WorldWideScience

Sample records for electrolytes synthesis rheology

  1. Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Saad A.; Fedkiw, Peter S.; Baker, Gregory L.

    1999-06-28

    The goal of the synthesis research was to devise routes to PEG/fumed silica/lithium salt composites that can be processed and then photochemically cross-linked to form mechanically stable electrolytes. An essential feature of the system is that the ionic conductivity and the mechanical properties must be de-coupled from each other, i.e., cross-linking of the fumed silica matrix must not cause a significant deterioration of the conductivity of the composite. As shown in Figure 2, we prepared a range of surface-modified fumed silicas and investigated their ability to form mechanically stable composite electrolytes. The groups used to modify the surface properties of the silica ranged from simple linear alkyls that render the silica hydrophobia to polyethers that promote compatibility with the electrolyte. From these materials we developed a cross-linkable system that satisfies the criteria of processibility and high-conductivity. The key material needed for the cross-linking reaction are silicas that bear surface-attached monomers. As shown schematically in Figure 3a, we prepared fumed silicas with a combination of surface groups, for example, an octyl chain with different coverages of tethered methacrylates. The length of the tether was varied, and we found that both C{sub 3} and C{sub 8} tethers gave useful composites. The functionalized silicas were combined with PEG-DM, AIBN or benzophenone (free radical initiators), LiClO{sub 4} or Li imide, and either methyl, butyl, or octyl, methacrylate to form stable clear gels. Upon irradiation with UV light, polymerization of both the tethered methacrylate and the added methacrylate took place, yielding a cross-linked rubbery composite material. Ionic conductivity measurements before and after cross-linking showed only a slight decrease (see Figure 9 later), thereby offering strong experimental evidence that the mechanical properties conferred by the silica matrix are de-coupled from the ionic conductivity of the PEG

  2. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  3. Synthesis and analysis of processes with electrolyte mixtures

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Gani, Rafiqul; Rasmussen, Peter

    1995-01-01

    A computer aided system for synthesis, design and simulation of crystallization and fractional crystallization processes with electrolyte mixtures is presented. The synthesis methodology is based on the use of computed solubility diagrams for the corresponding electrolyte systems....

  4. Xanthan Rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums

    OpenAIRE

    João Luiz Silva Vendruscolo; Patrícia Silva Diaz; Claire Tondo Vendruscolo

    2004-01-01

    Several strains of Xanthomonas campestris are able to produce a bacterial biopolymer called xanthan which is widely used in the food industry. In order to have an effective use of the xanthan in the industry, not only the studies concerning the chemical properties of the xanthan should be considered, but also the studies related to its addition of electrolytes, and its effects in the rheological behaviour. When a new bacterial biopolymer is sinthetized, new rheological behaviours appear. This...

  5. THE EFFECT OF ELECTROLYTE CONCENTRATION AND PH ON THE FLOCCULATION AND RHEOLOGICAL BEHAVIOUR OF KAOLINITE SUSPENSIONS

    Directory of Open Access Journals (Sweden)

    M. S. NASSER

    2009-12-01

    Full Text Available The effects of the electrolyte concentration and pH on the settling behaviour, floc sizes and rheological behaviour of kaolinite suspensions were investigated. The results show that the settling behaviour of kaolinite changes with the ionic strength and pH of the suspension. In the acidic pH range, (pH 2 particles settle in flocculated form regardless of electrolyte concentration, however, in the basic pH range, the particles settle both, in dispersed form (at lower electrolyte concentrations and in flocculated form (at higher electrolyte concentrations. The Bingham yield stress and time-dependent behaviour for these flocculated and deflocculated suspensions was investigated. In this study, the fundamental of structural kinetic model (SKM was used to investigate the time-dependent viscosity behaviour of flocculated and deflocculated kaolinite suspensions. It was found that the kaolinite suspensions in the deflocculated form show viscosity time-independent behaviour with negligible Bingham yield stress. While, the flocculated suspensions show marked non-Newtonian time-dependent behaviour. This work has been very successful in establishing the link among particle-particle interactions, floc size, Bingham yield stress, breakdown rate constant, and extent of thixotropy.

  6. Xanthan Rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums

    Directory of Open Access Journals (Sweden)

    João Luiz Silva Vendruscolo

    2004-01-01

    Full Text Available Several strains of Xanthomonas campestris are able to produce a bacterial biopolymer called xanthan which is widely used in the food industry. In order to have an effective use of the xanthan in the industry, not only the studies concerning the chemical properties of the xanthan should be considered, but also the studies related to its addition of electrolytes, and its effects in the rheological behaviour. When a new bacterial biopolymer is sinthetized, new rheological behaviours appear. This study aims at review the influence of the chemical structural and addition of salts to the rheological behaviour of the xanthan aqueous solution.

  7. Electrolytic Synthesis and Characterizations of Silver Nanopowder

    CERN Document Server

    Theivasanthi, T

    2011-01-01

    This work reports a simple, novel, cost effective and eco-friendly electrolytic synthesis of silver nanoparticles using AgNO3 as metal precursor. The synthesis rate is much faster than other methods and this approach is suitable for large scale production. They are characterized by XRD, SEM and FT-IR techniques to analyze size, morphology and functional groups. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles. Their particle size is found to be 24 nm and specific surface area (SSA) is 24 m2/g. Analysis of Ag nanoparticles SSA reports that increasing their SSA improves their antibacterial actions. Microbiology assay founds that Ag nanoparticles are effective against E.coli and B.megaterium bacteria. SSA of bacteria analysis reveals that it plays a major role while reacting with antimicrobial agents.

  8. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  9. Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes

    Science.gov (United States)

    El Kissi, Nadia; Alloin, Fannie; Dufresne, Alain; Sanchez, Jean-Yves; Bossard, Frédéric; D'Aprea, Alessandra; Leroy, Séverine

    2008-07-01

    In this study, nanocomposite polymer electrolytes, based on high molecular weight PEO were prepared from high aspect ratio natural cellulosic nanofillers. The thermomechanical behaviour of the resulting nanocomposites was investigated using differential scanning calorimetry, dynamic mechanical analysis and rheometrical measurements. The influence of entanglements versus percolation mechanism on the determination of the mechanical properties of the composite was also investigated. Shear rheometry of the unfilled PEO and related nanocomposites shows that the shear viscosity first decreases when the concentration in cellulose increases. Then typical suspension behaviour is obtained and the viscosity increases with the concentration. This observation is in agreement with DSC and DMA results and is explained in terms of polymer-filler interactions. Interactions between cellulose fillers, are responsible for the reinforcing effect above the melting temperature of the matrix, through the formation of a stiff network that is well predicted by a percolation concept.

  10. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  11. Synthesis of and characterization of lithium ceramic electrolytes

    Science.gov (United States)

    Rangasamy, Ezhiylmurugan

    The depleting fossil fuel reserves, rising oil prices and the need for reduction in CO2 emissions have created an unprecedented impetus for vehicle electrification. Lithium batteries have the highest energy density of the various available battery technologies. They are the most promising battery candidate to enable Hybrid Electric Vehicles (HEVs) and Plug-in Electric Vehicles (PEVs). However, current Li-ion current battery technology is costly and requires a significant increase in energy density to achieve range comparable to conventional gasoline-powered vehicles. Advanced lithium battery technologies such as Li-S and Li-O2 could potentially offer significant improvements in energy density to address the limitations with current Li-ion technology. The implementation of these advanced battery technologies, however, has been limited by the lack of electrolyte technology to enable the use of metallic lithium anodes. Thus, there is a clear and compelling need to develop new electrolyte materials that exhibit the unique combination of fast ion conductivity, stability against lithium, air and moisture. Lithium Lanthanum Titanium Oxide (LLTO) and Lithium Lanthanum Zirconium Oxide (LLZO) have been identified as viable candidates for the advanced battery technologies. However, issues concerning phase purity and densification warrant developing new and novel synthetic techniques. A single step procedure has been developed for the synthesis of Lithium Lanthanum Titanium Oxide (LLTO) membranes. The single step procedure combines phase formation and densification of the ceramic electrolyte in a hot pressing technique. The effect of synthetic technique on relative density, grain structure and ionic conductivity of the LLTO membranes has been explored in detail. The critical step of synthesizing cubic Lithium Lanthanum Zirconium Oxide (LLZO) has been systematically studied through the controlled doping of Al, using X-Ray Diffraction (XRD) analysis. Effects of Li and Al

  12. Extrusion Processed Polymer Electrolytes based on Poly(ethylene oxide) and Modified Sepiolite Nanofibers: Effect of Composition and Filler Nature on Rheology and Conductivity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • PEO/ethylene carbonate (EC)/LiTF electrolytes are prepared by extrusion. • Some include also sepiolite nanofibers with ad-hoc surface modifications. • Some of the electrolytes show σ>10−4 S cm−1 at RT and σ> 10−3 S cm−1 at T > 50 °C. • One of them, with EC and one of the nanofibers, is solid-like between 50-90 °C. • Both high σ and mechanical performance are stable for long periods of time. - Abstract: A series of poly(ethylene oxide) (PEO)/lithium trifluoromethanesulfonate(LiTf)/ethylene carbonate(EC)/sepiolite composite electrolytes have been prepared by melt compounding. Neat sepiolite, sepiolite coated with polyethylene glycol and with D-α-tocopherol polyethylene glycol 1000 succinate have been used as fillers, and nanocomposites with different ratio of the components have been prepared. The concentration of EC and LiTf has been progressively increased from low to high values and in this way, electrolytes with conductivities from 2 × 10−6 to 3 × 10−4 S cm−1 at 30 °C have been prepared. Together with conductivity, viscoelasticity has also been studied, evidencing a complex rheological behaviour which depends on the type of filler introduced in the blend. Some of the thermoplastic electrolytes are seen to display a liquid-like conductivity together with solid-like mechanical properties over the melting point of PEO. The solid-like performance is featured by shear moduli crossover G’ = G” at 75 °C at very low frequencies. This combination of properties makes them appealing starting points for the development of solid polymer electrolytes

  13. Synthesis, rheology and forming of Y-Ba-Cu-O ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Green, T.M.

    1993-07-01

    A chemical synthesis route is discussed which results in a low- temperature precursor to Y-Ba-Cu-O ceramics; it is based on use of molten Ba(OH){sub 2}{center_dot}8H{sub 2}O flux. Two different chemical systems have been examined; the first one, based on nitrate salts, has been demonstrated to be a viable precursor material for tape casting and extrusion; the second, made from acetate salts, has been used for powder synthesis and extrusion. Rheology of pastes shows that their flow may be fit to either Bingham Plastic or Hershel- Bulkley models. Yield stress is controlled in both pastes by volume fraction solids. Viscosity also follows solids loading in the paste. Shear thinning is controlled by colloidal nature of precursor. The paste has colloidal microstructure. Comparison of concentric cylinder rheometry and piston extrusion rheometry shows order of magnitude differences in yield stress, resulting from the test method and paste dilation.

  14. Synthesis, rheology and forming of Y-Ba-Cu-O ceramics

    International Nuclear Information System (INIS)

    A chemical synthesis route is discussed which results in a low- temperature precursor to Y-Ba-Cu-O ceramics; it is based on use of molten Ba(OH)2·8H2O flux. Two different chemical systems have been examined; the first one, based on nitrate salts, has been demonstrated to be a viable precursor material for tape casting and extrusion; the second, made from acetate salts, has been used for powder synthesis and extrusion. Rheology of pastes shows that their flow may be fit to either Bingham Plastic or Hershel- Bulkley models. Yield stress is controlled in both pastes by volume fraction solids. Viscosity also follows solids loading in the paste. Shear thinning is controlled by colloidal nature of precursor. The paste has colloidal microstructure. Comparison of concentric cylinder rheometry and piston extrusion rheometry shows order of magnitude differences in yield stress, resulting from the test method and paste dilation

  15. Synthesis and characterization of polyethylene oxide based nano composite electrolyte

    Indian Academy of Sciences (India)

    M Malathi; K Tamilarasan

    2014-08-01

    Polyethylene oxide (PEO) – montmorillonite (MMT) composite electrolytes were synthesised by solution casting technique. The salt used for the study is Lithium perchlorate (LiClO4). The morphology and percentage of crystallinity data were obtained through X-ray Diffraction and Differential Scanning Caloriemetry. The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. The addition of MMT resulted in an increase in conductivity over the temperature range of 25–60°C. The ionic conductivity of a composite polymer electrolyte containing 1.2 wt% MMT was 1 × 10-5 S cm−1 at 25°C, which is at least one order of magnitude higher than that of the polymer electrolyte (4 × 10-7S cm−1). The increase in ionic conductivity is explained on the basis of crystallinity of the polymer electrolyte.

  16. Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy

    Science.gov (United States)

    Elias, Liju; Scott, Keith; Hegde, A. Chitharanjan

    2015-11-01

    Inspired by the more positive (about 0.38 V nobler) discharge potential of hydrogen on Ni-W alloy compared to that on both Ni and W, a Ni-W alloy has been developed electrolytically as an efficient electrode material for water electrolysis. The deposition conditions, for peak performance of the electrodeposits for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH medium have been optimized. Electrocatalytic activity of the coatings, deposited at different current densities (c.d.'s) for water splitting reactions of HER and OER was tested by cyclic voltammetry and chronopotentiometry. It was found that Ni-W alloys deposited, at 4.0 A/dm2 (having about 12.49 wt.% W) and 1.0 A/dm2 (having about 0.95 wt.% W) are good electrode materials as cathode (for HER) and anode (for OER), respectively. A dependency of the electrocatalytic activity for HER and OER with relative amount of Ni and W, in the deposit was found. The variation of electrocatalytic activity with W content showed the existence of a synergism between high-catalytic property of W (due to low hydrogen overvoltage) and Ni (having increased adsorption of OH- ions), for hydrogen (as cathode) and oxygen (as anode) evolution, respectively. Electrocatalytic activities of the coatings, developed at different c.d.'s were explained in the light of their phase structure, surface morphology, and chemical composition, confirmed by XRD, FESEM, and EDX analysis. The effect of c.d. on thickness, hardness, composition, HER, and OER was analyzed, and results were discussed with possible mechanisms.

  17. On the synthesis of oil-containing microcapsules and their electrolytic codeposition

    Energy Technology Data Exchange (ETDEWEB)

    Alexandridou, S. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chem. Eng. and Chem. Process. Eng. Res. Inst.; Kiparissides, C. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chem. Eng. and Chem. Process. Eng. Res. Inst.; Fransaer, J. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven (Belgium); Celis, J.P. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven (Belgium)

    1995-04-01

    Composite coatings consisting of a metal matrix in which ceramic particles are embedded have recently been developed and used in industry as wear-resistant coatings. The present paper deals with the development of oil-containing self-lubricating metallic coatings. These have been produced by electrolytic codeposition of oil-containing microcapsules from Watts nickel plating baths. For this purpose, oil-containing polyterephthalamide microcapsules were synthesized based on the interfacial polymerization of an oil-soluble monomer (terephthaloyl dichloride) and a mixture of two water-soluble monomers (diethylenetriamine and 1,6-hexamethylenediamine). The influence of several synthesis parameters (e.g. type of encapsulated organic phase, monomer concentration(s) and concentration ratio of the two amine monomers) on the size distribution and morphology of the oil-containing polyamide microcapsules as well as on their electrolytic codeposition behaviour is discussed. As revealed by scanning electron microscopy analysis, the morphological characteristics of the microcapsules were affected to a great extent by the functionality of the water-soluble amine monomer. Furthermore, the composition of the core material of the microcapsules showed a marked influence on their stability upon aging in the Watts nickel plating bath. Finally, codeposition experiments using a laboratory rotating electrode showed that the level of codeposition was influenced by the presence of additives in the nickel electrolyte and was strongly dependent on the polymerization conditions employed in the microcapsule synthesis. ((orig.))

  18. Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application

    OpenAIRE

    Bhau K. Kumbhar; Satyajit R. Patil; Suresh M. Sawant

    2015-01-01

    Magneto rheological (MR) fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typical...

  19. Electrolyte low concentrations effects on the the rheology of water and bentonitic clays basis drilling fluids; Efeito de baixas concentracoes de eletrolitos na reologia de fluidos de perfuracao a base de agua e argilas bentoniticas

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Luciana Viana [Universidade Federal, Campina Grande, PB (Brazil). Engenharia de Processos]. E-mail: lucianaa@labdes.ufpb.br; Viana, Josiane Dantas; Farias, Kassie Vieira; Lira, Helio de Lucena; Ferreira, Heber Carlos [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais]. E-mail: josianedantas@bol.com.br; kassievieira@bol.com.br; helio@dema.ufpb.br; heber@dema.ufpb.br; Franca, Kepler Borges [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia Quimica]. E-mail: kepler@labdes.ufpb.br

    2003-07-01

    The aim of this work is to study the effect of low electrolytes concentration on the rheology of the water based oil well drilling fluids and bentonite clays from Boa Vista, PB. It were selected seven samples of bentonite clays (four from industry and three from natural polycationic clay treated with concentrated Na{sub 2}CO{sub 3} solution). The drilling fluids were prepared with a concentration of 4.86 % w/w, according to PETROBRAS norms and treated with different CaCl{sub 2} + MgCl{sub 2} concentration. After, the drilling fluids were submitted to a cure for 24 hours and measured apparent viscosity (AV), plastic viscosity (PV) and water loss (WL). To study the effect of the electrolyte on the rheology of the dispersions it was developed a factorial design 2{sup 2} + 3 test in the central point. The results showed that the addition of CaCl{sub 2} + MgCl{sub 2} caused a degradation of the drilling fluids prepared with industrialized clays, as showed by the decrease in AV and PV and great increase in WL. Also, it was observed an increase in AV and a decrease in PV in the drilling fluids prepared with natural clays treated with Na{sub 2}CO{sub 3}, conducting a flocculated-gel state. (author)

  20. Synthesis of yttria-doped zirconia anodes and calcium-doped ceria electrolyte to fuel cell

    International Nuclear Information System (INIS)

    From the pursuit of lower operating temperature of fuel cells solid oxide was used polymeric precursor for the synthesis of reactive powder compositions Zr0,92Y0,08O2 for the anode and Ce0,88Ca0,12O2 for the electrolyte. The solutions were prepared using the metal in much of the composition and citric acid molar ratio of 1:3, under stirring at 60 deg C/1 h. The mixture of metallic citrates was subjected to agitation at a temperature of 80 deg C which was added ethylene glycol in the ratio 60:40 by weight citric acid / ethylene glycol, to form a resin that was pre-calcined at 300 deg C/3 h for to form the expanded resin. The powders were disaggregated in a mortar, screened and calcined at 400, 600 and 800 deg C/2 h. The powders were characterized by standard X-ray diffraction. (author)

  1. Chocolate rheology

    OpenAIRE

    Estela Vidal Gonçalves; Suzana Caetano da Silva Lannes

    2010-01-01

    Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mas...

  2. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    Science.gov (United States)

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  3. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol.

    Science.gov (United States)

    Kozak, Dmytro S; Sergiienko, Ruslan A; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-01-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday's law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material. PMID:26880365

  4. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    Science.gov (United States)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-01-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material. PMID:26880365

  5. Synthesis, extrusion and rheological behaviour of PU/HA composites for biomedical applications.

    Science.gov (United States)

    Machado, H B; Correia, Rui N; Covas, J A

    2010-07-01

    Biostable polyurethane/hydroxyapatite (PU/HA) composites with potential application as bone replacement materials were synthesized in bulk and processed in a screw extruder. The polyurethanes (PU) were prepared by reacting an aliphatic diisocyanate, 4-methylene-bis-diisocyanate (MDI), with poly-(epsilon-caprolactone) (PCL) diols and polytetramethylene oxide (PTMO) of different molecular weights, extended with 1, 4-butanediol (BDO). Glass-transition temperatures were measured by differential scanning calorimetry (DSC). The specific PU groups were assessed by total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of polymer chemistry and filler content on the rheological behaviour were studied by oscillatory rheometry. Polymers with larger chain lengths showed higher viscosity and, for identical chain lengths, polyether urethanes seem to have higher viscosities than polyester based urethanes. A lubricating effect was found for composites containing 50% weight of filler, whereas at higher filler contents a solid-like behaviour was measured. Polymer chemistry seems to be affected by ageing but not so by the presence of filler. Ageing is characterized by a decrease in the concentration of hydrogen bonds involving between urethane linkages. PMID:20405172

  6. Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate

    International Nuclear Information System (INIS)

    Stoichiometric CaZrO3 (CZ-50) and CaZrO3 doped with excess CaO (CZ-51) powders, whose formula (CaO)1-x(ZrO2)x, where x = 50 or 51 mol.% CaO was successfully synthesised by the co-precipitation calcination method with a saturated solution of (NH4)2C2O4 in concentrated NH3 solution as a precipitation agent. The thermal evolution of CaZrO3 dried precursor during heating them up to 1200 deg. C was monitored by thermal (DTA, TG) and X-ray diffraction analysis methods. The highest temperature (1200 deg. C) for CaZrO3 synthesis was found for stoichiometric CaZrO3, whereas introduction of excess CaO into CaZrO3 led to a decrease in the synthesis temperature to 1000 deg. C. The crystallite size d(hkl) of grounded CaZrO3 powders ranged from ∼43 to ∼90 nm, respectively. BET measurements indicated that in both the investigated powders, particles were agglomerated. Sintering CaZrO3-based samples at 1500 deg. C/2 h or hot-pressing process (1250 deg. C/1 h, 25 MPa) was applied to obtain gas-tight CaZrO3-based ceramics. To examine the thermochemical stability of materials obtained at high temperatures, the CaZrO3-based samples were additionally heated at 1200 deg. C for 120 h or in the temperature range 1400-1600 deg. C for 24 h in air or purified argon. There were also performed and then discussed, some tests on thermal resistance of CaZrO3 against molten metals-nickel and copper. Investigations into chemical reactivity of CaZrO3 electrolyte with electrode materials involving LaCrO3 or MCr2O4 (M = Mg, Ca) in the temperature range 1000-1200 deg. C were conducted using XRD with Rietveld analysis. Electrical conductivity measurements performed by both dc and ac impedance spectroscopy method in the temperature range 200-1000 deg. C. The best oxygen ion conductivity was found for CaZrO3-doped excess CaO (CZ-51) samples sintered in air, starting from powders synthesized by co-precipitation or citrate method. The CZ-51 samples obtained via solid state reaction or hot

  7. Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Magdalena [AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Cracow (Poland)], E-mail: potoczek@uci.agh.edu.pl; Drozdz-Ciesla, Ewa [AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Cracow (Poland)

    2009-05-05

    Stoichiometric CaZrO{sub 3} (CZ-50) and CaZrO{sub 3} doped with excess CaO (CZ-51) powders, whose formula (CaO){sub 1-x}(ZrO{sub 2}){sub x}, where x = 50 or 51 mol.% CaO was successfully synthesised by the co-precipitation calcination method with a saturated solution of (NH{sub 4}){sub 2}C{sub 2}O{sub 4} in concentrated NH{sub 3} solution as a precipitation agent. The thermal evolution of CaZrO{sub 3} dried precursor during heating them up to 1200 deg. C was monitored by thermal (DTA, TG) and X-ray diffraction analysis methods. The highest temperature (1200 deg. C) for CaZrO{sub 3} synthesis was found for stoichiometric CaZrO{sub 3}, whereas introduction of excess CaO into CaZrO{sub 3} led to a decrease in the synthesis temperature to 1000 deg. C. The crystallite size d{sub (hkl)} of grounded CaZrO{sub 3} powders ranged from {approx}43 to {approx}90 nm, respectively. BET measurements indicated that in both the investigated powders, particles were agglomerated. Sintering CaZrO{sub 3}-based samples at 1500 deg. C/2 h or hot-pressing process (1250 deg. C/1 h, 25 MPa) was applied to obtain gas-tight CaZrO{sub 3}-based ceramics. To examine the thermochemical stability of materials obtained at high temperatures, the CaZrO{sub 3}-based samples were additionally heated at 1200 deg. C for 120 h or in the temperature range 1400-1600 deg. C for 24 h in air or purified argon. There were also performed and then discussed, some tests on thermal resistance of CaZrO{sub 3} against molten metals-nickel and copper. Investigations into chemical reactivity of CaZrO{sub 3} electrolyte with electrode materials involving LaCrO{sub 3} or MCr{sub 2}O{sub 4} (M = Mg, Ca) in the temperature range 1000-1200 deg. C were conducted using XRD with Rietveld analysis. Electrical conductivity measurements performed by both dc and ac impedance spectroscopy method in the temperature range 200-1000 deg. C. The best oxygen ion conductivity was found for CaZrO{sub 3}-doped excess CaO (CZ-51) samples

  8. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne

    2014-01-01

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  9. SYNTHESIS, CHARACTERIZATION AND ION TRANSPORT PROPERTIES OF HOT-PRESSED SOLID POLYMER ELECTROLYTES (1-x) PEO:x KI

    Institute of Scientific and Technical Information of China (English)

    Angesh Chandra; Archana Chandra; K.Thakur

    2013-01-01

    Synthesis and ion transport properties of hot-pressed solid polymer electrolytes (SPEs),(1-x) PEO:x KI,where x is the content of KI in wt%,are reported.A hot-press technique has been used for the formation of the polymeric membranes in place of the usual solution cast method.The composition (80 PEO:20 KI) was identified as the highest conducting polymer electrolyte on the basis of compositional dependent conductivity studies of PEO:KI films.A conductivity enhancement of more than two orders of magnitude from that of the pure PEO was achieved.Materials characterization and ion transport mechanism were explained by using various experimental techniques.

  10. Synthesis and Characterization of a Novel Polymer Electrolyte for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    Yan Ping Liang; Hong Zhu MA; Bo WANG

    2004-01-01

    A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200°C.

  11. Chocolate rheology

    Directory of Open Access Journals (Sweden)

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  12. Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers

    Institute of Scientific and Technical Information of China (English)

    Jun Jie KANG; Shi Bi FANG

    2004-01-01

    Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied.

  13. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process

    Indian Academy of Sciences (India)

    PURUSHOTTAM KUMAR SINGH; PANKAJ KUMAR; MANOWAR HUSSAIN; ALOK KUMAR DAS; GANESH CHANDRA NAYAK

    2016-04-01

    In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes.The mass output rate and the crystal size were obtained with variation of the rotation speed of magnetic stirrer for both types of electrolytes. The mass output rate of CuO nanoparticles increased with the increase in the speed of rotation, and, after an optimum speed, it started decreasing. However, the size of the particles reduced with the increase of the rotation speed. The crystal plane of the obtained CuO nanoparticles was similar for both the electrolytes whereas the yield of nanoparticles was higher in KOH as compared with NaOH under the sameexperiment conditions. In this set of experiments, the maximum output rates obtained were 21.66 mg h$^{−1}$ for NaOH and 24.66 mg h$^{−1}$ for KOH at 200 rpm for a single discharge arrangement. The average crystal size of CuO particles obtained was in the range of 13–18 nm for KOH electrolyte and 15–20 nm for NaOH electrolyte. Scanning electron microscopy images revealed that flower-like and caddice clew-shaped CuO nanocrystalline particles weresynthesized by the electrochemical discharge process. Fourier transform infrared spectrum showed that the CuO nanoparticles have a pure and monolithic phase. UV–vis–NIR spectroscopy was used to monitor oxidation course of Cu→CuO and the band gap energy was measured as 2 and 2.6 eV for CuO nanoparticle synthesized in NaOH and KOH solutions, respectively.

  14. Synthesis, dynamic properties and electrochemical stability of organic-inorganic hybrid polymer electrolytes with double core branched structures based on polyether, cyanuric chloride and alkoxysilane

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • New cyanuric chloride based double-core solid hybrid electrolyte is synthesized. • Conductivity of the hybrid electrolyte follows Vogel-Tamman-Fulcher behavior. • Hybrid electrolyte possesses maximum ionic conductivity of 9.5 × 10−5 Scm−1 at 30 °C. • PGSE NMR reveals ion pairs and segmental mobility affect Li diffusion coefficient. • Two local environments are identified for Li+ ions in the hybrid electrolyte. - Abstract: A new organic-inorganic solid hybrid electrolyte based on 2,4,6-trichloro-1,3,5-triazine, triblock co-polymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), poly(ethylene glycol) diglycidyl ether, and 3-(glycidyloxypropyl)trimethoxysilane doped with LiClO4 salt is synthesized by a sol-gel process. Fourier transform infrared spectroscopy and 13C NMR results reveal the successful synthesis of the organic-inorganic hybrid electrolyte. The conductivity of the hybrid electrolyte follows a VTF (Vogel-Tamman-Fulcher)-like behavior, implying that the diffusion of charge carriers is assisted by the segmental motions of polymer chains. The Li-ion mobility is determined from 7Li static NMR linewidth and diffusion coefficient measurements; both are correlated with their ionic conductivities. The maximum ionic conductivity of 9.5 × 10−5 S cm−1 at 30 °C is obtained for the hybrid electrolyte with the [O]/[Li] ratio of 32. The electrochemical stability window of 4 V ensures the hybrid electrolyte as a potential candidate for low voltage lithium ion batteries

  15. Effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline in nitric acid electrolyte

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; WANG Xindong; MENG Xu

    2005-01-01

    The effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline were cartied out under cyclovoltammetric conditions using nitrates of Li+, Na+, K+, and Cs+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the first scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of H+. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M+.

  16. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  17. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    Science.gov (United States)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  18. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  19. Synthesis and Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

    Energy Technology Data Exchange (ETDEWEB)

    Jalagonia, Natia; Tatrishvili, Tamara; Markarashvili, Eliza; Aneli, Jimsher; Mukbaniani, Omar [Javakhishvili Tbilisi State University, Tbilisi (Georgia); Grazulevicius, Jouzas Vidas [Kaunas University of Technology, Kaunas (Lithuania)

    2016-02-15

    Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, H2PtCl6 and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of CaF2, LiF, KF and anhydrous potassium hydroxide in 60-70 .deg. C temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range 3.5x10{sup -4} - 6.4xa0{sup -7} S/cm.

  20. Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Srushti; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, VADODARA-390 001, Gujarat (India)

    2008-03-15

    Five flow improvers have been synthesized to study rheological properties of Nada crude oil (Gujarat, India). Anhydride copolymers were prepared making use of the copolymerization of acrylates of different alkyls with maleic anhydride and the Poly (n-alkyl acrylates-co-N-hexadecylmaleimide) were prepared by the reaction of copolymer with hexadecylamine. The additives were purified and characterized by FTIR, GPC. The prepared polymeric additives shows dual function both as wax dispersants and flow improvers and all of them acts as good pour point depressants. Yield stress and the viscosity of the crude oil at different temperatures and concentrations of additives were evaluated by zero friction advanced rheometer AR-500 of TA instrument. Comparison of morphologies and structures of wax crystals or aggregates in waxy crude oils beneficiated with and without a PPD was also done by micro photographic studies which show the modification in wax crystal morphology due to additives. (author)

  1. SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO- RHEOLOGICAL DAMPERS: PART Ⅰ-CONTROLLER SYNTHESIS AND EVALUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Enrong; YING Liang; WANG Wanjun; RAKHEJA Subhash; SU Chunyi

    2008-01-01

    A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.

  2. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Science.gov (United States)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H.

    2016-05-01

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  3. 维生素制药废水水合结构分析与合成流变处理%Hydration Structure Analysis and Synthesis Rheological Treatment of Vitamin Pharmaceutical Wastewater

    Institute of Scientific and Technical Information of China (English)

    任朝斌

    2014-01-01

    The hydration structure of vitamin pharmaceutical wastewater and molecular synthesis rheological wastewater treatment problems was studied. Traditionally, the membrane bioreactor MBR wastewater treatment was used in vitamin pharmaceutical wastewater treatment, the treatment effect was not good. From the perspective of molecular dynamics analy-sis, a synthesis of vitamin hydrate molecule of vitamin pharmaceutical wastewater treatment rheological technology was pro-posed, and the radial distribution functions and continuous monitoring of the object integral was finished with a median of the number of ion hydration analysis, finally, the rheological processing of synthesis methods and the rheological properties of a plurality elements was studied for the synthesis of rheological processing. The pharmaceutical wastewater treatment ef-fect was tested through practical analysis and comparison experiment, the result shows that with the rheological treatment, the removal rate of CODCr and ammonia nitrogen increase by 23%and 19%, it has good application value.%传统的处理维生素制药废水方法采用膜生物反应MBR处理废水,工艺复杂,处理效果不好。从分子动力学分析角度出发,提出一种维生素水合物分子合成流变技术处理维生素制药废水,以径向分布函数和连续积分配位数为监测对象,对离子水合数进行分析,为合成流变处理提供了很好的指导作用。通过实际的制药废水处理分析比对进行测试实验,结果显示,采用基于合成流变处理的方法, CODCr和氨氮的去除率提高了23%和19%,具有很好的应用价值。

  4. Synthesis and characterization of zirconia electrolytes for potential use in energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, T.A.

    1978-11-15

    Using a wet-chemical procedure, a series of compositions having between 0 and 22.2 mol % CaO was prepared and subsequently formed into sintered samples having a relative density from 95 to 98%. Sintered samples were prepared of each composition with a geometry appropriate for determining the thermal, electrical or microstructural characteristics. The microstructural aspects of powder synthesis and the development of sintered materials are covered.

  5. Synthesis of zinc oxide porous structures by anodization with water as an electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Amitha; Nanda, Karuna Kar [Indian Institute of Science, Materials Research Centre, Bangalore (India)

    2012-10-15

    We report a simple, reliable and one-step method of synthesizing ZnO porous structures at room temperature by anodization of zinc (Zn) sheet with water as an electrolyte and graphite as a counter electrode. We observed that the de-ionized (DI) water used in the experiment is slightly acidic (pH=5.8), which is due to the dissolution of carbon dioxide from the atmosphere forming carbonic acid. Porous ZnO is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) studies. The current-transient measurement is carried out using a Gamry Instruments Reference 3000 and the thickness of the deposited films is measured using a Dektak surface profilometer. The PL, Raman and X-ray photoelectron spectroscopy are used to confirm the presence of ZnO phase. We have demonstrated that the hybrid structures of ZnO and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) exhibit good rectifying characteristics. The evaluated barrier height and the ideality factor are 0.45 eV and 3.6, respectively. (orig.)

  6. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sehmus [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Celik, Sevim Unueguer, E-mail: sunugur@fatih.edu.t [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Bozkurt, Ayhan [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey)

    2010-12-01

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 {sup o}C). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and {sup 13}C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 {sup o}C. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA{sub 2.5} extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA{sub 2.5} was found to be 0.01 S/cm at 150 {sup o}C in the anhydrous state.

  7. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    Science.gov (United States)

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  8. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes.

    Directory of Open Access Journals (Sweden)

    Hongbin Yu

    Full Text Available We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%.

  9. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  10. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    OpenAIRE

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Etsuro Shibata; Atsushi Iizuka; Takashi Nakamura

    2016-01-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the ...

  11. Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

    OpenAIRE

    Andersson, Jonas

    2015-01-01

    Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the materi...

  12. Synthesis and Characterization of a Gel-Type Electrolyte with Ionic Liquid Added for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Le-Yan Shi

    2013-01-01

    Full Text Available This study intends to develop the electrolyte needed in dye-sensitized solar cells (DSSCs. Moreover, three different ionic liquids in different molalities are added to the gel-type electrolyte. Experimental results show that the DSSC composed of the gel-type electrolyte with no ionic liquid added can acquire 4.13% photoelectric conversion efficiency. However, the DSSC composed of the gel-type electrolyte with 0.4 M of 1-butyl-3-methylimidazolium chloride added has an open-circuit voltage of 810 mV, a short-circuit current density of 9.56 mA/cm2, and photoelectric conversion efficiency reaching 4.89%. Comparing this DSSC with the DSSC with no ionic liquid added, the photoelectric conversion efficiency can be enhanced by 18.4%. As to durability, the DSSC composed of the gel-type electrolyte with ionic liquid added still has a photoelectric conversion efficiency of 3.28% on the 7th day after it is stored in an enclosed space and maintains 0.72% efficiency on the 14th day. When the proposed DSSC is compared with the DSSC prepared by using a liquid-type electrolyte, the durability of its photoelectric conversion efficiency can be increased by 7 times.

  13. Synthesis of calcium-deficient by hydroxyapatite-collage composite by the electrolytic deposition method; Denkai sekishutsu ho ni yoru karushiumu kesson hidorokishiapataito-coragen fukugotai no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H. [Niigata University, Niigata (Japan). Graduate School Of Science and Technology; Yasuda, M.; Oota, M. [Niigata University, Niigata (Japan)

    1997-07-05

    Hydroxyapatite is known as that it has a good joining property with teeth and bone, and a study on the application to the living body was conducted by using this property. Its application examples were given as the cement used in dentistry, the artificial tooth root, the artificial bone, the bone cement and the artificial joint. However, they were a sinter heated at more than 1000degC, and were put into use by means of reinforcement using a titanium alloy since their mechanical strength was low. In this study, synthesis of calcium-deficient hydroxyapatite (DAp) and collagen composite by the electrolytic deposition method was attempted in order to develop bionic materials, and the correlation of various physical properties of the obtained composite and the electrolytic deposition conditions were investigated. When the electrolytic voltage is more than 22.0V, a single phase of DAp could be obtained. It was clarified that a DAp and collagen composite was synthesized from results of IR and ESR. 16 refs., 5 figs.

  14. Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Yue Jiao Li; Feng Wu; Ren Jie Chen

    2009-01-01

    Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized.The addition of BMImTFSI results in an increase of the ionic conductivity.At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio),the ionic conductivity reaches 4.27 × 10-3 S/cm at 30 ℃.These composite polymer electrolytes exhibit good thermal and electrochemical stability,which are high enough to be applied in lithium batteries.

  15. Synthesis and Characterization of a New Network Polymer Electrolyte Containing Polyether in the Main Chains and Side Chains

    Institute of Scientific and Technical Information of China (English)

    Wang; Cheng-chien; Chen; Chuh-yung

    2007-01-01

    1 Results A new network polymer electrolyte matrix with polyether in the side chains and main chains was synthesized by the azo-macroinitiator method and urethane reaction.The macroinitiator,polymer and network polymer were confirmed by Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR.FT-IR was also used to study the environment of lithium ions doped in these network polymer electrolytes.Three important groups are considered: N-H,carbonyl,and ether groups.The thermal properties of the polymer ...

  16. Rheology and deep tectonics

    Directory of Open Access Journals (Sweden)

    G. Ranalli

    1997-06-01

    Full Text Available The distribution of the rheological properties of the lithosphere in space, and their variations in time, have a profound effect on the resulting tectonic deformation. A classical way of estimating these properties makes use of rheological profiles (strength envelopes. Although rheological profiles are based on assumptions and approximations which limit their resolving power, they are an efficient first-order tool for the study of lithosphere rheology, and their application clarifies the dynamics of tectonic processes. Two examples of the interaction of rheology and tectonics are discussed, namely, the post-orogenic relaxation of Moho topography (which is an additional factor to be considered in tectonic inversion, and the strength control on the level of necking in extension (which may lead to apparent local isostasy at passive continental margins and in sedimentary basins.

  17. Synthesis and Characterization of Nanostructured Manganese Dioxide Used as Positive Electrode Material for Electrochemical Capacitor with Lithium Hydroxide Electrolyte

    Institute of Scientific and Technical Information of China (English)

    YUAN,An-Bao; ZHOU,Min; WANG,Xiu-Ling; SUN,Zi-Hong; WANG,Yu-Qin

    2008-01-01

    A nanostructured manganese dioxide electrode material was prepared using a solid-reaction route starting with MnCl2·4H2O and NH4HCO3, and its electrochemical performance as a positive electrode for MnO2/activated carbon hybrid supercapacitor with 1 mol·L-1 LiOH electrolyte was reported. The material was proved to be a mixture of nanostructured γ-MnO2 and α-MnO2 containing some bound water in the structure, which was characterized by X-ray diffraction analysis, infrared spectrum analysis, and transmission electron microscope observation. Electrochemical properties of the MnO2 electrode and the MnO2/AC capacitor were investigated by cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Experimental results showed that the MnO2 electrode exhibited faradaic pseudocapacitance behavior and higher specific capacitance in 1 mol·L-1 LiOH electrolyte. The MnO2/AC hybrid capacitor with 1 mol·L-1 LiOH electrolyte presented excellent rate charge/discharge ability and cyclic stability.

  18. Synthesis and studies of boron based anion receptors and their use in non-aqueous electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Yang, X.Q.; Lee, H.S.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Choi, L.S. [Naval Research Lab., Washington, DC (United States)

    1998-12-31

    A new family of anion receptors based on boron compounds has been synthesized. These compounds can be used as anion receptors in lithium battery electrolytes and can greatly increase solubility and ionic conductivities of various lithium salts, such as LiF, LiCl, CF{sub 3}COOLi and C{sub 2}F{sub 5}COOLi, in DME solutions. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy studies show that Cl{sup {minus}} anions of LiCl are complexed with these compounds in DME solutions. The electrochemical stability of lithium salts and one of the boron compounds in deferent solvents was studied. For the first time, LiF has been successfully used as conducting salt in a novel electrolyte with this boron compound as an additive in DME. A rechargeable Li/LiMn{sub 2}O{sub 4} cell using this electrolyte was successfully cycled 51 times. However, the capacity fades with cycling due to decomposition of the solvent. The cycling performance of the battery was greatly improved by replacing DME with PC-EC-DMC as the solvent.

  19. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  20. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  1. Development of a model colloidal system for rheology simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Tallant, David Robert; Piech, Martin (United Technologies Research Center, East Hartford, CT); Bell, Nelson Simmons; Frischknecht, Amalie Lucile

    2008-10-01

    The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

  2. Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes

    Indian Academy of Sciences (India)

    S Ibrahim; A Ahmad; N S Mohamed

    2015-09-01

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4,4′-diphenylmethane diisocyanate were used to synthesize the desired bio-based PU. The molecular structure of PU was investigated by Fourier transform infrared (FTIR) spectroscopy. The disappearance of NCO peak in the FTIR spectrum at 2270–2250 cm–1 showed that diisocyanate has completely reacted to form PU. Morphological characteristic of the PU film was analysed using scanning electron microscopy, whereas thermal characteristics of the materials were characterized using dynamic mechanical analysis and thermal gravimetric analysis. The cross-sectional micrograph showed that the prepared film was highly amorphous and homogeneous. Thermal studies revealed that the film had low glass transition temperature, –15.8°C, and was thermally stable up to 259°C. These observations indicated the synthesized PU possessed favourable properties to act as a base material in polymer electrolytes.

  3. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  4. Synthesis of BICUVOX solid electrolyte thin film on tantalum substrate by spray pyrolysis technique for biomedical sensors

    International Nuclear Information System (INIS)

    Solid electrolytes find their application in many fields of technological interest such as oxygen sensor, fuel cell, and oxygen pump. Oxygen sensors form a basic component of biomedical instrumentation. Out of all known oxygen ion conducting solid electrolytes, metal ion substituted bismuth vanadate exhibits maximum oxygen ion conductivity at comparatively lower temperature. Thin film of Bi2Cu0.1 V0.9O5.35 was synthesized by an innovative and cost effective spray pyrolysis technique at 493 K on tantalum substrate. Tantalum is a metal with high oxygen affinity. The precursor solution was sprayed on pre heated tantalum substrate, at an optimized spray rate to obtain a uniform film. Film was then annealed at 973 K for two hours to obtain required ion conducting phase. The phase was confirmed with XRD studies. The bulk ionic conductivity of the film was measured by the method of electrochemical impedance spectrometry. The impedance measurements were done in the frequency range 1Hz to 10MHz with respect to temperature. The measurements were carried out in air ambience i.e. at 0.21 oxygen partial pressure. The ionic conductivity was found to be increasing with increase in temperature. It is about 2.53x10-5 (ohm cm)-l at 864K. The lessening of conductivity is attributed in this case to phase separation in the film. Oxygen ion conducting film on metallic substrate is expected to serve as good oxygen sensor in biomedical instrumentation. (author)

  5. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank;

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling...... and filtration). It therefore is an important property related to process performance, including process economics. To account for this, rheological behaviour is being included in process design, necessitating its measurement. However, measurements and corresponding protocols in literature are quite diverse...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this....

  6. Rheology of Superplastic Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constitutive equation of rheglogy describing a phenomenological level of superplastic deformation as functional correlation between tensor components of stress and strain rate has been analyzed for the case of superplastic ceramic flow. Rheological properties of material are taken into account by means of scalar rheological coefficients of shear and volume viscosity, which are functions of temperature, effective stress (or strain rate) and density of material.

  7. Synthesis of Vanillin by Electrolytic Oxidation%电解氧化法制备香兰素

    Institute of Scientific and Technical Information of China (English)

    赵元; 宋华付; 丁绍民

    2001-01-01

    4-Hydroxy-3-methoxymandelic acid, condensation product of guaiacol and glyoxalic acid、 was subjected electrolytic to oxidation and then decarboxylation, to vanillin. Compared with chemical oxidation, this route has the characters of simplity, low-energy consumption and high selectivity, suitable for industrial production.%愈创木酚和乙醛酸的缩合产物4-羟基-3-甲氧基扁桃酸,经电解氧化、脱羧等步骤可以合成香兰素。该方法与化学氧化的方法相比,具有工艺简单、能量消耗低、选择性高的特点,从而简化了分离和精制步骤,有利于实现工业化生产。

  8. Synthesis and characterization of -Bi2O3 based solid electrolyte doped with Nb2O5

    Indian Academy of Sciences (India)

    Handan Ozlu; Soner Cakar; Caner Bilir; Ersay Ersoy; Orhan Turkoglu

    2014-06-01

    -phase bismuth oxide is a well known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). This study aims to determine new phases of Bi2O3–Nb2O5 binary system and the temperature dependence of the electrical transport properties. The reaction products obtained in open air atmosphere were characterized by X-ray powder diffractions (XRD). The unit cell parameters were defined from the indexes of the powder diffraction patterns. The -Bi2O3 crystal system were obtained by doping 0.01 < mole% Nb2O5 < 0.04 at 750 °C for 48 and 96 h. Thermal behaviour and thermal stability of the phases were investigated by thermal analysis techniques. Surface and grain properties of the related phases were determined by SEM analysis. The temperature dependence of the electrical properties of -Bi2O3 solid solution was measured by four-point probe d.c. conductivity method. In the investigated system, the highest value of conductivity was observed for $\\sigma_{T}$ = 0.016 ohm-1 cm-1 at 650 °C on 4 mole% Nb2O5 addition. The electrical conductivity curves of studied materials revealed regular increase with temperature in the form of the Arrhenius type conductivity behaviour.

  9. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte.

    Science.gov (United States)

    Sundaram, Manickam Minakshi; Watcharatharapong, Teeraphat; Chakraborty, Sudip; Ahuja, Rajeev; Duraisamy, Shanmughasundaram; Rao, Penki Tirupathi; Munichandraiah, Nookala

    2015-12-14

    Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn(1/3)Co(1/3)Ni(1/3)PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a non-aqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

  10. Rheology of liquid foam

    International Nuclear Information System (INIS)

    Liquid foams can behave like solids or liquids, depending on the applied stress and on the experimental timescale. Understanding the origin of this complex rheology which gives rise to many applications and which resembles that of many other forms of soft condensed matter made of closely packed soft units requires challenging theoretical questions to be solved. We briefly recall the basic physics and physicochemistry of foams and review the experiments, numerical simulations and theoretical models concerning foam rheology published in recent years. (topical review)

  11. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  12. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  13. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  14. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

    Science.gov (United States)

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping

    2011-06-15

    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness salts and organic solvents under high current density and exfoliated efficiently into few-layer graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper. PMID:21557613

  15. 钛基二氧化铅阳极电化合成高氯酸钠的研究%ELECTROLYTIC SYNTHESIS OF SODIUM PERCHLORATE BY LEAD DIOXIDE ANODE BASED TITANIUM METAL

    Institute of Scientific and Technical Information of China (English)

    孙洋洲; 姚沛

    2001-01-01

    介绍了以钛基体二氧化铅作为阳极,电解氯酸钠合成高氯酸钠的过程。考察了电解温度、电解液初始氯酸钠浓度及氯化钠浓度对电流效率的影响。得出了电解反应的最佳条件。%A process of electrolytic synthesis of sodium perchlorate from sodium chlorate solution by lead dioxide anode based titanium metal is introduced. The influence of temperature,the concentration of sodium chlorate and the concentration of sodium chloride on the current efficiency is investigated, and the optimum conditions of the electrolytic process are also obtained.

  16. Rock and soil rheology

    International Nuclear Information System (INIS)

    The aim of the Euromech Colloquium 196 devoted to Rock and Soil Rheology is to review some of the main results obtained in the last years in this field of research and also to formulate some of the major not yet solved problems which are now under consideration. Exchange of opinions and scientific discussions are quite helpful mainly in those areas where some approaches are controversial and the progress made is quite fast. That is especially true for the rheology of geomaterials, domain of great interest for mining and petroleum engineers, engineering geology, seismology, geophysics, civil engineering, nuclear and industrial waste storage, geothermal energy storage, caverns for sports, culture, telecommunications, storage of goods and foodstuffs (cold, hot and refrigerated storages), underground oil and natural gas reservoirs etc. Some of the last obtained results are mentioned in the present volume. (orig./HP)

  17. Blood rheology and aging

    OpenAIRE

    Başkurt, Oğuz K.; Simmonds, Michael J. ; Meiselman, Herbert J.

    2013-01-01

    Journal of Geriatric Cardiology (2013) 10: 291301 ©2013 JGC All rights reserved; www.jgc301.com http://www.jgc301.com; | Journal of Geriatric Cardiology Review  Open Access  Blood rheology and aging Michael J. Simmonds1, Herbert J. Meiselman2, Oguz K. Baskurt3 1Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia 2Department of Physiology and Biophysics, Keck School of Medicine, University of S...

  18. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  19. Rheological approach to targeting phenomena of lipoplexes.

    Science.gov (United States)

    Sun, Yan

    2011-12-01

    Lipoplexes, the complexes of plasmid DNA with cationic lipids, are considered as an attractive alternative to viral delivery systems. However, synthesized lipoplexes showed several limitations including insufficient transfection, low reproducibility and low stability. Here we attempt to delineate the relationships between the synthesis process, morphology (e.g., shape and liquid crystal structure), and the transfection efficiency of lipoplexes with rheological technology. Mini-capillary viscometers with automatic measurement and control components were designed and used to study the morphology of lipoplexes at a macroscopical scale. In such a dilute macromolecule suspension system, the shape factor of lipoplex was correlated with the viscosity measurement. The results showed that the shape factors of lipoplexes were different with various molecular structures of cationic lipid and helper lipid. A quantitative relation was set up between the shape factors and the length of DNA/polyelectrolytes, which may help better explain lipoplexes formation. To improve the stability and reproducibility of lipoplexes, an incubation period was suggested before the use of lipoplex. A rheological method was introduced to fix the hydromechanical parameters so that the entire preparation and incubation process was carried out consistently. A laminar flow incubation environment was showed suitable for lipoplex preparation and helped improve lipoplex stability and minimize aggregation. Other flow incubations, such as turbulent flow or impinging flow, were more complicated and further study is necessary to fully understand them. In brief, the rheological methods can help reveal the mechanisms of lipoplex formation and advance the rational design of lipoplexes for pharmaceutical applications.

  20. Electrolytic fixer.

    Science.gov (United States)

    Stevens

    1982-12-01

    Interest in the recovery of silver from radiographic film generates a need to understand the operating procedures of recovery units utilizing the electrolytic fixer principle. Tailing or terminal units and recirculation units using electrolysis are evaluated. Difficulties encountered in the number of Coulombs applied to a specific amount of fixer are discussed. Reduction of sulfiding as a result of electrolysis and variations in film volumes are noted. The quantity and quality of silver collected can be improved by being aware of alterations in chemical activity used in a silver recovery program.

  1. THE ANALYSIS OF CONCRETE RHEOLOGICAL CHARACTERISTICS BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Ramona PINŢOI

    2013-05-01

    Full Text Available In the rheological models used in the mathematical description of the rheological behavior ofconcrete. Plays stiffness modulus variation, tangential effort, apparent viscosity, friction angle.

  2. 5th European Rheology Conference

    CERN Document Server

    1998-01-01

    Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoeg...

  3. Molecule-Based Rheology Switching

    NARCIS (Netherlands)

    Paulusse, Jos M.J.; Sijbesma, Rint P.

    2006-01-01

    Sound-activated switching: The rheological behavior of fluids can be affected by external stimuli, as demonstrated by electrochemically and photochemically induced changes in viscosity and sol–gel transitions. Recently, ultrasound has emerged as a novel rheology switch for supramolecular polymers an

  4. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  5. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  6. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1996-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  7. Rheology of concentrated biomass

    Science.gov (United States)

    Samaniuk, J. R.; Wang, J.; Root, T. W.; Scott, C. T.; Klingenberg, D. J.

    2011-12-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained using torque rheometry agree with those obtained using other rheometric methods, but torque rheometry can be used at much larger solids concentration (weight fractions of insoluble solids greater than 0.2). Yield stresses decrease with severity of hydrolysis, decrease when water-soluble polymers are added (for nonhydrolyzed biomass), and increase with particle length. Experimental results are qualitatively consistent with those obtained from particle-level simulations.

  8. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  9. Rheological characterization of aged asphalts

    International Nuclear Information System (INIS)

    The present work shows the rheological properties of the three Colombian asphalts produced in the refineries at Barrancabermeja, Cartagena and Apiay, exposed to the open air during 18 months using a specially designed testing bank. rheological behavior was evaluated using the new specifications of SHRP technology in the Brookfield and DSR rheometers to determine viscosity, shear stress, shear rate, dynamic share modulus and other related variables. The measurements were made using different temperatures and load times

  10. 离子色谱法测定丁二酸合成电解液中马来酸和丁二酸%IC Determination of Maleic Acid and Succinic Acid in Electrolyte from Synthesis of Succinic Acid

    Institute of Scientific and Technical Information of China (English)

    马淳安; 邱志军; 颜飞; 赵峰鸣; 徐颖华; 褚有群

    2013-01-01

    采用离子色谱法测定丁二酸合成电解液中原料马来酸和产物丁二酸的含量.试样经Ion Pac AG19保护柱及Ion Pac AS19分析柱分离,以25 mmol·L-1氢氧化钾溶液为淋洗液,采用抑制电导器检测.马来酸和丁二酸的质量浓度在1.0~10 mg·L-1范围内与峰面积与峰高均呈线性关系.方法可用于测定合成丁二酸生产过程的不同时段溶液(起始、结束和母液)中马来酸和丁二酸的含量,有助于实现丁二酸的连续式电解合成工艺路线.%Contents of maleic acid (the raw material) and succinic acid (the products) in electrolyte from synthesis of succinic acid were determined by ion chromatography. Ion Pac AG19 protective column and Ion Pac AS19 separation column were used for separation and 25 mmol · L-1 KOH solution was used as eluant. Inhibitory conductivity detection was adopted in the determinatioa Linear relationships between values of peak area or peak height and mass concentration of maleic acid and succinic acid were kept in the range of 1. 0—10 mg · L-1. The proposed method could be used in the determination of the 2 acids in the electrolyte at different time interval (at starting and ending of electrolysis) and in the mother liquid in the synthetic process. The data obtained were helpful for the realization of synthetic technology of the continuous electrolytic production of succinic acid.

  11. Rheology of magnesite

    Science.gov (United States)

    Holyoke, C. W.; Kronenberg, A. K.; Newman, J.; Ulrich, C. A.

    2012-12-01

    Magnesite (MgCO3) may be incorporated in the mantle either by the subduction of weathered oceanic crust or by reaction of lithospheric mantle with CO2, and it is commonly found within serpentinized peridotite bodies. Once magnesite is formed in subducting slabs, it is likely to remain as an important carbon-bearing phase, given that its stability extends to conditions of the mantle transition zone and possibly the lower mantle. Magnesite is a common mineral in kimberlites and it has been found as inclusions in diamonds, trapped at transition zone pressures. Our experimental results suggest that occurrences of magnesite in the mantle will lead to low strength and anomalous mantle rheology. In order to quantify the rheology of polycrystalline magnesite, we performed a series of triaxial compression experiments on cylinders of natural fine- (d~1 μm) and coarse-grained (d~100 μm) magnesite aggregates at temperatures of 400-1000°C and strain rates of 10-4/s - 10-7/s, at effective pressures of 300 and 900 MPa. Flow strengths of the fine-grained magnesite are only weakly dependent on temperature from 400 to 600°C at 1*10-5/s and decrease significantly at greater temperature, from 500 MPa (at T = 600°C) to 5 MPa (at T = 775°C). Strain rate stepping experiments performed at 650 to 750°C indicate that creep of the fine-grained magnesite in the strongly temperature dependent regime is nearly linear-viscous. Flow strengths of the coarse-grained magnesite are weakly dependent on temperature from 400 to 600°C at 1*10-5/s, gradually increase in temperature dependence from 600°C to 800°C, and become strongly temperature dependent from 800 to 1000°C (strengths decrease from 230 MPa to 30 MPa over this range). Strain rate stepping experiments performed at 500°C and 950°C indicate that the strain rate sensitivity of the strength of coarse-grained magnesite increases as the temperature sensitivity increases. The mechanical data of experiments on fine- and coarse

  12. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al{sub 2}O{sub 3}) polyblends as electrolyte membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com [Chemistry Research Groups, Faculty of Teacher Training and Educational Sciences, Tadulako University (Indonesia)

    2015-09-30

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.

  13. Synthesis, characterization and electrical properties of solid electrolyte for solid oxide fuel cell; Preparacao, caracterizacao e propriedades eletricas de eletrolito solido para celula a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco Antonio Coelho; Garcia, Carlos Mario; Matos, Jeferson Hrenechen [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: felsky@latec.org.br, garcia@latec.org.br, jeferson.h@latec.org.br

    2010-04-15

    Solid electrolytes of BaCe{sub 08}Gd{sub O29} were prepared by the polymeric precursor method. X-ray diffraction data shows a single phase with orthorhombic crystalline structure. The densification process was followed by scanning electronic microscopy and apparent density measurements. The apparent density was developed for different temperatures of sintering, reaching > 96% for sintered temperature of 1550 {sup 0}C deg . The electrochemical impedance analysis was development in the temperature of 400-700 deg C, in air atmosphere at 700 deg C a value of 30,6 mS.cm{sup -1} was obtained. The results of conductivity have confirmed the gadolinium doped barium cerate has a great potential for use as solid electrolyte for intermediate temperature solid oxide fuel cell, at experimental controlled conditions. (author)

  14. Rheology of fractal networks

    CERN Document Server

    Patricio, Pedro; Duarte, Jorge; Januario, Cristina

    2015-01-01

    We investigate the rheology of a fractal network, in the framework of the linear theory of viscoelasticity. We identify each segment of the network with a simple Kelvin-Voigt element, with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel. By considering a very simple regular self-similar structure of segments in series and in parallel, in 1, 2 or 3 dimensions, we are able to express the viscoelasticity of the network as an effective generalised Kelvin-Voigt model with a power law spectrum of retardation times, $\\phi\\sim\\tau^{\\alpha-1}$. We relate the parameter $\\alpha$ with the fractal dimension of the gel. In some regimes ($0<\\alpha<1$), we recover the weak power law behaviours of the elastic and viscous moduli with the angular frequencies, $G'\\sim G''\\sim w^\\alpha$, that occur in a variety of soft materials, including living cells. In other regimes, we find different and interesting power laws for $G'$ and $G''$.

  15. Molten salt electrolyte separator

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  16. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  17. Rheological characterization of nuclear waste using falling-ball rheometry

    International Nuclear Information System (INIS)

    Knowledge of the rheological properties of saturated solutions containing solid particles is very important in nuclear waste management technology. For example, the nuclear waste in the Hanford Site high-level radioactive waste tanks contains strong electrolyte solutions with a high concentration of solids. Previous attempt using rotational viscometers to determine the rheology has shown unusual thixotropic and shear thinning behaviors with a lack of reproducibility. Using falling-ball rheometry, the rheology of the undisturbed simulant may be determined with much better reproducibility. In this study, a well-mixed simulant which has similar chemical composition to the actual waste will be tested. Falling-ball size and density will be varied to get data in a wide range of shear rates. To determine the rheogram, several methods will be tried to match the observed data. Based on these tests, a rheogram can be determined from the model and its best-fit parameters. The simulant shows shear-thinning behavior and a yield stress. This would suggest a H-B model. But when fitting to one of the simulants which showed a very low yield stress, the predictions assuming no yield and assuming yield resulted in no improvement in the fit when assuming yield

  18. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  19. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  20. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  1. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene) Diamine

    Science.gov (United States)

    Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming

    2012-01-01

    Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176

  2. Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests

    Institute of Scientific and Technical Information of China (English)

    陈晓斌; 张家生; 刘宝琛; 唐孟雄

    2008-01-01

    In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.

  3. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  4. Rheological measurements on artifical muds

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    The rheological behaviour of three artificial muds was determined using a rotational viscometer. First some characteristics of the viscometer used were rneasured. For want of an appropriate calibration tluid, the viscosity of demineralized water was determined. The result agreed very well with what

  5. Synthesis of a new electrolyte by co-poly-esters doped with sodium dodecyl sulfate for application on PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M.; Bresciani, D. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    Proton exchange membrane fuel cells (PEMFCs) use polymer membranes as electrolytes and protons as conductors. This paper reported on a study in which co-polyesters were doped with sodium dodecyl sulfate. The co-polymers were synthesized by a copolymerization process that used terephthalic and adipic acids with glycerol. A reactor was used to process the material, which was then hot-pressed to produce homogenous and flexible plates. X-ray diffraction (XRD) scanning electron microscopy (SEM), thermogravimetric, direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) analyses were conducted. Results of the analyses demonstrated that the composite material was stable up to a temperature of 250 degrees C. A micrographics study showed that MDS was homogeneously dispersed in the polymeric matrix. It was concluded that with an electrical conductivity between 10-7 to 10-1 S per cm, the copolymers were suitable for use in PEMFC applications.

  6. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  7. SYNTHESIS AND APPLICATION AS POLYMER ELECTROLYTE OF HOMO- AND COPOLYMERS OF 3-(2-CYANO ETHOXY)METHYL- AND 3-(METHOXY(TRIETHYLENOXY))METHYL-3'-METHYLOXETANE

    Institute of Scientific and Technical Information of China (English)

    Lin Ye; Zeng-guo Feng; Xiao-wen Zhang; Qian Qin; Ying Bai; Feng Wu; Shi Chen; Guo-qing Wang

    2006-01-01

    Two oxetane-derived monomers, 3-(2-cyano-ethoxy)methyl- and 3-(methoxy-(triethylenoxy))methyl-3'-methyloxetane (COX and MTOX), were prepared from 3-hydroxymethyl-3'-methyloxetane. Their homo- and co-polymerization in solution were carried out by the cationic ring-opening polymerization with BF3 · Et2O and 1,4-butanediol as co-initiator. The molecular weight and molecular weight distribution were determined using GPC so as to reveal the competition and interchange between active chain end (ACE) and activated monomer (AM) mechanism in the process. The reactivity ratios of the two monomers were calculated according to Kelen-Tudos using 1H-NMR analysis. The influence of functional side chains in the monomers on the copolymerization behaviors was discussed in virtue of the reactivity ratio data.When doped with lithium salt LiTFSI, the ion conductivity of the homopolymer of MTOX reached 10-3.58 S/em at 30℃ and 10-2.73 S/cm at 80℃, respectively, showing its potential to be used as polymer electrolyte for lithium ion battery.

  8. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  9. Synthesis of yttria-doped zirconia anodes and calcium-doped ceria electrolyte to fuel cell; Sintese de anodos de zirconia dopada com itria e eletrolito de ceria dopada com calcia para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, G.R.S de; Fagury Neto, E.; Rabelo, A.A., E-mail: grs_gustavo@hotmail.co [Universidade Federal do Para (UFPA), Maraba, PA (Brazil). Fac. de Engenharia de Materiais

    2010-07-01

    From the pursuit of lower operating temperature of fuel cells solid oxide was used polymeric precursor for the synthesis of reactive powder compositions Zr{sub 0,92}Y{sub 0,08}O{sub 2} for the anode and Ce{sub 0,88}Ca{sub 0,12}O{sub 2} for the electrolyte. The solutions were prepared using the metal in much of the composition and citric acid molar ratio of 1:3, under stirring at 60 deg C/1 h. The mixture of metallic citrates was subjected to agitation at a temperature of 80 deg C which was added ethylene glycol in the ratio 60:40 by weight citric acid / ethylene glycol, to form a resin that was pre-calcined at 300 deg C/3 h for to form the expanded resin. The powders were disaggregated in a mortar, screened and calcined at 400, 600 and 800 deg C/2 h. The powders were characterized by standard X-ray diffraction. (author)

  10. SUMMARY OF 2009 RHEOLOGY MODIFIER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2009-12-08

    The overall objective of the EM-31 Rheological Modifiers and Wetting Agents program is to utilize commercially available rheology modifiers to increase the solids fraction of radioactive sludge based waste streams, resulting in an increase in throughput and decreasing the overall processing time. The program first investigates the impact of rheology modifiers on slurry simulants and then utilizes the most effective rheology modifiers on radioactive slurries. The work presented in this document covers the initial investigation of rheology modifier testing with simulants. This task is supported by both the Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL). The SRNL EM-31 task, for this year, was to investigate the use of rheology modifiers on simulant Defense Waste Processing Facility (DWPF) melter feeds. The task is to determine, based on the impact of the rheology modifier, if there are rheology modifiers that could reduce the water content of the slurry going to the DWPF melter, hence increasing the melt rate by decreasing the water loading. The rheology modifier in essence would allow a higher solids content slurry to have the same type of rheology or pumpability of a lower solids slurry. The modifiers selected in this report were determined based on previous modifiers used in high level waste melter feed simulants, on-going testing performed by counterparts at PNNL, and experiences gain through use of modifiers in other Department of Energy (DOE) processes such as grout processing. There were 12 rheology modifiers selected for testing, covering both organic and inorganic types and they were tested at four different concentrations for a given melter feed. Five different DWPF melter feeds were available and there was adequate material in one of the melter feeds to increase the solids concentration, resulting in a total of six simulants for testing. The mass of melter feed available in each simulant was not adequate for

  11. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several...

  12. Rheological and textural properties of cosmetic emulsions

    OpenAIRE

    Morávková, T. (Tereza); Štern, P. (Petr)

    2011-01-01

    A set of 31 cosmetic emulsions, as the most frequent cosmetic dispersions, comprising lotions and creams (o/w, w/o), was analyzed by rheological procedures (RheoStress 300, Thermo Fischer Scientific) and by sensory profiling. Rheological analysis proved to be more suitable for the storage stability testing of the emulsion than sensory evaluation. Psychorheology was applied as a suitable complex method. Rheological parameters were compared to sensory texture attributes (removing from a package...

  13. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  14. Rheological properties of magneto-responsive copolymer gels

    NARCIS (Netherlands)

    An, H.

    2012-01-01

    New magneto rheological systems that respond mechanically to external homogeneous magnetic fields, namely, physically cross-linked magneto rheological (MR) gels, were synthesized and investigated. Various aspects of the rheological behavior were considered such as linear viscoelastic response for va

  15. Synthesis and electrochemical assessment of Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} ceramics and derived composite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Natércia C.T.; Rajesh, Surendran; Marques, Fernando M.B.

    2015-10-15

    Highlights: • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} prepared for the first time through solid state reaction. • High energy milling needed to assist the ceramic route. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} is oxide-ion conductor in air and n-type conductor at low pO{sub 2}. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} decomposes slightly when exposed to alkaline carbonates. • Composites based on Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} show standard electrical performance. - Abstract: Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} was prepared for the first time through high temperature (1600 °C for 5 h) solid state reaction, after high energy milling to enhance the mechano-chemical interaction of precursor oxides (CeO{sub 2} and Yb{sub 2}O{sub 3}). Single phase formation was confirmed by powder X-ray diffraction. Impedance spectroscopy data obtained under wide temperature (300–800 °C) and oxygen partial pressure (0.21 to about 10{sup −25} atm) ranges indicates that this material exhibits predominant oxide-ion conductivity under oxidizing conditions while n-type electronic conductivity prevails at low oxygen partial pressure. The mixed oxide shows modest ionic conductivity (1.1 × 10{sup −3} S cm{sup −1} at 800 °C) with activation energy of 1.3 eV in the 600–800 °C temperature range. When combined with molten carbonates (Li{sub 2}CO{sub 3} + Na{sub 2}CO{sub 3}, 1:1 molar ratio) to produce composite electrolytes, Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} slightly decomposed. However, the composite electrical performance is still acceptable and closely matches the conductivity of similar materials (>0.1 S cm{sup −1} immediately above 500 °C)

  16. Lithium-ion transport in inorganic solid state electrolyte

    Science.gov (United States)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  17. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  18. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  19. Electrolytic oxidation of anthracite

    Science.gov (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  20. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  1. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  3. A New Electrolytic Synthesis Method for Few-Layered MoS2 Nanosheets and Their Robust Biointerfacing with Reduced Antibodies.

    Science.gov (United States)

    Kukkar, Manil; Tuteja, Satish K; Sharma, Amit L; Kumar, Vinod; Paul, Ashok K; Kim, Ki-Hyun; Sabherwal, Priyanka; Deep, Akash

    2016-07-01

    We report an efficient method for the synthesis of few-layered MoS2 nanosheets and demonstrate their application in the label-free detection of the prostate-specific antigen (PSA) cancer marker. As a novel strategy, the electro-dissolution of molybdenum metal sheets in the presence of Na(+) and S(2-) ions led to the formation of Na(+) intercalated MoS2. Further exfoliation by ultrasonication yielded the desired formation of few-layered MoS2 nanosheets. After comprehensive characterization, the synthesized MoS2 nanosheets were channeled in a field-effect transistor (FET) microdevice. Chemically reduced anti-PSA antibodies were immobilized on the MoS2 channel above the FET microdevice to construct a specific PSA immunosensor. The antibodies were deliberately reduced to expose the hinge-region disulfide bonds. This approach offered a robust and site-directed immunosensing device through biointerfacing of the sulfhydryl groups (-SH) in the reduced antibody with the surface S atoms of MoS2. This device was validated as an effective immunosensor with a low detection limit (10(-5) ng/mL) over a wide linear detection range (10(-5) to 75 ng/mL).

  4. A New Electrolytic Synthesis Method for Few-Layered MoS2 Nanosheets and Their Robust Biointerfacing with Reduced Antibodies.

    Science.gov (United States)

    Kukkar, Manil; Tuteja, Satish K; Sharma, Amit L; Kumar, Vinod; Paul, Ashok K; Kim, Ki-Hyun; Sabherwal, Priyanka; Deep, Akash

    2016-07-01

    We report an efficient method for the synthesis of few-layered MoS2 nanosheets and demonstrate their application in the label-free detection of the prostate-specific antigen (PSA) cancer marker. As a novel strategy, the electro-dissolution of molybdenum metal sheets in the presence of Na(+) and S(2-) ions led to the formation of Na(+) intercalated MoS2. Further exfoliation by ultrasonication yielded the desired formation of few-layered MoS2 nanosheets. After comprehensive characterization, the synthesized MoS2 nanosheets were channeled in a field-effect transistor (FET) microdevice. Chemically reduced anti-PSA antibodies were immobilized on the MoS2 channel above the FET microdevice to construct a specific PSA immunosensor. The antibodies were deliberately reduced to expose the hinge-region disulfide bonds. This approach offered a robust and site-directed immunosensing device through biointerfacing of the sulfhydryl groups (-SH) in the reduced antibody with the surface S atoms of MoS2. This device was validated as an effective immunosensor with a low detection limit (10(-5) ng/mL) over a wide linear detection range (10(-5) to 75 ng/mL). PMID:27296984

  5. Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia - nickel anodes for application in solid electrolyte fuel cells

    Science.gov (United States)

    Garcia-Garcia, F. J.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R.; Lambert, R. M.

    2016-08-01

    We report on the synthesis of undoped ∼5 μm YSZ-Ni porous thin films prepared by reactive pulsed DC magnetron sputtering at an oblique angle of incidence. Pre-calcination of the amorphous unmodified precursor layers followed by reduction produces a film consisting of uniformly distributed tilted columnar aggregates having extensive three-phase boundaries and favorable gas diffusion characteristics. Similarly prepared films doped with 1.2 at.% Au are also porous and contain highly dispersed gold present as Ni-Au alloy particles whose surfaces are strongly enriched with Au. With hydrogen as fuel, the performance of the undoped thin film anodes is comparable to that of 10-20 times thicker typical commercial anodes. With a 1:1 steam/carbon feed, the un-doped anode cell current rapidly falls to zero after 60 h. In striking contrast, the initial performance of the Au-doped anode is much higher and remains unaffected after 170 h. Under deliberately harsh conditions the performance of the Au-doped anodes decreases progressively, almost certainly due to carbon deposition. Even so, the cell maintains some activity after 3 days operation in dramatic contrast with the un-doped anode, which stops working after only three hours of use. The implications and possible practical application of these findings are discussed.

  6. Lithium dendrite growth through solid polymer electrolyte membranes

    Science.gov (United States)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  7. Electronic structure calculations on lithium battery electrolyte salts.

    Science.gov (United States)

    Johansson, Patrik

    2007-03-28

    New lithium salts for non-aqueous liquid, gel and polymeric electrolytes are crucial due to the limiting role of the electrolyte in modern lithium batteries. The solvation of any lithium salt to form an electrolyte solution ultimately depends on the strength of the cation-solvent vs. the cation-anion interaction. Here, the latter is probed via HF, B3LYP and G3 theory gas-phase calculations for the dissociation reaction: LiX Li(+) + X(-). Furthermore, a continuum solvation method (C-PCM) has been applied to mimic solvent effects. Anion volumes were also calculated to facilitate a discussion on ion conductivities and cation transport numbers. Judging from the present results, synthesis efforts should target heterocyclic anions with a size of ca. 150 A(3) molecule(-1) to render new highly dissociative lithium salts that result in electrolytes with high cation transport numbers. PMID:17356757

  8. Electrolytic hydrogen production

    Science.gov (United States)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  9. RHEOLOGICAL BEHAVIOUR OF PSYLLIUM GUM FRACTIONS

    Directory of Open Access Journals (Sweden)

    Mohammad Hojjatoleslamyi

    2013-10-01

    Full Text Available Psyllium (Plantago psyllium is a native plant that grows widely in India, Iran and Pinjab. Studies showed psyllium gum has good rheological properties for using in wide range of food products. In this study, different fractions of psyllium gum extracted by water and alkali treatment. Rheological properties of these fractions determined by Brookfield rheometer (RV DVIII. Obtained data fitted in three temperatures 30, 60 and 80°C by Herschel-bulkly rheological model. Results showed that fractions have different behaviour during heating treatment. The most difference observed in AEG0.5 fraction.

  10. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  11. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    Energy Technology Data Exchange (ETDEWEB)

    Hedrih, K [Faculty of Mechanical Engineering University of Nis, Mathematical Institute SANU, ul. Vojvode Tankosic 3/V/22, 18000-Nis (Serbia)], E-mail: katica@masfak.ni.ac.yu, E-mail: khedrih@eunet.yu

    2008-02-15

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out.

  12. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  13. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  15. Characterizing the Rheology of Fluidized Granular Matter

    OpenAIRE

    Desmond, Kenneth W.; Villa, Umberto; Newey, Mike; Losert, Wolfgang

    2011-01-01

    In this study we characterize the rheology of fluidized granular matter subject to secondary forcing. Our approach consists of first fluidizing granular matter in a drum half filled with grains via simple rotation, and then superimposing oscillatory shear perpendicular to the downhill flow direction. The response of the system is mostly linear, with a phase lag between the grain motion and the oscillatory forcing. The rheology of the system can be well characterize by the GDR-Midi model if th...

  16. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  17. PROGNOSIS OF RHEOLOGICAL CHARACTERISTIC OF SAUSAGES

    Directory of Open Access Journals (Sweden)

    Nesterenko A. A.

    2015-03-01

    Full Text Available In spite of decrease of meat import in connection with introduction of sanctions, demand and production of specialty produce are increased. High demands are lodged to meat produce for production of summer sausages. The technological defective goods of sausages not infrequently occur under use of meat raw with non-traditional autolysis and quality. For prevention of defective goods is necessary to have an opportunity to forecast the chemical content and rheological characteristics of sausages. These indexes are important for prognosis of quality of newly worked out or modernized receipts of sausages. The quality of sausages depends on qualitative indexes of minced meat. One of the indexes of minced beef is a consistence which is assessed not only organoleptically but on rheological characteristics. For production of sausages with advanced chemical content and consistence assessed under the help of rheological characteristics is necessary to work out the method of forecasting of ready goods quality. At projecting of the receipt we were offered to use the calculation of rheological and chemical-technological characteristics. There was described the classification of minced meat as heterogeneous system consisting of dispersive medium and phase. There were considered the possibilities of calculation of rheological, chemical indexes and complex chemical characteristics of minced meat and ready sausages in the work. The application of rheological methods of forecasting allows tracing the quality of sausages on any stage of production

  18. Magma rheology variation in sheet intrusions (Invited)

    Science.gov (United States)

    Magee, C.; O'Driscoll, B.; Petronis, M. S.; Stevenson, C.

    2013-12-01

    The rheology of magma fundamentally controls igneous intrusion style as well as the explosivity and type of volcanic eruptions. Importantly, the dynamic interplay between the viscosity of magma and other processes active during intrusion (e.g., crystallisation, magma mixing, assimilation of crystal mushes and/or xenolith entrainment) will likely bear an influence on the temporal variation of magma rheology. Constraining the timing of rheological changes during magma transit therefore plays an important role in understanding the nuances of volcanic systems. However, the rheological evolution of actively emplacing igneous intrusions cannot be directly studied. While significant advances have been made via experimental modelling and analysis of lava flows, how these findings relate to intruding magma remains unclear. This has led to an increasing number of studies that analyse various characteristics of fully crystallised intrusions in an attempt to ';back-out' the rheological conditions governing emplacement. For example, it has long been known that crystallinity affects the rheology and, consequently, the velocity of intruding magma. This means that quantitative textural analysis of crystal populations (e.g., crystal size distribution; CSD) used to elucidate crystallinity at different stages of emplacement can provide insights into magma rheology. Similarly, methods that measure flow-related fabrics (e.g., anisotropy of magnetic susceptibility; AMS) can be used to discern velocity profiles, a potential proxy for the magma rheology. To illustrate these ideas, we present an integrated AMS and petrological study of several sheet intrusions located within the Ardnamurchan Central Complex, NW Scotland. We focus on the entrainment and transport dynamics of gabbroic inclusions that were infiltrated by the host magma upon entrainment. Importantly, groundmass magnetic fabrics within and external to these inclusions are coaxial. This implies that a deviatoric stress was

  19. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  20. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  1. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  2. Electrolyte materials - Issues and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Balbuena, Perla B. [Department of Chemical Engineering, and Department of Materials Science and Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  3. Magnetic rotational spectroscopy with nanorods to probe time-dependent rheology of microdroplets.

    Science.gov (United States)

    Tokarev, Alexander; Luzinov, Igor; Owens, Jeffery R; Kornev, Konstantin G

    2012-07-01

    In situ characterization of minute amounts of fluids that rapidly change their rheological properties is a challenge. In this paper, the rheological properties of fluids were evaluated by examining the behavior of magnetic nanorods in a rotating magnetic field. We proposed a theory describing the rotation of a magnetic nanorod in a fluid when its viscosity increases with time exponentially fast. To confirm the theory, we studied the time-dependent rheology of microdroplets of 2-hydroxyethyl-methacrylate (HEMA)/diethylene glycol dimethacylate (DEGDMA)-based hydrogel during photopolymerization synthesis. We demonstrated that magnetic rotational spectroscopy provides rich physicochemical information about the gelation process. The method allows one to completely specify the time-dependent viscosity by directly measuring characteristic viscosity and characteristic time. Remarkably, one can analyze not only the polymer solution, but also the suspension enriched with the gel domains being formed. Since the probing nanorods are measured in nanometers, this method can be used for the in vivo mapping of the rheological properties of biofluids and polymers on a microscopic level at short time intervals when other methods fall short. PMID:22668085

  4. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  5. Dilational surface rheology of polymer solutions

    Science.gov (United States)

    Noskov, B. A.; Bykov, A. G.

    2015-06-01

    The review concerns main achievements in dilational rheology of polymer adsorption films at the gas/liquid interfaces reported in the last fifteen years. The theoretical foundations of methods of surface rheology and the key results obtained in studies of solutions of amphiphilic nonionic polymers, polyelectrolytes, proteins and their complexes with low-molecular-mass surfactants are discussed. Interest in the surface dilational rheology is mainly caused by a small number of available experimental methods for investigation of the surface of liquids, by the fact that traditional methods of measurement of the surface tension that are widely used in studies of solutions of low-molecular-mass surfactants provide little information when applied to polymer solutions owing to very slow establishment of equilibrium as well as by weak dependence of the surface tension on the polymer concentration. Progress in the surface rheology is driven by the recent studies of the stability of foams and emulsions that demonstrated a key role of the dilational surface rheological properties in the dynamics of liquid-phase disperse systems. The bibliography includes 191 references.

  6. Introduction to Rheology and Application to Geophysics

    Science.gov (United States)

    Ancey, C.

    This chapter gives an overview of the major current issues in rheology through a series of different problems of particular relevance to geophysics. For each topic considered here, we will outline the key elements and point the reader to ward the most helpful references and authoritative works. The reader is also referred to available books introducing rheology [1, 2] for a more complete presentation and to the tutorial written by Middleton and Wilcock on mechanical and rheological app lications in geophysics [3]. This chapter will focus on materials encountered by geophysicists (mud, snow, magma, etc.), although in most cases we will consider only suspensions of particles within an interstitial fluid without loss of generality. Other complex fluids such as polymeric liquids are rarely encountered in geophysics.

  7. RHEOLOGY FEATURE OF SIMPLE METAL MELT

    Institute of Scientific and Technical Information of China (English)

    C.J. Sun; H.R. Geng; Y.S. Shen; X.Y. Teng; Z.X. Yang

    2007-01-01

    The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80, alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20, alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.

  8. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  9. Rheological Behavior of the Matrixes of Bauxite-Based Castables

    Institute of Scientific and Technical Information of China (English)

    Ye Fangbao; Rigaud M.; LIU Xinhong; ZHONG Xiangchong

    2003-01-01

    Rheology of castables is greatly affected and controlled by rheological behavior of their matrix. In this work, the rheological properties of bauxite-based castable matrix have been studied. The effects of super-fine silica and alumina addition, water/cement ratio, dispersants and bauxite particle-size on viscosity, shear rate and shear stress of the slurries have been investigated. Based on these results, the range of optimum composition of the matrix with good rheological behavior has been obtained.

  10. V(Ⅲ)-V(Ⅳ)电解液的化学合成及性能%Study on the chemical synthesis and the performance of V(III)-V(IV) electrolyte

    Institute of Scientific and Technical Information of China (English)

    陈孝娥; 崔旭梅; 王军

    2012-01-01

    钒电池是一种高效储能装置,钒电池电解液直接影响电池性能。本文以V2O3、V2O5和H2SO4为原料,化学合成了用于钒电池的V(Ⅲ)-V(Ⅳ)电解液,研究了无水乙醇与焦磷酸钠作为添加剂对电解液稳定性和电化学活性的影响。实验结果表明,当V2O3/V2O5质量比为7.2∶1时,可以得到V(Ⅲ)/V(Ⅳ)离子浓度比为1.0的电解液;添加剂的加入能提高电解液的稳定性和电化学反应活性。%Vanadium redox flow battery is a highly efficient storage energy installs.The electrolyte influence the battery capacity directly.V(Ⅲ)-V(Ⅳ) electrolyte of vanadium redox flow battery was prepared by chemical method with V2O3,V2O5 and H2SO4 in this paper.The impacts of the additives of alcohol and sodium pyrophosphate on the stability and the electrochemical activity of electrolyte were investigated.The experimental results showed that the electrolyte with V(Ⅲ)/V(Ⅳ) concentration ratio of 1.0 was acquired with the V2O3/V2O5 mass ratio of 7.2∶1.And the stability and the electrochemical activity of the electrolyte were improved by adding the additives.

  11. Ionic liquids, method for the production thereof, and use of same as electrolytes for electrochemical energy storage devices

    OpenAIRE

    Miguel, Irene de; Herradón García, Bernardo; Mann, Enrique; Morales, Enrique

    2014-01-01

    [EN] The invention relates to ionic liquids of general formula (I), to the synthesis thereof, and to the use of said ionic liquids as electrolytes in electrochemical electrical energy storage devices.

  12. Rheology of interfacial protein-polysaccharide composites

    Science.gov (United States)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  13. Characterizing the rheology of fluidized granular matter.

    Science.gov (United States)

    Desmond, Kenneth W; Villa, Umberto; Newey, Mike; Losert, Wolfgang

    2013-09-01

    In this study we characterize the rheology of fluidized granular matter subject to secondary forcing. Our approach consists of first fluidizing granular matter in a drum half filled with grains via simple rotation and then superimposing oscillatory shear perpendicular to the downhill flow direction. The response of the system is mostly linear, with a phase lag between the grain motion and the oscillatory forcing. The rheology of the system can be well characterized by the GDR MiDi model if the system is forced with slow oscillations. The model breaks down when the forcing time scale becomes comparable to the characteristic time for energy dissipation in the flow. PMID:24125256

  14. Liquid rheology study on refined rapeseed oil

    Institute of Scientific and Technical Information of China (English)

    刘其梅; 罗迎社; 殷水平; 陈胜铭; 张党权; 彭万喜

    2008-01-01

    The rapeseed oil extracted from the mature seeds was purified by refining processing,and the rheological characteristic analysis of the viscosity and dynamic shear rate at gradient temperatures was made.The result shows that at 20,40,60 and 80 ℃ respectively,when the shear rate gradually rises,the torque increases accordingly but its viscosity does not vary distinctly.The result suggests that when rapeseed oil is used as the raw of edible oils and industries,the working procedures at high temperature will not influence its rheological characteristic distinctly.

  15. Dislocation evolution with rheological forming of metal

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    It is known that some internal defects exist in metal materials. Preliminary attempt to relate dislo cation evolution with metal rheological forming was done. By the attempt, it is learned that the evolution of dislocation density p( x, y, t ) is essentially the change of n independent internal variables qα (α = 1, 2, …n ) with material. The preliminary research in theory and experiments showed that dislocations piling-up could be avoided. One can improve the internal microstructure and mechanical properties of products by rheological forming method.

  16. THE RHEOLOGICAL PROPERTIES AND OUTBURST MECHANISM OF GASEOUS COAL

    Institute of Scientific and Technical Information of China (English)

    何学秋; 周世宁; 林柏泉

    1991-01-01

    Coal and methane outburst is one of the harmful disasters in coal mines. We have studied the rheological properties of gaseous coal in laboratory and obtained its rheological fracture principle. This principle can better explain and describe the outburst mechanism of gaseous coal. Thereby a rheological hypothesis of coal and methane outburst is put forward in this paper.

  17. Advances and expectations of study on wood rheology

    Institute of Scientific and Technical Information of China (English)

    马远荣; 罗迎社; 李贤军

    2008-01-01

    By studying and summarizing the characteristics of wood rheology,the mathematic models of creep and mechano-sorptive creep of wood were analyzed.Rheology behaviors in process,especially drying stress and deformation set were discussed.Application of wood rheology in woodcraft process was elaborated and the research prospects and orientation were forecasted.

  18. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  19. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    Science.gov (United States)

    Sheng, Yangping

    and surface tension of electrolyte is used to reflect performance of electrolyte wetting. There are very few reports about quantitative measurement about electrolyte wetting. Moreover, there are only simple qualitative observations, good, poor, and fair, were reported on the wettability of microporous separators. Therefore, development of a quantitative analysis method is critical to help understand the mechanism of how electrolyte wetting is affected by material properties and manufacturing processes. In this dissertation, a quantitative test method is developed to analyze the electrolyte wetting performance. Wetting rate, measured by wetting balance method, is used to quantitatively measure the speed of electrolyte wetting. The feasibility of the wetting rate is demonstrated by repeated test of wetting rate between electrolytes and electrodes. Various electrolytes from single solvents to complicated industrial level electrolytes are measured with baseline electrodes. Electrodes with different composition, active materials and manufacturing process, separator sheets with different materials and additives are also measured with baseline electrolyte. The wetting behaviors for different materials and manufacturing processes could be used to help improve the optimization of production process. It is very necessary to reveal the mechanism underlying electrolyte wetting, especially the effects of electrode pore microstructure. The Electrodes, which are composed of active material, binder and carbon black, are formed by production process (rheological processing, coating, drying), and post-production process (calendaring and slicing etc.). The pore structure is also complicated by the broad size range of pores from nanometer to tens micrometer. In this dissertation, a pore network concept, as revealed in the MIP test (mercury intrusion porosimetry), is employed to characterize the electrode pore structure. It is composed by the random pore cavity and connected part of pores

  20. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  1. Electrolytes - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Meutzner, Falk; Ureña de Vivanco, Mateo [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  2. Electrolytes - Technology review

    International Nuclear Information System (INIS)

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted

  3. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Energy Technology Data Exchange (ETDEWEB)

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  4. Dramatical Impact Of Low Amounts of Swelling Clays On The Rheology Of Alpine Debris Flows

    Science.gov (United States)

    Bardou, E.; Bowen, P.; Banfill, P. G.; Boivin, P.

    2004-12-01

    . Although these results can't be upscaled to a quantitative assessment of the effects of changes in the SCR in a dense granular suspension they have, however, has a direct implications for debris flow rheological studies. Even though weighting for a very little part of the materials, the swelling clays cannot be neglected in the analysis of such mixtures. Moreover, colloid properties of these clays are very sensitive to factors such as electrolyte composition, clay surface coatings and shaking energy. Therefore, the electrolyte used in test the materials, and chemical equilibration time within electrolyte and solid phase, should be carefully selected with respect to field conditions. References Bardou, E., Ancey, C., Bonnard, C. and Vulliet, L., 2003. A typological approach of debris flow useful for hazard assessement in the alpine area. In: D. Rickenmann and C. Cheng-lung (Editors), 3rd DFHM, Davos. Bardou, E., Bowen, P., Boivin, P., Banfill, P.F.G. submitted Effect of the Clay Type on the Rheology of an Heterogeneous Dense Granular Material. Implication for the Study of Alpine Debris Flow. Boivin, P., Bardou E., Pfeifer, H.-R.: Role And Behaviour Of Clay Minerals In Alpine Debris Flows. This session Tattersall, G.H. & Banfill, P.F.G. 1983: The rheology of fresh concrete. Pitman, London.

  5. Thin film polymeric gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  6. Rheological behavior of precursor PPV monolayers

    NARCIS (Netherlands)

    Luinge, JW; Nijboer, GW; Hagting, JG; Vorenkamp, EJ; Fuller, GG; Schouten, AJ

    2004-01-01

    The rheological behavior of different precursor poly(p-phenylene vinylene) (prec-PPV) monolayers at the air-water interface was investigated using an interfacial stress rheometer (ISR). This device nicely reveals a transition of the precursor poly(2,5-dimethoxy-1,4 phenylene vinylene) (prec-DMePPV)

  7. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown th

  8. Rheological properties of olefinic thermoplastic elastomer blends

    NARCIS (Netherlands)

    Sengers, W.G.F.

    2005-01-01

    Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized, cu

  9. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  10. Impact of Rheology on Meltblown Polymer Nanofibers

    Science.gov (United States)

    Tan, Dawud H.; Ellison, Christopher J.; Bates, Frank S.; Macosko, Christopher W.

    2008-07-01

    Melt blowing, a commercialized polymer processing technique, is used to produce a majority of nonwoven fiber products. It utilizes a stream of hot air to attenuate an extruded polymer strand into a fiber that is typically larger than 1 μm in diameter. Recently, our group has demonstrated the capability of melt blowing various polymers into defect-free fibers with an average diameter of several hundred nanometers by using a lab scale melt blowing device designed after a typical commercial instrument. However, surface tension-driven instabilities are observed when the smallest fibers are generated, resulting in droplets dispersed in the fiber mat. We hypothesize that altering the rheological properties of polymer may either delay or suppress these instabilities. In this study, the rheology has been studied systematically by melt blowing bidisperse polymeric blends obtained by mixing low and high molecular weight polymer. The associated changes in the rheological properties and the effect of rheology on the average and the width of the fiber diameter distribution will be highlighted.

  11. Rheological and commodity properties of petroleum mixtures

    International Nuclear Information System (INIS)

    Results of researches of rheological and commodity characteristics of prognosis petroleum mixtures, pumping on an Western Kazakhstan-Kumkol petroleum pipe-line are presented. It is shown, that petroleum mixtures are low viscous, low solidifying and have not viscosity anomaly at positive temperatures. (author)

  12. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    Science.gov (United States)

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  13. Rheological evaluation of Prunus mume pulp

    Directory of Open Access Journals (Sweden)

    Ernesto Quast

    2013-12-01

    Full Text Available The rheological behaviour of mume pulp at 6, 7, 8 and 9 °Brix was investigated using a rotational viscometer at temperatures ranging from 15 to 75 °C. The rheological models of Herschel-Bulkley and Ostwald-Waele (Power Law were fitted to obtain the rheological parameters of the mume pulp. The product was described as time non-dependent and presented a viscosity of 1.9 Pa.s at 15 °C and 1.1°Pa.s at 65 and 75 °C for the 9 °Brix pulp. The pulp showed non-Newtonian behaviour and the Herschel-Bulkley model was used to describe this behaviour. The activation energy ranged from 6.6-10.6 kJ.mol-1 and the consistency index from 18.0-22.9 Pa.s n for the 9 °Brix pulp and 8.3-12.2 Pa.s n for the 8 °Brix pulp at temperatures varying from 15 to 75 °C. The models presented high correlation values for all the rheological data obtained in the present work.

  14. Rheological characterization of media containing Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Gade; Bundgaard-Nielsen, Mikael; Nielsen, Jens;

    1993-01-01

    Samples from fed-batch fermentations of Penicillium chrysogenum on complex medium are rheologically characterized. The behavior is well described by a power law model for which the parameters are estimates. Furthermore, two types of model media are characterized and compared with the real...

  15. Electrolytes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  16. The rheological properties of different GNPs

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed Anwar K

    2012-01-01

    Full Text Available Abstract Background Rheological analysis can be employed as a sensitive tool in predicting the physical properties of gold nanoparticles (GNPs. Understanding the rheological properties of GNPs can help to develop a better therapeutic cancer product, since these physical properties often link material formulation and processing stages with the ultimate end use. The rheological properties of GNPs have not been previously documented. The present study attempted to characterize the rheological properties of different sizes of GNPs at: 1 fixed temperature and wide range of shear rates; 2 varied temperature and fixed shear rate. Methods 10, 20 and 50 nm GNPs was used in this study. Several rheological parameters of GNPs such as viscosity, torque%, shear stress and shear rate were evaluated using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. To measure fluid properties (viscosity as function of shear rate, e.g., to determine whether the flow is Newtonian or non-Newtonian flow behaviour, and viscoelasticity (viscosity as function of temperature, rheological parameters were firstly measured at starting temperature of 37°C and wide range of shear rates from 375 to 1875 s-1, and secondly at a gradual increase of temperature from 37 to 42°C and fixed shear rate of 1875 s-1. Results The 10, 20 and 50 nm GNPs showed mean size of 9.45 ± 1.33 nm, 20.18 ± 1.80 nm, and 50 nm GNPs, respectively. The 10 and 20 nm GNPs showed spherical morphology while 50 nm GNPs showed hexagonal morphology using the transmission electron microscope (TEM. The relation between viscosity (cp and shear rate (s-1 for 10, 20 and 50 nm GNPs at a temperature of 37°C showed non-Newtonian behaviour. Although the relationship between SS (dyne/cm2 and SR (s-1 for 10, 20 and 50 nm GNPs was linearly related however their fluid properties showed non-Newtonian behaviour. Conclusions The torque%, viscosity (cp and SS (dyne/cm2 of all

  17. Measurements and models of cytoskeletal rheology

    Science.gov (United States)

    Kamm, Roger

    2006-11-01

    Much attention has recently focused on understanding the rheology of living cells and reconstituted actin gels using a variety of experimental methods (e.g., single- and multi-particle tracking, magnetic twisting cytometry, AFM indentation) and several different models or descriptors (e.g., biopolymer models, tensegrity, cellular solids, power-law rheology), but the debate continues regarding the fundamental basis for the experimental observations. Our recent studies examine the time-dependent behavior of neutrophils as they deform to enter a narrow channel with capillary-scale dimensions. A sudden drop in the shear modulus is observed, followed by recovery to pre-deformation values in < 1 minute. These rheological changes coincide with a reduction in f-actin content and a transient increase in calcium ion concentration [Ca^++], and the change in storage modulus can be prevented by calcium chelation, suggesting that these observations are causally linked. Cells lacking the ability to increase [Ca^++] also become activated more rapidly following deformation, and the time to activation is independent of intracellular strain rates, contrary to experiments lacking the chelating agent. To better understand these processes and the nature of cytoskeletal rheology in general, we have developed a Brownian dynamics model for cytoskeletal self-assembly and subsequent rheological measurement by single particle tracking. Cross-linking proteins are included possessing a range of properties that lead to a variety of cytoskeletal structures from a fine, homogeneous mesh to a structure containing large stress fibers of varying thickness. These results are described in a multi-dimensional phase space that takes into account the geometry, dimensions and stiffness of the cross-linkers.

  18. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  19. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  20. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  1. Charge relaxation dynamics of an electrolytic nanocapacitor

    CERN Document Server

    Thakore, Vaibhav

    2013-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology based electrochemical energy storage, electrochemomechanical energy conversion and bioelectrochemical sensing devices besides controlled synthesis of nanostructured materials. Here, using Lattice Boltzmann (LB) method, we present results from the simulations of an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation to anion diffusivity and electrode separations. A continuously varying molecular speed dependent relaxation time, proposed for use with the LB equation, recovers the correct microscopic description of molecular collision phenomena and holds promise for enhancing the stability of the LB algorithm. Results for large EDL overlap showed oscillatory behavior for ionic current densities in contrast to monotonic relaxation to equilibrium for low EDL overlap. Further, at low solv...

  2. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  3. Plasma spray synthesis of La{sub 10}(SiO{sub 4}){sub 6}O{sub 3} as a new electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei [LERMPS, University of Technology of Belfort-Montbeliard, Belfort 90010 (France); National Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Liao, Han-Lin; Coddet, Christian [LERMPS, University of Technology of Belfort-Montbeliard, Belfort 90010 (France)

    2008-05-01

    The apatite-type lanthanum silicate films were successfully synthesized by modified atmosphere plasma spraying using lanthanum oxide and silicon oxide mixed powders and precalcined hypereutectic powders in the size range 1-3 {mu}m and 5-8 {mu}m, respectively, as starting feedstock materials. The films differed not only in microstructural scale, but also in the characteristic of the degree of film densification. A detail describing the evolution of microstructure has been discussed. A considerable improvement in densification of the La{sub 10}(SiO{sub 4}){sub 6}O{sub 3} electrolyte films has been observed. (author)

  4. Introduction to Rheology for Ultrasonic Engineers

    Science.gov (United States)

    Ueda, Takanobu

    2008-05-01

    Here, I introduce the fundamental concept and methodology of rheology measurement especially to researchers in the field of ultrasonic engineering. Althogh we consider the material as fluid and characterize it in terms of viscosity accompanied by its complex part representing elasticity, ultrasonic spectroscopy regards the material as solid with elasticity, which determines ultrasonic velocity. Although these two research fields have contrary viewpoints, they share the purpose of the study, that is, to characterize the mechanical properties of the material as a function of frequency or shear rate and to reveal its mechanism and structure at the molecular level. In this paper, I show the basic methods of rheology measurement and analysis in relation to ultrasonic technology.

  5. Colony Rheology: Active Arthropods Generate Flows

    Science.gov (United States)

    Daniels, Karen; Mann, Michael; Charbonneau, Patrick

    2015-03-01

    Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.

  6. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  7. Rheological evaluation of pretreated cladding removal waste

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  8. Rheological properties of olefinic thermoplastic elastomer blends

    OpenAIRE

    Sengers, W.G.F.

    2005-01-01

    Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized, cured elastomer particles while the blends of PP and the triblock copolymer SEBS show co-continuous structures. Both blends also contain considerable amount of paraffinic oil. The difference between ...

  9. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  10. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  11. Electrolytes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  12. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  13. Wetting phenomena in electrolyte solutions

    OpenAIRE

    Ibagon, Ingrid

    2014-01-01

    The present study analyzes wetting phenomena in electrolyte solutions. They are investigated by means of classical density functional theory. First, the wetting of a charged substrate by an electrolyte solution is studied with emphasis on the influence of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition. The corresponding models consist of solvent particles, anions, and cations. Two mean field approaches ar...

  14. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS

    Directory of Open Access Journals (Sweden)

    Tamara de Souza Jorge

    2015-08-01

    Full Text Available Avocado oil is rich in bioactive compounds, which can improve human health by acting as an antioxidant. It may be extracted from different varieties of avocado, such as Margarida and Hass varieties, each of them with particular characteristics. Aiming to evaluate the differences between them, avocado fruits and pulps from these were analyzed according to their physicochemical characteristics. After extracted, the oils had their bioactive characteristics studied and rheological behavior determined through a rotational rheometer. They were then compared to commercial avocado oil. The fruits of Margarida variety had greater size, higher weight (664.51 g, and higher pulp yield (72.19% than Hass variety, which showed higher lipid content (65.29 g/100 g dry basis. The commercial oil showed less primary oxidative degradation, whereas Margarida variety had a lower level of secondary degradation products as well as a higher content of bioactive compounds, such as phytosterols (999.60 mg/kg and tocopherols (36.73 mg/kg. The rheological behaviors of both oils were appropriately described through Newton model, with R2 > 0.999 for all temperatures. By an Arrhenius type equation, it was verified that Hass's rheological parameters are more influenced by temperature than Margarida and commercial oil, presenting activation energy of 33.6 kJ/mol.

  15. Wetting in electrolyte solutions.

    Science.gov (United States)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2013-06-01

    Wetting of a charged substrate by an electrolyte solution is investigated by means of classical density functional theory applied to a lattice model. Within the present model the pure, i.e., salt-free solvent, for which all interactions are of the nearest-neighbor type only, exhibits a second-order wetting transition for all strengths of the substrate-particle and the particle-particle interactions for which the wetting transition temperature is nonzero. The influences of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition are studied. If the substrate is neutral, the addition of salt to the solvent changes neither the order nor the transition temperature of the wetting transition of the system. If the surface charge is nonzero, upon adding salt this continuous wetting transition changes to first-order within the wide range of substrate surface charge densities and ionic strengths studied here. As the substrate surface charge density is increased, at fixed ionic strength, the wetting transition temperature decreases and the prewetting line associated with the first-order wetting transition becomes longer. This decrease of the wetting transition temperature upon increasing the surface charge density becomes more pronounced by decreasing the ionic strength. PMID:23758391

  16. Chemical synthesis and properties of La1.9Ba0.1Mo1.9Mn0.1O9 as electrolyte for IT-SOFCs

    Institute of Scientific and Technical Information of China (English)

    田长安; 尹奇异; 谢劲松; 阳杰; 孙虹; 季必发; 鲍魏涛

    2014-01-01

    The highly phase-pure electrolyte materials with composition La1.9Ba0.1Mo1.9Mn0.1O9 (LBMMO) was prepared by the sol-gel auto-combustion method for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The details of gel’s auto-combustion, phase evolution, sintering, thermal expansion and electrochemical performance of LBMMO were investigated by means of thermo-gravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron spectroscopy (TEM), thermal expansion curve (TEC) and complex impedance spectra. The results showed that the highly phase-pure electrolyte LBMMO could be obtained after calcining at 600 °C. The sample sintered at 900 °C for 4 h in air exhibited a better sinterability, and the relative density of LBMMO was higher than 96%. The electrical conductivities of the sample were 6.7×10-3 and 25.9×10-3 S/cm at 700 and 800 °C in air, respectively. Results also showed that LBMMO had moderate thermal expansion (α=16.3×10-6 K-1, between room temperature and 800 °C) and an electrical activation energy equal to 1.32 eV).

  17. Relationship between Rheology and Molecular Structure of Innovative Crystalline Elastomers

    OpenAIRE

    Ahmad, Naveed

    2013-01-01

    The study of the rheology of polyolefins based on homogenous metallocenic catalyst has been mainly devoted to the understanding of material process ability. When used at a more advanced and sophisticated level, however, rheology is a useful tool to highlight the details of the polymer microstructure, such as the chemical stereo-regularity or the degree of chain branching. Rheology is also used to study the crystallization kinetics of the polymers and it gives more precise analysis than the co...

  18. Investigating the rheological properties of native plant latex

    OpenAIRE

    Bauer, G.; Friedrich, C.; Gillig, C.; Vollrath, F.; Speck, T.; Holland, C.

    2014-01-01

    Plant latex, the source of natural rubber, has been of interest to mankind for millennia, with much of the research on its rheological (flow) properties focused towards industrial application. However, little is known regarding the rheology of the native material as produced by the plant, a key factor in determining latex's biological functions. In this study, we outline a method for rheological comparison between native latices that requires a minimum of preparatory steps. Our approach provi...

  19. Cyclic Macromolecules: Dynamics and Nonlinear Rheology, Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.

    2012-04-25

    The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to the present report.

  20. The rheological injectability of N-succinyl-chitosan solutions.

    Science.gov (United States)

    Rogalsky, Allan; Kwon, Hyock Ju; Lee-Sullivan, Pearl

    2016-10-20

    The viscosity of a set of N-succinyl-chitosan (NSC) solutions was characterized near the 0.2Pas rheological injectability limit. This is believed to be the first such report in the open literature. Viscosity was characterized at physiological pH and ionic strength as a function of NSC degree of substitution, NSC concentration, temperature, and shear rate. NSC was synthesized via Yamaguci's method and characterized using H-NMR, membrane osmometry, TGA and isothermal vacuum drying. NSC synthesis results were shown to fit a reproducible log-linear correlation and both optimum drying temperature and thermal decomposition temperature were found to be a function of NSC degree of substitution. Viscosity results were explained using Katchalsky's full model for polyampholyte ionization combined with a charge induced excluded volume model proposed by Higgs. The model predicted a polyelectrolyte/polyampholyte transition which agreed well with experimental data. For minimally injectable formulations a maximum in primary amine concentration is expected at 32sub% amine NSC. PMID:27474658

  1. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  2. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  3. Flexure and rheology of Pacific oceanic lithosphere

    Science.gov (United States)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  4. Crust rheology, slab detachment and topography

    Science.gov (United States)

    Duretz, T.; Gerya, T. V.

    2012-04-01

    The collision between continents following the closure of an ocean can lead to the subduction of continental crust. The introduction of buoyant crust within subduction zones triggers the development of extensional stresses in slabs which eventually result in their detachment. The dynamic consequences of slab detachment affects the development of topography, the exhumation of high-pressure rocks and the geodynamic evolution of collision zones. We employ two-dimensional thermo-mechanical modelling in order to study the importance of crustal rheology on the evolution of spontaneous subduction-collision systems and the occurrence of slab detachment. The modelling results indicate that varying the rheological structure of the crust can results in a broad range of collisional evolutions involving slab detachment, delamination (associated to slab rollback), or the combination of both mechanisms. By enhancing mechanical coupling at the Moho, a strong crust leads to the deep subduction of the crust (180 km). These collisions are subjected to slab detachment and subsequent coherent exhumation of the crust accommodated by eduction (inversion of subduction sense) and thrusting. In these conditions, slab detachment promotes the development of a high (> 4.5 km) and narrow (delamination of the lithosphere, preventing slab detachment to occur. Further shortening leads to buckling and thickening of the crust resulting in the development of topographic bulging on the lower plate. Collisions involving rheologically layered crust are characterised by a decoupling level at mid-crustal depths. These initial condition favours the delamination of the upper crust as well as the deep subduction of the lower crust. These collisions are thus successively affected by delamination and slab detachment and both processes contribute to the exhumation of the subducted crust. A wide (> 200 km) topographic plateau develops as the results of the buoyant extrusion of the upper crust onto the foreland

  5. RHEOLOGICAL BEHAVIOR OF EPOXY RESIN WATERBORNE DISPERSIONS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang; Yuan-ze Xu; De-lu Zhao

    2001-01-01

    The waterborne dispersions of epoxy resin were prepared by the phase inversion emulsification technique.Rheological behavior and its relationship with the structural change of the systems were studied. It was shown that the concentrated dispersions were highly viscoelastic and pseudoplastic, which was attributed to the formation of a physical network among the waterborne particles via hydrogen bond. The dilute dispersions were Newtonian fluids. The discrete clusters composed of small waterborne particles were found in diluted dispersions. With increasing solid content, there existed a structural transition via percolation through a cluster-cluster aggregation mode to form the physical network, which was qualitatively evidenced by the TEM morphologies.``

  6. RHEOLOGICAL CHARACTERIZATION OF PROCESSABILITY OF UNVULCANIZED POLYBUTADIENE

    Institute of Scientific and Technical Information of China (English)

    DU Xue; XU Yuanze; QIAN Renyuan

    1987-01-01

    Rheological investigation on a series of unvulcanized polybutadiene elastomers of different processability has been carried out by means of a capillary extrusion rheometer. It is found that the processability of unvulcanized polybutadiene can be correlated with the occurrence of unsteadyflow and the wall stress, dependence of the dimensionless number e characterizing the entrance elongational elasticity which has been found to be sensitive to the branching structure and the molecular weight distribution of the samples. Interpretations based on the structural data of unvulcanized polybutadiene were discussed.

  7. RHEOLOGICAL BEHAVIOR OF KAOLIN TOUGHENED POLYPROPYLENE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; FANG Xiaoping; FENG Yupeng

    1997-01-01

    The relation between the rheological behavior and various interfacial properties of Kaolin rigid particle toughened polypropylene(PP/Kaolin) composites were studied by means of parallel-plate rheometer, melt flow rate apparatus, scanning electron microscopy (SEM) and other testing methods. The results show that addition of interfacial modifier to PP/Kaolin composites is advantageous to homogeneous dispersion of filler in PP matrix,formation of flexible interlayer between Kaolin particles and PP matrix and improvement of the melt processibility of the composites.

  8. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  9. Diabetes mellitus and electrolyte disorders

    Science.gov (United States)

    Liamis, George; Liberopoulos, Evangelos; Barkas, Fotios; Elisaf, Moses

    2014-01-01

    Diabetic patients frequently develop a constellation of electrolyte disorders. These disturbances are particularly common in decompensated diabetics, especially in the context of diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. These patients are markedly potassium-, magnesium- and phosphate-depleted. Diabetes mellitus (DM) is linked to both hypo- and hyper-natremia reflecting the coexistence of hyperglycemia-related mechanisms, which tend to change serum sodium to opposite directions. The most important causal factor of chronic hyperkalemia in diabetic individuals is the syndrome of hyporeninemic hypoaldosteronism. Impaired renal function, potassium-sparing drugs, hypertonicity and insulin deficiency are also involved in the development of hyperkalemia. This article provides an overview of the electrolyte disturbances occurring in DM and describes the underlying mechanisms. This insight should pave the way for pathophysiology-directed therapy, thus contributing to the avoidance of the several deleterious effects associated with electrolyte disorders and their treatment. PMID:25325058

  10. Influence of the type of electrolyte on the morphological and crystallographic characteristics of lead powder particles

    Directory of Open Access Journals (Sweden)

    Nikolić Nebojša D.

    2013-01-01

    Full Text Available Lead electrodeposition processes from the basic (nitrate and complex (acetate electrolytes were mutually compared by the scanning electron microscopic and the X-ray diffraction analysis of the produced powder particles. The shape of dendritic particles strongly depended on the type of electrolyte. The dendrites composed of stalk and weakly developed primary branches (the primary type were predominantly formed from the basic electrolyte. The ramified dendrites composed of stalk and of both primary and secondary branches (the secondary type were mainly formed from the complex electrolyte. In the both type of powder particles Pb crystallites were predominantly oriented in the (111 plane. Formation of powder particles of the different shape with the strong (111 preferred orientation was discussed and explained by the consideration of the general characteristics of the growth of a crystal in the electrocrystallization processes. [Projekat Ministarstva nauke Republike Srbije, br. 172046: Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies

  11. Magneto-rheological defects and failures: A review

    Science.gov (United States)

    Wahid, SA; Ismail, I.; Aid, S.; Rahim, MSA

    2016-02-01

    Magneto-rheological fluid is the colloidal suspension of micron sized magnetic particles in a carrier fluid where defects and failures occur at many circumstances. This paper presents a review on defects and failures of magneto-rheological fluid in engineering applications. The most significant defect is hard cake which developed due to re-dispersion difficulties of remnant particles magnetization, leaving the magneto-rheological fluid ineffective. Clumping effect on the other hand is a separation of carrier fluid from the magnetic particles when magneto-rheological fluid is being exposed to higher magnetic field for an extended period of time. As clumping occurred, it leads to Fluid Particle Separation (FPS) which is believed altering the strength distribution of magneto-rheological fluid and therefore reducing the squeezing force. Another significant failure is magnetic particles oxidation of the magneto-rheological fluid. This paper also will discuss on stability problems which is the most challenged issue in magneto-rheological fluid technology. With the comprehensive review in this paper, researcher can design materials of magneto-rheological fluid for better properties.

  12. TRIMETHYLSILYLATED SILICA AS RHEOLOGY MODIFIER FOR SILICONE RESINS

    Institute of Scientific and Technical Information of China (English)

    Wei Huang; Ying Huang; Yunzhao Yu

    2000-01-01

    Trimethylsilylated silica was synthesized through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.

  13. Electro-Rheological Effect of Liquid Crystalline Glycerin Derivative

    Institute of Scientific and Technical Information of China (English)

    N. Nakamura

    2005-01-01

    @@ 1Introduction Rheological property of a material is changed reversibly by an addition of electric field. The property is called electro-rheological (ER) effect, and the materials showed such an effect are named ER fluid in general.It is expected that the fluids are available for an application of mechanical fields like braking system, shock absorber one, and so on.

  14. Rheological analysis of stabilized cerium-gadolinium oxide (CGO) dispersions

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    2014-01-01

    The objective of the present work is to generate general rheological criteria to investigate high solid loading dispersions suitable for the shaping of homogeneous ceramic bodies. Systematic analysis of the rheological properties of moderately low specific surface area (SSA) Ce0.9Gd0.1O3-δ (CGO10...

  15. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  16. Thermoelectricity in confined liquid electrolytes

    CERN Document Server

    Dietzel, Mathias

    2015-01-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  17. Electrolytic indium refining from cadmium in glycerine electrolyte

    International Nuclear Information System (INIS)

    The results of investigations directed on development of electrochemical indium cleaning from cadmium in glycerine base electrolyte are presented. Optimal operational conditions, specific consumption of reactants and electric power are determined. Relationship between variation of concentration of cadmium impurity in refined metal and duration of electrolysis is revealed. The method for determination of cleaning time is proposed. Developed process was put into commercial operation

  18. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  19. Discussion on rheology in petroleum and nature gas teservoir stimulation

    Institute of Scientific and Technical Information of China (English)

    卢拥军; 梁冲; 胥云; 陈彦东

    2008-01-01

    Petroleum and nature gas not only are important resources,but also are important strategic materials of our country.All methods the enhancing the producing degree of petroleum and natural gas reservoir,increasing single well production and extending the stimulation period of validity are important stratagem for petroleum and natural gas exploitation.Fracturing and acidizing are the main methods for stimulation as well as one of representative examples of rheology theory application in engineering.Based on analysis of low permeability reservoir characteristics,the fracturing and acidizing stimulation principles and main controlling factors were discussed.And the mechanical characteristics,chemical reaction and rheological behavior in the stimulation process were reviewed.Furthermore research trends afterwards including the material and fluid rheology in oil and natural gas production process,the deep rock fracture initiation and extension rheology,and the fracturing and acidizing application rheology were also proposed in this paper.

  20. Vortex jamming in superconductors and granular rheology

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Hajime [Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka 560-0043 (Japan); Nogawa, Tomoaki [Division of Physics, Hokkaido University, Sapporo, Hokkaido 060-0810 Japan (Japan); Kim, Bongsoo [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of)], E-mail: yoshino@ess.sci.osaka-u.ac.jp

    2009-01-15

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  1. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  2. Study of the rheological properties of oil

    Energy Technology Data Exchange (ETDEWEB)

    Jewulski, J.

    1979-01-01

    The author describes industrial research into the process of disturbing the thixotropic structure of oil in well L-3 during constant oil coagulation inside the ''Rheostat'' rotating cylindrical viscosity meter. This oil, containing paraffin, has a high viscosity and corresponds to the chemical classification for pseudo water plastic thixotropic flowing liquid. This research was conducted at temperatures of 15,20,25, and 30 degrees C. The final time period is determined for the disintegration of the oil structure, during which almost no indicator changes are detected by industrial metering devices. This process of disintegration was viewed by the author as a breakdown of the thixotropic structure during the given rate of coagulation. Metering results were approximated and found to be most significant in non-stationary processes over a relatively short period of time. The rheological curve is then often replaced by a straight angle. This article also examines certain factors in the transport of such oil and trunklines and the resulting effects upon that oil's rheological composition.

  3. Rheology of asphaltene-toluene/water interfaces.

    Science.gov (United States)

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-12-01

    The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

  4. Ultrasound image velocimetry for rheological measurements

    Science.gov (United States)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel–Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  5. Structural rheology of a model ointment.

    Science.gov (United States)

    Pena, L E; Lee, B L; Stearns, J F

    1994-06-01

    A model ointment consisting of white petrolatum, mineral oil and microcrystalline wax was studied using rheology, microscopy and thermal techniques. Rheograms studied over a temperature range of 25-40 degrees C indicated that the overall rheogram shape changed little as the temperature increased. However, two inflections gradually disappeared as the temperature increased. Thermal optical analysis showed that the temperature range over which these inflection disappeared correlated with the melting transition of the components forming the secondary structure. Another series of rheograms obtained from ointments with different combinations of the raw materials showed the rheology of the ointment is primarily controlled by the white petrolatum and mineral oil and that the microcrystalline wax acts to build-up the structure by incorporating itself into the existing white petrolatum structure. Thermal optical analysis of comelts of the raw materials proved that the ointment network structure is essentially a recombination of the naturally occurring components in differing ratios. The knowledge obtained from these studies is applied to a discussion of the thermal and mechanical stresses encountered in the filling operation.

  6. Ultrasound image velocimetry for rheological measurements

    Science.gov (United States)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel-Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  7. Improving feed slurry rheology by colloidal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  8. Rheology of Volatile-rich Crystal Mush

    Science.gov (United States)

    Pistone, M.; Caricchi, L.; Ulmer, P.; Reusser, E.; Mancktelow, N.; Burlini, L.

    2012-04-01

    Magma batholiths are commonly highly crystalline (> 50 vol%; crystal mush, Bachmann and Bergantz, 2008a) and possible modes of mobilization and emplacement have been intensively discussed in the last decades. Recently, it has been proposed that a stiff mushy batholith must be reheated to mobilize; this produces a reduction in crystallinity that leads to an increase of the magma buoyancy (Burgisser and Bergantz, 2011). Another way of batholith mobilization in the crust can be caused by addition of volatiles (mainly H2O and CO2) released by ascending hydrous mafic magmas coming from the mantle (Bachmann and Bergantz, 2008b). The enrichment in volatiles induces a drastic decrease in the bulk viscosity of the granitic body and, thus, an evident change in the rheological properties of the batholith. The rheology of such very crystal-rich highly viscous systems is still a matter of debate. To provide some additional experimental constraints relevant to this discussion, we deformed hydrous (2.52 wt% H2O) haplogranitic magmas containing variable amounts of quartz crystals (from 55 to 65 vol%), and fixed volume of gas-pressurized CO2-bubbles (9-10 vol%), in simple shear using a HT-HP Paterson-type rock deformation apparatus. Strain rates ranging between 1•10-5 s-1 and 4•10-3 s-1 were applied at temperatures between 823 and 1023 K and constant confining pressure of 200-250 MPa (8-9 km depth). The results suggest that three-phase suspensions are characterized by strain rate-dependent rheology (non-Newtonian behavior). Two non-Newtonian regimes were observed: shear thinning (decrease of viscosity with increasing strain rate) and shear thickening (increase of viscosity with increasing strain rate). The first effect dominantly occurs because of crystal size reduction and shear localization, enhanced by the presence of gas bubbles in the weak shear bands. However, when the solid crystal framework induces an internal flow blockage due to crystal interlock, the second effect

  9. Review Of Rheology Modifiers For Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that

  10. Performances of Anode-Supported BZCY Electrolyte and GBFN Cathode Membranes in Ammonia Synthesis at Atmospheric Pressure%阳极支撑BZCY电解质及GBFN阴极膜在常压合成氨中的性能研究

    Institute of Scientific and Technical Information of China (English)

    朱剑莉; 马桂林; 占忠亮

    2012-01-01

    BaZr0.1Ce0.7 Y0.2O3-α( BZCY) proton-conducting electrolyte and GdBaFeNiO5+δ(GBFN) cathode materials were prepared by the citric-nitrate process. A membrane reactor for ammonia synthesis was successfully fabricated through the following process; an anode-supported dense BZCY electrolyte membrane was first fabricated, and then on the membrane porous GBFN cathode membrane was fabricated by a simple spin coating process combined with heat treatment. The ammonia synthesis test was conducted by an electrolytic method using H2 and N2 as reactant gases. The results indicated that BZCY and GBFN were perovskite and double perovskite structures, respectively. The anode substrate showed good chemical compatibility between NiO and BZCY, and the maximum ammonia formation rate reached 1. 63 x 10-8 mol os~1ocm~2, which was higher than the reported values by similar methods to date. The high maximum ammonia formation rate mould be closely relevant to excellent electrical conduction performance for BZCY and excellent polarization performance for GBFN. The modification of Ag on the GBFN cathode was also beneficial for enhancing the ammonia formation rate.%采用硝酸盐-柠檬酸法制备了 BaZr0.1 Ce0.7 Y0.2 O3-α(BZCY)质子电解质及GdBaFeNiO5+δ(GBFN)阴极材料,用浆料旋涂法结合后续的热处理在NiO-BZCY阳极支撑体上制备致密的BZCY电解质薄膜,在电解质薄膜上制备多孔性GBFN阴极膜,成功地组装成合成氨膜反应器.以氢、氮气为反应气体,通过电解方法进行了常压合成氨试验.结果显示,BZCY及GBFN分别具有钙钛矿型及双钙钛矿型结构,NiO与BZ-CY具有良好的化学兼容性,合成氨产率高达1.63 ×10-8 mol·s-1·cm-2,高于迄今所报道的类似方法的合成氨产率.这与BZCY电解质膜优良的导电性能、GBFN膜优良的极化性能密切相关.Ag对GBFN的修饰也有利于氨产率的提高.

  11. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  12. A novel MOCVD strategy for the fabrication of cathode in a solid oxide fuel cell: Synthesis of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} films on YSZ electrolyte pellets

    Energy Technology Data Exchange (ETDEWEB)

    Toro, Roberta G., E-mail: rgtoro@unict.it [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy); Fiorito, Davide M.R.; Fragala, Maria E. [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy); Barbucci, Antonio; Carpanese, Maria P. [Dipartimento di Ingegneria Chimica e di Processo, Universita di Genova, and INSTM, UdR P.le Kennedy 1, I-16129 Genova (Italy); Malandrino, Graziella, E-mail: gmalandrino@dipchi.unict.it [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy)

    2010-12-01

    Porous La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) films have been prepared by metal organic chemical vapor deposition (MOCVD) technique for solid oxide fuel cell (SOFC) applications. LSMO samples have been deposited on yttria-stabilized zirconia (YSZ) electrolyte pellets. The adopted in situ strategy involves a molten mixture consisting of the La(hfa){sub 3}.diglyme, Sr(hfa){sub 2}.tetraglyme, and Mn(tmhd){sub 3} [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; diglyme = bis(2-methoxyethyl)ether; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione] precursors. It has been shown that porous LSMO films can be obtained through an accurate tuning of processing parameters, which affect the nucleation and growth processes. The structural and compositional characterizations of these films, carried out by X-ray diffraction (XRD) and energy dispersive X-ray analysis, point to the formation of a single polycrystalline La{sub 0.8}Sr{sub 0.2}MnO{sub 3} phase. The field emission scanning electron microscopy (FE-SEM) images confirm the formation of porous films. To evaluate the electrochemical activity of the cathodic films, an investigation by impedance spectroscopy (IS) has been performed.

  13. Novel pseudo-delocalized anions for lithium battery electrolytes.

    Science.gov (United States)

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  14. Rheological properties of cupuassu and cocoa fats

    Directory of Open Access Journals (Sweden)

    Gioielli, L. A.

    2004-06-01

    Full Text Available Cocoa butter is an important ingredient in chocolate formulation as it dictates the main properties (texture, sensation in the mouth, and gloss. In the food industry, the texture of fat-containing products strongly depends on the macroscopic properties of the fat network formed within the finished product. Cupuassu ( Theobroma grandiflorum , Sterculiaceae is an Amazonian native fruit and the seeds can be used to derive a cocoa butter like product. In general, these fats are similar to those of cocoa, although they are different in some physical properties. The objective of this study was to analyze several properties of the cupuassu fat and cocoa butter (crystal formation at 25 ° C, rheological properties, and fatty acid composition and mixtures between the two fats (rheological properties, in order to understand the behavior of these fats for their use in chocolate products. Fat flow was described using common rheological models ( Newton , Power Law, Casson and Bingham plastic.La manteca de cacao es un ingrediente muy importante en la formulación de chocolates y es responsable de la mayor parte de sus propiedades (textura, palatibilidad y brillo. En la industria de alimentos, la textura de productos que contienen grasa depende enormemente de las propiedades macroscópicas de la red cristalina de la grasa en el producto final. El cupuaçu es una fruta nativa de la región amazónica y sus semillas pueden ser usadas para obtener una grasa semejante a la manteca de cacao. En general, esta grasa es similar a la manteca de cacao, pero difiere en algunas de sus propiedades fisicas . El objetivo de este estudio fue analizar algunas propiedades de la grasa de cupuaçu y de la manteca de cacao (formación de cristales a 25 °C, propiedades reológicas y composición en ácidos grasos y de algunas mezclas entre las dos grasas (propiedades reológicas, a fin de conocer el comportamiento de estas grasas para ser usadas en productos de la industria

  15. An electrolyte CPA equation of state for mixed solvent electrolytes

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    Despite great efforts over the past decades, thermodynamic modeling of electrolytes in mixed solvents is still a challenge today. The existing modeling frameworks based on activity coefficient models are data-driven and require expert knowledge to be parameterized. It has been suggested that the ...... depression. Finally, the model is applied to predict VLE, LLE, and SLE in aqueous salt mixtures as well as in mixed solvents....

  16. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  17. The Rheological Property of Potato Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  18. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.;

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  19. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  20. Rheology of Alumina-Based Graphite-Containing Castables

    Institute of Scientific and Technical Information of China (English)

    YE Fangbao; M. Rigaud; LIU Xinhong; ZHONG Xiangchong

    2005-01-01

    In this work, the rheological behavior of ultra-low cement alumina-based castables with addition of flake graphite and extruded graphite pellets has been investigated by using IBB rheometer. Emphasis has been laid on the influence of the type and amount of carbon addition on rheological properties of the alumina-based castables and the results are compared with corresponding alumina castable samples without any carbon addition. It is found that alumina-based castables with extruded graphite pellets have good rheological behavior and flowability with lower water demand ( < 6. 3% )and no segregation during the shearing of castable.

  1. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  2. Rheological Properties of Fractal Deformation in Multilayer Folds

    Institute of Scientific and Technical Information of China (English)

    HOU Guiting

    2009-01-01

    The fractal dimensions of foIds are related to layer thickness and viscosity of the multilayer.This paper discusses how the thickness,viscosity,and anisotropic degree affect the rheological deformation of fractal folds in mulfilayers.The number of layers,their thicknesses,viscosities,and anisotropic degree of multilayers cooperate to affect the rheological deformation of folds,which is not controlled by a single rheological factor.A greater anisotropic degree of multilayers is favorable to develop the more complex and disharmonious fractal folds.

  3. Rheological behaviors of Graphitic oxide/Sodium alginate dispersions

    Institute of Scientific and Technical Information of China (English)

    张庆旭

    2015-01-01

    One kind of the carbonaceous materials with high performance was chosen to prepare dispersions of GO/SA. The influence of GO contents on rheological properties of SA solution was studied with rotational rheometer under different test conditions. Steady rheological results showed that the solutions exhibited shear-thinning behaviors. The viscosities decreased with the increasing of shear rates. Dynamic rheological results showed that both SA solutions and SA/GO suspensions exhibited liquid-like behaviors. Moreover indicate that incorporation of small amounts GO can significantly increase the G' and G'' of SA spinning solution, reflecting good dispersion of GO nanolayers in SA solution, which was proved by Cole-Cole curves.

  4. 3-D rheologic model of earthquake preparation (Ⅲ): Precursor field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theory of viscoelastic displacement and strain field for the three-dimensional rheologic model of earthquake preparation, this paper mainly studies the theoretical solution of precursor field for the three-dimensional rheologic model of earthquake preparation. We derive the viscoelastic analytical expressions of the ground tilt, underground water level, earth resistivity at an arbitrary point (x, y, z) in the rheologic medium, and analyzed the earth resistivity preliminarily, providing a certain theoretical basis for the precursor analysis of seismogenic process.

  5. [Rheology and hyaluronic acid in inflammatory joint effusions (author's transl)].

    Science.gov (United States)

    Zeidler, H; Altmann, S

    1977-11-11

    The Weissenberg rheogoniometer was used to measure viscosity, normal force and the number of molecular entanglements, calculated from a shear modulus obtained by prestationary experiments, in inflammatory and non-inflammatory synovial fluid effusions. The rheological properties show greater pathological change in the inflammatory synovial fluid samples than in the non-inflammatory. Variation in the hyaluronic acid concentration is only partly responsible for the pathological rheology. Initial experiments with a normalization method for the viscosity flow curves suggest the possibility of determining changes in polymerization or structure of the hyaluronic acid by rheological measurements.

  6. Lava thicknesses: Implications for rheological and crustal development

    Science.gov (United States)

    Kilburn, C. R. J.; Lopes, R. M. C.

    1988-01-01

    The morphology of a lava flow is strongly influenced by its rheological structure. The rheological structure is, in turn, dependent on numerous factors including: (1) bulk composition, (2) crystallingity, (3) vesicularity, and (4) crustal development. Identifying which of the latter factors are most significant, and hence most readily investigated by remote-sensing techniques, is necessary to clarify short-term objectives and expectations from the study of Martian lava flows. Insights into the rheological controls on flow morphology are provided by variations in thickness of undrained lava streams on Etna and Vesuvius, Southern Italy. Both pahoehoe and aa lavas were studied.

  7. Rheological Characterization of Ethanolamine Gel Propellants

    Science.gov (United States)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  8. Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane

    Directory of Open Access Journals (Sweden)

    Yongzhen Tao

    2016-03-01

    Full Text Available Waterborne polyurethane (WPU is a versatile and environment-friendly material with growing applications in both industry and academia. Silk fibroin (SF is an attractive material known for its structural, biological and hemocompatible properties. The SF reinforced waterborne polyurethane (WPU is a promising scaffold material for tissue engineering applications. In this work, we report synthesis and characterization of a novel nanocomposite using SF reinforced WPU. The rheological behaviors of WPU and WPU-SF dispersions with different solid contents were investigated with steady shear and dynamic oscillatory tests to evaluate the formation of the cross-linked gel structure. The average particle size and the zeta potential of WPU-SF dispersions with different SF content were examined at 25 °C to investigate the interaction between SF and WPU. FTIR, SEM, TEM and tensile testing were performed to study the effects of SF content on the structural morphology and mechanical properties of the resultant composite films. Experimental results revealed formation of gel network in the WPU dispersions at solid contents more than 17 wt %. The conjugate reaction between the WPU and SF as well as the hydrogen bond between them helped in dispersing the SF powder into the WPU matrix as small aggregates. Addition of SF to the WPU also improved the Young’s modulus from 0.30 to 3.91 MPa, tensile strength from 0.56 to 8.94 MPa, and elongation at break from 1067% to 2480%, as SF was increased up to 5 wt %. Thus, significant strengthening and toughening can be achieved by introducing SF powder into the WPU formulations.

  9. Anion Solvation in Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  10. Plasma electrolytic oxidation of tantalum

    OpenAIRE

    Petković Marija; Stojadinović Stevan; Vasilić Rastko; Belča Ivan; Kasalica Bećko; Zeković Ljubiša

    2012-01-01

    This paper is a review of our research on the plasma electrolytic oxidation (PEO) process of tantalum in 12-tungstosilicic acid. For the characterization of microdischarges during PEO, real-time imaging and optical emission spectroscopy (OES) were used. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDS and XRD. Oxide coating morphology is strongly dependent on PEO time. The elemental components of PEO coatings are Ta, O, Si and W....

  11. Plasma electrolytic oxidation of metals

    OpenAIRE

    Stojadinović Stevan

    2013-01-01

    In this lecture results of the investigation of plasma electrolytic oxidation (PEO) process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium) were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determinati...

  12. Mg(PF6)2-Based Electrolyte Systems: Understanding Electrolyte-Electrode Interactions for the Development of Mg-Ion Batteries.

    Science.gov (United States)

    Keyzer, Evan N; Glass, Hugh F J; Liu, Zigeng; Bayley, Paul M; Dutton, Siân E; Grey, Clare P; Wright, Dominic S

    2016-07-20

    Mg(PF6)2-based electrolytes for Mg-ion batteries have not received the same attention as the analogous LiPF6-based electrolytes used in most Li-ion cells owing to the perception that the PF6(-) anion decomposes on and passivates Mg electrodes. No synthesis of the Mg(PF6)2 salt has been reported, nor have its solutions been studied electrochemically. Here, we report the synthesis of the complex Mg(PF6)2(CH3CN)6 and its solution-state electrochemistry. Solutions of Mg(PF6)2(CH3CN)6 in CH3CN and CH3CN/THF mixtures exhibit high conductivities (up to 28 mS·cm(-1)) and electrochemical stability up to at least 4 V vs Mg on Al electrodes. Contrary to established perceptions, Mg electrodes are observed to remain electrochemically active when cycled in the presence of these Mg(PF6)2-based electrolytes, with no fluoride (i.e., MgF2) formed on the Mg surface. Stainless steel electrodes are found to corrode when cycled in the presence of Mg(PF6)2 solutions, but Al electrodes are passivated. The electrolytes have been used in a prototype Mg battery with a Mg anode and Chevrel (Mo3S4)-phase cathode. PMID:27359196

  13. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  14. A demonstration of enhancements in interfacial rheological characterisations

    DEFF Research Database (Denmark)

    Hodder, Peter; Baldursdottir, Stefania G.

    projects and publications associated with the field of interfacial rheology. After previous experimentation by Dr. Stefania Baldursdottir, there was a keen interest in the ability to reduce the concentrations of proteins used for interfacial characterisations so that expensive therapeutically active...

  15. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  16. Rheology elasticity determined by deformation of stretchable molecular trains

    Institute of Scientific and Technical Information of China (English)

    肖建华

    2008-01-01

    The average stretching direction,local rotation angular,and stretching ratio parameters of molecular trains were used to express the rheology deformation.Based on this micro geometrical deformation,the macro deformation of medium was expressed.Then,using intrinsic elasticity concept,the stress-strain relation was obtained.In this theoretic formulation,the response functions of extension ratio and rotation angular were used to express the rheology feature of medium.For medium composed by incompressible molecular trains,the local rotation angular divides rheology deformation into three kinds:viscoelastic deformation or elasticity enhancement,viscoplastic deformation or elasticity degenerate and constant elasticity range.These results explain the experimental features of rheology deformation well.

  17. Longitudinal Vibrations of Rheological Rod With Variable Cross Section

    Institute of Scientific and Technical Information of China (English)

    Katica(Stevanovic)HEDRIH; AleksandarFILIPOVSKI

    1999-01-01

    Longitudinal vibrations of rheological rod with variable cross section are examined.Particular solutions and eigenfunction are accomplished for natural vibrations of the rod with hereditary material of standard hereditary body.Some examples are given.

  18. Design and application of magneto-rheological fluid

    OpenAIRE

    Olabi, Abdul-Ghani; Grunwald, Artur

    2007-01-01

    Magneto-Rheological Fluid (MRF) technology is an old “newcomers” coming to the market at high speed. Various industries including the automotive industry are full of potential MRF applications. Magneto-Rheological Fluid technology has been successfully employed already in various low and high volume applications. A structure based on MRF might be the next generation in design for products where power density, accuracy and dynamic performance are the key features. Additionally, for product...

  19. Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes

    OpenAIRE

    de la Puente, Josep

    2008-01-01

    The possibility of using accurate numerical methods to simulate seismic wavefields on unstructured meshes for complex rheologies is explored. In particular, the Discontinuous Galerkin (DG) finite element method for seismic wave propagation is extended to the rheological types of viscoelasticity, anisotropy and poroelasticity. First is presented the DG method for the elastic isotropic case on tetrahedral unstructured meshes. Then an extension to viscoelastic wave propagation based upon a Gener...

  20. Rheology and texture of doughs: applications on wheat and corn

    Directory of Open Access Journals (Sweden)

    Eduardo Rodríguez Sandoval

    2010-04-01

    Full Text Available A dough made of maylacceou materials shows a viscoelastic behavior, its macroestructural behavior depends on processing conditions, its constitutents and the interaction among them. Studies on dough rheology and texture are useful and important for applications that include ingredient specifications, quality control, product design and adaptation of new processing technologies. This work is a review of rheological and textural principles, testing methods and characteristics of wheat and com doughs.

  1. Rheology of dry, partially saturated and wet granular materials

    OpenAIRE

    Bonn, D; PAKPOUR, M.

    2013-01-01

    This thesis is dedicated to the study of the rheology of dry, wet and partially saturated granular materials. Granular media, suspensions, emulsions, polymers and gels are ubiquitous in the chemical and materials processing industry, and despite their very different appearance, the rheology and study of the behaviour of these materials is the key to the large-scale industrial production. Granular materials are large collections of discrete particles. A granular material is called dry if the f...

  2. Some advances in crude oil rheology and its application

    Institute of Scientific and Technical Information of China (English)

    张劲军; 柳歆

    2008-01-01

    Waxy crude oil exhibits complex shear-and-thermal-history-dependent non-Newtonian behaviors.In the past 10 years,driven by the petroleum industry,crude oil rheology has been an active field.Studies on crude oil rheology have been passing a way from simply relying on rheological measurements,through quantitative experimental simulation of shear and thermal history effects in pipelining,to recent development of correlation between flow properties and shear and thermal history.Currently,the study is toward quantitative inquiry of relations between the rheological behaviors and micro-structures of wax crystals as well as oil compositions.Advances achieved by the author’ team are summarized,including simulation of the thermal and shear history effects,correlations and computation of flow properties,fractal characterization of morphology and structure of wax crystals,relations of rheological behaviors to fractal dimension and oil compositions,and the most successful example of the application of rheology in crude oil pipelining.Future studies are prospected.

  3. THERMOPHYSICAL AND RHEOLOGIC PROPERTIES OF BIOOIL SAMPLES

    Directory of Open Access Journals (Sweden)

    Monika Bozikova

    2013-09-01

    Full Text Available This article deals with thermal properties of selected biooils Plahyd S biooil No1 and Plahyd N biooil No2 and rheologic properties of rapeseed oil. Plahyd S is a synthetic, rapidly biodegradable fluid which is based on sustainable raw materials. It is exceptionally suitable for applications in mobile and stationary hydraulic systems. Plahyd N is multigrade hydraulic oil based on rapeseed oil used in agricultural and construction machinery. For thermal parameters measurements was used Hot wire method. The experiment is based on measuring of the temperature rise vs. time evaluation of an electrically heated wire embedded in the tested material. The thermal conductivity is derived from the resulting change in temperature over a known time interval. Dependency of material resistance against the probe rotation was used at measurement of rheologic properties with instrument viscometer Anton Paar DV 3P. For two samples of biooils Plahyd N and Plahyd S were determined basic thermophysical parameters thermal conductivity, thermal diffusivity and volume specific heat. For each biooil samples were made two series of measurements. In the first series were measured thermal conductivity and thermal diffusivity at constant room temperature 20 C. Every thermophysical parameter was measured 10 times for each sample. The results were statistically processed. For biooil No1 thermal conductivity was 0.325 W*m 1 .K1 , it was higher value than we obtained for biooil No2 0.224 W*m 1 .K 1 . The similar results were obtained for thermal diffusivity of biooil No1 2.140.10 7 m 2 *s 1 and biooil No2 2.604.10 7 m 2* s 1 . For samples with constant temperature were calculated basic statistical characteristics as standard deviation for biooil No1 0.056 W*m 1*K 1 and biooil No2 0.054 W*m 1*K 1; probable error of the arithmetic average for biooil No 1 0.012 W*m 1*K 1 and biooil No 2 0.005 W*m 1*K 1, relative probable error in for biooil No1 3.69 per cent and biooil No2 2

  4. The field-dependent rheological properties of magnetorheological fluids featuring plate-like iron particles

    Directory of Open Access Journals (Sweden)

    Seung-Bok eChoi

    2014-10-01

    Full Text Available This study is concerned with an investigation of the plate-like iron particles based MR suspensions under the application of magnetic fields to ascertain the influence of particle size in the rheological performance. A novel synthesis route to prepare magnetorheological fluid (MRF using two different sizes of plate-like iron particles is described in detail. Two different kinds of MRF are then prepared and their rheological properties are presented and discussed extensively. Steady shear flow and small amplitude dynamic oscillatory measurements are carried out in the presence of magnetic field. This experimental study reveals and highlights the importance of exploiting some parameters such as magnetic field strength, effect of particle size, magneto-viscous and visco-elastic properties of the suspending fluid. The magnetization of the fluids is also performed to explain the effect of particle size in the magnetic field which is directly correlated with the yield stress. In the absence of magnetic field, the properties of fluid are isotropic and upon the application of magnetic field the magnetized particles form a strong-chain like structures in the field direction which promotes the appearance of yield stress. This material is known as smart material whose properties amend from liquid to solid immediately after applying the magnetic field. It is found from this work that the large size particle based MRF exhibits high yield stress and strong chain structuration under the applying magnetic field.

  5. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  6. Using Ultrasound to Measure Mud Rheological Properties

    Science.gov (United States)

    Maa, P. Y. P. Y.; Kwon, J. I.; Park, K. S.

    2015-12-01

    In order to predict the dynamic responses of newly consolidated cohesive sediment beds, a better understanding of the material rheological properties (bulk density, ρ, kinematic viscosity, ν, and shear modulus, G, assuming mud is a simple Voigt viscoelastic model) of these sediment beds is needed. An acoustic approach that uses a commercially available 250 kHz shear wave transducer and tone-burst waves has been developed to measure those properties. This approach uses a 86.3 mm long delay-line (DL) to separate the generated pressure and shear waves, and measures the reflected shear waves as well as the reflected pressure waves caused at the interface between the delay line and the mud to interpret these properties. By using materials (i.e., air, water, olive oil, and honey) with available rheological properties to establish a calibration relationship between the information carried by the measured reflected waves and those given material properties, the mud properties as well as thνe change of these properties during consolidation can be interpreted. Using jelly pudding as a check, a value of G ≈ 12310 N/m2 and ν ≈ 5 x 10-5 m2/s were estimated. For the consolidating kaolinite bed (with zero salinity and initial suspended sediment concentration about 420 g/cm3), the measurements show that the shear modulus developed after about 40 hours and approached a value on the order of 15000 N/m2 after about 100 hours. The initial kinematic viscosity was about 5 x 10-4 m2/s, and it decreased slowly with time and approached a low plateau between 10-6 and 10-7 m2/s after 300 hours. The measured bulk density showed a small increasing rate during the entire consolidation period, except at a short period between 80 and 90 hours after consolidation. Results from this study suggest a promising approach for developing an in-situ instrument to measure mud properties, as well as many other materials in other industries.

  7. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  8. Investigation of electrolyte electric discharge characteristics

    Science.gov (United States)

    Kirko, D. L.; Savjolov, A. S.

    2016-09-01

    The most important electrical characteristics of electrolyte electric discharge were investigated. The electric burning discharge was obtained with the help of different electrolytes. The spectral composition of the electric discharge electromagnetic radiation was determined, the plasma temperature was determined. The spectrum of the electric discharge high-frequency oscillations was calculated in the region v=10 kHz-80 MHz. The most appropriate modes of the electric burning discharge in different electrolytes were proposed.

  9. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  10. Solid-oxide fuel cell electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, I.D.; Hash, M.C.; Krumpelt, M.

    1991-12-31

    This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  11. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  12. Conductivity of electrolytes for rechargeable lithium batteries

    Science.gov (United States)

    Dudley, J. T.; Wilkinson, D. P.; Thomas, G.; Levae, R.; Woo, S.

    1991-06-01

    The conductivity of 150 nonaqueous electrolytes for rechargeable Li batteries between -60 and 80 C is reported. A wide range of solvents including esters, ethers, aromatics, chlorinated solvents, etc., and mixtures thereof, were studied. Results for five electrolyte salts which have some promise for rechargeable Li cells are presented. Several of the trends in the data are discussed, and the importance of solvent viscosity in determining electrolyte conductivity is shown.

  13. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  14. Rebalancing electrolytes in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  15. Electrodeposition of Fe powder from acid electrolytes

    Directory of Open Access Journals (Sweden)

    VESNA M. MAKSIMOVIC

    2008-08-01

    Full Text Available Polarization characteristics of the electrodeposition processes of Fe powders from sulfate and chloride electrolytes and the morphology of the obtained powders were investigated. The morphology depended on the anion presence in the electrolyte but not on the current density in the investigated range. A characteristic feature of the dendritic powder with cauliflower endings obtained from sulfate electrolyte is the presence of cone-like cavities and the crystallite morphology of the powders surface. On the other hand, Fe powders electrodeposited from chloride electrolyte appear in the form of agglomerates. A soap solution treatment applied as a method of washing and drying provides good protection from oxidation of the powders.

  16. Electrochemical and rheological behaviour of a fluid zinc paste; Comportement electrochimique et rheologique d`une pate de zinc fluide

    Energy Technology Data Exchange (ETDEWEB)

    Sajot, N.

    1997-12-04

    Zinc is a performing anodic material in numerous types of batteries. The anode of alkaline cells is typically a suspension of metallic powder in a gelled potassium hydroxide electrolyte, called zinc paste. We process such a homogeneous, fluid and stable paste, we study its physical electrochemical and rheological properties. Electrical power delivered during galvano-static electrolysis is about a few tens of mW.cm{sup -2} for anodic overvoltages inferior to 200 mV until the complete oxidation of the metal, 10 oxidation-reduction cycles are realised on paste samples of few mm width. In other respects, the product has a Bingham-type flow behavior, of critical shearing stress close to 200 Pa, and plastic viscosity about Pa.s, valid from 0,1 s{sup -1} shear rate. Zinc paste circulates in a slim rectangular section channel. Movement is ensured by a peristaltic pump placed on a cylindrical flexible tube. The paste transit between rectangular and circular sections is made through a profiled mechanical piece called a fish tail, without draft edge or roughness. An electrolytic separator and a current collector form the walls of the parallelopipedal channel, thus an electrolysis cell is framed. We record electrical and rheological characteristics of 2 oxidation-reduction cycles, during which the paste continues to flow and remains conductive. Established performances on the elementary cell allow to make up an air-zinc circulating paste battery for an electrical vehicle: the hydraulic recharge of a 100 l anodic paste tank is made in a few minutes, corresponding to a 300 km autonomy. (author) 87 refs.

  17. Rheological and Thermal Properties of Potato Starch

    Institute of Scientific and Technical Information of China (English)

    Zhong Geng; Li Tian-zhen; Zhang Wei-min; Li Hao-nan

    2005-01-01

    Particle size, rheological and thermal properties of potato starch from Yunnan province of China was in-vestigated. The particle size ranges from 0.429-102.3 um determined by laser light-scatter. The major flow type of 6 w/v% potato starch was shear-thinning fluid even the shear rate up to 800·s-1, and the gel formed by 6 w/v% potato starch fell to weak gel for its little difference between G' and G'', high dependence on frequency and low value of G'(Pa). The hardness and cohesiveness of potato starch gel were 31.3 g and 131.9 g·s, respectively. The thermal properties of potato starch were also determined by DSC at the starch:water=3:1. The To, Tp, and ΔH of potato starch were 62.23℃,67.31℃, and 2.22 J·g-1.

  18. Rheological properties of asphalts with particulate additives

    Energy Technology Data Exchange (ETDEWEB)

    Shashidhar, N. [EBA Engineering, Baltimore, MD (United States); Chollar, B.H. [Federal Highway Administration, McLean, VA (United States)

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  19. Rheological Properties of Hydrophobically Associating Polyacrylamide Solution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L.The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively,which is favorable for flooding application. Such factors of partially hydrolyzed polyacrylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.

  20. Study on the rheology of subducting slabs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We calculate thermal and phase structures of subducting slabs for different subducting velocities by a modified coupling code of the kinetic phase-transformation equations and the heat-diffusion equation with latent-heat release. Whereafter, we estimate their rheology structures based on the thermal and phase structures from the mineral physical point of view. At shallow depth, the upper layer has a high effective viscosity greater than 1034Pa · s; while the lower layer has a relatively low effective viscosity, which is greater than 1026Pa · s nevertheless. The effective viscosities below the kinetic phase boundary of olivine to wadsleyite decrease obviously, and reach a minimum of 1022Pa · s. Small areas with higher effective viscosities exist above the depth of about 700 km in subducting slabs, which are produced by lower temperatures that are related with endothermic phase transformation of spinel to perovskite and magnesiowustite. The 1% and 99% isograds of spinel proportion delineate tortuous belts with low effective viscosities, which would affect the geodynamic behavior of subducting slabs.

  1. Rheological characteristics of soft rock structural surface

    Institute of Scientific and Technical Information of China (English)

    陈沅江; 吴超; 傅衣铭

    2008-01-01

    There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.

  2. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  3. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  4. Rheological characteristics of aged asphalt binder

    Institute of Scientific and Technical Information of China (English)

    刘聪慧; 吴少鹏; 刘全涛; 朱国军

    2008-01-01

    Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged asphalt binders with respect to their short and long terms aging characteristics.Viscosity test,dynamic shear test and creep test were conducted.The test results indicate that the viscosity of aged asphalt binder increases sharply with the extension of aging period.Complex shear modulus of aged asphalt increases,which indicates that the stiffness of asphalt binders can increase.The phase angle for aged asphalt binders reduces,which indicates that the elastic portion for viscoelastic property of asphalt binders increases.|G*|·sin δ increases after aging procedure which means that the fatigue resistance becomes poor.The creep test results show that creep strain curves varies remarkably for virgin and aged asphalt binders.The total strain during loading period and the permanent strain decreases significantly for aged asphalt binders,which implies that the elastic portion increases and the viscous portion decreases.

  5. Rheological Evaluation of Polymer Modiifed Asphalt Binders

    Institute of Scientific and Technical Information of China (English)

    WANG Lan; CHANG Chunqing

    2015-01-01

    The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene-butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modiifers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modiifed asphalts were evaluated to predict their ifeld performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), deifned as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modiifed asphalt binders due to the action of the crumb rubber.

  6. Electrical controlled rheology of a suspension of weakly conducting particles in dielectric liquid

    CERN Document Server

    Guegan, Q; Foulc, J N; Tillement, O; Guegan, Quentin

    2006-01-01

    The properties of suspensions of fine particles in dielectric liquid (electrorheological fluids) subjected to an electric field lead to a drastic change of the apparent viscosity of the fluid. For high applied fields (~ 3-5 kV/mm) the suspension congeals to a solid gel (particles fibrillate span the electrode gap) having a finite yield stress. For moderate fields the viscosity of the suspension is continuously controlled by the electric field strength. We have roposed that in DC voltage the field distribution in the solid (particles) and liquid phases of the suspension and so the attractive induced forces between particles and the yield stress of the suspension are controlled by the conductivities of the both materials. In this paper we report investigation and results obtained with nanoelectrorheological suspensions: synthesis of coated nanoparticles (size ~ 50 to 600 nm, materials Gd2O3:Tb, SiOx...), preparation of ER fluids (nanoparticles mixed in silicone oil), electrical and rheological characterization ...

  7. Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces.

    Science.gov (United States)

    Richter, Marina J; Schulz, Alexander; Subkowski, Thomas; Böker, Alexander

    2016-10-01

    Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H(∗)Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. PMID:27388134

  8. Plasma electrolytic oxidation of tantalum

    Directory of Open Access Journals (Sweden)

    Petković Marija

    2012-01-01

    Full Text Available This paper is a review of our research on the plasma electrolytic oxidation (PEO process of tantalum in 12-tungstosilicic acid. For the characterization of microdischarges during PEO, real-time imaging and optical emission spectroscopy (OES were used. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDS and XRD. Oxide coating morphology is strongly dependent on PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO3, Ta2O5 and SiO2.

  9. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  10. Rheological and Adhesive Behavior of Gunning Mix for Blast Furnace Repair

    Institute of Scientific and Technical Information of China (English)

    CAO Feng; LONG Shigang; WU Xingrong; SUN Jialin; HONG Yanruo

    2003-01-01

    The aim of this experimental work was to investigate the rheological and adhesive performance of gunning mix suspensions. The results of rheological tests indicate that:the rheological curve of gunning mix bonded by high-alumina cement (HACG) is Bingham type; the rheological curve of low cement gunning mix (LCG) bonded by microsilica is characterized by pseudo-plasticity fluid with yielding stress; and the rheological property of low-cement gunning mix bonded by microsilica is proved to be better than that of gunning mix bonded by cement. Meanwhile as indicated by the adhesive tests: the better the rheological properties of gunning mix suspension, the better the repair effect would be.

  11. Plasma electrolytic oxidation of metals

    Directory of Open Access Journals (Sweden)

    Stojadinović Stevan

    2013-01-01

    Full Text Available In this lecture results of the investigation of plasma electrolytic oxidation (PEO process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determination of electron temperature, electron number density, spatial density of micro-discharges, the active surface covered by micro-discharges, and dimensional distribution of micro-discharges at various stages of PEO process. Special attention was focused on the results of the study of the morphology, chemical, and phase composition of oxide layers obtained by PEO process on aluminum, tantalum, and titanium in electrolytes containing tungsten. Physicochemical methodes: atomic force microscopy (AFM, scanning electron microscopy (SEM-EDS, x-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS, and Raman spectroscopy served as tools for examining obtained oxide coatings. Also, the application of the obtained oxide coatings, especially the application of TiO2/WO3 coatings in photocatalysis, were discussed.

  12. Plasma electrolytic oxidation of AMCs

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  13. The non-isothermal rheology of low viscosity magmas.

    Science.gov (United States)

    Kolzenburg, Stephan; Giordano, Daniele; Dingwell, Donald B.

    2016-04-01

    Accurate prediction of the run-out distance of lava flows, as well as the understanding of magma migration in shallow dyke systems is hampered by an incomplete understanding of the transient, sub-liquidus rheology of crystallizing melts. This sets significant limits to physical property based modelling of lava flow (especially flow width, length and advancement rate) and magma migration behaviour and the resulting accuracy of volcanic hazard assessment The importance of the dynamic rheology of a lava / magma on its emplacement style becomes especially apparent in towards later stages of flow and dyke emplacement, where the melt builds increasing resistance to flow, entering rheologic regimes that determine the halting of lava flows and sealing of dykes. Thermal gradients between the interior of a melt body and the contact with air or the substratum govern these rheologic transitions that give origin to flow directing or impeding features like levees, tubes and chilled margins. Besides the critical importance of non-isothermal and sub-liquidus processes for the understanding of natural systems, accurate rheologic data at these conditions are scarce and studies capturing the transient rheological evolution of lavas at conditions encountered during emplacement virtually absent. We describe the rheologic evolution of a series of natural, re-melted lava samples during transient and non-equilibrium crystallization conditions characteristic of lava flows and shallow magmatic systems in nature. The sample suite spans from foidites to basalts; the dominant compositions producing low viscosity lava flows. Our data show that all melts undergo one or more change zones in effective viscosity when subjected to sub liquidus temperatures. The apparent viscosity of the liquid-crystal suspension increases drastically from the theoretical temperature-viscosity relationship of a pure liquid once cooled below the liquidus temperature. We find that: 1) Both cooling rate and shear rate

  14. Investigations of Physical and Rheological Properties of Aged Rubberised Bitumen

    Directory of Open Access Journals (Sweden)

    Asim Hassan Ali

    2013-01-01

    Full Text Available Several road pavement distresses are related to rheological bitumen properties. Rutting and fatigue cracking are the major distresses that lead to permanent failures in pavement construction. Influence of crumb rubber modifier (CRM on rheological properties of bitumen binder such as improvement of high and intermediate temperatures is investigated in the binder’s fatigue and rutting resistance through physical-rheological changes in this research. The bitumen binders were aged by rolling thin film oven (RTFOT to simulate short-term aging and pressure aging vessel (PAV to simulate long-term aging. The effects of aging on the rheological and physical properties of bitumen binders were studied conducting dynamic shear rheometer test (DSR, Brookfield viscometer test, softening point test, and penetration test. The results showed that the use of rubberised bitumen binder reduces the aging effect on physical and rheological properties of the bitumen binder as illustrated through lower aging index of viscosity, lower aging index of , and an increase in with crumb rubber modifier content increasing, indicating that the crumb rubber might improve the aging resistance of rubberised bitumen binder. In addition, the results showed that the softening point increment ( and penetration aging ratio (PAR of the rubberised bitumen binder decreased significantly due to crumb rubber modification. Furthermore, the higher crumb rubber content, the lower after PAV aging, which led to higher resistance to fatigue cracking bitumen.

  15. Factors That Influence the Extensional Rheological Property of Saliva

    Science.gov (United States)

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva. PMID:26305698

  16. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  17. Factors That Influence the Extensional Rheological Property of Saliva.

    Science.gov (United States)

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  18. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang, E-mail: 11229036@zju.edu.cn; Su, Heng, E-mail: shtdyso@163.com; Lv, Weiyang, E-mail: 3090103369@zju.edu.cn; Du, Miao, E-mail: dumiao@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-01-15

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus.

  19. 2012 SRNL-EM VANE RHEOLOGY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Marzolf, A.; Hera, K.

    2012-08-31

    The vane method has been shown to be an effective tool in measuring the yield stress of both settled and mixed slurries in laboratory bench scale conditions in supporting assessments of both actual and simulant waste slurries. The vane has also been used to characterize dry powders and granular solids, the effect of non-cohesive solids with interstitial fluids and used as a guide to determine if slip is present in the geometries typically used to perform rheological flow curve measurements. The vane has been extensively characterized for measuring the shear strength in soils in both field and laboratory studies. The objectives for this task are: Fabricate vane instrument; Bench top testing to further characterize the effect of cohesive, non-cohesive, and blends of cohesive/non-cohesive simple simulants; Data from measurement of homogenized and settled bed of Kaolin sludge and assessment of the technology. In this document, the assessment using bench scale measurements of non-cohesive materials (beads) and cohesive materials (kaolin) is discussed. The non-cohesive materials include various size beads and the vane was assessed for depth and deaeration (or packing) via tapping measurements. For the cohesive (or non-Newtonian) materials, flow curves and yield stress measurements are performed using the vane and this data is compared to the traditional concentric cylinder flow curve measurement. Finally, a large scale vane was designed, fabricated, and tested with the cohesive (or non-Newtonian) materials to determine how a larger vane performs in measuring the yield stress and flow curve of settled cohesive solids.

  20. Polymeric electrolytes for ambient temperature lithium batteries

    Science.gov (United States)

    Farrington, G. C.

    1987-09-01

    During this reporting period a number of novel solid polymer electrolytes formed by salts of multivalent cations and polyethylene oxide (PEO) have been prepared and characterized. These materials are of interest not only because of their potential ionic conductivities, but also because some of them may have electronic conductivity and oxidizing power which would be useful for novel electrode materials in all-solid-state batteries. Two broad classes of materials were investigated: PEO solutions of Zn(2), Cd(2), and Pb(2), all of which are potential electrolytes for solid-state batteries, and PEO solutions of transition metal salts, which are of interest as possible cathode materials. Mixed compositions containing both divalent cations and lithium ions were also prepared. Electrolytes formed with small, highly-polarizing ions, such as Mg(2) and Ca(2), are essentially pure anion conductors. Electrolytes containing Zn(2) behave similarly, unless they are hydrated, in which case the Zn(2) ions are quite mobile. Electrolytes formed with larger, more polarizable cations, such as Pb(2) and Cd(2), conduct both anions and cations. Solutions of salts of transition metal cations form a third group of electrolytes. Of the electrolytes investigated so far, those formed with Ni(++) salts are the most unusual. It appears as if the transport number of Ni(2) and the electrolyte conductivity can be greatly enhanced by controlling the hydration and dehydration of the polymer.

  1. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  2. Gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonghai; Amine, K. [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Zhang, L.Z.; West, R. [Organosilicon Research Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (United States)

    2008-03-10

    The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces. (author)

  3. Gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zonghai [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Zhang, L.Z.; West, R. [Organosilicon Research Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (United States); Amine, K. [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: amine@cmt.anl.gov

    2008-03-10

    The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces.

  4. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  5. F4U production by electrolytic reduction

    International Nuclear Information System (INIS)

    As a part of the nuclear fuel cycle program developed at the Spanish Atomic Energy Commission it has been studied the electrolytic reduction of U-VI to U-IV. The effect of the materials, electrolyte concentration, pH, current density, cell size and laboratory scale production is studied. The Pilot Plant and the production data are also described. (Author) 18 refs

  6. Microporous polymer electrolyte based on PVDF-PEO

    Institute of Scientific and Technical Information of China (English)

    LI Jian; XI Jingyu; SONG Qing; TANG Xiaozhen

    2005-01-01

    @@ Since Wright et al.[1] found that the complex of PEO/alkali metals salt had the ability of ionic conductivity in 1973, in-depth studies have been carried out about various polymer electrolytes, which were applied to replacing the liquid electrolytes in lithium ion battery[2,3]. At present, polymer electrolytes mainly include three kinds: dry polymer electrolytes, gel polymer electrolytes and microporous polymer electrolytes.

  7. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  8. Multivariant simulator for vacuum cooling processes of three component electrolyte systems

    Directory of Open Access Journals (Sweden)

    Suljkanović Midhat

    2010-01-01

    Full Text Available In this paper, a computer aided analysis and synthesis of the crystallization processes from multicomponent electrolyte systems were studied. In addition, the vacuum crystallization processes with adiabatic cooling of the system are presented. The cooling process of a multicomponent electrolyte system can be considered as a process with the concentration of the system and/or the crystallization of the solid phase from the system. Requirements for multivariant options of the process simulator are the result of practical needs in the design of new processes or the improvement of exploitation processes. According to this, there are needs for a simulation of a simple flashing of the system as well as for the vacuum cooling crystallization processes with the cyclic structure. The possibilities of the created process simulator are illustrated on three component electrolyte systems. Application of the process simulator for any other electrolyte systems requires only an update of the thermodynamic model, and physico-chemical properties related to electrolyte system.

  9. Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera.

    Science.gov (United States)

    Qiao, Leke; Li, Yinping; Chi, Yongzhou; Ji, Yinglu; Gao, Yan; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-01-20

    Polysaccharide from Enteromorpha prolifera (PE) which is the most common green algae is gradually becoming an attractive candidate with novel functions by virtue of its unique chemical and physicochemical properties. The infrared spectrum (FT-IR) of PE confirmed that it is a distinctive, sulfated heteropolysaccharide. Dynamic rheology was systematically conducted to investigate the effect of concentration, temperature, pH, and electrolytes on PE. The flow behavior testing verified its pseudoplastic character. A closed hysteresis loop was obtained when the PE concentration reached 10 g/L. For the phase angel (tanδ) was always less than 1, the solid-like behavior of PE is also found at 10-14 g/L PE in the linear viscoelastic region (LVR). Furthermore, study on its potential gelling behavior showed that 16 g/L PE could form a gel and had well textural properties. The unique functional groups and characteristics of PE provided the possibility to apply into food industry. PMID:26572475

  10. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  11. Solid polymer electrolyte from phosphorylated chitosan

    International Nuclear Information System (INIS)

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  12. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel;

    2013-01-01

    PURPOSE: To characterize human gastric fluid with regard to rheological properties and gastric lipase activity. In addition, traditional physicochemical properties were determined. METHODS: Fasted HGA were collected from 19 healthy volunteers during a gastroscopic examination. Rheological charact...

  13. Rheology of complex fluid-fluid interfaces: a unified approach based on nonequilibrium thermodynamics

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2010-01-01

    Surface rheological properties affect the dynamics of vesicles, nanoparticles, emulsion droplets, foam bubbles, polymer microcapsules, liquid jets, living cells, lung avioli, thin liquid films, and many other multiphase systems. Surface rheology is therefore relevant for a wide range of disciplines

  14. Rheological behavior of magnetic powder mixtures for magnetic PIM

    Science.gov (United States)

    Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min

    2012-06-01

    Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.

  15. High-throughput rheology in a microfluidic device

    Science.gov (United States)

    Furst, Eric; Schultz, Kelly; Han, Hyejin; Kim, Chongyoup

    2011-11-01

    High-throughput rheological measurements in a microfluidic device are demonstrated. A series of microrheology samples is generated as droplets in an immiscible spacer fluid using a microfluidic T-junction. The compositions of the sample droplets are continuously varied over a wide range. Rheology measurements are made in each droplet using multiple particle tracking microrheology. We review critical design and operating parameters, including the droplet size, flow rates and rapid fabrication methods. Validation experiments are performed by measuring the solution viscosity of glycerine and the biopolymer heparin as a function of concentration. Finally, an analysis of droplet mixing is performed in order to optimize the device performance. Overall, the combination of microrheology with microfluidics maximizes the number of rheological measurements while simultaneously minimizing the sample preparation time and amount of material, and should be particularly suited to the characterization of scarce or expensive materials. We acknowledge financial support from the NSF (CBET-0730292).

  16. Rheological and microbiological study of flour treated by irradiation

    International Nuclear Information System (INIS)

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  17. Research on rheological properties of micro-fine grouting cement

    Institute of Scientific and Technical Information of China (English)

    管学茂; 王雨利; 杨雷

    2003-01-01

    This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro-fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial-potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro-fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties.

  18. Rheological behaviors of doughs reconstituted from wheat gluten and starch.

    Science.gov (United States)

    Yang, Yanyan; Song, Yihu; Zheng, Qiang

    2011-08-01

    Hydrated starch-gluten reconstituted doughs were prepared and dynamic rheological tests of the reconstituted doughs were performed using dynamic strain and dynamic frequency sweep modes. Influence of starch/gluten ratio on rheological behaviors of the reconstituted doughs was investigated. The results showed that the reconstituted doughs exhibited nonlinear rheological behavior with increasing strain. The mechanical spectra revealed predominantly elastic characteristics in frequency range from 10(-1) rad s(-1) to 10(2) rad s(-1). Cole-Cole functions were applied to fit the mechanical spectra to reveal the influence of starch/gluten ratio on Plateau modulus and longest relaxation time of the dough network. The time-temperature superposition principle was applicable to a narrow temperature range of 25°C ~40°C while it failed at 50°C due to swelling and gelatinization of the starch.

  19. Gap Dependent Rheology in Type I Collagen Gels

    Science.gov (United States)

    Arevalo, Richard; Urbach, Jeffrey; Blair, Daniel

    2010-03-01

    Branched type I collagen fiber networks provide extracellular support in mammalian tissues. The intricate network structure can succumb to partial or complete tearing under sufficient applied strain. Under small shear strains, in vitro collagen gels exhibit strain-stiffening while maintaining overall network integrity. Higher shear strains lead to network failure through discrete yielding events. We perform rheology and confocal-rheology experiments to fully elucidate the strain-stiffening and yielding behavior in these highly nonlinear materials. We apply continuous shear strains to collagen gels confined within the rheometer at fixed gaps. We observe that sheared collagen in the strain-stiffening and yielding regime has an apparent modulus that is strongly dependent on the collagen thickness. Moreover, we demonstrate that network yielding is universally controlled by the ratio of the collagen thickness to the mesh size. These results have broad implications for the interpretation of rheological data of extracellular matrix proteins and for the design of biomimetic scaffolds.

  20. Molecular model for the rheology of polymer nanocomposites

    Science.gov (United States)

    Picu, Catalin; Sarvestani, Alireza

    2006-03-01

    In this work we develop a molecular model for the rheology of entangled monodisperse homopolymers filled with nanoparticles at low filling volume fraction. This research is the continuation of our ongoing effort towards establishing a connection between the macroscopic time-dependent behavior of polymer nanocomposites and their molecular structure. The model is developed based on insight gained from molecular simulations, regarding the structure and dynamics of polymeric chains confined between nanoparticles. These simulations provide physically relevant parameters for the rheological model. The model accounts for reptation, chain stretch and contour length fluctuations. It also accounts for the short-range energetic interactions between polymers and fillers. Its predictions are compared with experimental data. The rheological model is implemented in a FEM package to simulate nanocomposite processing.

  1. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  2. Mechanoelectric effect in solid electrolytes

    International Nuclear Information System (INIS)

    The mechanoelectric effect in solid electrolytes of the compositions ZrO2 + 8 mol % Sc2O3 and ZrO2 + 8 mol % Y2O3 is investigated experimentally. The mechanical properties of polycrystalline specimens are studied using four-point bending in air. It is shown that a negative charge is induced on the extended side of the bent specimen and that the magnitude of this charge depends on the external mechanical load and the temperature of measurement. The assumption is made that the observed phenomena are associated with the uphill diffusion of vacancies in response to a nonuniform field of mechanical stresses. The theoretical model is compared with the experimental results

  3. Catalyzed electrolytic plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Catalyzed electrolytic plutonium oxide dissolution (CEPOD) was first demonstrated at Pacific Northwest Laboratory (PNL) in early 1974 in work funded by the Exxon Corporation. The work, aimed at dissolution of Pu-containing residues remaining after the dissolution of spent mixed-oxide reactor fuels, was first publicly disclosed in 1981. The process dissolves PuO2 in an anolyte containing small (catalytic) amounts of elements that form kinetically fast, strongly oxidizing ions. These are continuously regenerated at the anode. Catalysts used, in their oxidized form, include Ag2+, Ce4+, Co3+, and AmO22+. This paper reviews the chemistry involved in CEPOD and the results of its application to the dissolution of the Pu content of a variety of PuO2-containing materials such as off-standard oxide, fuels dissolution residues, incinerator ash, contaminated soils, and other scraps or wastes. Results are presented for both laboratory-scale and plant-scale dissolves

  4. A dynamic rheological model for thin-film lubrication

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study,the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated.The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region,which is desired for its lower energy dissipation.A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation.This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film,as well as their dependences on the lubricant film thickness.The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing.Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number.The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0,indicating a liquid-to-solid transition of the confined lubricant film.Furthermore,the two proposed parameters in the dynamic rheological model,namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0,were found to determine the minimum COF and the width of the low-COF region,both of which were required to optimize the shape of the Stribeck curve.The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  5. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya

    2012-01-01

    Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small angle X-ray scattering (SAXS) and transmission electron microscopy measurements indicate that PEG-SiO 2/PEG suspensions are more stable against phase separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions. The jamming transition is accompanied by what appears to be a unique evolution in the transient suspension rheology, along with large increments in the zero-shear, Newtonian viscosity. The linear and nonlinear flow responses of the jammed suspensions are discussed in the framework of the Soft Glassy Rheology (SGR) model, which is shown to predict many features that are consistent with experimental observations, including a two-step relaxation following flow cessation and a facile method for determining the shear-thinning coefficient from linear viscoelastic measurements. Finally, we show that the small sizes of the particles have a significant effect on inter-particle interactions and rheology, leading to stronger deviations from expectations based on planar brushes and hard-sphere suspension theories. In particular, we find that in the high volume fraction limit, tethered nanoparticles interact in their host polymer through short-range forces, which are more analogous to those between soft particles than between spherical polymer brushes. © 2012 The Royal Society of Chemistry.

  6. A dynamic rheological model for thin-film lubrication

    Science.gov (United States)

    Zhang, Xiang-Jun; Huang, Ying; Guo, Yan-Bao; Tian, Yu; Meng, Yong-Gang

    2013-01-01

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  7. Integrated system for design and analysis of industrial processes with electrolyte system

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul

    1999-01-01

    An algorithm for design and analysis of crystallization processes with electrolyte systems is presented. This algorithm consists of a thermodynamic part, a synthesis part and a design part. The three parts are integrated through a simulation engine. The main features of the algorithm is the use...... of thermodynamic insights not only to generate process alternatives but also to obtain good initial estimates for the simulation engine and for visualization of process synthesis/design. The main steps of the algorithm are highlighted through a case study involving an industrial crystallization process....

  8. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Stone, M.

    2010-03-17

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  9. Critical scaling in the rheology of damped random spring networks

    Science.gov (United States)

    Tighe, Brian

    2011-11-01

    Physical, biological, and engineered materials ranging from foams and emulsions to bioppolymer and bar-joint networks can be modelled as random networks of springs. We study the oscillatory rheology of random networks immersed in a viscous background fluid, and show how their response is intimately tied to the presence or absence of floppy modes in the zero frequency limit. The rheology displays dynamic critical scaling with three different regimes: viscous fluid, elastic solid, and shear thinning power law fluid. We give scaling arguments to explain all of the critical exponents and confirm our predictions with numerics. Supported by the Dutch Organization for Scientific Research (NWO).

  10. Rheology of the Tectonosphere as Inferred from Seismic Aftershock Sequences

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1969-06-01

    Full Text Available Some rheological models of the mechanism of aftershock
    occurrence, namely, Benioff's, Pshennikov's, and Mogi's models, are examined
    in the light of the established laws governing the phenomenology of the
    process. It is concluded that none of them explains fully the aftershock
    mechanism. Thus, a new creep model is proposed, according to which
    aftershocks are the discontinuous manifestation of the overall plastic creep
    by which the rock readjusts itself to the stress distribution left by the main
    shock. The creep model affords a new large-scale picture of the rheology
    of the tectonosphere.

  11. Rheological Behavior for Mica-filled Polypropylene Composite Melts

    Institute of Scientific and Technical Information of China (English)

    Yan Xia CAO; Miao DU; Qiang ZHENG

    2004-01-01

    The study on rheological properties of a series of mica-filled polypropylene ( PP ) composites was carried out. The influence of surface-treatment of mica particles on dynamic rheological behavior of the composites were dealt with. The viscosity ( η ) and dynamic modulus ( G′ ) of the composite melts were higher than those of PP matrix, especially those for systems treated with silane, which was attributed to the interfacial adhesion enhancement. However, surface-treatment of mica by titanate resulted in lower η and G′, as compared with the treatment by silane. The reason for this is believed to be the formation of the mono-molecular layer on the mica surface.

  12. Rheological Study of Dextran-Modified Magnetite Nanoparticle Water Suspension

    Science.gov (United States)

    Józefczak, A.; Hornowski, T.; Rozynek, Z.; Skumiel, A.; Fossum, J. O.

    2013-04-01

    The aim of this work is to investigate the effect of surface modification of superparamagnetic magnetite nanoparticles (sterically stabilized by sodium oleate) by the dextran biocompatible layer on the rheological behavior of water-based magnetic fluids. The flow curves were measured as a function of the magnetic field strength by means of rheometry. The measured viscosity is generally dependent on both the particle concentration and the geometrical factors such as the particle shape and thickness of the adsorbed layers. The rheological properties of the magnetic fluids studied show the effect of the magnetic field strength and the presence of the surfactant second layer (dextran) on their viscosity.

  13. Effects of polyethyleneimine adsorption on rheology of bentonite suspensions

    Indian Academy of Sciences (India)

    A Alemdar; N Öztekin; F B Erim; Ö I Ece; N Güngör

    2005-06-01

    The influence of the cationic polymer, polyethyleneimine polymer (PEI) on the flow behaviour of bentonite suspensions (2%, w/w), was studied. XRD, zeta potential and adsorption studies were done together with rheological measurements. The addition of PEI at concentration ranges of 10-5–4.5 g/l and their rheological properties and stability of bentonite suspensions were studied. The adsorption rates for the bentonite suspensions are very fast. The XRD results showed that the PEG molecules did not intercalate into the layers of the clay.

  14. Rheology Behavior of Cellulose/NMMO/Water Solution

    Institute of Scientific and Technical Information of China (English)

    顾广新; 胡赛珠; 邵惠丽; 沈弋弋; 胡学超

    2001-01-01

    Rheology properties of cellulose/NMMO/water solution are important parameters for spinning. The storage and loss modulus and viscosity of the solution decrease with increasing water concentration of solvent in certain range. Flow-activation energy of two kinds of cellulose solution is quite different in view of their molecular weight. The molecular weigh distribution of cellulose samples can be characterized by the value of Gc/c Since the different cellulose samples have different MWD and DP, the relations of the first normal stress difference N1 vs. shear rate are different. Moreover, the rheology properties of cellulose solution produced by twin-screw extruder process are also investigated.

  15. Rheological Study of Mutarotation of Fructose in Anhydrous State

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yangyang [ORNL; Wlodarczyk, Patryk [Institute ofNon-Ferrous Metals, Sowinskiego Gliwice, POLAND; Sokolov, Alexei P [ORNL; Paluch, Marian W [ORNL

    2013-01-01

    Rheological measurement was employed to study the mutarotation of D-fructose in anhydrous state. By monitoring the evolution of shear viscosity with time, rate constants for mutarotation were estimated, and two different stages of this reaction were identified. One of the mutarotation stages is rapid and has a low activation energy, whereas the other is much slower and has a much higher activation energy. Possible conversions corresponding to these two phases are discussed. This work demonstrates that, in addition to the routine techniques such polarimetry and gas liquid chromatography, rheological measurement can be used as an alternative method to continuously monitor the mutarotation of sugars.

  16. On the definition of fractional derivatives in rheology

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the last two decades fractional calculus has been increasingly applied to physics, especially to rheology.It is well known that there are obivious differences between Riemann-Liouville (R-L) definition and Caputo definition,which are the two most commonly used definitions of fractional derivatives.The multiple definitions of fractional derivatives have hindered the application of fractional calculus in rheology.In this paper,we clarify that the R-L definition and Caputo definition are both Theolog...

  17. Simulation of rheological behavior of asphalt mixture with lattice model

    Institute of Scientific and Technical Information of China (English)

    杨圣枫; 杨新华; 陈传尧

    2008-01-01

    A three-dimensional(3D) lattice model for predicting the rheological behavior of asphalt mixtures was presented.In this model asphalt mixtures were described as a two-phase composite material consisting of asphalt sand and coarse aggregates distributed randomly.Asphalt sand was regarded as a viscoelastic material and aggregates as an elastic material.The rheological response of asphalt mixture subjected to different constant stresses was simulated.The calibrated overall creep strain shows a good approximation to experimental results.

  18. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    International Nuclear Information System (INIS)

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO2 and LiCF3SO3. • ZrO2 increased electrolyte conductivity by two orders of magnitude. • ZrO2 doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO2-NC) and lithium trifluoromethanesulfonate (LiCF3SO3) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO2 and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10−4 S cm−1). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10−4 S cm−1 at 13.04 wt% ZrO2-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO2-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO2-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices

  19. Introducing Students to Rheological Classification of Foods, Cosmetics, and Pharmaceutical Excipients Using Common Viscous Materials

    Science.gov (United States)

    Faustino, Ce´lia; Bettencourt, Ana F.; Alfaia, Anto´nio; Pinheiro, Lídia

    2015-01-01

    Rheological measurements are very important tools for the characterization of the flow and deformation of a material, as well as for optimization of the rheological parameters. The application and acceptance of pharmaceutical formulations, cosmetics, and foodstuffs depends upon their rheological characteristics, such as texture, consistency, or…

  20. THE RESEARCH OF RHEOLOGICAL PROPERTIES OF STOWING SLURRY WITH HIGH-WATER MATERIAL SOLIDIFYING TAILINGS

    Institute of Scientific and Technical Information of China (English)

    杨本生; 刘文永

    1996-01-01

    High-water material, tailings from goldmine and water are mixed into a new slurry.Testing of rheological properties of stowing slurries A and B is made to determine type and rheo-logical parameters of the slurry. The main factors influencing rheological properties of the slurryare analyzed and the rational concentration and empirical resistance calculating formula of pipeline transportation are presented.

  1. Gas slug ascent through rheologically stratified conduits

    Science.gov (United States)

    Capponi, Antonio; James, Mike R.; Lane, Steve J.

    2016-04-01

    Textural and petrological evidence has indicated the presence of viscous, degassed magma layers at the top of the conduit at Stromboli. This layer acts as a plug through which gas slugs burst and it is thought to have a role in controlling the eruptive dynamics. Here, we present the results of laboratory experiments which detail the range of slug flow configurations that can develop in a rheologically stratified conduit. A gas slug can burst (1) after being fully accommodated within the plug volume, (2) whilst its base is still in the underlying low-viscosity liquid or (3) within a low-viscosity layer dynamically emplaced above the plug during the slug ascent. We illustrate the relevance of the same flow configurations at volcanic-scale through a new experimentally-validated 1D model and 3D computational fluid dynamic simulations. Applied to Stromboli, our results show that gas volume, plug thickness, plug viscosity and conduit radius control the transition between each configuration; in contrast, the configuration distribution seems insensitive to the viscosity of magma beneath the plug, which acts mainly to deliver the slug into the plug. Each identified flow configuration encompasses a variety of processes including dynamic narrowing and widening of the conduit, generation of instabilities along the falling liquid film, transient blockages of the slug path and slug break-up. All these complexities, in turn, lead to variations in the slug overpressure, mirrored by changes in infrasonic signatures which are also associated to different eruptive styles. Acoustic amplitudes are strongly dependent on the flow configuration in which the slugs burst, with both acoustic peak amplitudes and waveform shapes reflecting different burst dynamics. When compared to infrasonic signals from Stromboli, the similarity between real signals and laboratory waveforms suggests that the burst of a slug through a plug may represent a viable first-order mechanism for the generation of

  2. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  3. Gas evolution in aluminum electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  4. PREPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia

    2009-01-01

    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  5. Sol gel process for the preparation of solid electrolyte material

    International Nuclear Information System (INIS)

    The reality that fossil fuels are running out is driving the development of fuel cells. These fuel cells offer attractive and alternative energy sources because of high conversion efficiency, low pollution, light weight, and high power density. In this article, status of fuel cells and ceramic fuel cells have been discussed with particular emphasis on stabilized zirconia widely used as solid electrolyte material in solid oxide fuel cells (SOFCs) due to its high oxygen ion conductivity. The study is also focused on low cost process for synthesis of 12 mol% yttria stabilized zirconia (12YSZ) powder from the zirconia sol prepared by hydrothermal treatment of zirconium nitrate solution with an aqueous electrolyte extraction by organic extractant. The 12YSZ powder found to be pure white crystalline. 12YSZ calcined powder were sintered at 1200 degree C for 1-6 hours durations. Phase, purity, crystallinity and morphology of 12YSZ were examined by differential thermal analysis (DTA), thermogravimetry(TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. SEM indicated the size range 0.2 - 5 micron. The results revealed that the product material (pellet) can be sintered into uniformly size fine grained ceramic of > 98% theoretical density around 1200 degree C for 6 hours as compared to the pellet sintered for 1 hour at the same temperature. (author)

  6. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...

  7. Electrolytic orthoborate salts for lithium batteries

    Science.gov (United States)

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  8. 钛基IrO2+SnO2电极的析氧性能及其在电合成丁二酸中的应用%Oxygen evolution properties of titanium-based IrO2 +SnO2 electrode and application in electrolytic synthesis of succinic acid

    Institute of Scientific and Technical Information of China (English)

    马淳安; 邱志军; 赵峰鸣; 朱秀山; 褚有群

    2011-01-01

    通过热分解法制备了IrO2+ SnO2/Sb2 O3+ SnO2/Ti、IrO2+ SnO2/Ti、IrO2+ Ta2O5/Sb2O3+ SnO2/Ti电极,通过线性伏安、电化学阻抗、强化寿命测试等研究了钛基涂层电极在1 mol· L-1硫酸溶液中的析氧性能.采用EDX、SEM等考察了电极的表面元素分布和电极强化寿命测试前后的表面形貌;并将上述电极作为阳极,以铅合金电极为阴极应用于电合成丁二酸体系,考察不同阳极的选用对电解结果的影响.结果表明,钛基涂层电极比传统Pb及其合金电极具有更低的析氧电位,在电合成丁二酸体系中,其槽电压可降低0.5~0.7 V,节约直流电耗10%以上;同时电解产物丁二酸的电流效率高于95%.在3种钛基涂层电极的比较中发现,以SnO2替代活性层中的Ta2 O5后,钛基IrO2-SnO2涂层电极仍具有较高的析氧活性,工作寿命可达1456 d,虽然槽电压和电解电耗略高,但由于替代了活性层中的部分贵金属,IrO2+ SnO2/Sb2 O3+SnO2/Ti电极仍具有较高性价比,具有较好的应用前景.%The dimensionally stable anode (DSA) has been developing quickly in recent years. The IrO2 + SnO2/Sb2O3 + SnO2/Ti, IrO2 + Ta2O5/Sb2O3 + SnO2/Ti and IrO2 + SnO2/Ti coated electrodes were prepared by the thermal decomposition method. The properties of the coated electrodes for oxygen evolution were studied by linear sweep voltammetry, electrochemical impedance spectroscopy and accelerated corrosion test. Pb and its alloy electrodes were also used in contrast experiment. Distribution of chemical elements and surface topography were observed by EDX and SEM. The effects of electrolytic result were investigated with the coated electrodes, Pb and its alloy electrodes as anode in electrolytic synthesis of succinic acid. The results showed that the cell voltage reduced by 0. 5-0. 7 V and current consumption of electrolysis decreased by almost 10% when the coated electrodes instead of Pb and its alloy electrodes were used in the

  9. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  10. Rheological properties of whey proteins concentrate before and

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2001-04-01

    Full Text Available Hydrocolloids are long-chain polymers, used in food production at small quantities (from 0,05 to 5 % to achieve appropriate rheological properties, prevent syneresis, increase the viscosity and stability of foodstuffs and for crystallization process control. The aim of this work was to investigate the influence of tribomechanical micronization of powdered whey protein concentrate on the rheological properties of whey proteins model systems as well as the influence of severalcarboxymethylcellulose hydrocolloids addition in such systems.Measurements were done using rotational viscosimeter, Brookfield DV-III at temperature 20 oC. The rheological parameters were determined by powerlaw model. The results of investigation have shown that all investigated systems are non-Newtonian. Depending on the pretreatment of whey proteins and the mass fractions of hydrocolloids they exhibited pseudoplastic or dilatant properties.Particle size analysis was performed using Fritsch – laser particle sizer “analysette 22”. The operation of tribomechanical micronization caused the decreasing of particle size and incrasing specific area of whey proteins. Tribomechanical treatment of whey proteins had significant influence on the rheological parameters and the type of flowing.

  11. Consolidation theory and rheology of mud: A literature survey

    NARCIS (Netherlands)

    Merckelbach, L.M.

    1996-01-01

    In the framework of project Strength evolution of soft consolidating mud layers, financially supported by the Netherlands Foundation of Technology, a literature survey on consolidation theory and rheological modelling of mud was carried out. A consolidation theory, focused on the Gibson equation (Gi

  12. Dense granular flow rheology in turbulent bedload transport

    CERN Document Server

    Maurin, Raphael; Frey, Philippe

    2016-01-01

    The local granular rheology is investigated numerically in idealised turbulent bedload transport configurations. Using a coupled fluid-discrete element model, the stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed in the framework of the $\\mu(I)$ rheology and exhibit a collapse of both the shear to normal stress ratio and the solid volume fraction over a wide range of inertial numbers. The effect of the interstitial fluid on the granular rheology is shown to be negligible, supporting recent work suggesting the absence of a clear transition between the free-fall and the turbulent regime. In addition, the data collapse is observed up to unexpectedly high inertial numbers $I\\sim2$, challenging the existing conceptions and parametrization of the $\\mu(I)$ rheology. Focusing upon bedload transport modelling, the results are pragmatically analyzed in the $\\mu(I)$ framework in order to pr...

  13. Dynamic hysteresis in the rheology of complex fluids.

    Science.gov (United States)

    Puisto, Antti; Mohtaschemi, Mikael; Alava, Mikko J; Illa, Xavier

    2015-04-01

    Recently, rheological hysteresis has been studied systematically in a wide range of complex fluids combining global rheology and time-resolved velocimetry. In this paper we present an analysis of the roles of the three most fundamental mechanisms in simple-yield-stress fluids: structure dynamics, viscoelastic response, and spatial flow heterogeneities, i.e., time-dependent shear bands. Dynamical hysteresis simulations are done analogously to rheological ramp-up and -down experiments on a coupled model which incorporates viscoelasticity and time-dependent structure evolution. Based on experimental data, a coupling between hysteresis measured from the local velocity profiles and that measured from the global flow curve has been suggested. According to the present model, even if transient shear banding appears during the shear ramps, in typical narrow-gap devices, only a small part of the hysteretic response can be attributed to heterogeneous flow. This results in decoupling of the hysteresis measured from the local velocity profiles and the global flow curve, demonstrating that for an arbitrary time-dependent rheological response this proposed coupling can be very weak.

  14. Back-analysis for Determining the Rheological Parameter of Rock

    Institute of Scientific and Technical Information of China (English)

    Xu Wenhuan; Zhu Dayong

    1994-01-01

    In this paper,a new method of back analysis for determmning the parameters of rheological surrounding rock is proposed. This method is based on the elasticviscoelastic correspondence principle, and the theological parameters are back analyzed from the measured displacemenrs during construction of the tunnel.A numerical exampie proves that the proposed method is applicanle to engineering practice.

  15. Rheology of stabilized cerium-gadolinium oxide (CGO) colloidal system

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    Achievement of stable dispersion with high solid loadings and low viscosity is crucial issue in ceramic films processing. In this work, systematic analysis of the rheological properties of CGO colloidal suspension was performed. The study aimed to define methods for evaluating fully stabilized co...

  16. Oral texture perception in relation to rheology for mayonnaise

    NARCIS (Netherlands)

    Terpstra, M.E.J.; Janssen, A.M.; Linden, van der E.; Wijk, de R.A.

    2004-01-01

    Sensory attributes of commercial mayonnaises have been correlated to rheological curves to obtain those measuring conditions that reflect the oral perception of specific (texture) attributes. Correlations are found mainly with data from flow curve measurements and from dynamic stress measurements ou

  17. Rheology of the Active Cell Cortex in Mitosis.

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Toyoda, Yusuke; Cattin, Cedric J; Müller, Daniel J; Hyman, Anthony A; Jülicher, Frank

    2016-08-01

    The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system. PMID:27508442

  18. Pasting and rheological properties of quinoa-oat composites

    Science.gov (United States)

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  19. RHEOLOGICAL ASPECTS OF MUCIN-CONTAINING SOLUTIONS AND SALIVA SUBSTITUTES

    NARCIS (Netherlands)

    HOLTERMAN, HJ; WATERMAN, HA; BLOM, C; SGRAVENMADE, FJ; Mellema, J.

    1992-01-01

    In this study rheological properties of aqueous solutions of mucin, albumin and mucin-albumin have been investigated in search for saliva substitutes. They were compared with commercially available saliva substitutes on the one hand and natural human saliva on the other hand. For the latter a few me

  20. Dark chocolate’s compositional effects revealed by oscillatory rheology

    NARCIS (Netherlands)

    K. van der Vaart; F. Depypere; V. De Graef; P. Schall; A. Fall; D. Bonn; K. Dewettinck

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding.

  1. Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels

    Directory of Open Access Journals (Sweden)

    Mihaela Violeta Ghica

    2016-06-01

    Full Text Available The goal of this paper was to design several sodium carboxymethylcellulose hydrogels containing a BCS class II model drug and to evaluate their flow and thixotropic properties. The rheological measurements were performed at two temperatures (23 °C and 37 °C, using a rotational viscometer. The hydrogels were stirred at different time intervals (10 s, 2, 5, 10 and 20 min at 23 °C, and 10 s, 2 and 5 min at 37 °C, with a maximum rotational speed of 60 rpm, and the corresponding forward and backward rheograms were recorded as shear stress vs. shear rate. For all hydrogels, the rheological data obtained at both temperatures showed a decrease of viscosity with the increase of the shear rate, highlighting a pseudoplastic behaviour. The flow profiles viscosity vs. shear rate were quantified through power law model, meanwhile the flow curves shear stress vs. shear rate were assessed by applying the Herschel-Bulkley model. The thixotropic character was evaluated through different descriptors: thixotropic area, thixotropic index, thixotropic constant and destructuration thixotropic coefficient. The gel-forming polymer concentration and the rheological experiments temperature significantly influence the flow and thixotropic parameters values of the designed hydrogels. The rheological characteristics described have an impact on the drug release microenvironment and determine the stasis time at the application site.

  2. Rheological properties of soybean protein isolate gels containing emulsion droplets

    NARCIS (Netherlands)

    Kim, K.H.; Renkema, J.M.S.; Vliet, van T.

    2001-01-01

    Rheological properties of soybean protein gels containing various volume fractions oil droplets have been studied at small and large deformations. Dynamic viscoelastic properties of soybean protein isolate gels were determined as a function of the volume fraction of oil droplets stabilised by the sa

  3. Rheology of crumb-rubber modified asphalt binders and mixes

    Science.gov (United States)

    Sheth, Vikas Rameshchandra

    Laboratory test procedures are presented to determine the rheological properties of crumb rubber modified asphalt (CRMA) binders and mixes. These tests provide simple, fast, and cost-effective alternatives to evaluate the performance (rutting and cracking potential) of binders and mixes used for pavement construction. Viscoelastic properties of CRMA binders are measured using dynamic shear analysis. Master curves were generated using the principle of time-temperature superposition to evaluate the effects of aging, rubber concentration, and curing conditions on the rheology of the modified binder. Results indicate that the rheology of CRMA binders can be divided into three regions of viscoelasticity: glassy region at high frequencies, transition/viscoelastic region at intermediate frequencies, and viscous region at low frequencies. Modification of the asphalt by addition of rubber leads to an improvement in both the high and low temperature properties, as reflected by changes in Gsp' and Gsp{''}, which causes the binder to have a greater resistance to specific pavement failure mechanisms. Both transient and dynamic properties of CRMA mixes were measured in the laboratory using the creep and recovery, direct tension, and frequency sweep tests. Rheological properties of the mix generated from the test data were compared to those of the binder to evaluate the effect of aging, rubber concentration, and curing conditions on mix performance. Several rheological parameters have been identified to characterize the rutting and cracking potential of mixes. A power law equation was found to give good correlations between several mix rheological parameters. Analysis of binder and mix failure energies show that work of cohesion of the binder is negligible compared to the failure energies. A unique relationship between Paris law material parameters has been confirmed. It is also shown that mix failure properties bear a one-to-one correlation with binder failure properties. Based

  4. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  5. Novel technology of purification of copper electrolyte

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of arsenic with different valence states on the purification of copper electrolyte were studied and a novel technology of purification of copper electrolyte by copper arsenite was proposed. The results show that the purification performance of As(Ⅲ) compounds is better than that of As(Ⅴ) compounds. The purification technology by copper arsenite has the advantages of simple operation, high purification performance and low cost in comparison with other technologies and its appropriate purification conditions are that copper arsenite concentration is 18 g/L, reaction temperature is 65 ℃ and reaction time is 8 h. The removal rates of Sb and Bi are 53.22% and 58.67% respectively under these conditions. The purification principle show that a kind of yellow precipitate mainly composed of arsenic, antimony (Ⅴ), bismuth and oxygen forms in electrolyte after copper arsenite is added, and consequently antimony and bismuth are removed from electrolyte.

  6. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A

    1997-01-01

    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  7. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  8. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  9. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  10. Electrolytes and Electrodes for Electrochemical Synthesis of Ammonia

    DEFF Research Database (Denmark)

    Lapina, Alberto

    prepared from FeOOH nanoparticles is measured at 25-40°C between pH2O = 0.037 atm and pH2O phosphate and cerium......, and used to fabricate symmetrical cells with composite metal-BCZY26 electrodes. Two metals (iron and molybdenum) are tested as electrocatalysts: the choice is based on the use of catalysts in the Haber-Bosch process and density functional theory calculations. The symmetrical cells are tested at OCV (i...

  11. Rheological Characterization and Safety Evaluation of Non-Ionic Lamellar Liquid Crystalline Systems Containing Retinyl Palmitate.

    Science.gov (United States)

    Chorilli, Marlus; Rigon, Roberta B; Calixto, Giovana; Cartezani, Pedro M F; Ribeiro, Maria C A P; Polacow, Maria L; Cerri, Paulo Sérgio; Sarmento, Victor H V; Scarpa, Maria Virgínia

    2016-02-01

    Retinyl palmitate (RP) is widely used as a special interest ingredient in dermatological formulations to improve the elasticity of the skin and to reduce wrinkles by stimulating collagen synthesis. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can modulate drug permeation into skin and improve the drug action. The effects of such systems on the skin, however, are not completely known. Possible undesirable effects of these formulations on the skin can be detected and interpreted by histopathology and histomorphometry. The objective of this study was to perform a rheological characterization to evaluate the safety of RP used in a lamellar LCS in vitro and in vivo. LCSs containing polyether functional siloxane as a surfactant, silicon glycol copolymer as an oil phase and water at ratios of 60:10:30 and 40:30:30, with (F₁v and F₂v, respectively) and without (F₁ and F₂ respectively) RP, were investigated. The rheological characterization was performed using steady shear rate sweep tests and dynamic frequency sweep tests carried out for up to 30 days for various storage temperature conditions (25 ± 2 °C, 37 ± 2 °C and 5 ± 2 °C). Cytotoxic effects were evaluated using J-774 mouse macrophages as a cellular model system. The in vivo tests were conducted on rabbits that had areas of skin treated as follows for 15 days: C (Control); F₁; F₁v; F₂; and F₂v. Histomorphometric and histopathological techniques were used to estimate the thicknesses of the epidermis and stratum corneum and the numbers of fibroblasts and leukocytes in the papillary dermis. Mean values were compared by ANOVA, followed by the Tukey test (p skin and that formulation F₁v significantly increased the number of fibroblasts in the dermis, which could result in an increase in the production of collagen. PMID:27305773

  12. Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hailong; WANG Enrong; ZHANG Ning; MIN Fuhong; SUBASH Rakheja; SU Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  13. Electrolytic process for producing hydrogen peroxide

    International Nuclear Information System (INIS)

    An electrolytic process for producing hydrogen peroxide in an aqueous alkaline solution includes simultaneously passing an aqueous alkaline electrolyte and oxygen through a fluid permeable conductive cathode comprising reticulated vitreous carbon foam, separating the fluid permeable conductive cathode from an anode by a barrier and connecting the fluid permeable conductive electrode and the anode with an external power source to cause generation of hydrogen peroxide ion within the aqueous alkaline solution

  14. Serum electrolyte changes in major surgical trauma

    OpenAIRE

    Ram Ranjan Singh; Sudhanshu Shekhar; Md. Jawed Akhtar; Vijay Shankar

    2016-01-01

    Background: Operative trauma is followed by a series of changes collectively referred to as metabolic response to injury, the magnitude and duration of the response being directly proportional to the severity of the trauma. Operative trauma imposes a great impact in the physiology of fluid and electrolytes within the body. Fluid and electrolyte management has thus been an integral part of care of each and every surgical patient. In the present study, an attempt has been made to study the elec...

  15. Viscoelastic silicone oils in analog modeling - a rheological benchmark

    Science.gov (United States)

    Rudolf, Michael; Boutelier, David; Rosenau, Matthias; Schreurs, Guido; Oncken, Onno

    2016-04-01

    Tectonic analog models frequently use silicone oils to simulate viscous flow in the lower crust and mantle. Precise knowledge of the model rheology is required to ensure dynamic similarity with the prototype. We assessed the rheological properties of various silicone oils using rotational and oscillatory tests. Resulting viscosities are in the range of 2 - 3 ×104 Pa s with a transition from Newtonian viscous to power-law, shear-thinning, around shear rates of 10‑2 to 10‑1 s‑1. Maxwell relaxation times are in the range of 10‑1 s. Comparing the rheological properties of chemically similar silicone oils from different laboratories shows that they differ from laboratory to laboratory. Furthermore, we characterized the temperature dependency of viscosity and aging effects. The samples show a reduction in zero-shear viscosity over time. This stabilizes at a certain value over several months. The dynamic moduli decrease as well, but other viscoelastic constants, such as the Maxwell relaxation time, are not affected by aging. We conclude that the aging is mainly controlled by the storage conditions and that a silicone shows no further aging when it has equilibrated with the ambient laboratory conditions. We consider all these differences as minor compared to the much larger uncertainties for estimating the lithosphere rheology. Nevertheless, it is important that the rheological properties of the experimental materials are monitored during an experimental series that spans over several weeks to months. Additionally, the viscoelastic properties may be scaled using dimensionless parameters (Deborah number) and show a dynamically similar change from Newtonian to power-law flow, like the natural prototype. In consequence, the viscoelasticity of these silicone oils is able to mimic the change in deformation mechanism from diffusion to dislocation creep.

  16. Rheological Parameters as Affected by Water Tension in Subtropical Soils

    Directory of Open Access Journals (Sweden)

    Patricia Pértile

    2016-01-01

    Full Text Available ABSTRACT Rheological parameters have been used to study the interaction between particles and the structural strength of soils subjected to mechanical stresses, in which soil composition and water content most strongly affect soil resistance to deformation. Our objective was to evaluate the effect of water tension on rheological parameters of soils with different mineralogical, physical, and chemical composition. Surface and subsurface horizons of four Oxisols, two Ultisols, one Alfisol, and one Vertisol were physically and chemically characterized; their rheological parameters were obtained from amplitude sweep tests under oscillatory shear on disturbed soil samples that were saturated and subjected to water tension of 1, 3, 6, and 10 kPa. In these samples, the rheological parameters linear viscoelastic deformation limit (γL, maximum shear stress (τmax, and integral z were determined. By simple regression analysis of the rheological parameters as a function of soil water tension, we observed increased mechanical strength with increasing water tension up to at least 6 kPa, primarily due to increased capillary forces in the soil. However, increased elasticity assessed by γL was not as expressive as the increase in structural rigidity assessed by τmax and integral z. Elastic deformation of the soil (γL increases with the increase in the number of bonds among particles, which depend on the clay, total carbon, expansive clay mineral, and cation contents; however, maximum shear resistance (τmax and structural stiffness (integral z mainly increase with clay, kaolinite, and oxide content by increasing the strength of interparticle bonds. A decrease in mechanical strength occurs for water tension of 10 kPa (the lowest water content evaluated in sandy horizons or in horizons with a high proportion of resistant microaggregates (pseudosand, when associated with low bulk density, due to fewer points of contact between soil particles and therefore

  17. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  18. Solid polymer electrolyte water electrolysis

    Science.gov (United States)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  19. An Introduction to Rheology with an Emphasis on Application to Dispersions

    Science.gov (United States)

    Motyka, Andrea L.

    1996-04-01

    Rheology is the study of the flow and deformation of matter. This interdisciplinary field encompasses many different types of materials and applications, both in academia and industry. One of the most challenging and practical areas in which technical strides have been made is dispersion chemistry. Rheology can be used to characterize not only flow properties of a material, but also structural features. This introduction is intended to help newcomers to the field to comprehend, relatively quickly, the practical nature of rheological information and to recognize the impact of the type of internal structure on rheological properties. This article describes dispersions well-suited to rheological study and the types of interparticle forces responsible for their internal structure. The fundamental terms and concepts of rheology are explained using practical examples to illustrate how rheological techniques distinguish dispersions in terms of both flow properties and structural features.

  20. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  1. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  2. Review Of Rheology Models For Hanford Waste Blending

    International Nuclear Information System (INIS)

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  3. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  4. Rheology of lava flows on Mercury: an experimental study

    Science.gov (United States)

    Sehlke, A.; Whittington, A. G.

    2014-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important rheological properties of lavas include viscosity (η) and yield strength (σy), strongly dependent on temperature (T), composition (X), crystal fraction (φc) and vesicularity (φb). The crystal fraction typically increases as temperature decreases, and also influences the residual liquid composition. The rheological behavior of multi-phase lava flows is expressed as different flow morphologies, for example basalt flows transition from smooth pahoehoe to blocky `a`a at higher viscosities and/or strain rates. We have previously quantified the rheological conditions of this transition for Hawaiian basalts, but lavas on Mercury are very different in composition and expected crystallization history. Here we determine experimentally the temperature and rheological conditions of the pahoehoe-`a`a transition for two likely Mercury lava compositions using concentric cylinder viscometry. We detect first crystals at 1302 ºC for an enstatite basalt and 1317 ºC for a basaltic komatiite composition representative of the northern volcanic plains (NVP). In both cases, we observe a transition from Newtonian to pseudo-plastic response at crystal fractions > 10 vol%. Between 30 to 40 vol%, a yield strength (τ0) around 26±6 and 110±6 Pa develops, classifying the two-phase suspensions as Herschel-Bulkley fluids. The measured increase in apparent viscosity (ηapp) ranges from 10 Pa s to 104 Pa s. This change in rheological properties occurs only in a temperature range up to 100 ºC below the liquidus. By analogy with the rheological conditions of the pahoehoe-`a`a transition for Hawaiian basalts, we can relate the data for Mercury to lava flow surface morphology as shown in Figure 1, where the onset of the transition threshold zone (TTZ) for the

  5. Quasi-anhydrous proton conducting di-ureasil hybrid electrolytes incorporating a protic ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • Quasi-anhydrous proton conducting sol-gel derived hybrid electrolytes were developed. • The electrolytes synthesized contain N-ethylimidazolium trifluoromethanesulfonate. • The proton conductivity of the materials suggests applications in fuel cells. - Abstract: A wide range of concentrations of the [EIm][TfO] proton ionic liquid (PIL) were for the first time incorporated into a poly(oxyethyelene) (POE)/siloxane hybrid host matrix (d-U(2000)) belonging to the di-ureasil family. The synthesis procedure adopted, involving the lowest amount of water possible, resulted in the formation of essentially anhydrous electrolytes at certain PIL levels. The optimized sample d-U(2000)/[EIm][TfO]50 (where 50 represents the ratio in % of the mass of [EIm][TfO] per mass of POE precursor) is amorphous, thermally stable up to 200 °C, displays good mechanical properties and exhibits an ionic conductivity of 3.2×10-4 and 4.3×10-3 S cm-1 at 20 and 186 °C, respectively. These features have persisted for more than three years. These new electrolytes appear quite attractive for applications in fuel cells operating under non-humidified conditions

  6. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  7. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  8. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  9. 丙烯腈-苯乙烯磺酸共聚物/层状双金属氢氧化物纳米复合质子传导聚合物电解质的制备与表征%Synthesis and characterization of proton-conducting polymer electrolytes based on acrylonitrile-styrene sulfonic acid copolymer/layered double hydroxides nanocomposites

    Institute of Scientific and Technical Information of China (English)

    王盎然; 包永忠; 翁志学; 黄志明

    2008-01-01

    Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgAl-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgAl-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10-3 S·m-1 was achieved for the polymer electrolyte.

  10. The buffer effect in neutral electrolyte supercapacitors

    Science.gov (United States)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  11. Study of Electrolyte for Electrochemical Decontamination

    International Nuclear Information System (INIS)

    Removal of metallic surface contamination by anodic dissolution in an electrochemical has pervaded in industrial use for many years. The removal of radioactive contaminations by this same technique has more recently attracted attention. Allen and Arrowsmith have reported extensive work with phosphoric acid as the electrolyte. Phosphoric acid is very efficient electrolyte for removing radioactive contaminations and does furnish an electro-polished surface that is quite smooth. But inadequate processes for the spent electrolyte caused unwanted waste. Such unwanted waste is also caused in other acidic electrolytes (for example, nitric acid or sulfuric acid). Most of the radioactivity is assumed to be localized in about ten micron thickness on the surface: therefore, a surface decontamination method should be useful as a decontamination technique. In particular, electrolytic decontamination is considered to be the most useful method because of a high volume reduction factor and easy application on metal waste of diverse shapes. In this paper, we consider that NaNO3 solution is suitable for electrochemical decontamination

  12. Acute Symptomatic Seizures Caused by Electrolyte Disturbances.

    Science.gov (United States)

    Nardone, Raffaele; Brigo, Francesco; Trinka, Eugen

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage. PMID:26754778

  13. RHEOLOGIC STUDIES ON CHEMICAL CROSS-LINKING KINETICS FOR LDPE

    Institute of Scientific and Technical Information of China (English)

    Hong-mei Yang; Zhi-gang Liu; Yong-zhu Yang; Qiang Zheng

    2012-01-01

    Crosslinking reaction of LDPE resin in the presence of dicumyl peroxide (DCP) was studied by isothermal rheological measurements at different temperatures and non-isothermal differential scanning calorimetry (DSC) technique with different heating rates.The kinetic parameters of crosslinking reaction were calculated by both rheological and DSC measurements.The results reveal that with the increase of DCP contents,the apparent activation energy,Ea,ranges from about 140 kJ/mol to 170 kJ/mol and the order of crosslinking reaction,(n),approaches unity.The influence of measurement frequency,ω,on crosslinking reaction was also investigated.It can be found that (n) does not change with the increase of ω,and Ea decreases slightly with the increase of ω.

  14. Rheological properties of sweet potato starch before and after denaturalization

    Institute of Scientific and Technical Information of China (English)

    肖华西; 林亲录; 夏新剑; 李丽辉; 林利忠; 吴卫国

    2008-01-01

    Based on the sweet potato starch,cationic starch,acetic starch and cationic-acetic compoundedly modified starch were made through chemical denaturalization.The above three kinds of static rheological parameter and dynamic rheological parameter were measured,respectively.The experimental result reveals that the thermal stability of starchy viscosity increases after chemical denaturalization.Under the condition of identical shearing rate,the shear stress of cationic-acetic ester compoundedly modified sweet potato starch paste is the largest among these kinds of sweet potato starch.This attributes to a phenomenon of shearing thinning.Furthermore,raw sweet potato starch has a larger gel intensity than that of modified starch.

  15. Alveoconsistograph evaluation of rheological properties of rye doughs

    Energy Technology Data Exchange (ETDEWEB)

    Callejo, M. J.; Bujeda, C.; Rodriguez, G.; Chaya, C.

    2009-07-01

    The aim of this work is to study the effect of rye flour on the rheological properties of doughs. Rye meals of two different extraction rate (65% and 85%) were blended in different proportions with wheat flours. The viscoelastic behaviour of the sample blends was determined by a Chopin alveograph. The effect of rye flour on dough rheology during mixing was determined by a Chopin consistograph. It was found that Chopin Consistograph methodology was not suitable for determining water absorption capacity in blends with rye. It has been confirmed that adjustment of dough hydration in baked products incorporating rye flour must be taken into account, depending not only on the wheat-to-rye ratio but also on the rye meals extraction rate. (Author) 35 refs.

  16. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy.

  17. Novel Rheology in a Structured Food Product—Marmite™

    Science.gov (United States)

    White, David E.; Moggridge, Geoff D.; Wilson, D. Ian

    2008-07-01

    The rheology of Marmite™, a yeast extract spread containing ˜70-75 wt% colloidal protein and NaCl solids in water, was studied using a number of shear rheology techniques. The material was found to be thixotropic in steady shear with no wall-slip. Creep data and the occurrence of jamming in controlled-stress mode further illustrate the presence of a structure and both solid and liquid flow regimes. Steady-state data acquired at low shear rates suggest a zero-shear plateau at shear stresses that are of the same order of magnitude as those found for the transition between flow regimes observed in the creep data. This transition has been the subject of recent discussion, e.g. [1],[2].

  18. Rheological Influence of Synthetic Zeolite on Cement Pastes

    Science.gov (United States)

    Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

    2008-07-01

    Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

  19. Investigation of rheological properties of TPS modified bitumen

    Institute of Scientific and Technical Information of China (English)

    刘全涛; 吴少鹏; 刘聪慧; 王金刚

    2008-01-01

    Rheological properties of the virgin bitumen and TPS modified bitumen binders with several percentages of TPS additives were studied.All TPS modified bituminous binders were prepared on a laboratory scale.Dynamic shear rheometer(DSR) strain sweep test was made to measure the linear viscoelasticity areas of various bitumen binders at -20-70 ℃,then temperature sweep test and frequency sweep test were made in the linear viscoelasticity areas.Complex modulus master curves were drawn to analyze and compare various bitumen binders’ rheological properties.Based on the test results,the ideal percentage of TPS additive was brought forward.The results show that TPS modified bitumen binders have more excellent properties at high,medium and low temperatures compared with original bitumen.The dosages of TPS additive are vital to their properties.

  20. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Directory of Open Access Journals (Sweden)

    Asad Ullah Khan

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  1. Estimate of Hanford Waste Rheology and Settling Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-10-26

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.

  2. Different Applications of Rheological Techniques in Studies of Physical Gels

    DEFF Research Database (Denmark)

    Hvidt, Søren

    . Rheological techniques are used extensively in studies of physical gels and gelation. In the lecture some of the common techniques used in studies of gels will be addressed. Small amplitude oscillatory measurements are the most common type of measurement performed, and such measurements allow a determination...... of the elastic storage modulus, G’, and loss modulus, G”, as a function of e.g. frequency, temperature, or time. Two other techniques, which can be very useful for studies of gels, are creep and relaxation measurements. These techniques, which allow determinations of the compliance and the relaxation modulus......, respectively, are particularly useful for investigating slow motions in gels and long-time properties. An example of how these different techniques have been used to investigate the rheological properties of sputum [4] will be discussed. The results demonstrate that sputum is a viscoelastic material...

  3. Polymer rheology simulations at the meso- and macroscopic scale

    CERN Document Server

    Sultan, Eric; Somfai, Ellak; Morozov, Alexander N; Van Saarloos, Wim

    2010-01-01

    We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasticity of polymer liquids by introducing a finite fraction of dumbbells in the standard DPD fluid. The stretching and tumbling statistics of these dumbbells is in agreement with what is known for isolated polymers in shear flows. At the same time, the model exhibits behaviour reminiscent of drag reduction in the turbulent state: as the polymer fraction increases, the onset of turbulence in plane Couette flow is pushed to higher Reynolds numbers. The method opens up the possibility to model nontrivial rheological conditions with ensuing coarse grained polymer statistics.

  4. Investigations of rheological properties of diclofenac sodium gel preparation

    Directory of Open Access Journals (Sweden)

    Firuza Maksudova

    2013-04-01

    Full Text Available It is well-known that the majority of non-steroidal anti-inflammatory drugs (NSAIDs are ulcerogenic. Gel or ointment preparations of NSAIDs are free from this side-effect, which is a prerequisite for the increase of aforementioned forms of NSAIDs. A major quality indicator of gels and ointments are rheological properties. Along with determining the quality of preparation, they influence manufacturing, expiration date and terms of storage. This article demonstrates the results of investigation of rheological indices of 3% gel preparation of diclofenac sodium such as plasticity, structural viscosity, and thixotropy. Obtained results confirm that the developed gel preparation has thixotropy, plasticity and is classified as a Bingham system.

  5. Scaling of plate-tectonic convection with pseudoplastic rheology

    CERN Document Server

    Korenaga, Jun

    2010-01-01

    The scaling of plate-tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat-flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate-tectonic and stagnant-lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tec...

  6. Rheological characterization of chicory root (Cichorium intybus L. inulin solution

    Directory of Open Access Journals (Sweden)

    J. T. C. L. Toneli

    2008-09-01

    Full Text Available Inulin is a polysaccharide frequently used as a sugar or fat replacer in the food industry, which offers the advantage of a functional effect similar to those of dietary fibers. By cooling or freezing an inulin concentrated solution, a more concentrated solution precipitates as a paste-like substance, while the liquid phase forms a diluted solution. In this work, the effect of storage temperature of inulin concentrated solution as well as temperature on the rheological behavior of liquid and precipitated phases obtained from a process of phase separation were evaluated. The precipitated phase of inulin was evaluated under two conditions: pure and formulated with encapsulating agents. It was observed that a reduction in storage temperature resulted in a higher inulin precipitation, which produced higher apparent viscosity values for the precipitated phase. All the samples analyzed had a shear-thinning rheological behavior.

  7. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298

  8. Rheology of Foam Near the Order-Disorder Phase Transition

    Science.gov (United States)

    Holt, R. Glynn; McDaniel, J. Gregory

    1999-01-01

    Foams are extremely important in a variety of industrial applications. Foams are widely used in fire-fighting applications, and are especially effective in fighting flammable liquid fires. In fact the Fire Suppression System aboard the Space Shuttle utilizes cylinders of Halon foam, which, when fired, force a rapidly expanding foam into the convoluted spaces behind instrument panels. Foams are critical in the process of enhanced oil recovery, due to their surface-active and highly viscous nature. They are also used as drilling fluids in underpressurized geologic formations. They are used as transport agents, and as trapping agents. They are also used as separation agents, where ore refinement is accomplished by froth flotation of the typically lighter and hydrophobic contaminants. The goal of the proposed investigation is the determination of the mechanical and rheological properties of foams, utilizing the microgravity environment to explore foam rheology for foams which cannot exist, or only exist for a short time, in 1g.

  9. Steady State Rheological Characteristic of Semisolid Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Isothermal compressive experiments at different temperatures, strain rates and holding time for semisolid AZ91D, Zr modified AZ91D and MB15 alloy with higher solid volume fraction were carried out by using Gleeble-15000 simulator and the true stress-strain curves were given directly. The relationship of apparent viscosity vs temperature, shear rate and holding time of the three kinds of semi-solid magnesium alloys, as well as isothermal steady state rheological characteristic and mechanical behavior were studied. The results show that the three magnesium alloys had the characteristic of shear-thinning. The rheological characteristic of the semi-solid MB15 is different from that of semi-solid AZ91D. The semi-solid MB15 has higher apparent viscosity and deformation resistance.

  10. The Rheology of the Earth in the Intermediate Time Range

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1970-06-01

    Full Text Available The evidence bearing upon the rheology of the " tectonically
    significant layers" of the Earth (" tectonosphere " in the intermediate
    time range (4 hours to 15000 years is analyzed. This evidence is
    based upon observations of rock-behavior in the laboratory, of seismic
    aftershock sequences, of Earth tides and of the decay of the Chandler wobble.
    It is shown that of the rheological models (Maxwell-material, Kelvin-material,
    and logarithmically creeping material advocated in the literature, only that
    based on logarithmic creep does not contradict any of the observational
    evidence available to date. In addition, a strength limit may be present.

  11. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    Science.gov (United States)

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. PMID:26397234

  12. PMMA-based Gel Polymer Electrolytes with Crosslinking Network

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhang; Y. P. Wu; H. Q. Wu; M. Sun

    2005-01-01

    @@ 1Introduction The lithium-ion battery has a good rate capability and low-temperature performance, but its safety is relatively low due to the possibility of leakage of liquid electrolyte. The use of a solid or gel type electrolyte can lower the probability of leakage liquid electrolyte, and the electrochemical performance of gel electrolyte doesn't decrease so markedly as the solid electrolyte. Now, new types of advanced lithium-ion battery with gel polymer electrolytes are under developing which can be used in the future.

  13. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  14. Hydrodynamics and rheology of active liquid crystals: a numerical investigation.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Yeomans, J M

    2007-03-16

    We report numerical studies of the hydrodynamics and rheology of an active liquid crystal. We confirm the existence of a transition between a passive and an active phase, with spontaneous flow in steady state. We explore how the velocity profile changes with activity, and we point out the difference in behavior for flow-aligning and tumbling materials. We find that an active material can thicken or thin under a flow, or even exhibit both behaviors as the forcing changes. PMID:17501095

  15. Rheology of ABS and binary of organo clay nanocomposites

    International Nuclear Information System (INIS)

    nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clays by melt intercalation on a co-rotating twin-screw extruder were prepared and characterized. It was studied the effects of screw torque and a binary mixture of organically modified montmorillonites on the intercalation/exfoliation of organoclays in the polymer matrix, characterized by X-ray diffraction morphological analyses and by capillary and parallel plates rheological analyses. (author)

  16. Rheological decoupling at the Moho and implication to Venusian tectonics

    OpenAIRE

    Shintaro Azuma; Ikuo Katayama; Tomoeki Nakakuki

    2014-01-01

    Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation experiments show that crustal plagioclase is much weaker than mantle olivine at conditions correspondin...

  17. Rheology and Reactivity of Cementitious Binders with Plasticizers

    OpenAIRE

    Vikan, Hedda Vestøl

    2005-01-01

    The rheological behaviour of cementitious pastes has been studied by various means. Six different cements have been studied in main parts of the work and all of them have been characterized according to the Rietveld method in order to determine the exact content of minerals. Easily soluble alkalis were measured by plasma-emission- spectroscopy of the fluid filtered from paste. Three types of plasticizers namely naphthalene sulfonate formaldehyde condensate (SNF), lignosulphonate and polyacryl...

  18. Rheological Behaviors of Fresh Cement Pastes with Polycarboxylate Superplasticizer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanrong; KONG Xiangming; GAO Liang; WANG Jiaxin

    2016-01-01

    The rheological behaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated. Inlfuential factors including superplasticizer to cement ratio (Sp/C), water to cement ratio (w/c), temperature, and time were discussed. Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0, 20 and 40 °C, respectively. Flowability and rheological tests on cement pastes were conducted to characterize the development of the rheological behavior of fresh cement pastes over time. The exprimental results indicate that the initial lfowability and lfowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer. Higher temperature usually leads to a sharper drop in initial lfowability and lfowability retention. However, for the cement paste with high Sp/C orw/c, the lfowability is slightly affected by temperature. Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned inlfuential factors at low Sp/C. In the case of high Sp/C, yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature. Moreover, two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c, temperature and time are developed on the basis of the existing models, in which experimental constants can be extracted from a database created by the rheological test results.

  19. Rheological properties for inelastic Maxwell mixtures under shear flow

    OpenAIRE

    Garzo, Vicente; Trizac, Emmanuel

    2009-01-01

    The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are {\\em exactly} evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of rest...

  20. Local rheology of suspensions and dry granular materials

    OpenAIRE

    de Cagny, Henri; Fall, Abdoulaye; Denn, Morton M.; BONN, Daniel

    2015-01-01

    The flow of dry and wet granular media is investigated in a Couette geometry using magnetic resonance imaging in order to test the applicability of the 'fluidity model' for nonlocality in these materials. Local volume fraction measurements show that the systems become heterogeneous during flow. We find that the nonlocal rheology of suspensions can be correlated using the fluidity model, but the length scale that emerges is not a material property and the model cannot be used for predictive pu...

  1. Rheological characterization of borate crosslinked fluids using oscillatory measurements

    OpenAIRE

    Edy, I Ketut Oscar

    2010-01-01

    Fracturing fluid has a very important role in hydraulic fracturing treatment. Viscosity of hydraulic fracturing fluid affects transporting, suspending, and deposition of proppant, as well as flow back after treatment. It should also be capable to develop the necessary fracture width to accept proppants or to allow deep acid penetration. Compatibility with formation fluids and material has to be taken into account (Guo et al. 2007). Rheology of the fracturing fluid is fundamenta...

  2. Rheological properties of rennet-induced skim milk gels.

    OpenAIRE

    Zoon, P

    1988-01-01

    The rheological properties of rennet-induced skim milk gels, which are viscoelastic materials, were studied under various conditions.Dynamic and stress relaxation experiments were performed at small deformations of the gel network, whereas constant stress (creep) experiments were performed at large deformations. Stress relaxation moduli calculated from the dynamic moduli agreed fairly well with stress relaxation moduli determined by means of stress relaxation experiments, implying that true m...

  3. Rheology of silicon carbide/vinyl ester nanocomposites

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2006-01-01

    Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham, power-law, Hersche...

  4. Rheological evaluation of simulated neutralized current acid waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100/sup 0/C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100/sup 0/C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100/sup 0/C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters.

  5. Studies on Rheological Properties of Konjac-tea Drink

    Institute of Scientific and Technical Information of China (English)

    PANG Jie; XU Qiu-lan; SUN Yu-jing; ZHANG Fu-sheng; TIAN Shi-ping

    2003-01-01

    Konjac black tea(sugar-free) and konjac glucomannan(KGM) solution were studied by using rheometer,refractometer etc.The relationship between their rheological properties and temperature or concentration was discussed in detail.The results showed that viscosity was significantly affected by temperature and concentration;and pH stability of Konjac-tea was related to the molecular property of KGM.

  6. Modeling of rheological properties for entangled polymer systems

    Science.gov (United States)

    Banerjee, Nilanjana

    The study of entangled polymer rheology both in the field of medicine and polymer processing has their major importance. Mechanical properties of biomolecules are studied in order to better understand cellular behavior. Similarly, industrial processing of polymers needs thorough understanding of rheology so as to improve process techniques. Work in this dissertation has been organized into three major sections. Firstly, numerical/analytical models are reviewed for describing rheological properties and mechanical behaviors of cytoskeleton. The cytoskeleton models are classified into categories according to the length scales of the phenomena of interest. The main principles and characteristics of each model are summarized and discussed by comparison with each other, thus providing a systematic understanding of biopolymer network modeling. Secondly, a new constitutive "toy" Mead-Banerjee-Park (MBP) model is developed for monodisperse entangled polymer systems, by introducing the idea of a configuration dependent friction coefficient (CDFC) and entanglement dynamics (ED) into the MLD "toy" model. The model is tested against experimental data in steady and transient extensional and shear flows. The model simultaneously captures the monotonic thinning of the extensional flow curve of polystyrene (PS) melts and the extension hardening found in PS solutions. Thirdly, the monodisperse MBP model is accordingly modified into polydisperse MBP "toy" constitutive model to predict the nonlinear viscoelastic material properties of model polydisperse systems. The polydisperse MBP toy model accurately predicts the material properties in the forward direction for transient uniaxial extension and transient shear flow.

  7. A disc-type magneto-rheologic fluid damper

    Institute of Scientific and Technical Information of China (English)

    祝长生

    2003-01-01

    A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.

  8. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  9. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Burak Felekoğlu

    2014-12-01

    The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. Three SCMC mixtures with the same water/cement (W/C) ratios (0.44 by weight) and cement/limestone powder (1/1 by weight) with different High Range Water Reducing Admixtures (HRWRA) contents (1, 1.2 and 1.4% by weight of cement) have been tested. For comparison purpose, three conventional cement paste mixtures with varying W/C ratios (0.30, 0.325 and 0.35) were also prepared. Flow parameters such as yield value and plastic viscosity have been measured along with shear thickening or thinning behaviour. Furthermore, thixotropic behaviour of the various mixtures have been measured using hysteresis areas. Finally, advanced rheological properties of micro-concretes and cement pastes have been compared and discussed. While cement pastes investigated in this study possessed high yield values (34–217 Pa) and very low viscosities (5–19 Pa.s), comparatively high viscosities (17–45 Pa.s) and low yield values (0–47 Pa) have been obtained from SCMCs. The high viscosity of micro-concretes improves the solid holding capacity of this composite. According to flow curve analysis, cement paste mixtures and SCMCs exhibited shear thinning and shear thickening characteristics, respectively.

  10. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF COMMERCIAL DAIRY FERMENTED BEVERAGES

    Directory of Open Access Journals (Sweden)

    KAMILLA SOARES MENDONÇA

    2015-12-01

    Full Text Available The Technical Regulation on Identity and Quality of Whey-based Drinks establish few parameters to dairy beverages, which may impair standardized product providing to the consumer. The ingathering of the physicochemical characteristics provides information that allow the standardization of the product and provide safety to the consumer, whereas the rheological characterization in important for the processing. Samples of five commercial brands of strawberry flavored dairy beverages, with ten to fourteen days of manufacture, from three different batches were analyzed in triplicate in order to study the percentage of protein, fat, pH, titratable acidity, total dry extract, fixed mineral residue and lactose. It was performed a colorimetric determination and verification of the presence of starch .The rheological tests were carried out in a rotational rheometer and the data was adjusted by Herschel-Bulkley’s model. The statistical analysis was executed by an analysis of variance and the Tukey’s test with 5% significance. The analysis showed that the percentages of lipids of three brands were below the required by legislation. Furthermore, the presence of starch in the composition was detected for all analyzed beverages. Both for the physicochemical and rheological parameters the brands of dairy beverage examined differed between themselves in several parameters. These results indicated the need to establish well-defined identity and quality standards aiming at product quality control and consumer safety improvement.

  11. Mechanically modified xanthan gum: Rheology and polydispersity aspects.

    Science.gov (United States)

    Eren, Necla Mine; Santos, Paulo H S; Campanella, Osvaldo

    2015-12-10

    Xanthan gum solutions were treated with high-pressure homogenization (HPH) in order to provide alternative treatments to enzymatic and chemical modification of this carbohydrate. Rheological properties of the treated and control samples were investigated in detail to gain an understanding of functional consequences of physical modification. The molecular structural properties were investigated via Size exclusion chromatography (SEC) coupled with Multi-angle laser light scattering (MALLS) and Circular dichroism (CD). Structured network of xanthan gum solutions was lost gradually depending on the severity of the HPH treatment as evidenced by the observed changes in the viscosity and viscoelasticity of the treated solutions. Reduction in molecular weight and a significant increase in polydispersity of the polymer were the expected causes of these rheological changes. Observed increase in hydrodynamic volume upon HPH treatment was not surprising and attributed to the loss of structured networks. Changes in the rheological and structural characteristics of biopolymer were irreversible and significant recovery was not detected over a period of 11 weeks. PMID:26428149

  12. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  13. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  14. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  15. The effect of temperature on rheological properties of endodontic sealers

    Directory of Open Access Journals (Sweden)

    Roshni U Rai

    2016-01-01

    Full Text Available Aim: The purpose of this study was to investigate temperature-dependent rheological properties of three endodontic sealers MTA Fillapex (Angelus, Brazil, AH Plus (Dentsply, Germany, and EndoREZ (Ultradent, USA. Materials and Methods: Five samples of each group of endodontic sealers (n = 30 were freshly mixed and placed on the plate of a rheometer (MCR 301, AntonPaar, Physica and examined at 25° C and 37° C temperature, respectively. Rheological properties of the sealers were calculated according to the loss modulus (G", storage modulus (G′, loss factor (Tan δ, and complex viscosity (çFNx01 using dynamic oscillatory shear tests. Results: Statistical analysis (Wilcoxon signed-rank test demonstrated that MTA Fillapex exhibited higher loss modulus (G" > G′ and a crossover region. AH Plus and EndoREZ had a higher storage modulus (G′ > G" at both temperatures. Loss factor (Tan δ of MTA Fillapex was the highest compared to AH Plus, followed by EndoREZ. With a temperature change from 25°C to 37°C, MTA Fillapex exhibited a decrease while AH Plus exhibited an increase and, EndoREZ exhibited the least change, in complex viscosity (çFNx01 . Conclusions: EndoREZ exhibited better rheological properties compared to the other two test sealers.

  16. The Rheology and Processing of Renewable Resource Polymers

    Science.gov (United States)

    Conrad, Jason D.; Harrison, Graham M.

    2008-07-01

    Bio-based polymers offer an alternative to conventional fossil fuel-based materials, in particular for commodity applications such as single-use products. In this work, we report on the rheology and processing of two bio-based polymers, namely poly-hydroxyalkanoate (PHA) copolymers and poly-lactic acid (PLA), and their blends. These materials are derived from renewable resources, and can degrade under the appropriate conditions. The rheology is investigated in shear, elongation, and transient modes. Of particular importance is the degradation of these materials at typical processing conditions, and the impact of polymer architecture on the extensional properties. Using results from these rheological investigations, appropriate thermal and flow conditions are employed in a DSM Xplore microcompounder, with the cast film attachment, to produce films of PHA copolymers blended with PLA. The resultant films are characterized, as a function of both material composition and processing history, using DSC, WAXD, tensile testing, and SEM, to investigate the effect of varying PHA content on the final properties.

  17. A disc-type magneto-rheologic fluid damper

    Institute of Scientific and Technical Information of China (English)

    祝长生

    2003-01-01

    A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper, which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magnetic field of the disc-type MR fluid damper is analysed by the finite element method; the controllability of the disc-type MR fluid damper on the dynamic behaviour of a rotor system; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.

  18. Rheological properties of asphalt mixtures containing various fibers

    Institute of Scientific and Technical Information of China (English)

    叶群山; 吴少鹏; 陈筝; 刘至飞

    2008-01-01

    Rheological characteristics of fiber-modified asphalt mixture were investigated.Cellulous fiber,polyester fiber and mineral fiber were used as additives for asphalt mixture,and the dosages were 0.3%,0.3%,0.4%,respectively.Dynamic modulus test using superpave simple performance tester(SPT) was adopted to study the dynamic modulus and phase angle for the control mixture and fiber-modified ones at various temperatures and frequencies.Test results show that the rheological properties can be improved significantly by the addition of various fibers.The dynamic modulus increases with the increase of frequency,and the phase angle decreases with the increase of frequency.When various fibers are used,the dynamic modulus increases and phase angle decreases at each frequency.This indicates that the stiffness and the elastic portion of fiber-modified asphalt mixtures can be enhanced when various fibers are used,which results in the change of viscoelastic properties of mixtures.The creep test results show that the total strain and the permanent strain of asphalt mixtures during load-unload cycle can be significantly reduced,which results in the improvement of resistance to permanent deformation for asphalt mixtures containing various fiber additives.The Burgers model can be employed effectively to illustrate the rheological properties of fiber modified asphalt mixtures.

  19. Rheology of Anhydrite during deformation in nature: a first look

    Science.gov (United States)

    Markus Schmalholz, Stefan; Urai, Janos

    2014-05-01

    The rheology of Anhydrite under conditions of natural deformation is largely unconstrained, although it has many important effects in salt tectonics and in long-tem predictions of engineering structures in salt. A review of laboratory triaxial experiments at low temperature indicate brittle, pressure dependent behavior. At temperatures above 400 C experimental deformation shows power law creep, with contributions of dislocation creep and diffusional creep. In naturally deformed Anhydrite rocks microstructures indicate recrystallization, solution - precipitation processes and pressure solution producing stylolites. Analysis of Anhydrite layers embedded in rock salt shows complex behavior. Bedding-parallel stretching leads to boudinage, with variable amounts of pinch-and-swell before rupture and precipitation of Halite in the boudin-neck. Bedding-parallel shortening of single layers embedded in salt leads to folding of the Anhydrite layers, with the fold shapes suggesting an effective viscosity contrast between 10 and 100. This is also in agreement with the absence of extension fracture in the outer arcs of the folds. Although much remains to be done in accurately constraining Anhydrite rheology in nature, and for example its dependence on pore fluid pressure and chemistry, these results provide a first order estimate of Anhydrite rheology in nature, to be used in numerical simulations. A challenging task is to find a unified flow law which describes power law creep and fracturing dependent on effective stress.

  20. High-Energy-Density Electrolytic Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  1. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  2. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  3. Surface Morphology and Microstructure of Zinc Deposit From Imidazole with Zinc Chloride Low Temperature Molten Salt Electrolyte in The Presence of Aluminium Chloride

    Directory of Open Access Journals (Sweden)

    Shanmugasigamani Srinivasan, M. Selvam

    2013-07-01

    Full Text Available Low temperature molten salts have variety of applications in organic synthesis, catalytic processing, batteries and electrode position due to their air and water stability. They have wide potential window for their applications in voltage and temperature and hence there is a possibility to deposit metals which could not be deposited from aqueous electrolytes. Our aim and scope of our research was to deposit zinc from low temperature molten salt electrolyte (LTMS containing zinc salt in the presence of aluminium chloride at different current densities and to qualify the nature of deposits. We could identify the effect of current density on the deposit at low temperature molten salt electrolyte by analysing the nature of deposits using different instrumental techniques. Compact, adherent, dense fine grained deposits of zinc with average grain size of 40-150 nm could be obtained from low temperature molten salt electrolyte. (LTMS

  4. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  5. Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries

    International Nuclear Information System (INIS)

    This study reports on the thorough investigation into the interaction between nanosized carbon-coated Li2MnSiO4 and various electrolytes, which has revealed significant changes of the active material after soaking in the electrolyte. Apart from the standard electrolyte salt lithium hexafluorophosphate (LiPF6), lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and the F-free salt lithium bis-oxalatoborate (LiBOB) were used for soaking tests and compared in terms of corrosion power with Li2MnSiO4. Carbon-coated Li2MnSiO4 samples were obtained by solid-state synthesis and stored in contact with the electrolyte. The aged samples were fully characterized by means of several analytical techniques (XRD, XPS, SEM, ATR-FTIR). The results show that Li2MnSiO4 decomposes in LiPF6-based electrolyte at high temperatures, due to the formation of HF, which causes corrosion of the material and dissolution of Mn. No degradation was observed after soaking in the LiBOB-based electrolyte. The corrosion of the active material in standard electrolyte system, together with irreversible structural changes upon Li electrochemical extraction, are considered as the main reasons for the poor capacity retention upon cycling of the Li2MnSiO4-based cathode

  6. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  7. Small domain-size multiblock copolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  8. Sodium ion batteries and gel electrolytes

    OpenAIRE

    Gottwald, T.

    2015-01-01

    This work deals with the elecdrode materials and gel electrolytes suitable for sodium-ion batteries (Na-ion batteries). In the field of electrode materials were investigated carbon materials based on CR5995 with added SUPERp or NanoTubes for better conduction end LTO material boath working on the principle of insertion of sodium ion in to the electrode material structure. Another part witch this work deals are gel electrolytes for using in this Na-ion batteries, focused on the preparation and...

  9. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  10. RHEOLOGICAL PROPERTIES OF VISCOUS DEBRIS FLOWS IN THE JIANGJIA RAVINE, YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Yuyi WANG; Chyandeng JAN; Changzhi LI; Wenliang HAN

    2001-01-01

    The rheological properties of natural debris flow are studied using experimental data obtained from a rheometer built by the authors. The present study is aimed to address the rheological properties of viscous debris flow at low shear rate. It is found that overstress effect and shear-rate-thinning phenomenon characterize the viscous debris flow in the Jiangjia Ravine, China. Results obtained from this study are believed to lay the foundation for further study on the theory of debris flow rheology.

  11. The influence of thickeners on rheological and sensory properties of cosmetic lotions

    OpenAIRE

    Morávková, T. (Tereza); Filip, P.

    2014-01-01

    Two empirical models were proposed for a description of rheological characteristics of four eye creams, differing only in the thickener component that preserves the chemical structure of these cosmetic lotions. Coupling between selected sensory variables (such as softness when removing cream from the pot and the “spreadability” on the back of the hand) and rheological parameters was carried out for both models. A close coupling (and hence mutual substitution) between the rheological and senso...

  12. The impact of temperature on the rheological behaviour of anaerobic digested sludge

    OpenAIRE

    Baudez, J.C.; Slatter, P.; Eshtiaghi, N.

    2013-01-01

    The rheological properties of municipal anaerobic digested sludge rheology are temperature dependent. In this paper, we show that both solid and liquid characteristics decrease with temperature. We also show that the yield stress and the high shear (Bingham) viscosity are the two key parameters determining the rheological behaviour. By normalising the shear stress with the yield stress and the shear rate with the yield stress divided by the Bingham viscosity, a master curve was obtained, inde...

  13. UNDERSTANDING THE EFFECTS OF SURFACTANT ADDITION ON RHEOLOGY USING LASER SCANNING CONFOCAL MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    White, T

    2007-05-08

    The effectiveness of three dispersants to modify rheology was examined using rheology measurements and laser scanning confocal microscopy (LSCM) in simulated waste solutions. All of the dispersants lowered the yield stress of the slurries below the baseline samples. The rheology curves were fitted reasonably to a Bingham Plastic model. The three-dimensional LSCM images of simulants showed distinct aggregates were greatly reduced after the addition of dispersants leading to a lowering of the yield stress of the simulated waste slurry solutions.

  14. Rheological and Tribological Properties of Complex Biopolymer Solutions

    Science.gov (United States)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have

  15. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.;

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events i...

  16. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  17. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors

    Science.gov (United States)

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Wang, Di; Hahn, Horst; Dasgupta, Subho

    2016-10-01

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm2 V-1 s-1.

  18. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    OpenAIRE

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W.

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electro...

  19. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...

  20. RELATIONSHIP BETWEEN MORPHOLOGY, RHEOLOGY AND GLUCOAMYLASE PRODUCTION BY Aspergillus awamori IN SUBMERGED CULTURES

    Directory of Open Access Journals (Sweden)

    C.R.D. Pamboukian

    1998-09-01

    Full Text Available The influence of inoculum preparation on Aspergillus awamori morphology, broth rheology and glucoamylase synthesis in submerged cultures was investigated. A series of runs were performed in fermenters, using initial total reducing sugar concentrations of 20 g/L and 80 g/L. The inocula were prepared in a rotary shaker, at 35oC and 200 rev/min, using a spore concentration of 9.2 x 105 spores/mL and varying both cultivation time and medium pH during the spore germination step. Three types of inocula were used: inoculum cultivated for 24 hours at an initial pH of 5.0, and inocula cultivated for 7 hours at both a pH of 2.5 and a pH of 5.5. Regarding glucoamylase production, the inoculum which provided the best results was shaker cultivated for 7 hours at a pH of 2.5. This inoculum produced glucoamylase of about 1,221 U/L in the fermenter, which was between 20% and 30% higher than those obtained using other inocula.

  1. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.

    Science.gov (United States)

    Jabeen, Suraya; Maswal, Masrat; Chat, Oyais Ahmad; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-03-01

    Synthesis and structural characterization of hydrogels composed of sodium alginate, polyethylene oxide and acrylic acid with cyclodextrin as the hydrocolloid prepared at different pH values is presented. The hydrogels synthesized show significant variations in rheological properties, drug encapsulation capability and release kinetics. The hydrogels prepared at lower pH (pH 1) are more elastic, have high tensile strength and remain almost unaffected by varying temperature or frequency. Further, their Ibuprofen encapsulation capacity is low and releases it slowly. The hydrogel prepared at neutral pH (pH 7) is viscoelastic, thermo-reversible and also exhibits sol-gel transition on applying frequency and changing temperature. It shows highest Ibuprofen encapsulation capacity and also optimum drug release kinetics. The hydrogel prepared at higher pH (pH 12) is more viscous, has low tensile strength, is unstable to change in temperature and has fast drug release rate. The study highlights the pH responsiveness of three composite alginate hydrogels prepared under different conditions to be employed in drug delivery applications. PMID:26717508

  2. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relat

  3. Energetics of the Semiconductor-Electrolyte Interface.

    Science.gov (United States)

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  4. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  5. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...

  6. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) o

  7. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  8. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    S Sampath; N A Choudhury; A K Shukla

    2009-09-01

    Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported. Varying HClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g-1, a phase angle value of 78°, and a maximum charge-discharge coulombic efficiency of 88%.

  9. Composite Solid Electrolyte for Li Battery Applications

    Science.gov (United States)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  10. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  11. An element with an organic electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Eda, N.; Indzima, K.

    1983-03-30

    Anodes of a light metal are used in the element, along with an electrolyte on the basis of an organic solvent into which a carionogenic polymer, which contains cations in the lateral chains, is added. Polyacryltrimethylperchlorate of ammonium, tetramethylperchlorate of ammonium and other compounds serve as the additive.

  12. Battery electrolytes. Citations from the NTIS data base

    Science.gov (United States)

    Young, C. G.

    1980-05-01

    Many types of solid, liquid and gaseous battery electrolytes are described and analyzed in the cited abstracts. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery life, efficiency, and maintenance characteristics are also delineated. Included are 196 citations.

  13. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.;

    2006-01-01

    The contributions of the individual components of the cell (anode, cathode, and electrolyte) to the cell resistance were determined experimentally, directly from impedance spectra obtained from a full cell. It was an anode supported thin electrolyte cell, consisting of a YSZ electrolyte, a Ni/YSZ...

  14. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...... for electrolyte conductivity from combinations of pressure, current density and electrolyte width among others....

  15. Isotope separation by electrolytic amalgamation of lithium: preliminary studies

    International Nuclear Information System (INIS)

    Preliminary experiments on electrolytic amalgamation of lithium aqueous solutions were performed in order to obtain data for the design of an electrolytic cell with a moving mercury cathode. Among the two electrolytes analyzed Li OH gave best yield than Li Cl. Current concentration, current density and lithium amalgam concentration were determined. (author)

  16. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  17. Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions.

    Science.gov (United States)

    Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann

    2014-04-01

    The inter-particle forces play a fundamental role for the flow properties of a particle suspension in response to shear stresses. In concrete applications, cement admixtures based on comb-polymers like polycarboxylate-ether-based superplasticizer (PCE) are used to control the rheological behavior of the fresh mixtures, as it is negatively impacted by certain early hydration products, like the mineral ettringite. In this work, dispersion forces due to PCE were measured directly at the surface of ettringite crystals in different electrolyte solutions by the means of atomic force microscopy (AFM) applying spherical and sharp silicon dioxide tips. Results show an effective repulsion between ettringite surface and AFM tips for solutions above the IEP of ettringite (pH∼12) and significant attraction in solution at lower pH. The addition of polyelectrolytes in solution provides dispersion forces exclusively between the sharp tips (radius ≈ 10 nm) and the ettringite surface, whereas the polymer layer at the ettringite surface results to be unable to disperse large colloidal probes (radius ≈ 10 μm). A simple modeling of the inter-particle forces explains that, for large particles, the steric hindrance of the studied PCE molecules is not high enough to compensate for the Van der Waals and the attractive electrostatic contributions. Therefore, in cement suspensions the impact of ettringite on rheology is probably not only related to the particle charge, but also related to the involved particle sizes. PMID:24491324

  18. Plasma electrolytic oxidation of Titanium Aluminides

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  19. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    Science.gov (United States)

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  20. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder.

    Science.gov (United States)

    Wu, Peng; Dhital, Sushil; Williams, Barbara A; Chen, Xiao Dong; Gidley, Michael J

    2016-09-01

    Hydrated polysaccharides and their assemblies are known to modulate gastric emptying rate due to their capacity to change the structural and rheological properties of gastric contents (digesta). In the present study, we investigated the rheological and microstructural properties of gastric digesta from pigs fed with diets incorporating mango powder or pectin, and compared results with those from hydrated diets of the same water content, in order to investigate the origins for rheological changes in the pig stomach. All of the hydrated diets and gastric digesta were particle-dominated suspensions, generally showing weak gel or more solid-like behavior with the storage modulus (G') always greater than loss modulus (G") under small deformation oscillatory measurements, and with small deformation viscosity greater than steady shear viscosity (i.e. non-Cox-Merz superposition). Although significant rheological differences were observed between the hydrated diets, rheological parameters for gastric digesta were similar for all diets, indicative of a rheological homeostasis in the pig stomach. Whilst the addition of gastric mucin (20mg/mL) to control and mango diets altered the rheology to match the gastric digesta rheology, the effect of mucin on the pectin-containing diet was negligible. The viscous effect of pectin also hindered the action of alpha amylase as observed from relatively less damaged starch granules in pectin digesta compared to mango and control digesta. Based on the experimental findings that the rheology of gastric digesta differs from hydrated diets of the same water content, the current study revealed composition-dependent complex behavior of gastric digesta in vivo, suggesting that the rheology of food products or ingredients may not necessarily reflect the rheological effect when ingested. PMID:27185134

  1. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    OpenAIRE

    Dipak Dutta; N. Nagapradeep; Haijin Zhu; Maria Forsyth; Sandeep Verma; Aninda J. Bhattacharyya

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high l...

  2. Acid-doped Polybenzimidazole Membranes as Electrolyte for Fuel Cells Operating Above 100°C

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; He, Ronhuan;

    2003-01-01

    to high operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests. A high temperature PEMFC system operational at up to 200°C is demonstrated with no gas......The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development in the field is alternative polymer electrolytes for operation above 100°C. As one of the successful approaches...

  3. Integrated System for Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul; Ishikawa, T.;

    2000-01-01

    A thermodynamic insights based algorithm for integrated design and analysis of crystallization processes with electrolyte systems is presented. This algorithm consists of a thermodynamic calculation part, a process design/analysis part and a process simulation part, which are integrated through...... a calculation engine. The main feature of the algorithm is the use of thermodynamic insights, not only to identify and generate the feasible process alternatives, but also to obtain good initial estimates for the process simulation part, and for visualization of process synthesis/design. The main steps...... of the integrated system are illustrated through two case studies where one represents an industrial crystallization process....

  4. Comportamento reológico de suspensões aquosas de cromito de lantânio Rheological behaviour of lanthanum chromite aqueous suspension

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-06-01

    material, have received scarce attention. This paper deals with the rheology and casting behaviour of lanthanum chromite based materials to produce interconnectors for SOFCs. A powder with the composition La0.80Sr0.20Cr0.92Co0.08O3 was obtained by combustion synthesis. Aqueous suspensions were prepared to solids loading ranging from 8 to 17.5 vol.%, using ammonium polyacrylate (PAA as polyelectrolyte/dispersant and tetramethylammonium hydroxide (TMAH to assure basic pH. The influence of the additives concentrations and suspension ball milling time were studied. Suspensions prepared with 24 h ball milling, with 3 wt.% and 1 wt.%, of PAA and TMAH respectively, yielded the best conditions for successful slip casting, leading to relatively dense sintered materials.

  5. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  6. Rheological and thermal properties of polylactide/silicate nanocomposites films.

    Science.gov (United States)

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal

    2010-03-01

    Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. PMID:20492249

  7. STRUCTURING & RHEOLOGY OF MOLTEN POLYMER/CLAY NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yuan-ze Xu; Yi-bin Xu

    2005-01-01

    The evolution and the origin of "solid-like state" in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the "solid-like" state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.

  8. A rheological and microscopical characterization of biocompatible ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J., E-mail: johannes.nowak@tu-dresden.de [Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01069 Germany (Germany); Wolf, D. [Triebenberg Laboratory, Technische Universität Dresden, 01328 Germany (Germany); Odenbach, S. [Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01069 Germany (Germany)

    2014-03-15

    There is an increasing interest in suspensions of magnetic nanoparticles in the biomedical area. Those ferrofluids are e.g. used for magnetic resonance imaging and emerging research focuses on employing the fluids for magnetic drug targeting or magnetic particle heating as a potential treatment for cancer. For these applications the knowledge of the suspensions' thermophysical properties is of major interest to guarantee a safe and effective application. Therefore the flow behavior cannot be neglected as it might significantly influence the execution of the aforementioned applications. In this experimental study two biocompatible ferrofluids were investigated. Rheological measurements were carried out using rotational rheometry. To allow an interpretation of the fluids' behavior the microscopic make-up was investigated using dynamic light scattering and transmission electron microscopy. Measurements of diluted ferrofluids were carried out as a first step to simulate the rheological behavior reflecting the concentration of magnetic nanoparticles found in blood flow for most biomedical applications of such fluids. The detected strong effects show the potential to significantly influence application and handling of the biocompatible ferrofluids in the medical area and should therefore be taken into account for further research as well as for the application of such fluids. - Highlights: • The rheology of biocompatible multicore ferrofluids is influenced by magnetic fields. • The flow curves can be described by the Herschel–Bulkley model. • A connection between the magnetoviscous effect and the particle size is found. • The strong magnetoviscous effect exists even if the fluids are diluted. • The connection between the effect and the dilution is mathematically described.

  9. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    Science.gov (United States)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  10. Tunable optical properties of colloidal quantum dots in electrolytic environments.

    Science.gov (United States)

    Ramadurai, D; Kohanpour, B; Alexson, D; Shi, P; Sethuraman, A; Li, Y; Saini, V; Dutta, M; Stroscio, M A

    2004-12-01

    The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.

  11. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  12. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  13. Cathodic processes in the electrochemical synthesis of niobium borides in chloride-fluoride melts

    International Nuclear Information System (INIS)

    Cathodic processes in the electrochemical synthesis of niobium borides are studied. The possibility of electrochemical synthesis of the niobium boride coatings in the kinetic regime is indicated. The electrolyte composition is selected the process parameters which make it possible to obtain both crystal and roentgenoamorphous niobium boride coatings 20-30 μm thick are determined

  14. RHEOLOGICAL PROPERTIES OF RAPESEED OIL AND HYDRAULIC OIL

    OpenAIRE

    IOANA STANCIU

    2012-01-01

    This article presents the rheological behavior of refined rapeseed oil and hydraulic oil. Apparent viscosity of both oils was determined at temperatures between 40 and 90°C and shear rates ranging from 3.3 to 120 s-1. The aim of the study was to find a polynomial dependence of oil viscosity on temperature and shear rate. The modified Andrade equation was used. Constants A, B, C and correlation coefficient were determined by correlating a characteristic polynomial equation of each curve.

  15. RHEOLOGICAL PROPERTIES OF RAPESEED OIL AND HYDRAULIC OIL

    Directory of Open Access Journals (Sweden)

    IOANA STANCIU

    2012-06-01

    Full Text Available This article presents the rheological behavior of refined rapeseed oil and hydraulic oil. Apparent viscosity of both oils was determined at temperatures between 40 and 90°C and shear rates ranging from 3.3 to 120 s-1. The aim of the study was to find a polynomial dependence of oil viscosity on temperature and shear rate. The modified Andrade equation was used. Constants A, B, C and correlation coefficient were determined by correlating a characteristic polynomial equation of each curve.

  16. Effect of polycarboxylate admixture structure on cement paste rheology

    OpenAIRE

    Aranda, M. A. G.; De la Torre, A.G.; Puertas, F.; Palacios, M.; Alonso, M M

    2007-01-01

    The purpose of the present study was to analyze the effect of the structural differences in four polycarboxylate and polyether admixtures on the rheological properties of cement pastes with different chemical and mineralogical compositions and different active additions (CEM I 42.5 R, CEM I 52.5 R, CEM I 52.5 N/SR, CEM II/AV 42.5R, CEM II/B-L 32.5 R, CEM III/B 32.5R, BL I 52.5R and CAC – European standard EN 197-1:2000). The results of the minislump test concurred with the variations ob...

  17. Preparation of Magnetorheological Fluid and Study on Its Rheological Properties

    Science.gov (United States)

    Kolekar, Shreedhar

    2014-04-01

    The present paper focuses on preparation and process of the magnetorheological (MR) fluid whose carrier fluid is silicone-based oil and its additive is the commercial grease with different concentration of iron particles. General properties of MR fluid are discussed and rheological properties like shear rate, shear stress, viscosity of MR fluid can be found by using cone-and-plate sensor system-type rheometer. The result shows that shear stress as a function of magnetic flux density and viscosity does not strictly scale with iron loading.

  18. Rheology-based facial animation realistic face model

    Institute of Scientific and Technical Information of China (English)

    ZENG Dan; PEI Li

    2009-01-01

    This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed face can be modeled as viscoelastic bodies with the Hooke bodies and Newton bodies connected in a composite series-parallel manner. Then, the stress-strain relationship is derived, and the constitutive equations established. Using these constitutive equations, the face model can be animated with the force generated by muscles. Experimental results show that this method can realistically simulate the mechanical properties and motion characteristics of human face, and performance of this method is satisfactory.

  19. Effect of aging on rheology of ball clay suspensions

    Science.gov (United States)

    Tonthai, Tienchai

    2002-01-01

    The behaviors of clay-water suspensions such as deflocculation or rheological properties are not constant but change with time. Aging has been recognized for changing the rheological properties of clay suspensions. This work provided information about the effects of the moisture contents in ball clay lumps and clay air exposure time on their processability. Dynamic oscillatory rheometry using a vane-in-cup geometry was used to characterize the rheological behavior of ball clay suspensions in terms of elastic modulus, viscous modulus and yield stress as a function of aging time. A light scattering size analyzer was used to examine the agglomerate size distribution of ball clay suspensions which affected the rheological behavior. Soluble ion release (both cations and anions) in the filtrate of suspensions was measured by ion chromatography. Low and high lignitic ball clay suspensions were dispersed with sodium silicate (Na2SiO3) or sodium polyacrylate at specific gravity 1.3 and 1.6 in two dispersion states: fully deflocculated (minimum viscosity) and under deflocculated. Suspensions prepared using freshly mined ball clays required more dispersant than suspensions prepared using dry ball clays to achieve minimum viscosity due to a difference in agglomerate size distribution. The agglomerate size distribution of suspensions prepared using dry clays was broader than that of suspensions prepared using freshly mined clays. In suspensions prepared using freshly mined clays, there were many uniformly small agglomerates having loose water inside, while in suspensions prepared using dry clays, the capillary effect and bonding between clay particles resulting from drying broke clay aggregates apart into agglomerate structures composed of a few to many clay particles. For suspensions prepared using dry clays after one day suspension aging, the elastic modulus and yield stress decreased due to the change in agglomerate size distribution of suspensions but increased for

  20. Rheology enhancement for remediated PX6 melter feed

    International Nuclear Information System (INIS)

    This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed