester

    International Nuclear Information System (INIS)

    Castagnetti, Davide

    2015-01-01

    Energy harvesting from kinetic ambient energy is particularly effective to power autonomous sensors. This work proposes an innovative energy converter based on two counteracting Belleville springs and exploiting their peculiarity, for a height to thickness ratio equal to 1.414, of nearly zero stiffness over a wide deflection range. After analytical and numerical modelling a prototype is developed and experimentally investigated. The sub-optimal geometry of the commercial springs used in the prototype, together with a non-ideal response, makes the operating frequency for the prototype higher than in analytical and numerical predictions. Nevertheless, the harvester exhibits a significantly large bandwidth, together with a high output power, compared to similar solutions in the literature, for all the examined configurations and input excitations. (paper)

  14. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    Science.gov (United States)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  15. Air shower detection and the energy flow in electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor (Nuclear Power Oversight Committee (United States)); Vankov, H.P. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

    1992-02-01

    We study the longitudinal behaviour of the energy carried by the shower particles E{sub c} and its lateral distribution, give simple parametrizations of the results of Monte Carlo simulations, and discuss the advantages of shower detectors that measure directly E{sub c}. (author).

  16. Food irradiation by low energy electrons

    International Nuclear Information System (INIS)

    Bird, J.R.

    1985-01-01

    For some special cases, the use of low energy electrons has advantages over the use of gamma-rays or higher energy electrons for the direct irradiation of food. These advantages arise from details of the interaction processes which are responsible for the production of physical, chemical and biological effects. Factors involved include depth of penetration, dose distribution, irradiation geometry, the possible production of radioactivity and costs

  17. Atlas electromagnetic calorimeter and electron reconstruction commissioning with the first LHC collision data: study of the W' -> eν heavy gauge boson discovery potential

    International Nuclear Information System (INIS)

    Kuna, M.

    2010-09-01

    ATLAS is a general purpose particle detector based at the Large Hadron Collider which has been delivering collisions since the beginning of 2010, with an energy in the center of mass of √(s) = 7 TeV. The electron and the discovery potential it carries is the subject of my thesis. The electromagnetic calorimeter is a crucial sub-detector for the measurement of electrons kinematic properties. In order to verify its functioning, I contributed to the first in situ data analysis, cosmic muons in 2008 and LHC beam data in 2009. These analyses showed the electromagnetic calorimeter was operational and efficient over its whole coverage. The knowledge of the electrons energy losses before they reach the calorimeter is mandatory to achieve precise measurements. For that purpose, I contributed to a method evaluating the amount of material upstream using Monte-Carlo simulations of high transverse momentum electrons. The information from the electrons allows the mapping of the material from the inner tracker to the calorimeter entrance. In 2009 and 2010, the LHC collisions at √(s) = 900 GeV and √(s) = 7 TeV collisions provided ATLAS with its first electron candidates and enabled the verification of their reconstruction performance. In this prospect, I compared the electron identification variables of data and simulation. Finally, I prepared the search for a charged heavy gauge boson W' decaying in an electron and a neutrino, using a calorimetry only definition of missing transverse energy in order to improve the method's robustness in the perspective of an early data analysis. (author)

  18. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  19. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  20. Electron energy-distribution functions in gases

    International Nuclear Information System (INIS)

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected

  1. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  2. Electromagnetic energy harvesting from vibrations of multiple frequencies

    International Nuclear Information System (INIS)

    Yang Bin; Lee Chengkuo; Xie Jin; Han He, Johnny; Kotlanka, Rama Krishna; Feng Hanhua; Xiang Wenfeng; Low, Siew Ping

    2009-01-01

    A novel multi-frequency energy harvester has been designed and fabricated, which consists of three permanent magnets, three sets of two-layer copper coils and a supported beam of acrylic, while these coils are made of thin fire resistant 4 (FR4) substrates using a standard printed circuit board. The energy under the first, second and third resonant modes can be harvested, corresponding to the resonant frequencies of 369 Hz, 938 Hz and 1184 Hz, respectively. The maximum output voltage and power of the first and second vibration modes are 1.38 mV, 0.6 µW and 3.2 mV, 3.2 µW for a 14 µm exciting vibration amplitude and a 0.4 mm gap between the magnet and coils, respectively. The feasibility study results are in good agreement with the theoretical calculations and show promising application potentials

  3. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  4. Assessment of proposed electromagnetic quantum vacuum energy extraction methods

    OpenAIRE

    Moddel, Garret

    2009-01-01

    In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None has been reliably demonstrated, but the proposals remain largely unchallenged. In this paper the feasibility of these methods is assessed in terms of underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws. The methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Cas...

  5. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    Science.gov (United States)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  6. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  7. Isotensor electromagnetic current in low energy pion photoproduction

    International Nuclear Information System (INIS)

    Aznauryan, I.G.; Nagorskaya, I.A.; Zaslavskij, A.N.

    1974-01-01

    Recent experimental data on single pion photoproduction in the Δ (1236) resonance region are discussed. The role of the high energy contributions into the dispersion integrals are analyzed. Estimates for the magnitude of the isotensor contributions are obtained in the dispersion approach using the experimental data of various groups. In spite of the great number of the experiments the estimate is ambiguous yet since there are direct discrepancies between the data of various groups, besides, certain available data are incomplete. The data of some groups are compatible with 10% isotensor contribution

  8. Golden mean energy equals highest atomic electron orbital energy

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, P.O. Box 371, Monroeville, PA 15146 (United States)], E-mail: LJMalinowski@gmail.com

    2009-12-15

    The golden mean numerical value {phi} = 0.5({radical}5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  9. Golden mean energy equals highest atomic electron orbital energy

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden mean numerical value φ = 0.5(√5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  10. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  11. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  12. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  13. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  14. A long electromagnetic wiggler for the paladin free-electron laser experiments

    International Nuclear Information System (INIS)

    Deis, G.A.; Harvey, A.R.; Parkison, C.D.; Prosnitz, D.; Rego, J.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    We have designed, built, and tested a 25.6-m-long wiggler for a free-electron-laser (FEL) experiment. It is a DC iron-core electromagnetic wiggler that incorporates a number of important and unique features. Permanent magnets are used to suppress saturation in the iron and extend the linear operating range. Steering-free excitation allows real-time adjustment of the field taper without causing beam steering. Wiggle-plane focusing is produced by curved pole tips. The magnitude of random pole-to-pole field errors is minimized by a mechanical design concept that reduces tolerance stackup in critical locations. To date, we have tested 15 m of this wiggler, and our measurements have shown exceptionally low levels of random errors. 8 refs

  15. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  16. Self-focusing of electromagnetic waves as a result of relativistic electron-mass variation

    International Nuclear Information System (INIS)

    Spatschek, K.H.

    1977-01-01

    Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self-focusing length of an axially symmetric beam is obtained. Including higher-order dispersive effects it is shown that within the thin-beam approximation the complex electric field envelope obeys a cubic nonlinear Schroedinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schroedinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of the beam radius along the axial direction occur. (author)

  17. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    Science.gov (United States)

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  18. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  19. Electron acceleration by electromagnetic irradiation of a weakly-collisional plasma

    International Nuclear Information System (INIS)

    Karfidov, D.M.; Lukina, N.A.; Sergeychev, K.F.

    1989-01-01

    In this paper, electron acceleration is investigated experimentally in both a homogeneous and an inhomogeneous plasma. In the first case acceleration is produced by development of a parametric instability, while in the second case acceleration in a plasma resonance field is used. It is demonstrated that multiple electron passes through a resonant field will produce and accelerated electron energy spectrum characterized by the effective temperature. It is established that the electron replacement current flowing in the interaction region between the plasma and a spatially-limited microwave field excites ion-acoustic turbulence in plasma and also produces an anomalously low thermal conductivity and an anomalously high resistivity

  20. Second Born approximation in elastic-electron scattering from nuclear static electro-magnetic multipoles

    International Nuclear Information System (INIS)

    Al-Khamiesi, I.M.; Kerimov, B.K.

    1988-01-01

    Second Born approximation corrections to electron scattering by nuclei with arbitrary spin are considered. Explicit integral expressions for the charge, magnetic dipole and interference differential cross sections are obtained. Magnetic and interference relative corrections are then investigated in the case of backward electron scattering using shell model form factors for nuclear targets 9 Be, 10 B, and 14 N. To understand exponential growth of these corrections with square of the electron energy K 0 2 , the case of electron scattering by 6 Li is considered using monopole model charge form factor with power-law asymptotics. 11 refs., 2 figs. (author)

  1. Electron energy recuperation in gyrodevices

    International Nuclear Information System (INIS)

    Savilov, A. V.; Nusinovich, G. S.; Sinitsyn, O. V.

    2008-01-01

    For many applications of gyrodevices, it is extremely important to increase their overall efficiency and reduce the power consumption. Therefore, at present, there are many gyrotrons operating with depressed collectors. These gyrotrons and their depressed collectors are typically designed with the use of available numerical codes. This paper is devoted to the analysis of the energy recuperation in gyrotrons, which is performed with the use of the Hamiltonian formalism. Such consideration gives some insight into the physics of gyrodevices and can be useful for estimating the benefits from utilizing depressed collectors. Both single-cavity gyromonotrons and multicavity gyrodevices in which the last cavity is excited by a prebunched beam are analyzed. Special attention is paid to a three-cavity, frequency-quadrupling gyrodevice.

  2. Interaction of a two-dimensional electromagnetic breather with an electron inhomogeneity in an array of carbon nanotubes

    International Nuclear Information System (INIS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, E. G.; Belonenko, Mikhail B.

    2014-01-01

    Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.

  3. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic

  4. Some radiation safety aspects of operating medical generators of VHF electromagnetic energy

    International Nuclear Information System (INIS)

    Bosevski, V.; Radev, S.; Donev, Ch.

    1977-01-01

    The state of radiation safety in physiotherapy practice using very-high-frequency diathermy was studied with regard to personnel and patient protection. A specially devised shielding set to protect patients and personnel is offered for adoption, and the necessity is insistently stressed of prohibiting any patient head or gonad exposure. It is pointed out that the protective set developed may also be used at facilities employing other types of VHF electromagnetic energy sources. (author)

  5. Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances

    Science.gov (United States)

    2012-06-01

    boundary of a local flux tube volume is an equipotential . Figure 4 contains maps of Poynting flux normal to a 500 km altitude surface and maps of height...as a cell quantity throughout its computational volume, we are able to generate maps of the Poynting flux, ⃗ ⃗⃗⃗⃗⃗⃗ , on altitude surfaces at...the top of the thermosphere. We used separate modules to integrate the Poynting flux over this surface to compute the total electromagnetic energy

  6. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  7. Low energy electron scattering from fuels

    International Nuclear Information System (INIS)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M.

    2011-01-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  8. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  9. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    Science.gov (United States)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  10. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  11. Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2017-06-01

    Full Text Available Considering coil inductance and the spatial distribution of the magnetic field, this paper developed an approximate distributed-parameter model of a hybrid energy harvester (HEH. The analytical solutions were compared with numerical solutions. The effects of load resistances, electromechanical coupling factors, mechanical damping ratio, coil parameters and size scale on performance were investigated. A meso-scale HEH prototype was fabricated, tested and compared with a stand-alone piezoelectric energy harvester (PEH and a stand-alone electromagnetic energy harvester (EMEH. The peak output power is 2.93% and 142.18% higher than that of the stand-alone PEH and EMEH, respectively. Moreover, its bandwidth is 108%- and 122.7%-times that of the stand-alone PEH and EMEH, respectively. The experimental results agreed well with the theoretical values. It is indicated that the linearized electromagnetic coupling coefficient is more suitable for low-level excitation acceleration. Hybrid energy harvesting contributes to widening the frequency bandwidth and improving energy conversion efficiency. However, only when the piezoelectric coupling effect is weak or medium can the HEH generate more power than the single-mechanism energy harvester. Hybrid energy harvesting can improve output power even at the microelectromechanical systems (MEMS scale. This study presents a more effective model for the performance evaluation and structure optimization of the HEH.

  12. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  13. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Fisher, Frank T

    2009-01-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ∼332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d 33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device

  14. Energy principle for excitations in plasmas with counterstreaming electron flows

    Science.gov (United States)

    Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman

    2018-05-01

    A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.

  15. Reconstruction of an Non-Monochromatically Illuminated Object Imaged through an Electron Microscope with a Fluctuating Electromagnetic Field

    NARCIS (Netherlands)

    Hoenders, B.J.

    1975-01-01

    It is shown that a weak phase object imaged by an electron microscope within the presence of instabilities of the lense currents and the acceleration voltage, fluctuating electromagnetic field, can be reconstructed from the intensity distribution in the image plane. Perfectly incoherent illumination

  16. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    Science.gov (United States)

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  17. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  18. Broadband hybrid electromagnetic and piezoelectric energy harvesting from ambient vibrations and pneumatic vortices induced by running subway trains.

    Science.gov (United States)

    2017-05-01

    The airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and : trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively : magnetized formation of 6 magnets to...

  19. Electronic market places in the energy

    International Nuclear Information System (INIS)

    Mons, L.

    2001-12-01

    Electronic market places in the energy domain occurred at the end of the 90's in the US and have started to develop in Europe in the year 2000. About 60 platforms are registered today and this development can be explained by the advantages raised by such an infrastructure: simplification of purchase procedures, reduction of delays in the purchase decision, reduction of administrative costs etc.. However, today none of these electronic market places is profitable and several have closed down. On the other hand, this tool will certainly become necessary in the future and all energy actors are developing projects in this way. This study analyzes the electronic market places phenomenon in the energy domain using 10 market places examples with their key-factors of success. It draws out a complete status of the initiatives developed today and presents some scenarios of evolution. (J.S.)

  20. Electromagnetic cascades produced by gamma-quanta with the energy Eγ=100-3500 MeV

    International Nuclear Information System (INIS)

    Slowinski, B.

    1990-01-01

    Fluctuations of the electron ionization loss (IL) in electromagnetic showers produced by gamma-quanta of energy E γ between 100 and 3500 MeV have been studied using pictures of the 180 l xenon bubble chamber of ITEP (Moscow). The distribution of the standard deviation σ A of the part A of the IL released along the shower axis and in its lateral direction was obtained and found to be approximately independent of Eγ at Eγ≥500 MeV when expressed as a fuction of A and normalized to maximum value of the σ A in the case of the lateral shower development. The relative spread of the average longitudinal and lateral e.m. shower dimensions are discussed too. 18 refs.; 4 figs

  1. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  2. Influence of inhomogeneities in scintillating fibre electromagnetic calorimeter on its energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stavina, P; Tokar, S [Department of Nuclear Physics, Comenius University, Bratislava (Slovak Republic); Budagov, Yu A [Joint Institute for Nuclear Research, Dubna (Russian Federation); Chirikov-Zorin, I; Pantea, D [Institute of Atomic Physics, Bucharest (Romania)

    1998-12-01

    The specific aspects related to the discrete structure of the scintillating fibre electromagnetic calorimeter are investigated by means of Monte-Carlo simulation. It is shown that the structure inhomogeneity leads to an additional contribution to the systematic term in the energy resolution parametrization formula which weakly depends on energy and to the distortion of the Gaussian form of response distribution. The investigation was carried out for small tilt angles and for the absorber-to-fibre ratio 4:1 10 refs., 7 refs., 2 tabs.

  3. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    Science.gov (United States)

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  4. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  5. Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We investigate the strain energy density of the spacetime continuum in the Elasto- dynamics of the Spacetime Continuum by applying continuum m echanical results to strained spacetime. The strain energy density is a scalar. W e find that it is separated into two terms: the first one expresses the dilatation energy density (the “mass” longitu- dinal term while the second one expresses the distortion en ergy density (the “massless” transverse term. The quadratic structure of the energy rel ation of Special Relativity is found to be present in the theory. In addition, we find that the kinetic energy pc is car- ried by the distortion part of the deformation, while the dil atation part carries only the rest-mass energy. The strain energy density of the electrom agnetic energy-momentum stress tensor is calculated. The dilatation energy density (the rest-mass energy density of the photon is found to be 0 as expected. The transverse dis tortion energy density is found to include a longitudinal electromagnetic energy fl ux term, from the Poynting vector, that is massless as it is due to distortion, not dilatation, of the spacetime con- tinuum. However, because this energy flux is along the direct ion of propagation (i.e. longitudinal, it gives rise to the particle aspect of the el ectromagnetic field, the photon.

  6. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    Science.gov (United States)

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED

  7. A permanent magnet electron beam spread system used for a low energy electron irradiation accelerator

    International Nuclear Information System (INIS)

    Huang Jiang; Xiong Yongqian; Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Yu Tiaoqin; Fan Mingwu; Yang Bo

    2014-01-01

    The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size. (authors)

  8. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyong; Wang, Chi; Dong, Jianing; Wei, Yifeng [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Wen, Sicheng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Zhang, Yunlong, E-mail: ylzhang@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Chen, Dengyi; Hu, Yiming [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Huang, Guangshun; Wang, Xiaolian [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); and others

    2016-11-11

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  9. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    International Nuclear Information System (INIS)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-01-01

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns

  10. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  11. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  12. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  13. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  14. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Directory of Open Access Journals (Sweden)

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  15. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  16. Saturation and Energy Corrections for TeV Electrons and Photons

    CERN Document Server

    Clerbaux, Barbara; Mahmoud, Tariq; Marage, Pierre Edouard

    2006-01-01

    This note presents a study of the response of the CMS electromagnetic calorimeter ECAL to high energy electrons and photons (from 500 to 4000 GeV), using the full simulation of the CMS detector. The longitudinal containment and the lateral extension of high energy showers are discussed, and energy and eta dependent correction factors F(E_meas, eta), where E_meas = E_ECAL + E_HCAL, are determined in order to reconstruct the incident particle energy, using the energies measured in the ECAL and in the hadronic calorimeter HCAL. For ECAL barrel crystals with energy deposit higher than 1700 GeV, improvements are proposed to techniques aimed at correcting for the effects of electronics saturation.

  17. Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic

    Directory of Open Access Journals (Sweden)

    Muhammad Yazid Muhammad Ammar Faris

    2017-01-01

    Full Text Available Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed using the Ansys software with the harmonic analysis solver to analyze and examine hybrid harvesting energy system. Both power output generated from the magnet and the piezoelectric is then combined to form one unit of energy. Further, it was found that the result shows the system generate the maximum power output of 14.85 μW from 100 Hz, 4.905 m/s2, and 0.6 cm3 for resonance frequency, acceleration, and the volume respectively from the optimal energy harvester design. Normalized Power Density (NPD result of 10.29 kgs/m3 comparable with other literature also can be used in energy harvesting system for vibration application.

  18. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  19. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  20. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  1. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  2. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  3. Low energy electron transport in furfural

    Science.gov (United States)

    Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo

    2017-09-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.

  4. Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity

    International Nuclear Information System (INIS)

    Choi, Cheong R.; Lee, Nam C.

    2004-01-01

    The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion

  5. Towards the petascale in electromagnetic modeling of plasma-based accelerators for high-energy physics

    International Nuclear Information System (INIS)

    Bruhwiler, D L; Antonsen, T; Cary, J R; Cooley, J; Decyk, V K; Esarey, E; Geddes, C G R; Huang, C; Hakim, A; Katsouleas, T; Messmer, P; Mori, W B; Tsung, F S; Vieira, J; Zhou, M

    2006-01-01

    Plasma-based lepton acceleration concepts are a key element of the long-term R and D portfolio for the U.S. Office of High Energy Physics. There are many such concepts, but we consider only the laser (LWFA) and plasma (PWFA) wakefield accelerators. We present a summary of electromagnetic particle-in-cell (PIC) simulations for recent LWFA and PWFA experiments. These simulations, including both time explicit algorithms and reduced models, have effectively used terascale computing resources to support and guide experiments in this rapidly developing field. We briefly discuss the challenges and opportunities posed by the near-term availability of petascale computing hardware

  6. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  7. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  8. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    International Nuclear Information System (INIS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S 3 EL). In the S 3 EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S 3 EL concept is used in combination with the XRAM principle, allowing current multiplication.

  9. Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy.

    Science.gov (United States)

    Cao, Ran; Zhou, Tao; Wang, Bin; Yin, Yingying; Yuan, Zuqing; Li, Congju; Wang, Zhong Lin

    2017-08-22

    Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion.

  10. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  11. Potentialities for the diversification of the energy matrix of the National Center for Applied Electromagnetism

    International Nuclear Information System (INIS)

    Berenguer Ungaro, Mónica Rosario; Yero, Douglas Deás; López Juanes, Pedro; Areas Gilar, Ramón; Prada Sánchez, Jorge; Hernández Rodríguez, Norma Rafaela

    2017-01-01

    The objective of this work is to evaluate the potential for the diversification of the energy matrix of the National Center for Applied Electromagnetism, CNEA. This evaluation were realize through Three steps . In the first step, were determinated the demand for electricity from the CNEA, the electric bill were the source of information. In the second step, were identified the possible locations, for instalation of the solar panels.the third step, were calculated what percentage of the demand for electrical energy the CNEA that could be covered by the generation with this photovoltaic panels . As a result, five possible locations were identified, all on the CNEA roof. With the proposition we can cover between a 35 and 78% of the demand of CNEA electrical energy. It was recommended to continue with the technical-economic study in order to present a project for the search of the financing. (author)

  12. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    International Nuclear Information System (INIS)

    March, N.H.

    2002-08-01

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  13. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-01-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  14. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  15. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    Science.gov (United States)

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  16. Quantum energy teleportation with an electromagnetic field: discrete versus continuous variables

    International Nuclear Information System (INIS)

    Hotta, Masahiro

    2010-01-01

    It is well known that usual quantum teleportation protocols cannot transport energy. Recently, new protocols called quantum energy teleportation (QET) have been proposed, which transport energy by local operations and classical communication with the ground states of many-body quantum systems. In this paper, we compare two different QET protocols for transporting energy with the electromagnetic field. In the first protocol, a 1/2 spin (a qubit) is coupled with the quantum fluctuation in the vacuum state and measured in order to obtain one-bit information about the fluctuation for the teleportation. In the second protocol, a harmonic oscillator is coupled with the fluctuation and measured in order to obtain continuous-variable information about the fluctuation. In the spin protocol, the amount of teleported energy is suppressed by an exponential damping factor when the amount of input energy increases. This suppression factor becomes power damping in the case of the harmonic oscillator protocol. Therefore, it is concluded that obtaining more information about the quantum fluctuation leads to teleporting more energy. This result suggests a profound relationship between energy and quantum information.

  17. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  18. Motion of charged particles in a knotted electromagnetic field

    International Nuclear Information System (INIS)

    Arrayas, M; Trueba, J L

    2010-01-01

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  19. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  20. Influence of Electrical and Electromagnetic Stimulation on Nerve Regeneration in the Transected Mouse Sciatic Nerve : An Electron Microscopic Study

    OpenAIRE

    Ogata, Akiko; Matsumoto, Tomoko; Matsubara, Takako; Miki, Akinori

    2001-01-01

    Influence of electrical and electromagnetic stimulation on nerve regeneration was electron microscopically examined in the transected mouse sciatic nerve. Two days after the transection, several thin regenerating axons (daughter axons) were observed between the myelin sheath and basal lamina of Schwann cells in the proximal stump. Growth cones of the daughter axons contained several small round vesicles and mitochondria, and the shaft of them, neurofilaments, neurotubules and profiles of smoo...

  1. Understanding zero-point energy in the context of classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Today’s textbooks of electromagnetism give the particular solution to Maxwell’s equations involving the integral over the charge and current sources at retarded times. However, the texts fail to emphasise that the choice of the incoming-wave boundary conditions corresponding to solutions of the homogeneous Maxwell equations must be made based upon experiment. Here we discuss the role of these incoming-wave boundary conditions for an experimenter with a hypothetical charged harmonic oscillator as his equipment. We describe the observations of the experimenter when located near a radio station or immersed in thermal radiation at temperature T . The classical physicists at the end of the 19th century chose the incoming-wave boundary conditions for the homogeneous Maxwell equations based upon the experimental observations of Lummer and Pringsheim which measured only the thermal radiation which exceeded the random radiation surrounding their measuring equipment; the physicists concluded that they could take the homogeneous solutions to vanish at zero temperature. Today at the beginning of the 21st century, classical physicists must choose the incoming-wave boundary conditions for the homogeneous Maxell equations to correspond to the full radiation spectrum revealed by the recent Casimir force measurements which detect all the radiation surrounding conducting parallel plates, including the radiation absorbed and emitted by the plates themselves. The random classical radiation spectrum revealed by the Casimir force measurements includes electromagnetic zero-point radiation, which is missing from the spectrum measured by Lummer and Pringsheim, and which cannot be eliminated by going to zero temperature. This zero-point radiation will lead to zero-point energy for all systems which have electromagnetic interactions. Thus the choice of the incoming-wave boundary conditions on the homogeneous Maxwell equations is intimately related to the ideas of zero-point energy and

  2. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  3. Conversion of electromagnetic waves at the ionisation front

    International Nuclear Information System (INIS)

    Chegotov, M V

    2001-01-01

    It is shown that a weak electromagnetic pulse interacting with a copropagating ionisation front is converted in the general case into three electromagnetic pulses with higher and lower frequencies, which propagate in different directions. The coefficients of conversion to these pulses (for intensities) were found as functions of the frequency. The electromagnetic energy is shown to decrease during this conversion because of the losses for the residual electron energy. (interaction of laser radiation with matter. laser plasma)

  4. Calibration of the electromagnetic part of the ZEUS calorimeter with electrons

    International Nuclear Information System (INIS)

    Bargende, A.

    1991-05-01

    Ten modules of the Uranium-Scintillator-Calorimeter for ZEUS were exposed to the X5-beam at CERN. The momentum of the beam is determined with an accuracy of better than 1.1%. From measurements with electrons in the energy range of 10 to 110 GeV we obtain the following results. The energy resolution is found to be better than 18% / √ E/GeV. A worse resolution measured in the HACO-towers is explained by averaging effects over the beam size. The uranium noise provides an intercalibration of the calorimeter sections within 1.1% for electron signals in the FCAL (1.5% in RCAL). The linearity of the FCAL is better than 0.5%. Nonlinearities of 2% in the RCAL are mainly caused by the photomultipliers. (orig.) [de

  5. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  6. Simulation and testing of a micro electromagnetic energy harvester for self-powered system

    Directory of Open Access Journals (Sweden)

    Yiming Lei

    2014-01-01

    Full Text Available This paper describes a low cost and efficient electromagnetic vibration energy harvester (EVEH for a self-powered system. The EVEH consists of a resistant (copper spring, a permanent magnet (NdFeB35 and a wire-wound copper coil. The copper spring was fabricated by the laser precision cutting technology. A numerical model was adopted to analyze magnetic field distribution of a rectangle permanent magnet. The finite element (FEM soft ANSYS was used to simulate the mechanical properties of the system. The testing results show that the micro electromagnetic vibration energy harvester can generate the maximal power 205.38 μW at a resonance frequency of 124.2 Hz with an acceleration of 0.5 g (g = 9.8 ms−2 across a load the 265 Ω and a superior normalized power density (NPD of 456.5 μW cm−3 g−2. The magnetic field distribution of the permanent magnet was calculated to optimize geometric parameters of the coil. The proposed EVEH has a high efficiency with the lower cost.

  7. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    International Nuclear Information System (INIS)

    Salauddin, M; Park, J Y

    2016-01-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance. (paper)

  8. Healing of damaged metal by a pulsed high-energy electromagnetic field

    Science.gov (United States)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  9. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  10. ANALYTICAL CALCULATION OF THE BASIC ELECTROMAGNETIC LOSSES OF THE ENERGY OF THE FREQUENCY-REGULATED ASYNCHRONOUS ENGINE IN POSITIONING

    Directory of Open Access Journals (Sweden)

    V. O. Volkov

    2018-02-01

    Full Text Available Purpose. Obtaining analytical dependencies for the calculation of the main electromagnetic energy losses of a frequency-controlled induction motor in positioning modes with small displacements for various types (linear, parabolic and quasi-optimal of its velocity variation. Methodology. Similarity methods, differential and integral calculus, analytical interpolation, mathematical analysis. Findings. Analytical dependencies for calculation of current electromagnetic power losses and basic electromagnetic energy losses of a frequency-controlled asynchronous motor in the modes of positioning with small displacements for various types (linear, parabolic and quasi-optimal of its velocity are obtained. A universal form of the analytical dependence for calculating the optimal acceleration and deceleration times for a frequency-controlled asynchronous motor for positioning with small displacements, corresponding to minimization of the main electromagnetic energy losses of this engine with the indicated positioning for various species (linear, parabolic and quasi-optimal, is obtained. A comparative quantitative assessment of the change is made: the optimum values of the main electromagnetic energy losses of the frequency-controlled asynchronous engine and the corresponding maximum speed and optimal acceleration and deceleration times, in the function of the set prescribed small displacements for the various engine speed trajectories under consideration. Originality. For the first time, analytical dependencies for the calculation of the main electromagnetic energy losses of a frequency-controlled asynchronous motor are obtained for positioning with small displacements as a function of the set values of the movement of the motor shaft and the set values of its acceleration and deceleration times for the specified specified displacements. For the first time, dependences are obtained for a quantitative estimate of the minimum fundamental electromagnetic

  11. A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    CERN Document Server

    Li, Zhiying; Wei, Yifeng; Wang, Chi; Zhang, Yunlong; Wen, Sicheng; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.

  12. Present state and problems of radiological protection monitoring for high energy electron accelerator facilities in SPring-8

    International Nuclear Information System (INIS)

    Miyamoto, Yukihiro; Harada, Yasunori; Ueda, Hisao

    1998-09-01

    The present state and problems of the radiological protection monitoring for the high-energy electron accelerator are summarized. In the radiological protection monitoring for SPring-8, a third generation synchrotron radiation facility, there are many problems specific to the high-energy electron accelerator. This report describes the monitoring technique of pulsed radiation, high-energy radiation and low-energy radiation, and their problems. The management of induced radioactivity and the effects of electro-magnetic noise to monitoring instruments are also discussed. (author)

  13. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    International Nuclear Information System (INIS)

    Mandal, Anirban; Hunt, Katharine L. C.

    2016-01-01

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H m and a field term H f , and show that both H m and H f have gauge-independent expectation values. Any gauge may be chosen for the calculations; but

  14. Development of a Vibration-Based Electromagnetic Energy Harvester by a Conductive Direct-Write Process

    Directory of Open Access Journals (Sweden)

    Yao-Yun Feng

    2017-03-01

    Full Text Available A conductive direct-write process of multilayered coils for micro electromagnetic generators is proposed. This novel approach of using silver ink to form the conductive structures largely reduces the fabrication complexity, and it provides a faster alternative to the conventional semiconductor methods. Multi-layered coils with insulation were accurately layered on a micromachined cantilevered diaphragm by a dispenser. Coils several layers thick could be used to increase the power output and double coils were separated by a layer of insulation. Six prototypes, all capable of efficient conversion of vibrational energy into electrical energy, were fabricated. The experimental results, which include measurements of the electromotive force and power output, are presented. Prototypes with two coils and thicker conducting layers had less resistance and the power output was much more than that of a single-coil unit. This generator can produce 82 nW of power at a resonance frequency of 275 Hz under 5 g excitation.

  15. CsI electromagnetic calorimeter development for a low or medium energy e+e- collider

    International Nuclear Information System (INIS)

    King, M.E.

    1993-10-01

    Design considerations for an electromagnetic Csl calorimeter suitable for use at low and medium energy, high-luminosity e + e - storage rings are presented, together with results of a test of an array of Csl(Tl) crystals in an e - /π - beam (120 to 400 MeV) at TRIUMF. The crystal array used in the test was designed to explore longitudinal and transverse crystal segmentation, and a redundant wavelength-shifter and photodiode readout system. Energy resolution of (1.69 ± 0.08)%/√E and (1.83 ± 0.05)%/√E was obtained for two different crystal tower configurations. Position resolution of 6.5 (9.0) mm was obtained at 300 (120)MeV for four 4x4 cm 2 , 4 rl. Csl crystals

  16. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  17. Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion

    Science.gov (United States)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2016-11-01

    This paper presents a magnetically levitated electromagnetic vibration energy harvester based on magnet arrays. It has a nonlinear response that extends the operating bandwidth and enhances the power output of the harvesting device. The harvester is designed to be embedded in a hip prosthesis and harvest energy from low frequency movements (< 5 Hz) associated with human motion. The design optimization is performed using Comsol simulation considering the constraints on size of the harvester and low operating frequency. The output voltage across the optimal load 3.5kΩ generated from hip movement is 0.137 Volts during walking and 0.38 Volts during running. The power output harvested from hip movement during walking and running is 5.35 μW and 41.36 μW respectively..

  18. Monte-Carlo simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.

    1984-01-01

    The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated

  19. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  20. Energy and environmental intolerance: electromagnetic hypersensitivity, wind turbine syndrome. What is the reality?

    International Nuclear Information System (INIS)

    Bonnet-Belfais, Monique; Lambrozo, Jacques; Souques, Martine; Piotrowski, Aleksandra; Tossa, Paul

    2017-01-01

    The current debate about means of power generation, in the framework of the energy transition, must necessarily consider questions about different forms of idiopathic environmental intolerance, notably hypersensitivity attributed to electromagnetic fields and the wind turbine syndrome, which incriminates the low frequency- and infra-sound waves emitted by industrial wind turbines. This article attempts to take stock of current knowledge about each of these conditions, highlighting their differences and similarities. Although the offending sources are different, the symptoms, variable and not specific to any particular disease, are very similar. Nor has any consensual clinical definition of these conditions or their diagnostic criteria been established. Despite the lack of objective diagnostic criteria, many studies have investigated the existence of a potential causal link between the symptoms and the environmental factors implicated, attempting to highlight a possible plausible underlying mechanism, either biological or psychological. Although there is no doubt about the reality or the potential severity of the symptoms of electromagnetic hypersensitivity, no causal link with electromagnetic fields has been demonstrated to date, and no biological mechanism appears plausible. For the wind turbine syndrome, no direct health effect on the ear or other organs due to the noise emission of wind turbines, including low frequency and infra-sound waves, has been demonstrated. The frequently mentioned discomfort has most often been linked to a negative perception of wind turbines. Psychological mechanisms have been explored for both syndromes, including a potential nocebo effect. Studies are also beginning to investigate the weight of the collective and sociological aspects that might favor the emergence of these forms of intolerance. Finally, in terms of medical care, the article considers the relation of these emerging environmental sensitivities to functional disorders

  1. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    Science.gov (United States)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo

    2015-11-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.

  2. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    International Nuclear Information System (INIS)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Hu, Chenguo; Shi, Haofei

    2015-01-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices. (paper)

  3. Radiation from a Relativistic Electron Beam in a Molecular Medium due to Parametric Pumping by a Strong Electromagnetic Wave,

    Science.gov (United States)

    1981-02-01

    UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS 4WJD ASTRONOMY COLLG PAM A 2 3i 81 4 30) 235. RADIATION FROM A .ELATIVISTIC_§LECTRON BEAM IN AZOLECULAR...A MOLECULAR MEDIUM DUE TO PARAMETRIC PUMPING BY A STRONG ELECTROMAGNETIC WAVE L. Stenflo Department of Plasma Physics Umel University S-90187 Umel...GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81

  4. Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories

    KAUST Repository

    Ahmad, Mahmoud Al; Alshareef, Husam N.; Elshurafa, Amro M.; Salama, Khaled N.

    2012-01-01

    -to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line

  5. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  6. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  7. Low energy electron transport in furfural

    International Nuclear Information System (INIS)

    Lozano, A.I.; Garcia, G.; Krupa, K.; Ferreira da Silva, F.; Limao-Vieira, P.; Blanco, F.; Munoz, A.; Jones, D.B.; Brunger, M.J.

    2017-01-01

    The cyclic configuration of the furfural molecule is similar to the 5-membered ring structure constituting the sugar units of the DNA helix, hence its importance in biology. In this paper, we report on an initial investigation into the transport of electrons through a gas cell containing 1 mtorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed

  8. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  9. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  10. A compact ball screw based electromagnetic energy harvester for railroad application

    Science.gov (United States)

    Pan, Yu; Lin, Teng; Liu, Cheng; Yu, Jie; Zuo, Jianyong; Zuo, Lei

    2018-03-01

    To enable the smart technologies, such as the positive train controls, rail damage detection and track health monitoring on the railroad side, the electricity is required and in needed. In this paper, we proposed a novel ball-screw based electromagnetic energy harvester for railway track with mechanical-motion-rectifier (MMR) mechanism, to harvest the energy that usually dissipated and wasted during train induced track vibration. Ball screw based design reduces backlash during motion transmission, and MMR nonlinear characteristics with one way clutches makes the harvester convert the bi-direction track vibration into a generator's unidirectional rotation, which improves the transmission reliability and increases the energy harvesting efficiency. A systematic model combining train-rail-harvester was established to analyze the dynamic characteristic of the proposed railway energy, and lab and in-field tests were carried out to experimentally characterize the proposed energy harvester. In lab bench test showed the proposed harvester reached a 70% mechanical efficiency with a high sensitivity to the environment vibration. In filed test showed that a peak 7.8W phase power was achieved when a two marshaling type A metro train passed by with a 30 km/h.

  11. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  12. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    Directory of Open Access Journals (Sweden)

    Yongfeng Qiu

    2017-11-01

    Full Text Available Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA, which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T of the transient current of the gas main switch and the dominant frequency (F of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  13. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    Sharma, Vijay; Rajan, Rehim; Acharya, S.; Mittal, K.C.

    2011-01-01

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  14. Electron energy deposition in the middle atmosphere

    International Nuclear Information System (INIS)

    Vampola, A.L.; Gorney, D.J.

    1983-01-01

    Spectra of locally precipating 36- to 317-keV electrons obtained by instrumentation on the S3-2 satellite are used to calculate energy deposition profiles as a function of latitude, longitude, and altitude. In the 70- to 90-km altitude, mid-latitude ionization due to these precipitating energetic electrons can be comparable to that due to direct solar H Lyman α. At night, the electrons produce ionization more than an order of magnitude greater than that expected from scattered H Lyman α. Maximum precipitation rates in the region of the South Atlantic Anomaly are of the order of 10 -2 erg/cm 2 s with a spectrum of form j(E) = 1.34 x 10 5 E/sup -2.27/ (keV). Southern hemisphere precipitation dominates that in the north for 1.1< L<6 except for regions of low local surface field in the northern hemisphere. Above L = 6, local time effects dominate: i.e., longitudinal effects due to the asymmetric magnetic field which are strong features below L = 6 disappear and are replaced by high-latitude precipitation events which are local time features

  15. The freely localized microwave discharge in air in the focused beam of the electromagnetic energy

    International Nuclear Information System (INIS)

    Alexandrov, A.F.; Kuzovnikov, A.A.; Shibkov, V.M.

    1995-01-01

    The successfull use of the microwave discharge in many applications make it necessary to research the physics of a new kind of discharge - the electrodeless microwave discharge in the focused beam, in the free space and to search for ways to optimize this discharge parameters. The breakdown was performed in a discharge chamber at approximately free space conditions: R/λ much-gt 1, where R = 1 m is the discharge chamber's dimension, λ = 2 divided-by 10 cm is the wavelength of the microwave radiation. The focused electromagnetic beam was formed by a trumped-lens antenna. The electric field E≤6 kV/cm, the density of energy flow S≤10 5 W/cm 2 , the wave is linearity polarized. The microwave pulse duration could be changed from 1 μs to 1 ms. The gas pressure (nitrogen, air) is varied from 1 to 760 torr

  16. Prediction of the Electromagnetic Field Distribution in a Typical Aircraft Using the Statistical Energy Analysis

    Science.gov (United States)

    Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane

    2016-05-01

    Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.

  17. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R. [Oak Ridge National Lab., TN (United States); Palmer, R.L.; Moscone, C.G.; Jackson, R.G. [Tennessee Univ., Knoxville, TN (United States)

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  18. Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach

    International Nuclear Information System (INIS)

    Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard

    2010-01-01

    Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.

  19. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  20. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  1. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    International Nuclear Information System (INIS)

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    2017-01-01

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)

  2. Non-resonant electromagnetic energy harvester for car-key applications

    Science.gov (United States)

    Li, X.; Hehn, T.; Thewes, M.; Kuehne, I.; Frey, A.; Scholl, G.; Manoli, Y.

    2013-12-01

    This paper presents a novel non-resonant electromagnetic energy harvester for application in a remote car-key, to extend the lifetime of the battery or even to realize a fully energy autonomous, maintenance-free car-key product. Characteristic for a car-key are low frequency and large amplitude motions during normal daily operation. The basic idea of this non-resonant generator is to use a round flat permanent magnet moving freely in a round flat cavity, which is packaged on both sides by printed circuit boards embedded with multi-layer copper coils. The primary goal of this structure is to easily integrate the energy harvester with the existing electrical circuit module into available commercial car-key designs. The whole size of the energy harvester is comparable to a CR2032 coin battery. To find out the best power-efficient and optimal design, several magnets with different dimensions and magnetizations, and various layouts of copper coils were analysed and built up for prototype testing. Experimental results show that with an axially magnetized NdFeB magnet and copper coils of design variant B a maximum open circuit voltage of 1.1V can be observed.

  3. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden); Jefferson Lab, Newport News, VA (United States); Leupold, Stefan; Perotti, Elisabetta [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden)

    2017-06-15

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)

  4. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  5. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  6. Low-noise electromagnetic δf particle-in-cell simulation of electron Bernstein waves

    International Nuclear Information System (INIS)

    Xiang Nong; Cary, John R.; Barnes, Daniel C.; Carlsson, John

    2006-01-01

    The conversion of the extraordinary (X) mode to an electron Bernstein wave (EBW) is one way to get rf energy into an overdense plasma. Analysis of this is complex, as the EBW is a fully kinetic wave, and so its linear propagation is described by an intractable integro-differential equation. Nonlinear effects cannot be calculated within this rubric at all. Full particle-in-cell (PIC) simulations cannot be used for these analyses, as the noise levels for reasonable simulation parameters are much greater than the typical rf amplitudes. It is shown that the delta-f computations are effective for this analysis. In particular, the accuracy of those computations has been verified by comparison with full PIC, cold plasma theory, and small gyroradius theory. This computational method is then used to analyze mode conversion in different frequency regimes. In particular, reasonable agreement with the theoretical predictions of Ram and Schultz [Phys. Plasmas 7, 4084 (2000)] in the linear regime is found, where 100% X-B mode conversion has been obtained when the driving frequency is less than twice the electron gyrofrequency. The results show that cold-plasma theory well predicts the mode conversion efficiency, as is consistent with the phase-space picture of mode conversion. From this it can be shown that nearly 100% X-B mode conversion cannot be obtained when the frequency is higher than the electron second harmonic cyclotron frequency

  7. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  8. PENTrack—a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, W., E-mail: w.schreyer@tum.de [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Kikawa, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Losekamm, M.J.; Paul, S. [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Picker, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Simon Fraser University, 8888 University Drive, Burnaby (Canada)

    2017-06-21

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products—protons and electrons—and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at (github.com/wschreyer/PENTrack.git).

  9. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  10. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  11. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  12. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  13. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, J. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France)], E-mail: j.blaha@ipnl.in2p3.fr; Cartiglia, N. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy); Combaret, C. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Fay, J. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Lustermann, W. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Maurelli, G. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Nardulli, A. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Obertino, M. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy)

    2007-10-15

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached.

  14. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.; Cartiglia, N.; Combaret, C.; Fay, J.; Lustermann, W.; Maurelli, G.; Nardulli, A.; Obertino, M.

    2007-01-01

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached

  15. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    Energy Technology Data Exchange (ETDEWEB)

    Cadez, V.M.; Vukovic, S. (Belgrade Univ. (Yugoslavia). Inst. za Fiziku); Frolov, V.V.; Kyrie, A.Y. (AN SSSR, Moscow. Fizicheskij Inst.)

    1981-12-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams.

  16. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    International Nuclear Information System (INIS)

    Cadez, V.M.; Vukovic, S.; Frolov, V.V.; Kyrie, A.Y.

    1981-01-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams. (author)

  17. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    Science.gov (United States)

    2017-07-01

    by Acoustic Modulation of Electromagnetic Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory J... Program 13 List of Symbols, Abbreviations, and Acronyms 18 Distribution List 19 Approved for public release; distribution is...4 Fig. 4 Flowchart of wireless experiment to receive acoustically modulated radar waveforms

  18. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  19. Modification of the pierce instability of the electron flow in a diode with an external electromagnetic action

    International Nuclear Information System (INIS)

    Melezhik, O.G.; Pashchenko, A.V.; Romanov, S.S.; Shapoval, I.M.

    2014-01-01

    The stability of electron flow passage through the diode with a neutralized space charge has been investigated on the basis of the first-order approximation for hydrodynamic and Maxwell equations. Classification of solutions to the equations was developed in accordance with the magnitude and nature (potential or eddy) of the electric field arising at the diode cathode. The stability regions for these states have been found. It is shown that the presence of external electromagnetic action makes the stability region narrower than that predicted by Pierce.

  20. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  1. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  2. Benchmarking NaI(Tl) Electron Energy Resolution Measurements

    International Nuclear Information System (INIS)

    Mengesha, Wondwosen; Valentine, J D.

    2002-01-01

    A technique for validating electron energy resolution results measured using the modified Compton coincidence technique (MCCT) has been developed. This technique relies on comparing measured gamma-ray energy resolution with calculated values that were determined using the measured electron energy resolution results. These gamma-ray energy resolution calculations were based on Monte Carlo photon transport simulations, the measured NaI(Tl) electron response, a simplified cascade sequence, and the measured electron energy resolution results. To demonstrate this technique, MCCT-measured NaI(Tl) electron energy resolution results were used along with measured gamma-ray energy resolution results from the same NaI(Tl) crystal. Agreement to within 5% was observed for all energies considered between the calculated and measured gamma-ray energy resolution results for the NaI(Tl) crystal characterized. The calculated gamma-ray energy resolution results were also compared with previously published gamma-ray energy resolution measurements with good agreement (<10%). In addition to describing the validation technique that was developed in this study and the results, a brief review of the electron energy resolution measurements made using the MCCT is provided. Based on the results of this study, it is believed that the MCCT-measured electron energy resolution results are reliable. Thus, the MCCT and this validation technique can be used in the future to characterize the electron energy resolution of other scintillators and to determine NaI(Tl) intrinsic energy resolution

  3. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  4. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  5. Molecularly Stretchable Electronics for Energy and Healthcare

    Science.gov (United States)

    Lipomi, Darren

    The term ``plastic electronics'' masks the wide range of mechanical behavior possessed by films of π-conjugated (semiconducting) small molecules and polymers. Such materials are promising for biosensors, large-area displays, low-energy lighting, and low-cost photovoltaic modules. There is also an apparent trade-off between electronic performance and mechanical compliance in films of some of the best-performing semiconducting polymers, which fracture at tensile strains not significantly greater than those at which conventional inorganic semiconductors fail. The design of intrinsically deformable electronic materials-i.e., imagine a semiconducting rubber band-would facilitate roll-to-roll production, mechanical robustness for potable applications, and conformal bonding to curved surfaces. This seminar describes my group's efforts to understand and control the structural parameters that influence the mechanical properties of π-conjugated polymers. The techniques we employ include synthetic chemistry, spectroscopy and microstructural characterization, computation from the molecular to continuum level, and electrical measurements of devices. A complex picture emerges for the interplay between molecular structure, the way the process of solidification influences the morphology, and how molecular structure and morphology combine to produce a film with a given modulus, elastic range, ductility, and toughness. We are also exploring ways to introduce other properties into organic semiconductors that are inspired by biological tissue. That is, not just elasticity and toughness, but also biodegradability and the capacity for self-repair. The seminar will also touch on our use of self-assembled metallic nanoislands on graphene for ultra-sensitive mechanical sensing using piezoresistive and ``piezoplasmonic'' mechanisms. The applications for these materials are in detecting human motion and measuring the mechanics of cardiac and musculoskeletal cells. My group is broadly

  6. Energy transformation in molecular electronic systems

    International Nuclear Information System (INIS)

    Kasha, M.

    1985-01-01

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs

  7. Trapped electrons as a free energy source for the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Louarn, P.; Roux, A.; de Feraudy, H.; Le Queau, D.; Andre, M.; Matson, L.

    1990-01-01

    Simultaneous measurements of electromagnetic fields and particle distributions, measured during the crossing by the Swedish spacecraft Viking of an auroral kilometric radiation (AKR) source, are presented. It is shown that AKR is generated within an acceleration region characterized by an upward directed parallel electric field, as evidenced by its signature on the proton and electron distributions. From particle observations inside the AKR source it is clear that the potential drop below the spacecraft produces upward moving field-aligned ion beams and a depletion in the density of low energy electrons. The potential drop above the spacecraft produces downward accelerated electrons. A large fraction of these electrons have small parallel velocities; they mirror above the ionosphere. These trapped electrons lie in a region of velocity space which should be empty in a simple adiabatic theory. The authors suggest that these electrons get trapped when they experience a time-varying (or space-varying) parallel electric field. This conclusion is supported by the comparison between the observed electron distribution function and a model distribution function built by applying Liouville theorem. Since trapped electrons can cause positive gradients (∂f e /∂V perpendicular > 0) over a broad range of parallel velocities, around v parallel ∼ 0, it is suggested that they are the free energy source for the AKR. This conclusion is substantiated by an evaluation of the convective growth rate, where the various input parameters have been determined by fitting particle data

  8. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  9. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  10. Studies of lead tungstate crystal matrices in high energy beams for the CMS electromagnetic calorimeter at the LHC

    CERN Document Server

    Alexeev, G; Baillon, Paul; Barney, D; Bassompierre, Gabriel; Bateman, E; Bell, K W; Benhammou, Ya; Bloch, P; Bomestar, D; Borgia, B; Bourotte, J; Burge, S R; Cameron, W; Chipaux, Rémi; Cockerill, D J A; Connolly, J; Dafinei, I; Denes, P; Depasse, P; Deiters, K; Dobrzynski, Ludwik; El-Mamouni, H; Faure, J L; Felcini, Marta; Finger, M H; Flügel, T; Gautheron, F; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Jääskeläinen, S; Katchanov, V A; Kennedy, B W; Kirn, T; Korzhik, M V; Lassila-Perini, K M; Lebeau, M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Ma, D; Martin, F; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Newbold, D; Newman, H; Oukhanov, M; Pacciani, L; Peigneux, J P; Pirro, S; Popov, S; Puljak, I; Purves, C; Renker, D; Rondeaux, F; Rosso, E; Rusack, R W; Rykaczewski, H; Schmitz, D; Schneegans, M; Schwenke, J; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Shevchenko, S; Shi, X; Sillou, D; Simohand, D; Singovsky, A V; Soric, I; Smith, B; Stephenson, R; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1997-01-01

    Using matrices of lead tungstate crystals energy resolutions better than 0.6% at 100 GeV have been achieved in the test beam in 1995. It has been demonstrated that a lead tungstate electromagnetic calorimeter read out by avalanche photodiodes can consistently achieve the excellent energy resolutions necessary to justify its construction in the CMS detector. The performance achieved has been understood in terms of the properties of the crystals and photodetectors.

  11. The interaction of low-energy electrons with fructose molecules

    Science.gov (United States)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  12. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  13. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  14. Study and realization of an electron gun at low energy

    International Nuclear Information System (INIS)

    Camus, P.

    1977-01-01

    This work presents the theoretical concepts and experimental design of an electron gun. This gun is working in the weak energy range and the focus position is independant of electron energy measurements and analysis methods of the electron beam are described [fr

  15. Modified electron acoustic field and energy applied to observation data

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg [College of Science and Humanitarian Studies, Physics Department, Prince Sattam Bin Abdul Aziz University, Alkharj 11942 (Saudi Arabia); Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); El-Shewy, E. K. [Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2016-08-15

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder

    International Nuclear Information System (INIS)

    Milton, K.A.; Nesterenko, A.V.; Nesterenko, V.V.

    1999-01-01

    Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calculated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the dielectric and magnetic characteristics of the material which makes up the cylinder (var-epsilon 1 ,μ 1 ) and of that which makes up the surroundings (var-epsilon 2 ,μ 2 ) obey the relation var-epsilon 1 μ 1 =var-epsilon 2 μ 2 . With this assumption all the divergences cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are carried out for a dilute dielectric-diamagnetic cylinder and for a perfectly conducting cylindrical shell. The Casimir energy in the first case vanishes, and in the second is in a complete agreement with that obtained by DeRaad and Milton who employed a Green close-quote s function technique with an ultraviolet regulator. copyright 1999 The American Physical Society

  18. 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

    CERN Document Server

    2014-01-01

    One of the premier meetings in the field of high-energy nuclear physics, the Hard Probes conference series brings together the experimental and theoretical communities interested in the hard and electromagnetic observables related to nuclear matter at extreme temperatures and densities. Prior to the conference, the University of Cape Town will host a summer school for young physicists in the field. High energy nuclear physics focuses on the science of a trillion degrees. These temperatures were last seen in nature a microsecond after the Big Bang, but mankind recreates them thousands of times a second in particle accelerators such as CERN's Large Hadron Collider and BNL's Relativistic Heavy Ion Collider. At these temperatures, 100,000 times hotter than the center of the sun, the strong force is dominant, and we hope to learn about the fundamental and non-trivial emergent many-body dynamics of the quarks and gluons that make up 99% of the mass of the visible universe. We anticipate the usual format for the H...

  19. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  20. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    International Nuclear Information System (INIS)

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-01-01

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied

  1. Design, Analysis, and Evaluation of a Compact Electromagnetic Energy Harvester from Water Flow for Remote Sensors

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2018-06-01

    Full Text Available This paper develops an electromagnetic energy harvester, which can generate small-scale electricity from non-directional water flow in oceans or rivers for remote sensors. The energy harvester integrates a Tesla disk turbine, a miniature axial-flux permanent magnet generator, and a ring cover with symmetrical grooves which are utilized to rectify flow direction. A compact structure is achieved by mounting the permanent magnets of the generator directly on the end surfaces of the turbine rotor. Theoretical analysis is implemented to illustrate the energy conversion process between flow kinetic form and electrical form. Additionally, a mathematical model is developed to investigate the magnetic field distribution produced by the cubical permanent magnets as well as parametric effect. Plastic prototypes with a diameter of 65 mm and a height of 46 mm are fabricated by using a 3D printing technique. The effect of the groove angle is experimentally investigated and compared under a no-load condition. The prototype with the optimal groove angle can operate at flow velocity down to 0.61 m/s and can induce peak-to-peak electromotive force of 2.64–11.92 V at flow velocity of 0.61–1.87 m/s. It can be observed from the results that the analytical and the measured curves are in good accordance. Loaded experiments show that the output electrical power is 23.1 mW at flow velocity of 1.87 m/s when the load resistance is approximately equal to the coil resistance. The advantages and disadvantages of the proposed energy harvester are presented through comparison with existing similar devices.

  2. The electromagnetic calorimeter of the CMS experiment

    International Nuclear Information System (INIS)

    Diemoza, M.

    2003-01-01

    The Electromagnetic Calorimeter of the CMS experiment is made of about 80000 Lead Tungstate scintillating crystals. This project aims to achieve an extreme precision in photons and electrons energy measurement. General motivations, main technical challenges and key points in energy resolution will be discussed in the following

  3. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative in...

  4. Electronic energy distribution function at high electron swarm energies in neon

    International Nuclear Information System (INIS)

    Brown, K.L.; Fletcher, J.

    1995-01-01

    Electron swarms moving through a gas under the influence of an applied electric field have been extensively investigated. Swarms at high energies, as measured by the ratio of the applied field to the gas number density, E/N, which are predominant in many applications have, in general, been neglected. Discharges at E/N in the range 300 0 < 133 Pa using a differentially pumped vacuum system in which the swarm electrons are extracted from the discharge and energy analysed in both a parallel plate retarded potential analyser and a cylindrical electrostatic analyser. Both pre-breakdown and post-breakdown discharges have been studied. Initial results indicate that as the discharge traverses breakdown no sudden change in the nature of the discharge occurs and that the discharge can be described by both a Monte Carlo simulation and by a Boltzmann treatment given by Phelps et al. (1987). 18 refs., 8 figs

  5. Radiation damage in uranium under electron irradiation of energies up to 20 MeV

    International Nuclear Information System (INIS)

    Emets, N.L.; Zelenskij, V.F.; Kuz'menko, V.A.; Ranyuk, Yu.N.; Reznichenko, Eh.A.; Shilyaev, B.A.; Yamnitskij, V.A.

    1980-01-01

    The problem of conservation of primary radiation-induced defects in uranium irradiated by electrons with the energy exceeding photo fission threshold is considered. Calculation of uranium burnout is carried out. Calculations are conducted by the method of mathematical simulation, using some nuclear models; development of electromagnetic cascade in uranium, photofission process, elastic and inelastic electron scattering, as well as some secondary processes are taken into account. Proved is the fact of anomalous growth of uranium under electron irradiation, registered earlier experimentally. It is shown, that in case of acquiring the value Ed=15 eV radiation uranium growth at low levels of burnout can be explained by the complete capture of all the primary radiationn-induced defects into dislocation loops [ru

  6. Carbon fiber structure for B.G.O. crystals of an electromagnetic calorimeter for energies around and above 2 GeV

    International Nuclear Information System (INIS)

    Anamateros, E.; Germenia, C.; Napoleone, T.

    1991-01-01

    This document describes a project to construct with composite material an Electromagnetic Calorimeter for a large, solid angle crystal ball for energies around and above 2 GeV, with thin walls (0.36 mm) and a complex figure like a 'Rugby Ball'. The contract was between the National Institute of Nuclear Physics (INFN) of Frascati, Genova, Catania, and Roma, and ITALCOMPOSITI - a joint venture between Agusta Group (50%) and ENI (50%) to research, produce and market advanced prepreg materials and composite structural components for aerospace, defense, energy, and transport applications. The contract concerns the design and the realization of the structure, which consists of 24 baskets containing 480 crystals of B.G.O. weighing about 4 Kg, each with full alveolus, including electronic systems

  7. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  8. Electrons identification in the forward region of the ATLAS electromagnetic calorimeter at the LHC and first data analysis

    International Nuclear Information System (INIS)

    Chareyre, E.

    2010-09-01

    The start up of the ATLAS experiment at the CERN LHC has been done during the autumn 2009. During the construction and integration of the detector, combined beam tests grouping several subsystems have been carried out. In the forward region of the detector (η > 2.5), a combined beam test with electromagnetic and hadronic calorimeters has been done, whose data (pions and electrons) has been analyzed. Identification of electrons in this region can be used to study decays of Z and W bosons and also to develop some tools to understand the background noises. A method to estimate rejection of pions and electrons identification efficiency is presented using a discriminant analysis based on the methods of Fisher discriminant and on Boosted Decision Trees. It is shown that a pion rejection higher than 200 with an efficiency of electron identification of 50% can be obtained. Moreover the tools and methods developed during the beam tests have been applied on the first data of the LHC with collisions at 7 TeV. Since the present luminosity of the LHC is not yet sufficient to study precisely production of Z and W bosons by using data, a study using the Pythia generator has been done on electrons physics in the forward region. (author)

  9. Momentum-energy of the non-radiating electromagnetic field: open problems?

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L

    2006-01-01

    This paper inspects more closely the problem of the momentum and energy of a bound (non-radiative) electromagnetic (EM) field. It has been shown that for an isolating system of non-radiative non-relativistic mechanically free charged particles, a transformation of mechanical to EM momentum and vice versa occurs in accordance with the requirement P-vector G =const, where P-vector G = P-vector M + Σ i N q i A-vector i is the canonical momentum (N>1 is the number of particles, q is the charge, A-vector is the vector potential, P-vector M is the mechanical momentum of the system). Then dP-vector M /dt = -(d/dt)Σq i A-vector i represents the self-force, acting on this isolating system due to violation of Newton's third law in EM interaction. This equation is not applicable to an isolated charged particle, and the problems of its self-action and its own EM momentum have been examined. Analysing the systems of non-radiative particles, where the retardation is not negligible ('dynamical' systems in our definition) it has been found that the total momentum is the same at the initial and final stationary states of such systems, but it varies with time during the dynamical processes. It means a violation of continuous conservation of the total momentum, if the bound EM field spreads at the light velocity c. Finally, the compatibility of the energy conservation law and the Lentz rule for retarded non-radiative EM field has been examined. It has been shown that for dynamical systems the energy conservation law comes into a certain contradiction with the finite (light) spread velocity for the bound EM field

  10. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  11. Effects of self-fields on electron trajectory and gain in two-stream electromagnetically pumped free-electron laser with ion channel guiding

    International Nuclear Information System (INIS)

    Saviz, S.; Ghorannevis, M.; Aghamir, Farzin M.; Mehdian, H.

    2011-01-01

    A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω-circumflex corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Scalar boson emission by electrons in the Weinberg-Salam theory under a constant electromagnetic field

    International Nuclear Information System (INIS)

    Rodionov, V.N.; Studenikin, A.I.

    1985-01-01

    Consideration of processes with the assistance of virtual and real Higgs scalar neutral σ-bosons in the presence of a constant external crossed electromagnetic field is conducted. In the second order of the perturbation theory in the Weinberg-Jalam model corresponding contribution into mass lepton operator in this base probability dependence of σ-boson emission and radiation field σ-bosn effects on the crossed field parameter is investigated: x=√(eFsub(μν)psup(ν)sup(2)/msup(3)

  13. Dependability in electronic systems mitigation of hardware failures, soft errors, and electro-magnetic disturbances

    CERN Document Server

    Kanekawa, Nobuyasu; Suga, Takashi; Uematsu, Yutaka

    2011-01-01

    Dependability in Electronic Systems presents practical applications for dependable electronic systems, such as train control, automotive control systems and network servers/routers. Readers will find an overview of dependability, enabling them to select the best choice for maximum results.

  14. A non-linear 3D printed electromagnetic vibration energy harvester

    International Nuclear Information System (INIS)

    Constantinou, P; Roy, S

    2015-01-01

    This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)

  15. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant

    Directory of Open Access Journals (Sweden)

    Song Hee Chae

    2017-09-01

    Full Text Available We present an electromagnetic linear vibration energy harvester with an array of rectangular permanent magnets as a springless proof mass. Instead of supporting the magnet assembly with spring element, ferrofluid has been used as a lubricating material. When external vibration is applied laterally to the harvester, magnet assembly slides back and forth on the channel with reduced friction and wear due to ferrofluid, which significantly improves the long-term reliability of the device. Electric power is generated across an array of copper windings formed at the bottom of the aluminum housing. A proof-of-concept harvester has been fabricated and tested with a vibration exciter at various input frequencies and accelerations. For the device where 5 μL of ferrofluid was used for lubrication, maximum output power of 493 μW has been generated, which was 4.37% higher than that without ferrofluid. Long-term reliability improvement due to ferrofluid lubrication has also been verified. For the device with ferrofluid, 1.02% decrease of output power has been observed, in contrast to 59.73% decrease of output power without ferrofluid after 93,600 cycles.

  16. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    International Nuclear Information System (INIS)

    Uluşan, H; Gharehbaghi, K; Külah, H; Zorlu, Ö; Muhtaroğlu, A

    2015-01-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage. (paper)

  17. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    Energy Technology Data Exchange (ETDEWEB)

    Geytenbeek, Ben; Rao, Soumya; White, Martin; Williams, Anthony G. [ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia); Scott, Pat; Vincent, Aaron C. [Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Serenelli, Aldo, E-mail: bg364@cam.ac.uk, E-mail: soumya.rao@ncbj.gov.pl, E-mail: p.scott@imperial.ac.uk, E-mail: aldos@ice.csic.es, E-mail: aaron.vincent@imperial.ac.uk, E-mail: martin.white@adelaide.edu.au, E-mail: anthony.williams@adelaide.edu.au [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193, Barcelona (Spain)

    2017-03-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.

  18. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  19. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  20. Electron polarimetry at low energies in Hall C at JLab

    International Nuclear Information System (INIS)

    Gaskell, D.

    2013-01-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered

  1. On the Classical Coupling between Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Maria Becker

    2015-06-01

    Full Text Available Coupling between electromagnetism and gravity, manifested as the distorted Coulomb field of a charge distribution in a gravitational field, has never been observed. A physical system consisting of an electron in a charged shell provides a coupling that is orders of magnitude stronger than for any previously-considered system. A shell voltage of one megavolt is required to establish a gravitationally-induced electromagnetic force equal in magnitude to the force of gravity on an electron. The experimental feasibility of detecting these forces on an electron is discussed. The effect establishes a relation between Einstein’s energy-mass equivalence and the coupling between electromagnetism and gravity.

  2. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  3. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  4. Electromagnetic field effects on Υ-meson dissociation in PbPb collisions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Hoelck, J.; Wolschin, G. [Institut fuer Theoretische Physik der Universitaet Heidelberg (Germany)

    2017-12-15

    We investigate the effect of the electromagnetic field generated in relativistic heavy-ion collisions on the dissociation of Υ mesons. The electromagnetic field is calculated using a simple model which characterizes the emerging quark-gluon plasma (QGP) by its conductivity only. A numerical estimate of the field strength experienced by Υ mesons embedded in the expanding QGP and its consequences on the Υ dissociation is made. The electromagnetic field effects prove to be negligible compared to the established strong-interaction suppression mechanisms. (orig.)

  5. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  6. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    International Nuclear Information System (INIS)

    Moiseev, Alexander; Ormes, J.F.; Funk, Stefan

    2007-01-01

    The LAT science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to ∼1.5 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30%, the residual hadron contamination does not exceed 2-3% of the electron flux. It is expected to collect ∼ ten million of electrons with the energy above 20 GeV for one year of observation. Precise spectrum reconstruction with collected electron statistics opens the unique opportunity to investigate several important problems such as models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and search for KKDM particles decay through their contribution to the electron spectrum

  7. N → Δ (1232) electromagnetic transition form factor and pion-nucleon dynamics at moderate energies

    International Nuclear Information System (INIS)

    Jurewicz, A.

    1980-01-01

    The dependence of the electromagnetic N → Δ (1232) transition form factor G/sup asterisk//sub M/(q 2 ) on q 2 , the four-momentum transfer squared, has been calculated with the use of relativistic dispersion relations supplemented with some dynamical assumptions. In the first place, they regard the phase of the magnetic dipole amplitude of electroproduction of pions on nucleons in the p 33 final state beyond the region of elastic unitarity. Namely, over the range from the lowest inelastic threshold up to 1780 MeV pion-nucleon c.m. energy, the phase in question has been identified with the real part of the respective phase shift of pion-nucleon scattering. Secondly, contributions to the dispersion integral from the higher energy region have been neglected. Finally, the polynomial ambiguity which appears in the problem has been fixed by requiring that the foregoing amplitude of electroproduction vanishes, independently of q 2 , at the upper end of the integration interval as defined above. These assumptions which preserve unitarity were shown previously to lead to very good results when applied to the calculation of the multipole amplitudes M/sup() 3/2/ 1 /sub +/ and E/sup() 3/2/ 1 /sub +/ of photopion production on nucleons in the Δ (1232) region. Now it is also shown that G/sup asterisk//sub M/(q 2 ) calculated in that fashion follows remarkably well the data over the whole range 0 2 2 currently covered by quantitative experimental studies. Some speculation concerning a possible dynamical rooting of the foregoing assumptions is presented

  8. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Gusein-zade, Namik; Ignatov, Alexander [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Medicobiologic Faculty, Pirogov Russian National Research Medical University, Moscow (Russian Federation)

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  9. Enhanced energy deposition symmetry by hot electron transport

    International Nuclear Information System (INIS)

    Wilson, D.; Mack, J.; Stover, E.; VanHulsteyn, D.; McCall, G.; Hauer, A.

    1981-01-01

    High energy electrons produced by resonance absorption carry the CO 2 laser energy absorbed in a laser fusion pellet. The symmetrization that can be achieved by lateral transport of the hot electrons as they deposit their energy is discussed. A K/sub α/ experiment shows a surprising symmetrization of energy deposition achieved by adding a thin layer of plastic to a copper sphere. Efforts to numerically model this effect are described

  10. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    Science.gov (United States)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  11. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  12. Ultrarelativistic electromagnetic pulses in plasmas

    Science.gov (United States)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  13. Electron emission from materials at low excitation energies

    International Nuclear Information System (INIS)

    Urma, N.; Kijek, M.; Millar, J.J.

    1996-01-01

    Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube

  14. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    Science.gov (United States)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  15. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  16. Lagrangian and energy forms for retrieving the impulse response of the Earth due to random electromagnetic forcing.

    Science.gov (United States)

    Slob, Evert; Weiss, Chester J

    2011-08-01

    We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field Earth impulse response in the lagrangian form. This is of interest for Earth subsurface imaging. A numerical example demonstrates that all source vector components are necessary to extract a single-field vector component.

  17. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  18. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  19. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  20. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester

    International Nuclear Information System (INIS)

    Halim, Miah A.; Cho, Hyunok; Park, Jae Y.

    2015-01-01

    Highlights: • A frequency up-converted miniaturized energy harvester, driven by hand-shaking. • Use of a freely movable ball conquers the inconvenience in resonance issue at frequencies below 10 Hz. • Can be implemented to hand-held and wearable devices through efficient power conditioning circuitry. - Abstract: We present a frequency up-converted electromagnetic energy harvester that generates significant power from human-limb motion (hand-shaking). Because the power generated by a vibration energy harvester is proportional to the operating frequency, the proposed energy harvester has been designed to up-convert the applied low-frequency vibration to a high-frequency vibration by mechanical impact. Upon excitation, a freely moveable ball (non-magnetic) within a cylindrical structure periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing these to vibrate with higher frequencies. The relative motion between the magnets and coils (wrapped around the outside of the cylinder) induces e.m.f. (voltage). High-frequency oscillators have been designed through the design parameters (i.e., frequency, spring stiffness, mechanical, and electrical damping), to minimize the power loss. A prototype was fabricated and tested both using a vibration exciter and by manual hand-shaking. The fabricated device showed non-resonant behavior during the vibration exciter test. At optimum load condition, the frequency up-converted generators (FUGs) delivered 0.84 mW and 0.96 mW of average power. A maximum 2.15 mW of average power was obtained from the device with series connected FUGs while it was mounted on a smart phone and was hand-shaken. The fabricated device exhibited 0.33 mW cm −3 of average power density, which is very high compared to the current state-of-the-art devices, indicating its ability in powering portable and wearable smart devices from extremely low frequency (∼5 Hz) vibration.

  1. Test beam results from the D0 end electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Roe, N.A.

    1991-11-01

    Test beam results are presented for the DO end electromagnetic calorimeter. Data were taken with electrons and pions ranging in energy from 5 GeV to 150 GeV. Results from the analysis of the test beam data are presented on energy resolution and linearity, stability and uniformity of response, position resolution and electron-pion separation

  2. Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation

    Energy Technology Data Exchange (ETDEWEB)

    Shahmansouri, M., E-mail: mshmansouri@gmail.com [Department of Physics, Faculty of Science, Arak University, Arak 38156-8 8349 (Iran, Islamic Republic of); Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)

    2016-07-15

    The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.

  3. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  4. Weak-electromagnetic interference effects in the production of hadrons in electron-positron collisions

    International Nuclear Information System (INIS)

    Nieves, J.F.

    1980-01-01

    A framework for a systematic study of the weak-electromagnetic interference effects in the production of hadrons in e - e + collisions is presented and, in the case of the inclusive processes, the predictions of the quark-parton model are given. The approach to the calculation of these effects in e - e + H + X, where H is a pseudoscalar meson, a spin-1/2 baryon, or a vector meson, consists of setting down a general formula for the appropriate transition probability in terms of structure functions whose form is delimited by symmetry considerations. The quark-parton model is then used to express the structure functions in terms of the quark couplings and fragmentation probabilities. In this fashion the forward-backward asymmetry A/sub H/ and longitudinal polarization P/sub H/ are calculated in terms of the vector (a/sub q/) and axial-vector (b/sub q/) weak-neutral-current couplings of the quarks composing H, their electric charges Q/sub q/, and their (q → H) fragmentation probabilities. Using a theoretical argument for hadrons containing one heavy c,b,...quark, and SU(3) symmetry for hadrons composed of light u,d,s quarks, A/sub H/ is expressed in terms of b/sub q/ and Q/sub q/ only. In similar fashion, some relations between the various P/sub H/, independent of the fragmentation probabilities, are obtained. The results are discussed in detail for the strange and charmed hadrons.The exclusive processes e - e + → M anti M and e - e + → MV, where M is a pseudoscalar meson and V is a vector meson, are also discussed and the possibility of observing the weak-electromagnetic interference effects when M and V contain the t quark is noted

  5. Evaluations of the electron energy distribution in multidipole plasmas

    International Nuclear Information System (INIS)

    Taylor, G.R.; Kessel, M.A.; Sealock, J.W.

    1980-01-01

    In a previous paper a preliminary evaluation of the electron energy distribution in multidipole plasmas was presented. A polynominal regression technique for evaluating the distribution function from Langmuir probe current-voltage characteristics was described. This paper presents an extension of that analysis and the evaluations of the electron energy distributions in multidipole argon and hydrogen plasmas

  6. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

    Science.gov (United States)

    Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.

    2017-10-01

    We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.

  7. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  8. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  9. Electron energy distribution from intense electron beams in the upper mesosphere and lower thermosphere

    International Nuclear Information System (INIS)

    Martinez-Sanchez, M.; Cheng, Wai; Dvore, D.; Zahniser, M.S.

    1992-01-01

    A model was developed to calculate the electron energy spectrum created by an electron beam in the upper atmosphere. A significant feature of the model is the inclusion of the effects of electron-electron collisions which are important at high beam intensity when the ratio of the electron to ambient gas density is high. Comparing the calculated results for a 2.6-kV, 20-A beam at 110-km altitude from models with and without the electron-electron collision term, the electron-electron collisions have the effect of smoothing out the electron spectrum in the low-energy region ( 2 and O 2 are filled in, resulting in an increase in the calculated production rate of these species compared with model calculations that neglect this effect

  10. Low-energy electron microdosimetry of CS-137

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.

    1980-09-01

    The mass of tissue irradiated by an internal emitter depends upon the distribution of the radionuclide within the organism and the type of radiation emitted. The range (95% absorption) of low-energy electron effectively defines the sensitive volume in which the energy of the emitted electron is deposited. Accordingly, in the case of Auger electron microdosimetry of internal emitters the correct definition of the sensitive volume is of paramount importance. The amount of energy delivered by the monoenergetic electrons emitted by the decay system 137 Cs → sup(137m)Ba to spherical volumes of water-like tissue media of radii equivalent to the estimated ranges of those electrons in water is calculated and discussed as far as the variations of the estimated ranges of electrons as a function of the initial energy of emission are concerned. Although there are still many uncertainties on the actual ranges of low-energy electrons, one can state confidently that the ranges of the Auger electrons of the decay system 137 Cs → 137 sup(m) Ba → 137 Ba can be considered to be in the same order of magnitude of the diameter of a cell. The energy deposition in spherical volumes of water-like tissue media, considered equivalent to the sensitive volumes for the Auger electrons of the decay system 137 Cs → 137 sub(m) Ba → 137 Ba, range for several orders of magnitude from 10 2 to about 10 10 times higher than the energy deposition in similar media by the internal conversion electrons of this decay system. If equivalent variations of energy deposition per unit mass occur when the masses considered are cellular, and subcellular structures, then the effects into the sensitive volume should be taken into biological consideration as far as the microdosimetry of low-energy electrons (approximately equal to 10 keV) is considered, whenever there is internal localization of Auger emitters. (Author) [pt

  11. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  12. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  13. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  14. Charge symmetry of electron wave functions in a quantized electromagnetic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.

    1975-01-01

    An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.

  15. Preparation of the Atlas experiment: electronic calibration of the electromagnetic calorimeter, measurement of the W boson polarization in top quark decay

    International Nuclear Information System (INIS)

    Labbe, J.

    2009-07-01

    The CERN Large Hadron Collider (LHC) will probe the fundamental constituents of matter at an unprecedented microscopic scale. This instrument will lead to further tests and constraints of the Standard Model and its potential extensions at the energies of few TeV. The ATLAS experiment is therefore installed at one of the four interaction points of the LHC. The top quark will be abundantly produced at LHC. Competitive results on its production and decay mechanisms should be quickly obtained. Unlike the other quarks, the top quark does not have time to hadronize before it decays, then allowing spin effects to be measured. It decays into a W boson and a bottom quark, which are polarized by the parity symmetry violation of the weak interaction. In this thesis, the polarization of the W bosons produced in the decay of top quark pairs into a charged lepton and many jets is studied. This measurement is performed by predicting the experimental angular distribution of the charged lepton for each helicity state of the W boson. It allows to constraint the interaction vertex between the top quark, the W boson and bottom quark. The sensitivity of the ATLAS experiment on anomalous couplings of this vertex is estimated in a generic, model-independent, approach. The validation of ATLAS's results will require a good knowledge of all its instruments. Its electromagnetic calorimeter is in particular characterized with an electronic calibration. This thesis presents the jitter and crosstalk studies realized on the ATLAS electromagnetic calorimeter during its final installation. Moreover, the interest of crosstalk analyzes for problematic channels identification is shown. The slides made for the defence of the thesis have been added at the end of the document. (author)

  16. PROBABLE CHARACTERISTICS ОF ELECTROMAGNETIC FIELD ENVIRONMENT AT EARTH SURFACE CAUSED BY RADIO-ELECTRONIC AIDS OPERATING OVER EARTH SURFACE

    Directory of Open Access Journals (Sweden)

    V. I. Mordachev

    2009-01-01

    Full Text Available The paper provides results of modeling distribution of signal probability of radio-electronic aids located over the Earth surface at a specific height and determining an electromagnetic environment on its surface according to a power parameter and an input direction angle at an optionally selected observation point being on the earth surface.

  17. PROBABLE CHARACTERISTICS ОF ELECTROMAGNETIC FIELD ENVIRONMENT AT EARTH SURFACE CAUSED BY RADIO-ELECTRONIC AIDS OPERATING OVER EARTH SURFACE

    OpenAIRE

    V. I. Mordachev

    2009-01-01

    The paper provides results of modeling distribution of signal probability of radio-electronic aids located over the Earth surface at a specific height and determining an electromagnetic environment on its surface according to a power parameter and an input direction angle at an optionally selected observation point being on the earth surface.

  18. Low energy electron transport in furfural

    OpenAIRE

    Lozano, Ana I.; Krupa, K.; Ferreira da Silva, F.; Limao-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, D. B.; Brunger, M. J.; García, Gustavo

    2017-01-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulat...

  19. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  20. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions