WorldWideScience

Sample records for electrodeposited cd-co alloy

  1. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... are written in brackets). Temperature and especially pH influenced the cathodic efficiency of the electrodeposition processes for Ni-W and Ni-P. Mass balance problems of the development alloy processes are identified.Heat treatment for one hour at approx. 350°C, 400°C and 600°C of electrodeposited Ni-B, Ni......-P and Ni-W, respectively, resulted in hardness values of approx. 1000 HV0.1 in the case of Ni-P(6), approx. 1100 HV0.1 in the case of Ni-W(40-53) and approx. 1300 HV0.1 in the case of Ni-B(5). Cracks, which emerged during electrodeposition and heat treatment, were observed on Ni-W and Ni-B.The corrosion...

  2. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  3. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  5. The Electrodeposition of Rhenium and Its Alloys

    Science.gov (United States)

    2015-09-18

    did not have benefit. A combination of vanillin, sodium lauryl sulfate, and gelatin , and equal concentrations of Ni2+ and ReO4 - yielded a coating...substrate, thus facilitating good bonding between the coating and substrate. Similar phenomenon would occur between a silver substrate and...electrodeposited metal coating. Historically, this is why most successful electroplating process used copper, brass (copper-zinc alloy), and silver as substrates

  6. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  7. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  8. Textural and morphological studies on zinc-iron alloy electrodeposits

    Indian Academy of Sciences (India)

    Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the ...

  9. Zinc-nickel alloy electrodeposits for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, G.; Pushpavanam, Malathy; Pushpavanam, S. [Central Electrochemical Research Inst., Karaikudi (India)

    2002-06-01

    Electrodeposited zinc-nickel alloys of various compositions were prepared. A suitable electrolyte and conditions to produce alloys of various compositions were identified. Alloys produced on electroformed nickel foils were etched in caustic to leach out zinc and to produce the Raney type, porous electro catalytic surface for hydrogen evolution. The electrodes were examined by polarisation measurements, to evaluate their Tafel parameters, cyclic voltammetry, to test the change in surface properties on repeated cycling, scanning electron microscopy to identify their microstructure and X-ray diffraction. The catalytic activity as well as the life of the electrode produced from 50% zinc alloy was found to be better than others. (Author)

  10. Electrodeposition of quaternary alloys in the presence of magnetic field

    Science.gov (United States)

    2010-01-01

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934

  11. Alloy formation during chromium electrodeposition at niobium cathode in molten salts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Glagolevskaya, A.L.

    1993-01-01

    Alloy formation during electrodeposition of chromium at niobium cathode is studied in salt melts. It is shown that during chromium electrodeposition at niobium support intermetallic compound Cr 2 Nb is formed. Thermodynamic characteristics of Cr 0.66 Nb 0.33 alloy are determined. 10 refs., 1 fig

  12. Pulse electrodeposition of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2000-01-01

    Pulse Electroplating is a relativity new technique in electrodeposition of pure metals and alloys which has resulted in a number of improvement over the traditional direct current method. Among these are a better composition control, lower porosity, reduction of internal stresses and hydrogen content as well as other impurities. In this work Pulse plating of Fe-Ni-Cr alloys has been investigated by using a series of planned experiments. A domain of Pulse parameters, such a pulse frequency, pulse duration, current density and batch condition such as Ph, temperature and has been defined where the coating quality is optimal. The result obtained were Compared with those of D C electroplating and finally a number of recommendations are made for future works towards a semi-industrial process

  13. Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acidic chloride electrolytes

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Terryn, H.; Wit, J.H.W. de

    2007-01-01

    The electrodeposition operating conditions for Zn-Co and Zn-Co-Fe alloys from chloride baths were studied. The electrodeposition was performed on a high strength steel substrate, under galvanostatic conditions, for a range of current densities at varying Co2+ and Fe2+ bath concentrations and at

  14. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

    International Nuclear Information System (INIS)

    Zhang Jifu; Yan Chuanwei; Wang Fuhui

    2009-01-01

    The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl 3 -NaCl-KCl-MnCl 2 molten salts at 170 deg. C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl 2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.

  15. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  16. Electrodeposition of bismuth alloys by the controlled potential method

    International Nuclear Information System (INIS)

    Lopez Alvarez, F.A.

    1993-01-01

    We worked with the electrodeposition of three bismuth alloys, the composition of the first electrolyte was: 0.3 g/l. Bi; 20 g/l. Ni; and the conditions were pH = 5.2 - 5.6; T = 25 Centigrade degrees; current density 0.3 A / dm 2 - 6.6 A / dm 2 . Following alloy was between Bi - Pb, composition of the electrolyte was 3.18 g/l. Bi (metallic); 31.81 g/l. Pb (Pb(NO 3 ) 2 ) pH : 1; T = 20 Centigrade degrees; current density 10.20 A/dm 2 . The third electrolyte was Bi-Cu, its composition was: 20.89 g/l. Bi; (metallic) 63.54 g/l Cu (Cu(NO 3 ) 2 ) pH : 1.5 - 1.8; T = 25-30 Centigrade degrees; current density 1-2 A/dm 2 . The best results were obtained with the third electrolyte. The purpose of this work was to experiment with different parameters like temperature, pH and the electrolyte concentration to obtain a bismuth alloy. (Author)

  17. Magnetic properties of CoP alloys electrodeposited at room temperature

    International Nuclear Information System (INIS)

    Lucas, I.; Perez, L.; Aroca, C.; Sanchez, P.; Lopez, E.; Sanchez, M.C.

    2005-01-01

    CoP alloys have been electrodeposited at room temperature from electrolytes with different pH values and their magnetic properties have been studied. Cracks and fractures appear when using stiff substrates, showing that high internal stresses, due to hydrogen evolution, are involved in the electrodeposition process. Samples electrodeposited onto flexible substrates do not show cracks on the surface. We also report an increment in the coercivity of the alloys when the pH of the electrolyte decreases, and therefore, the hydrogen evolution and the internal stresses increase

  18. A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    The electrodeposition of zinc-iron alloys from a chloride-based electrolyte has been studied using electrochemical polarisation techniques, Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and Computer Assisted Pulse Plating (CAPP...... this system ideal for production of compositional modulated alloy (CMA) electrodeposits. Chloride content, pH and agitation of the electrolyte have been observed to have a strong influence on the reaction at the cathode surface, just as the use of pulse reversal current during electrodeposition. A theory...

  19. Material reliability of Ni alloy electrodeposition for steam generator tube repair

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Myong Jin; Kim, Joung Soo; Kim, Hong Pyo

    2007-01-01

    Due to the occasional occurrences of Stress Corrosion Cracking (SCC) in steam generator tubing (Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube dose not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electroforming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a Primary Water Stress Corrosion Cracking (PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance

  20. Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template

    Energy Technology Data Exchange (ETDEWEB)

    Srivastav, Ajeet K., E-mail: srivastav.ajeet.kumar@gmail.com, E-mail: mm09d004@smail.iitm.ac.in [Indian Institute of Technology Madras, Department of Metallurgical and Materials Engineering (India); Shekhar, Rajiv [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India)

    2015-01-15

    Co–Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co–Pt alloy nanowires was investigated. The less negative deposition potential (−0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co–Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.

  1. Electrodeposition and characterization of Fe–Mo alloys as cathodes for hydrogen evolution in the process of chlorate

    Directory of Open Access Journals (Sweden)

    B. N. GRGUR

    2005-06-01

    Full Text Available Fe–Mo alloys were electrodeposited from a pyrophosphate bath using a single diode rectified AC current. Their composition and morphology were investigated by SEM, optical microscopy and EDS, in order to determine the influence of the deposition conditions on the morphology and composition of these alloys. It was shown that the electrodeposition parameters, such as: chemical bath composition and current density, influenced both the composition of the Fe–Mo alloys and the current efficiency for their deposition, while the micro and macro-morphology did not change significantly with changing conditions of alloy electrodeposition. It was found that the electrodeposited Fe–Mo alloys possessed a 0.15 V to 0.30 V lower overvoltage than mild steel for hydrogen evolution in an electrolyte commonly used in commercial chlorate production, depending on the alloy composition, i.e., the conditions of alloy electrodeposition.

  2. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  3. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  4. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  5. Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aldrighi Luiz M.; Costa, Josiane D.; Sousa, Mikarla B. de; Alves, José Jailson N. [Department of Chemical Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882, 58429-970 Campina Grande (Brazil); Campos, Ana Regina N.; Santana, Renato Alexandre C. [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil); Prasad, Shiva, E-mail: prasad@deq.ufcg.edu.br [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil)

    2015-01-15

    Highlights: • Ni–W–Fe alloy resistant to corrosion has been obtained by electrodeposition. • Optimal temperature and current density for Ni–W–Fe alloy electrodeposition has been found. • Experimental design has been used as optimization tool. • Amorphous Ni–W–Fe alloy has been obtained. - Abstract: Corrosion has been responsible for industrial maintenance cost as well as for industrial accidents. A key to prevent corrosion is to develop advanced materials with highly anti-corrosive properties. The electrodeposition has been one of the most important techniques for obtaining these materials. The objective of this work is to develop and optimize the parameters to obtain a new Ni–W–Fe alloy with high resistance to corrosion. A factorial design 2{sup 2} with 2 center points was used to find the optimal current density and bath temperature for Ni–W–Fe electrodeposition. The influence of such variables on the cathodic current efficiency and polarization resistance were obtained. The alloys obtained with the highest current density (125 mA/cm{sup 2}) and the highest bath temperature (70 °C) had the best anticorrosive properties, which are superior to anticorrosive properties of Ni–W–Fe available in the literature. The obtained alloys had the highest tungsten content compared with other alloys studied of about 46 wt.%. The highest cathodic current efficiency was 34% for the alloy with a chemical composition of 3 wt.% Fe, 29 wt.% W and 68 wt.% Ni.

  6. Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery

    Science.gov (United States)

    2011-11-01

    Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...can short circuit the anode and cathode . Anode- cathode short circuits are especially dangerous when a flammable organic solvent is used as the

  7. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  8. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  9. Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zarebidaki, Arman, E-mail: arman.zare@iauyazd.ac.ir; Mahmoudikohani, Hassan, E-mail: hassanmahmoudi.k@gmail.com; Aboutalebi, Mohammad-Reza

    2014-12-05

    Highlights: • Activation, zincating, and Cu electrodeposition were used as pretreatment processes for electrodeposition of nickel coatings. • Nano-crystalline nickel coatings were successfully electrodeposited onto the AZ91 Mg alloys. • Effect of nickel electrodeposited coating on the corrosion resistance of AZ91 Mg alloy has been studied. - Abstract: In order to enhance the corrosion resistance, nickel coating was electrodeposited onto AZ91 Mg alloy. Activation, zincating, and Cu electrodeposition used as pretreatment processes for better adhesion and corrosion performance of the nickel over layer. The corrosion properties of the AZ91 Mg alloy, nickel electroplated AZ91 Mg alloy, and pure nickel was assessed via polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5 wt% NaCl solution. Moreover, the structure of the coating was investigated by means of X-ray diffraction, whereas specimen’s morphology and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Measurements revealed that the coating has a nano-crystalline structure with the grain size of 95 nm. Corrosion results showed superior corrosion resistance for the coated AZ91 Mg alloy as the corrosion current density decreased from 2.5 × 10{sup −4} A cm{sup −2}, for the uncoated sample, to 1.5 × 10{sup −5} A cm{sup −2}, for coated specimen and the corrosion potential increased from −1.55 V to −0.98 V (vs. Ag/AgCl) at the same condition.

  10. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...

  11. Electrodeposition of antimony, tellurium and their alloys from molten acetamide mixtures

    NARCIS (Netherlands)

    Nguyen, H.P.; Peng, X.; Murugan, G.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2013-01-01

    We examine the electrodeposition of antimony (Sb), tellurium (Te) and their alloys from molten mixtures of acetamide - antimony chloride and tellurium chloride. The binary mixtures of acetamide with SbCl3 and TeCl 4 exhibit eutectic formation with large depressions of freezing points to below room

  12. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  13. Surface crack nucleation and propagation in electrodeposited nanocrystalline Ni-P alloy during high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)

    2010-07-01

    The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.

  14. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  15. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  16. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K.

    2012-01-01

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  17. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  18. Characterization of zinc–nickel alloy electrodeposits obtained from ...

    Indian Academy of Sciences (India)

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical ...

  19. Studying the initial stages of film electrodeposition of magnetic cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Rachinskas, V.S.; Orlovskaya, L.V.; Parfenov, V.A.; Yasulajtene, V.V.

    1996-01-01

    Initial stages of magnetic film electrodeposition by recording potentiodynamic polarization and j c ,t-curves, determination of surface structure of electrolytically deposited films by the method of XPS and study of thin coating properties have been considered. It is shown that at initial stage of electrodeposition of magnetic Co-W-films a sharp decrease in cathode process rate and formation of Co(OH) 2 , WO 3 and/or WO 4 2- occur on Cu-cathode surface. Electrodeposition of metallic magnetic Co-W-alloy, consisting of Co, W and containing basic compounds of co-deposited metals, takes place after a certain time period depending on deposition E c . 6 refs.; 3 figs

  20. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  1. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  2. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  3. Electrodeposition of NiPd alloy from aqueous chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mech, K., E-mail: kmech@agh.edu.pl [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wróbel, M [AGH, University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, Krakow (Poland); Wojnicki, M [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Mech-Piskorz, J. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Żabiński, P.; Kowalik, R. [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-12-01

    Highlights: • Mechanism of electrode reactions resulting in NiPd alloys was described. • Electrolysis conditions enabling alloys synthesis were determined. • Alloys were characterized towards composition, structure and surface properties. - Abstract: Presented results describing properties of alloys deposited at potentiostatic conditions in Ni{sup 2+} – Pd{sup 2+} – Cl{sup −} – H{sub 2}O system. Electrolysis parameters were defined based on results of thermodynamic analysis as well as voltammetry coupled with electrochemical quartz crystal microbalance (EQCM). Influence of electrode potential and electrolyte components concentration on alloy composition, morphology and its structure was investigated. Alloys were deposited at different Ni(II) and Pd(II) complexes concentrations. Results indicated possibilities of electrochemical synthesis of alloys of wide composition range. Deposits structure as well as crystallites size were discussed based on results of XRD measurements. Alloys composition was determined with the use of energy dispersive spectroscopy (EDS). Morphology of alloys was characterized with the use of scanning electron microscopy (SEM).

  4. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  5. Electrodeposition of Ni-W Alloy and Characterization of Microstructure and Properties of the Deposits

    DEFF Research Database (Denmark)

    Mizushima, Io

    2007-01-01

    of the electrolyte. Simultaneously, the presence of carbon is observed with GDOES in layers deposited from the aged electrolyte. The carbon dissolution in the Ni-W alloy deposit is associated with the formation of a new phase in the electrodeposit, giving rise to the anomalous Bragg peak. In Chapter 8 hardness....... The experimental results of the present work are given in the chapters 4-9. In Chapter 4 development of a new electrolyte for Ni-W alloys is described. In the chapters 5-9 the properties of the Ni-W alloys such as residual stress, microstructure, hardness and thermal stability are investigated. Furthermore......, grain size and thermal stability of nickel and Ni-W alloy layers deposited from electrolytes containing equal amounts of citrate, glycine and triethanolamine are investigated. The hardness of the deposits was investigated in the as-deposited layer as well as after annealing for 1 hour at temperatures up...

  6. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  7. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  8. Effect of natural and magnetic convections on the structure of electrodeposited zinc-nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, A., E-mail: alexandra.levesque@univ-reims.fr [LACMDTI URCA, BP 1039, 51687 Reims Cedex2 (France); Chouchane, S. [Faculte des Sciences, Universite Badji Mokhtar, Annaba (Algeria); Douglade, J. [LACMDTI URCA, BP 1039, 51687 Reims Cedex2 (France); Rehamnia, R. [Faculte des Sciences, Universite Badji Mokhtar, Annaba (Algeria); Chopart, J.-P. [LACMDTI URCA, BP 1039, 51687 Reims Cedex2 (France)

    2009-06-30

    The effects of a magnetic field applied in a direction parallel or perpendicular to the cathode substrate plane, during electrodeposition process of Zn-Ni alloy have been investigated by means of chronoamperometric measurements, X-ray diffraction and EDX analysis. The modification of crystal orientation of the alloy by the superimposition of a high magnetic field is discussed for alloys with a content of nickel range 6-13 at%. Whatever the phase composition obtained without magnetic field, either {gamma}-Ni{sub 5}Zn{sub 21} or a mixture of the {gamma} and zinc phases, which depends on the concentration of Ni{sup 2+} in the electrolyte bath, the preferential orientation (1 0 1) of the zinc phase is always favoured with perpendicular and parallel magnetic field. There is no saturation of this effect with amplitude of B up to 8 T. A study of different geometric configurations of the cathode, which induce more or less natural convection, consolidates these results. The structural modifications of Zn-Ni alloy electrodeposits are thus probably due to a magnetohydrodynamic effect. An additional phenomenon is observed in presence of a perpendicular applied magnetic field since the (3 3 0) preferential orientation of the {gamma}-Ni{sub 5}Zn{sub 21} disappears with high values of B.

  9. Effect of natural and magnetic convections on the structure of electrodeposited zinc-nickel alloy

    International Nuclear Information System (INIS)

    Levesque, A.; Chouchane, S.; Douglade, J.; Rehamnia, R.; Chopart, J.-P.

    2009-01-01

    The effects of a magnetic field applied in a direction parallel or perpendicular to the cathode substrate plane, during electrodeposition process of Zn-Ni alloy have been investigated by means of chronoamperometric measurements, X-ray diffraction and EDX analysis. The modification of crystal orientation of the alloy by the superimposition of a high magnetic field is discussed for alloys with a content of nickel range 6-13 at%. Whatever the phase composition obtained without magnetic field, either γ-Ni 5 Zn 21 or a mixture of the γ and zinc phases, which depends on the concentration of Ni 2+ in the electrolyte bath, the preferential orientation (1 0 1) of the zinc phase is always favoured with perpendicular and parallel magnetic field. There is no saturation of this effect with amplitude of B up to 8 T. A study of different geometric configurations of the cathode, which induce more or less natural convection, consolidates these results. The structural modifications of Zn-Ni alloy electrodeposits are thus probably due to a magnetohydrodynamic effect. An additional phenomenon is observed in presence of a perpendicular applied magnetic field since the (3 3 0) preferential orientation of the γ-Ni 5 Zn 21 disappears with high values of B.

  10. Electrodeposition of Cu-In alloys for preparing CuInS sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1990-01-01

    Copper-indium alloys were prepared by electroplating from citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) baths onto Ti substrate. Formation of the alloys was carried out by direct codeposition of the elements and by sequential electrodeposition of copper and indium. Studies of the alloy formation by electrochemical measurements and X-ray diffraction were performed. The presence of Cu{sub 7}In{sub 4} in direct deposit as well as in sequentially electrodeposited material was observed during the alloy formation. The as-deposited layers were heated in H{sub 2}S. X-ray diffraction showed the annealed layers to be CuInS{sub 2} with the chalcopyrite structure, where the CuIn{sub 5}S{sub 8} phase was included during the annealing process. Photoelectrochemical characterization of the samples allowed us to determine the photoconductivity which is related with the Cu/In ratio in the samples. The energy gap for CuInS{sub 2} photoelectrodes in polysulphide solution was 1.57 Ev. (orig.).

  11. A process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten, or of their alloys

    International Nuclear Information System (INIS)

    Diepers, H.; Schmidt, O.

    1977-01-01

    An improvement is proposed for the process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten or of their alloys from molten-salt electrolytes (fluorid melts) which is to increase the quality of layers in order to obtain regular thickness and smooth surfaces. According to the invention, a pre-separation is executed on an auxiliary cathode before the (preheated) cathode is immersed. The cathode is only charged for separation after the adjustment of a constant anode potential. It is an advantage that the auxiliary cathode is mechanically and electrically connected with the cathode. As an electrolyte, a mixture of niobium fluorides and a eustetic mixture of potassium fluorides, sodium fluorides and lithium fluorides are particularly suitable for the electrodeposition of miobium. (UWI) [de

  12. Concerted Electrodeposition and Alloying of Antimony on Indium Electrodes for Selective Formation of Crystalline Indium Antimonide.

    Science.gov (United States)

    Fahrenkrug, Eli; Rafson, Jessica; Lancaster, Mitchell; Maldonado, Stephen

    2017-09-19

    The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb 2 O 3 , an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

  13. Corrosion behavior of zinc-nickel alloy electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fabri Miranda, F.J. [USIMINAS, Ipatinga, Minas Gerais (Brazil); Margarit, I.C.P.; Mattos, O.R.; Barcia, O.E. [UFRJ, Rio de Janeiro (Brazil); Wiart, R. [Univ. Pierre et M. Curie, Paris (France)

    1999-08-01

    Various types of zinc-electrocoated steel sheets are used to improve the durability of car bodies. Among these coatings, the Zn-Ni alloy has higher corrosion resistance than pure Zn, as well as better welding and painting properties. The corrosion mechanism of the Zn-Ni alloy has been investigated mainly on the basis of accelerated tests and electrochemical measurements. There are few data about long-term corrosion tests. In the present study, the behavior of unpainted Zn-Ni alloy coated steel was studied during 3 years of exposure in industrial and marine environments. Electrochemical impedance spectroscopy (EIS) and surface analysis (scanning electron microscopy [SEM] and Auger electron spectroscopy [AES]) were the experimental techniques used. Long-term atmospheric corrosion mechanism of Zn-Ni coatings was discussed and compared with that proposed based on short-term tests.

  14. Structural, morphological and magnetic characterization of electrodeposited Co–Fe–W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Noce, R. Della, E-mail: rodrnoce@iq.unesp.br [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Benedetti, A.V.; Magnani, M. [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES (Brazil); Kumar, H.; Cornejo, D.R. [Instituto de Física, Universidade de São Paulo, USP, 05508-090 São Paulo, SP (Brazil); Ospina, C.A. [Electron Microscopy Laboratory, Brazilian Nanotechnology National Laboratory, 13083-970 Campinas, SP (Brazil)

    2014-10-25

    Highlights: • Small W additions (up to 9 at.%) to the Co{sub 35}Fe{sub 65} binary system. • Electrodeposited Co–Fe–W alloys characterization by XRD, SEM, TEM, Mössbauer spectroscopy and magnetic measurements. • Production of Co–Fe–W alloys with low values of coercivity and high saturation magnetization. • Potential materials for applications in magnetic devices such as read/write heads and hard disks. - Abstract: Structural, morphological and magnetic characterization of electrodeposited Co–Fe–W alloys, containing small amounts of W (up to 9 at.%), were performed using X-ray diffractometry, scanning (SEM) and transmission (TEM) electron microscopy, Mössbauer spectroscopy and magnetization measurements. Electrodeposited (Co{sub 100−x}Fe{sub x}){sub 100−y}W{sub y} films (x = 63–72 at.% Fe, y = 4–9 at.% W) were successfully produced varying the applied cathodic current density (i{sub c}) between 0.5 and 10 mA cm{sup −2}. X-ray diffraction results revealed a bcc-like structure for all studied compositions with average crystallite size ranging from 16 to 35 nm, as also confirmed by TEM results. SEM images indicated that needle-type morphology is dominant for the deposits containing lower W content (up to 4.5 at.%.), while a cauliflower-type behavior is observed for higher W content deposits. Room temperature Mössbauer spectra indicate the presence of two magnetic species for all samples; one component associated with an ordered Co–Fe–W fraction (crystalline grain core) and a magnetic disordered Co–Fe–W contribution, which can be attributed to the grain boundaries/grain surfaces. Magnetization was observed to be in the film plane along the film direction, except the sample prepared at i{sub c} = 10 mA cm{sup −2} that is slightly canted from in- to out-of-plane geometry. Magnetic measurements show high saturation magnetization values accompanied by low coercivity ones for the electrodeposited Co–Fe–W alloys, making these

  15. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  16. Electrodeposition of white copper-tin alloys from alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Purwadaria, H.S.; Zainal Arifin Ahmad

    2007-01-01

    Electrodeposition of white copper-tin alloys (including with mir alloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 degree C. The chemical composition of the coating is influenced by plating bath composition and current density. White mir alloy can be produced from the test solution containing 10 g/l CuCN 2 ,45 g/l Na 2 SnO 3 , 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm?2. The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage. (Author)

  17. Properties and electrochemical behaviors of AuPt alloys prepared by direct-current electrodeposition for lithium air batteries

    International Nuclear Information System (INIS)

    Zhang, Jinqiu; Li, Da; Zhu, Yiming; Chen, Miaomiao; An, Maozhong; Yang, Peixia; Wang, Peng

    2015-01-01

    AuPt catalyst has a prospective application in a lithium air battery because of its bi-function on catalyzing Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). Electrodeposition is an in-situ convenient technology for catalyst preparation without chemical residue. In an acid electrolyte, AuPt alloy catalysts were electrodeposited on carbon paper. The effect of main salt concentration, electrodeposition time and current density were studied by deposit micromorphology observation, structure analyses and composition testing. Catalytic abilities of AuPt alloys were measured by cyclic voltammetry (CV) in an ionic liquid of EMI-TFSI/Li-TFSI [1- Ethyl - 3- methylimidazolium–bis (trifluoromethanesulphonyl) imide/lithium–bis (trifluoromethanesulphonyl) imide]. The electrochemical behaviors of Au, Pt and AuPt deposits were also measured. An optimized direct-current electrodeposition process of getting high active AuPt catalyst is concluded, which is an aqueous solution containing 6.7∼10 mmol · L −1 HAuCl 4 , 10∼13.3 mmol · L −1 H 2 PtCl 6 and 0.5 mol · L −1 H 2 SO 4 as the electrolyte, current density of 20mA · cm −2 and electrodeposition time of 8∼34 s. The co-deposition of AuPt alloy is an irregular co-deposition controlled by diffusion, while gold atoms enter the platinum’s crystal lattice in the structure of AuPt alloy. The increase of the concentration of H 2 PtCl 6 in the electrolyte, the extension of the electrodeposition time or the raise of the current density can improve the content of Pt in the deposit. The clusters’ diameters of AuPt catalysts decrease to 150∼250 nm by adjusting current densities during electrodeposition

  18. Electrodeposition of polypyrrole onto NiTi and the corrosion behaviour of the coated alloy

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.

    2010-01-01

    Polypyrrole (PPy) films were electrodeposited onto nickel--titanium alloy (NiTi) employing sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT) solutions. Polarizing anodically NiTi samples recovered by PPy in a monomer-free solution increases adhesion of the coating. Electrochemical techniques, scanning electron microscopy (SEM) and element analysis were used in determining the corrosion performance of the coated samples in chloride solution. The polymer improves the corrosion performance at the open circuit potential and at potentials where the bare substrate suffers pitting attack. The improvement in both, adhesion and corrosion performance, is discussed considering substrate/polymer interaction, overoxidation of PPy and the role played by AOT.

  19. Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies

    International Nuclear Information System (INIS)

    Tsyntsaru, N.; Cesiulis, H.; Pellicer, E.; Celis, J.-P.; Sort, J.

    2013-01-01

    The mapping of structural, magnetic, and mechanical properties of Co–W coatings galvanostatically electrodeposited from a citrate–borate bath is investigated. The intrinsic characteristics of the coatings, such as crystallite size or tungsten content are correlated with the extrinsic growth parameters, such as pH, complexes distribution, and current density. The increase in pH from 5 to 8 results in an increase of the W content in the deposits from 2 at.% up to 36 at.% in a controlled way, and it correlates with an increase in concentration of W(VI) complexes in the bath. The crystallite size estimated from XRD patterns, decreases from 39 to 5 nm with increasing W content from 3 to 25 at.% respectively. The obtained coatings show highly tunable mechanical and magnetic properties. The hardness increases with W content from ∼3 GPa up to ∼13 GPa. A semi-hard ferromagnetic behavior with a coercivity of ∼470 Oe along the perpendicular-to-plane direction is observed for Co–W alloys containing small amounts of W in the range of ∼2–3 at.%. At higher tungsten contents the coatings are magnetically softer, and the electrodeposits become non-ferromagnetic beyond ∼30 at.% W. Because of this combination of physical properties, electrodeposited Co–W coatings may become suitable materials for multi-scale technologies

  20. Electrodeposition of some metals and niobium superconducting alloys from molten fluorides

    International Nuclear Information System (INIS)

    Cohen, U.

    1978-01-01

    The major goal of this thesis was to study the feasibility of electrodeposition from molten fluorides of the pure elements niobium, aluminium, tin, germanium and silicon, and the niboium superconducting intermetallic compounds with these elements, and to prepare and study films of these materials in the form of coherent and uniform coatings. Decomposition potential measurements with a gold anode were carried out on the alkali fluoride solvent and the fluoride salt solutions of niobium, aluminum, tin, and germanium to provide important initial thermodynamic data. Attempts to codeposit niobium and aluminum invariably failed, niobium being the exclusive deposit in all cases. Codeposition of niobium--tin alloys was demonstrated. Of the four intermetallic compounds of the niobium--germanium system, three were obtained as single-phase coatings. The superconducting compound (A15 phase) was not successfully electrodeposited in a single-phase form. It was obtained, however, in phase-mixture coatings. Application of alternating square wave pulses produced substantial changes in the morphology of niobium deposits. Silicon electrocrystallization epitaxy (ECE) was demonstrated for the first time. Uniform, coherent, and well adherent coatings of polycrystalline Si with a grain diameter of up to 40 to 50 μm were plated onto nonalloying metal substrates, such as silver and tungsten.These processes offer some attractive features for both integrated circuit technology and silicon solar cell fabrication. Aluminum, tin, and germanium were also electrodeposited from molten fluorides

  1. Characterization of thin Zn-Ni alloy coatings electrodeposited on low carbon steel

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Pommier, N.; Starck, B.; Remy, P.

    2007-01-01

    The characteristics of initial layer formation in alkaline bath for Zn-Ni (12-15%) alloy electrodeposition on low carbon steel plates are detected in a nanometric thickness range by electron probe microanalysis (EPMA), with both bulk sample and thin film on substrate correction procedure, glow discharge optical emission spectroscopy (GDOES) and gracing incidence X-ray diffraction (GIXRD). The Zn-Ni coatings were elaborated using either intensiostatic or potentiostatic mode. A preferential deposition of Ni, in the initial thin layer, is detected by these analyses; according to EPMA and GDOES measurements, a layer rich in nickel at the interface substrate/deposit is observed (90 wt.% Ni) and approved by GIXRD; the thin layer of Ni formed in the first moments of electrolysis greatly inhibits the Zn deposition. The initial layer depends upon the relative ease of hydrogen and metal discharge and on the different substrate surfaces involved. The electrodeposition of zinc-nickel alloys in the first stage is a normal phenomenon of codeposition, whereby nickel - the more noble metal - is deposited preferentially

  2. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  3. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  4. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  5. Incorporation of iridium into electrodeposited rhenium–nickel alloys

    International Nuclear Information System (INIS)

    Cohen Sagiv, Maayan; Eliaz, Noam; Gileadi, Eliezer

    2013-01-01

    Rhenium (Re), a refractory metal that has gained significant recognition as a high performance engineering material, is mostly used in military, aircraft and aerospace applications, as well as for catalysis in the petrochemical industry. However, its performance at high temperature in humid air is limited by the formation of rhenium heptoxide (Re 2 O 7 ), which penetrates the grain boundaries and causes brittleness. Improvement of this is being sought through the incorporation of iridium (Ir) into Re deposits. To this end, suitable plating baths for Re–Ir–Ni coatings were developed. These alloys were deposited from different aqueous solutions on copper substrates under galvanostatic conditions, in a three-electrode cell. The plating bath consisted of iridium tri-chloride, ammonium perrhenate and nickel sulfamate as the electroactive species, and citric acid as the complexing agent. The effects of bath composition and operating conditions on the Faradaic efficiency (FE), partial current densities, as well as on the thickness of the coatings and their composition were studied. Re–Ir–Ni coatings as thick as 18 μm, with Re-content as high as 73 at.% and Ir-content as high as 29 at.%, were obtained, using different plating baths. A mechanism of the electrochemical process was suggested. It was found that both an HCP Ir 0.4 Re 0.6 phase and an HCP Ni phase with nanometric crystallites were formed, possibly together with a hexagonal nickel hydride (Ni 2 H) phase

  6. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    Science.gov (United States)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  7. Effect of triethanolamine and heliotropin on cathodic polarization of weakly acidic baths and properties of Sn-Ag-Cu alloy electrodeposits

    International Nuclear Information System (INIS)

    Zhang Jinqiu; An Maozhong; Chang Limin; Liu Guiyuan

    2008-01-01

    The effect of triethanolamine (TEA) and heliotropin (HT) on the cathodic polarization of weakly acidic baths and the properties of Sn-Ag-Cu alloy electrodeposits were investigated. Lead-free Sn-Ag-Cu solder alloy were electrodeposited in weakly acidic baths (pH 5.5) containing Sn(CH 3 SO 3 ) 2 , AgI, Cu(CH 3 SO 3 ) 2 , K 4 P 2 O 7 , KI, hydroquinone, TEA, HT and methylsulfonic acid (MSA). The cathodic polarization of baths and the properties of electrodeposits were evaluated by Liner sweep voltammetry (LSV), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results indicate that HT is a main brightening agent that increases the cathodic polarization of baths and refines the grains of electrodeposits; TEA is a complexing agent for copper ions and a brightening promoter that decreases the cathodic polarization of baths and densifies the electrodeposits. The bright, compact, and smooth Sn-Ag-Cu alloy electrodeposits contain 88-95 wt% tin, 5-10 wt% silver and 0.5-2 wt% copper. Organic compounds used in the baths neither adsorb on the electrodeposits surfaces nor are included in the electrodeposits. It can be therefore concluded that the use of both TEA and HT is better than that of them either in the process of electroplating bright Sn-Ag-Cu alloy

  8. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  9. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy

    International Nuclear Information System (INIS)

    Gopi, D.; Sherif, El-Sayed M.; Rajeswari, D.; Kavitha, L.; Pramod, R.; Dwivedi, Jishnu; Polaki, S.R.

    2014-01-01

    Graphical abstract: - Highlights: • Ti–6Al–4V alloy was surface treated by high energy low current DC electron beam. • Successful electrodeposition of HAP was achieved on surface treated Ti–6Al–4V. • The as-formed coating possessed improved surface wettability and adhesion strength. • Maximum corrosion protection performance was exhibited by the as-formed coating. - Abstract: In our present study, the Ti–6Al–4V alloy surface was modified by irradiating with the high energy low current DC electron beam (HELCDEB) using 700 keV DC accelerator. Following this, the HELCDEB treated surface was coated with hydroxyapatite by adopting electrodeposition method. The microstructure and hardness of HELCDEB treated Ti–6A1–4V alloy with and without electrodeposited hydroxyapatite were investigated. Also, the electrochemical corrosion characteristics of the samples in simulated body fluid (SBF) was studied by potentiodynamic polarisation and electrochemical impedence techniques (EIS) which showed an enhanced corrosion resistance and revealed an improved life time for the hydroxyapatite coating developed on the HELCDEB treated Ti–6A1–4V alloy than the untreated sample

  10. The influence of Fe2+ concentration and deposition time on the corrosion resistance of the electrodeposited zinc–nickel–iron alloys

    Directory of Open Access Journals (Sweden)

    M.M. Abou-Krisha

    2016-11-01

    Full Text Available Electrodeposition operating conditions for Zn–Ni–Fe alloys from sulfate baths and the corrosion resistance of the electrodeposited alloys were studied. The comparison between Zn–Ni and Zn–Ni–Fe alloys co-deposition revealed that the remarkable inhibition of Ni and Fe deposition takes place due to the presence of Zn2+ in the plating bath. The electrodeposition was performed on the steel substrate, under galvanostatic conditions, for varying Fe2+ bath concentrations and at different times. X-ray diffraction studies of the deposit showed the presence of Fe3Ni2 phase and γ-phase with a composition of Ni2Zn11. The obtained data also exposed that the corrosion resistance increases as a result of increasing Fe2+ concentration and deposition time. Investigation was carried out using cyclic voltammetry and galvastatic techniques for electrodeposition, while linear polarization resistance and anodic linear sweeping voltammetry techniques were used for corrosion study.

  11. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  12. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  13. Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution

    International Nuclear Information System (INIS)

    Fedi, B.; Gigandet, M.P.; Hihn, J-Y; Mierzejewski, S.

    2016-01-01

    Highlights: • Quantification of zinc-nickel phases between 1,2% and 20%. • Coupling XRD to partial potentiodynamic dissolution. • Deconvolution of anodic stripping curves. • Phase quantification after annealing. - Abstract: Electrodeposited zinc-nickel coatings obtained by electrodeposition reveal the presence of metastable phases in various quantities, thus requiring their identification, a study of their thermal stability, and, finally, determination of their respective proportions. By combining XRD measurement with partial potentiodynamic dissolution, anodic peaks were indexed to allow their quantification. Quantification of electrodeposited zinc-nickel alloys approximately 10 μm thick was thus carried out on nickel content between 1.2% and 20%, and exhibited good accuracy. This method was then extended to the same set of alloys after annealing (250 °C, 2 h), thus bringing the structural organization closer to its thermodynamic equilibrium. The result obtained ensures better understanding of crystallization of metastable phases and of phase proportion evolution in a bi-phasic zinc-nickel coating. Finally, the presence of a monophase γ and its thermal stability in the 12% to 15% range provides important information for coating anti-corrosion behavior.

  14. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  15. Nickel recovery from electronic waste II Electrodeposition of Ni and Ni–Fe alloys from diluted sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Robotin, B. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Ispas, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Coman, V. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Bund, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Ilea, P., E-mail: pilea@chem.ubbcluj.ro [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania)

    2013-11-15

    Highlights: • Ni can be recovered from EG wastes as pure Ni or as Ni–Fe alloys. • The control of the experimental conditions gives a certain alloy composition. • Unusual deposits morphology shows different nucleation mechanisms for Ni vs Fe. • The nucleation mechanism was progressive for Ni and instantaneous for Fe and Ni–Fe. - Abstract: This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni{sup 2+}/Fe{sup 2+} ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  16. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  17. Influence of γ-phase on corrosion resistance of Zn–Ni alloy electrodeposition from acetate electrolytic bath

    Science.gov (United States)

    Selvaraju, V.; Thangaraj, V.

    2018-05-01

    The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.

  18. Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy

    International Nuclear Information System (INIS)

    Hu Jiming; Liu Liang; Zhang Jianqing; Cao Chunan

    2006-01-01

    Bis-1,2-[triethoxysilyl] ethane (BTSE) films were prepared on 2024-T3 alloys by using potentiostatic method for corrosion protection. This work mainly investigated the effects of electrodeposition potential on the corrosion properties of silane films. Films prepared at cathodic potentials display an improvement in corrosion inhibition properties, while those prepared at anodic potentials present the deterioration of protectiveness. In the case of cathodic deposition, when the potential shifts negatively from the open-circuit potential (OCP), corrosion protection of the obtained films initially increases and then decreases, with the optimal deposition potential at -0.8 V/SCE. As indicated in scanning electron microscopy (SEM) images, films deposited at the optimum potential present the most uniform and compact morphologies. In addition, steady-state polarization and current-time curves have been also recorded on Al alloys in BTSE solutions during the deposition, respectively

  19. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1995-01-01

    the potential in the double-layer charging region from 500 to -100 mV and back to 500 mV at a sweep rate of 1 mV/s in an acidified copper sulfate electrolyte (0.01M H2SO4, 0.01M CuSO4, and Millipore water). After completion of the first cycle the gold surface had recrystallized and nuclei of an alloy phase were...... in peak potential for the anodic current transient from E = 20 mV to E = -2 mV was observed after completion of four subsequent cycles of copper electrodeposition/dissolution. The shift is suggested to be equal to the change in potential of the working electrode owing to the formation of the alloy phase....

  20. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process

    Science.gov (United States)

    Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.

    2011-07-01

    Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.

  2. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  3. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl{sub 3} molten salt containing TaCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuki; Matsushima, Hisayoshi; Ueda, Mikito, E-mail: mikito@eng.hokudai.ac.jp

    2016-12-01

    Highlights: • Electrodeposition of Al-Ta alloys in an AlCl{sub 3}-NaCl-KCl-TaCl{sub 5} melt was carried out. • We were obtained 72 at% Ta-Al alloy at 0.3 V. • Amorphous Ta-Al was formed in high Ta concentration. - Abstract: To form Al-Ta alloys for high temperature oxidation resistance components, molten salt electrolysis was carried out in an AlCl{sub 3}-NaCl-KCl melt containing TaCl{sub 5} at 423 K. The voltammogram showed two cathodic waves at 0.45 V and 0.7 V vs. Al/Al(III), which may correspond to reduction from Ta(V) to Ta(III) and from Ta(III) to tantalum metal, respectively. Electrodeposits of Al and Ta were obtained in the range from −0.05 to 0.3 V and the highest concentration of Ta in the electrodeposit was 72 at% at 0.3 V. With increasing Ta content in the alloy, the morphology of the electrodeposits became powdery and the particle size smaller.

  4. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  5. Electrodeposition and corrosion properties of zn-co and zn-co-fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2010-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  6. Electrodeposition and corrosion properties of Zn-Co and Zn-Co-Fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2011-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  7. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  8. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xun [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Tan, LiLi [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Fan, XinMin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China)

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP.

  9. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    International Nuclear Information System (INIS)

    Qiu, Xun; Wan, Peng; Tan, LiLi; Fan, XinMin; Yang, Ke

    2014-01-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP

  10. Optimizing cathodic electrodeposition parameters of ceria coating to enhance the oxidation resistance of a Cr{sub 2}O{sub 3}-forming alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    2016-07-29

    Nano-ceria coating was deposited onto a chromium oxide forming alloy through galvanostatic cathodic electro-deposition method in cerium nitrate electrolyte. The electrochemical behavior and influence of main deposition parameters of current density, deposition time, and temperature were studied. It was seen that the crystal size decreased with increasing of current density while micro-cracks were also observed at higher current density. Slightly increasing of crystal size and smoothing of surface morphology were seen with increasing of deposition time. It was reported that the bath temperature has the most significant effect on crystal size and surface morphology of the deposit. Green rust as corrosion product was also observed with deposition temperatures higher than 35 °C. Optimized deposition parameters were used to produce homogeneous, continuous and green rust-free coatings which enhance the oxidation resistance of alloy 230. The electro-deposition process was found to be an accessible and efficient method to prepare nano-crystalline ceria coating. - Highlights: • Electrodeposition was used to make ceria coating on a chromium oxide forming alloy; • Deposition parameters of current density, time and temperature were investigated; • Crystal size and morphology of coating vary with changing of deposition parameters; • Coating prepared with optimized parameters reduced oxidation rate of alloy 230.

  11. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  12. Macro- and microdistributions in electrodeposition of chromium and its alloys from electrolytes based on chronic acid: microdistribution and microdissipation ability of the electrolytes

    International Nuclear Information System (INIS)

    Kruglikov, S.S.; Kruglikova, E.S.

    1996-01-01

    The distribution of electrodeposited chromium and Cr-W, Cr-Mo, Cr-Ti, Cr-Zr alloys on a surface with a regular two-dimensional microprofile has been studied. The standard, self-regulating, supersulfate, tetrachromate and rough chrome-plating electrolytes, as well as electrolytes for Cr-Zr and Cr-Mo alloys production, feature practically uniform microdistribution. The conclusion is made that formation and effect of cathode film under stationary conditions of cathode process do not involve diffusion restrictions of cathode reaction rate, while the thickness of the cathode film is small as compared with the amplitude of the microprofiles studies. 6 refs., 4 figs., 3 tabs

  13. Special features of nickel-molybdenum alloy electrodeposition onto screen-type cathodes

    International Nuclear Information System (INIS)

    Aleksandrova, G.S.; Varypaev, V.N.

    1982-01-01

    Electrolytic nickel-molybdenum alloy, which has a rather low hydrogen overpotential and high corrosion resistance, is of interest as cathode material in industrial electrolysis. Screen-type electrodes with a nickel-molybdenum coating can be used as nonconsumable cathodes in water-activated magnesium-alloy batteries

  14. Electrodeposition of zinc-nickel alloy from fluoborate baths - as a substitute for electrogalvanising

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Bapu, G.N.K.; Ayyapparaju, J.; Devaraj, G.

    Use of fluoborate electroytes have been investigated for depositing a suitable composition of zinc-nickel alloy on mild steel for better corrosion protection. In the present investigation, the plating and bath conditions have been optimized so that zinc-nickel alloy coating from fluoborate solutions find applications for plating wires as well as other articles advantageously in the place of zinc coatings.

  15. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  16. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    Directory of Open Access Journals (Sweden)

    Ina Schubert

    2015-06-01

    Full Text Available Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial.Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology.Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.

  17. Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance

    International Nuclear Information System (INIS)

    Falcade, Tiago; Shmitzhaus, Tobias Eduardo; Gomes dos Reis, Otávio; Vargas, André Luis Marin; Hübler, Roberto; Müller, Iduvirges Lourdes; Fraga Malfatti, Célia de

    2012-01-01

    Highlights: ► The electrodeposition may be conducted at room temperature. ► The DLC films have good resistance to corrosion in saline environments. ► The films have lower coefficient of friction than the uncoated substrate. ► The abrasive wear protection is evident in coated systems. - Abstract: Diamond-like carbon (DLC) films have been studied as coatings for corrosion protection and wear resistance because they have excellent chemical inertness in traditional corrosive environments, besides presenting a significant reduction in coefficient of friction. Diamond-like carbon (DLC) films obtained by electrochemical deposition techniques have attracted a lot of interest, regarding their potential in relation to the vapor phase deposition techniques. The electrochemical deposition techniques are carried out at room temperature and do not need vacuum system, making easier this way the technological transfer. At high electric fields, the organic molecules polarize and react on the electrode surface, forming carbon films. The aim of this work was to obtain DLC films onto Ti6Al4V substrate using as electrolyte: acetonitrile (ACN) and N,N-dimethylformamide (DMF). The films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, potentiodynamic polarization and wear tests. The results show that these films can improve, significantly, the corrosion resistance of titanium and its alloys and their wear resistance.

  18. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    International Nuclear Information System (INIS)

    Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Vertes, A.; Doyle, O.; Chisholm, C.U.; El-Sharif, M.

    2005-01-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings

  19. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E; Stichleutner, S; Homonnay, Z; Vertes, A [Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Doyle, O; Chisholm, C U; El-Sharif, M [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2005-04-26

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of {beta}-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  20. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mindroiu, Mihaela [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania); Pirvu, Cristian [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania)

    2013-08-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response.

  1. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    International Nuclear Information System (INIS)

    Mindroiu, Mihaela; Ion, Raluca; Pirvu, Cristian; Cimpean, Anisoara

    2013-01-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response

  2. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  3. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    on the magnetic and magnetoresistance properties of NiFe alloy films are mostly focused on the ... is clear from the figure that the Ni deposit content is measured to be 42 wt% for .... grain size change, the degree of ferromagnetic coupling etc.

  4. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    Several techniques such as X-ray diffraction [9], VSM. [10], Mössbauer spectroscopy [11], four-point probe [12] etc. are used to investigate the crystallographic, magnetic and magnetotransport properties of NiFe systems. In this study our aim is to prepare NiFe alloy films relatively thicker (in µm scale) than those reported in ...

  5. Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties

    Indian Academy of Sciences (India)

    Administrator

    like microhardness, wear resistance, ductility, strength, adheres ... where w is the measured mass of the alloy deposit (g), I the total .... ties (1–6 A dm–2) and thicknesses (3–22 μm) on copper ..... In the fine grained bright deposit, higher binding.

  6. Contribution to the study of the electrodeposition of iron-nickel alloys

    International Nuclear Information System (INIS)

    Valignat, J.

    1968-01-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [fr

  7. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  8. Effect of the low magnetic field on the electrodeposition of Co{sub x}Ni{sub 100−x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, 07738 México, D.F., México (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Arce Estrada, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, 07738 México, D.F., México (Mexico); Sanchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J.; Vazquez, L. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2015-07-15

    Magnetic, chemical and structural properties of electrosynthesized Co{sub x}Ni{sub 100−x} have been studied. The electrodeposition has been conducted both in the presence and absence of a low magnetic field. The application of a perpendicular magnetic field during the synthesis modified slightly the morphology of the alloys. These changes depend more on the film composition than on the applied field, as demonstrated by AFM images. In the absence of magnetic field, the Co{sub x}Ni{sub 100−x} film grows along the (200) direction. However, when the magnetic field was applied, a preferential orientation along the (111) direction was observed. No important magnetic changes are induced by the presence of the magnetic field during the growth. Based on X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) experiments, the chemical composition of the films was preserved during preparation regardless of whether or not magnetic field is applied. There has been observed an increase in deposition rate in the presence of field even at these low magnetic fields. - Highlights: • CoNi alloys were electrosynthesized in the absence and presence of a low magnetic field. • Application of a magnetic field produced an orientation in the (111) plane of the alloy. • An external field changes the voltammetric curves reducing the energy required for the alloy formation. • The composition and magnetic properties were constant in the absence and presence of magnetic field.

  9. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H₂S and CO₂.

    Science.gov (United States)

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-06-09

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  10. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H2S and CO2

    Directory of Open Access Journals (Sweden)

    Yiyong Sui

    2017-06-01

    Full Text Available The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  11. Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol.

    Science.gov (United States)

    Hoang, Thao T H; Verma, Sumit; Ma, Sichao; Fister, Tim T; Timoshenko, Janis; Frenkel, Anatoly I; Kenis, Paul J A; Gewirth, Andrew A

    2018-05-02

    Electrodeposition of CuAg alloy films from plating baths containing 3,5-diamino-1,2,4-triazole (DAT) as an inhibitor yields high surface area catalysts for the active and selective electroreduction of CO 2 to multicarbon hydrocarbons and oxygenates. EXAFS shows the co-deposited alloy film to be homogeneously mixed. The alloy film containing 6% Ag exhibits the best CO 2 electroreduction performance, with the Faradaic efficiency for C 2 H 4 and C 2 H 5 OH production reaching nearly 60 and 25%, respectively, at a cathode potential of just -0.7 V vs RHE and a total current density of ∼ - 300 mA/cm 2 . Such high levels of selectivity at high activity and low applied potential are the highest reported to date. In situ Raman and electroanalysis studies suggest the origin of the high selectivity toward C 2 products to be a combined effect of the enhanced stabilization of the Cu 2 O overlayer and the optimal availability of the CO intermediate due to the Ag incorporated in the alloy.

  12. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  13. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4-2.59 T) by reverse pulse electrodeposition

    Science.gov (United States)

    Tabakovic, Ibro; Venkatasamy, Venkatram

    2018-04-01

    The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.

  14. Anisotropic Mg Electrodeposition and Alloying with Ag-based Anodes from Non-Coordinating Mixed-Metal Borohydride Electrolytes for Mg Hybrid Batteries

    International Nuclear Information System (INIS)

    Wetzel, David J.; Malone, Marvin A.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2017-01-01

    A highly anisotropic electrodeposition was observed using the hybrid battery electrolyte Mg(BH 4 ) 2 with LiBH 4 in diglyme. At low overpotentials high aspect ratio platelet morphologies are observed with a strong fiber texture composed of a {10-10} and a {11-20} component, the first evidence of behavior of this kind in magnesium battery electrolytes. At high overpotentials the deposit aspect ratio is indistinguishable but the texture is shown to be primarily composed of a {11-20} fiber texture. The kinetic parameters relative to the relevant crystallographic faces are extracted from electron microscopy images and compared with the observed bulk rate extracted from the electrochemical data. The use of polycrystalline Ag foil substrates with little preferred orientation at the surface allowed highly polycrystalline nucleation at lower overpotentials than that of platinum, likely due to Ag alloying with Mg. Characterization using focused ion beam (FIB) cross-sections with Auger Electron Spectroscopy (AES) elemental analysis confirm that the deposits are primarily Mg although Mg‐Ag alloys of various compositions were observed. It is proposed that the orientation at slow rates of growth is due to the underlying kinetics of adatom diffusion on Mg and that higher rates diminish the phenomenon due to decreased time for adatom diffusion and instead are governed by the rates of adatom formation or more specifically the adatom vacancy formation on the different low-index planes of Mg.

  15. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  16. Mössbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Science.gov (United States)

    Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.

    2005-04-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  17. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.

    Science.gov (United States)

    Safavi, Afsaneh; Farjami, Fatemeh

    2011-01-15

    An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Electrodeposition and surface finishing fundamentals and applications

    CERN Document Server

    Djokic, Stojan

    2014-01-01

    This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metal

  19. Otimização do banho eletrolítico da liga Fe-W-B resistente à corrosão Optimization of the electrolytic bath for electrodeposition of corrosion resistant Fe-W-B alloys

    Directory of Open Access Journals (Sweden)

    Renato Alexandre Costa de Santana

    2007-04-01

    Full Text Available A study on optimization of bath parameters for electrodeposition of Fe-W-B alloys from plating baths containing ammonia and citrate is reported. A 2³ full factorial design was successfully employed for experimental design analysis of the results. The corrosion resistance and amorphous character were evaluated. The bath conditions obtained for depositing the alloy with good corrosion resistance were: 0.01 M iron sulfate, 0.10 M sodium tungstate and 0.60 M ammonium citrate. The alloy was deposited at 12% current efficiency. The alloy obtained had Ecorr -0.841 V and Rp 1.463 x 10(4 Ohm cm². The deposit obtained under these conditions had an amorphous character and no microcracks were observed on its surface. Besides this, the bath conditions obtained for depositing the alloy with the highest deposition efficiency were: 0.09 M iron sulfate, 0.30 M sodium tungstate and 0.50 M ammonium citrate. The alloy was deposited at 50% current efficiency, with an average composition of 34 wt% W, 66 wt% Fe and traces of boron. The alloy obtained had Ecorr -0.800 V and Rp 1.895 x 10³ Ohm cm². Electrochemical corrosion tests verified that the Fe-W-B alloy deposited under both conditions had better corrosion resistance than Fe-Mo-B.

  20. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    Directory of Open Access Journals (Sweden)

    Leandro Trinta de Farias

    2008-03-01

    Full Text Available Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00, with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition potential, an experimental central composite design 2² was employed, and three current density intervals (0.11 to 0.60, 0.50 to 1.98 and 2.44 to 9.94 mA.cm-2 were chosen from the polarization curves for this purpose. The results indicated that the current density (mainly in the range between 0.11 and 0.60 mA.cm-2 affected significantly all the studied variables. In the intermediate range (0.50 to 1.98 mA.cm-2, only the average potential was influenced by the current density. On the other hand, the mechanical stirring had a significant effect only on the copper content, for both the lowest (0.11 to 0.60 mA.cm-2 and the highest current density range (2.44 to 9.94 mA.cm-2. Indeed, in the last range, none of the studied deposition parameters presented significant influence on the studied variables, except for the copper content. This could probably be explained by the direct incorporation of Cu-Citrate complexes in the coating, which was enhanced at high current values.

  1. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    Science.gov (United States)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  2. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  3. Effect of current density and pH in obtaining the Ni-Fe alloy by electrodeposition; Efeito da densidade de corrente e pH na obtencao da liga Ni-Fe por eletrodeposicao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Anderson Machado; Raulino, Anamelia de Medeiros Dantas; Raulino, Jose Leonardo Costa; Campos, Ana Regina Nascimento; Prasad, Shiva; Santana, Renato Alexandre Costa de, E-mail: jmo.anderson@gmail.com, E-mail: anameliadantas@yahoo.com.br, E-mail: leonardo.jcr@hotmail.com, E-mail: arncampos@yahoo.com.br, E-mail: prasad@deq.ufcg.edu.br, E-mail: renatoacs@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Lab. de Eletroquimica e Corrosao

    2017-01-15

    Metallic coatings can be applied for different purposes, for example to improve the mechanical, catalytic, anti corrosive properties or simply to improve the decorative appearance. In the work the Fe-Ni alloys have been obtained by electrodeposition process using a simple electrolytic bath containing the reagents, nickel sulfate, iron sulfate and sodium tartrate. A complete experimental design 2{sup 2} , associated with the response surface methodology (RSM) technique was used as optimization tool. Chemical composition, current efficiency, surface morphology and electrochemical corrosion measures were performed. It was observed that a decrease in the pH favored an increase in iron and decrease in nickel contents in the alloy. The iron content influenced the alloy morphology. The best experiment showed an average corrosion resistance 5471.5 Ω.cm² and a corrosion current density 4.814x10{sup -6} A/cm². This experiment presented a composition of 70 wt% Ni and 30 wt% Fe in the alloy and an average deposition current efficiency of 58.7%. (author)

  4. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.; Bessone, J.B.

    2007-01-01

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions

  5. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    Energy Technology Data Exchange (ETDEWEB)

    Flamini, D.O. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Saidman, S.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)], E-mail: ssaidman@criba.edu.ar; Bessone, J.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2007-07-31

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions.

  6. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  7. Electrodeposition of Radium

    International Nuclear Information System (INIS)

    Crespo, M.T.; Jimenez, A.S.

    1996-01-01

    A study of different electrodeposition methods of radium for its measurement by alpha-spectrometry is presented. The recommended procedure uses an aqueous solution of ammonium oxalate and nitric acid in the presence of microgram amounts of platinum as electrolyte

  8. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    International Nuclear Information System (INIS)

    Vasilescu, C.; Drob, P.; Vasilescu, E.; Demetrescu, I.; Ionita, D.; Prodana, M.; Drob, S.I.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. → For covered alloy the equivalent circuit contains two time constants. → Resistances of films increased in time revealing the improvement of the alloy protection capacity. → Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  9. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, C.; Drob, P. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Vasilescu, E., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Demetrescu, I.; Ionita, D.; Prodana, M. [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, Str. Polizu 1-7, 011061 Bucharest (Romania); Drob, S.I. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania)

    2011-03-15

    Graphical abstract: Display Omitted Research highlights: {yields} EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. {yields} For covered alloy the equivalent circuit contains two time constants. {yields} Resistances of films increased in time revealing the improvement of the alloy protection capacity. {yields} Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  10. Recent Advances in Superhydrophobic Electrodeposits

    Directory of Open Access Journals (Sweden)

    Jason Tam

    2016-03-01

    Full Text Available In this review, we present an extensive summary of research on superhydrophobic electrodeposits reported in the literature over the past decade. As a synthesis technique, electrodeposition is a simple and scalable process to produce non-wetting metal surfaces. There are three main categories of superhydrophobic surfaces made by electrodeposition: (i electrodeposits that are inherently non-wetting due to hierarchical roughness generated from the process; (ii electrodeposits with plated surface roughness that are further modified with low surface energy material; (iii composite electrodeposits with co-deposited inert and hydrophobic particles. A recently developed strategy to improve the durability during the application of superhydrophobic electrodeposits by controlling the microstructure of the metal matrix and the co-deposition of hydrophobic ceramic particles will also be addressed.

  11. Neutron reflectivity of electrodeposited thin magnetic films

    International Nuclear Information System (INIS)

    Cooper, Joshaniel F.K.; Vyas, Kunal N.; Steinke, Nina-J.; Love, David M.; Kinane, Christian J.; Barnes, Crispin H.W.

    2014-01-01

    Highlights: • Electrodeposited magnetic bi-layers were measured by polarised neutron reflectivity. • When growing a CoNiCu alloy from a single bath a Cu rich region is initially formed. • This Cu rich region is formed in the first layer but not subsequent ones. • Ni deposition is inhibited in thin film growth and Co deposits anomalously. • Alloy magnetism and neutron scattering length give a self-consistent model. - Abstract: We present a polarised neutron reflectivity (PNR) study of magnetic/non-magnetic (CoNiCu/Cu) thin films grown by single bath electrodeposition. We find that the composition is neither homogeneous with time, nor consistent with bulk values. Instead an initial, non-magnetic copper rich layer is formed, around 2 nm thick. This layer is formed by the deposition of the dilute, but rapidly diffusing, Cu 2+ ions near the electrode surface at the start of growth, before the region is depleted and the deposition becomes mass transport limited. After the region has been depleted, by growth etc., this layer does not form and thus may be prevented by growing a copper buffer layer immediately preceding the magnetic layer growth. As has been previously found, cobalt deposits anomalously compared to nickel, and even inhibits Ni deposition in thin films. The layer magnetisation and average neutron scattering length are fitted independently but both depend upon the alloy composition. Thus these parameters can be used to check for model self-consistency, increasing confidence in the derived composition

  12. Electrodeposited zinc/nickel coatings. A review

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, Madiha A. [Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo (Egypt). Surface Coating Dept.

    2011-10-15

    In recent years, the use of electrodeposited zinc-nickel coatings has significantly increased, mainly because of their superior corrosion resistance as compared with zinc. An additional strength of the process is that the proportion of the two metals, and thus the coating properties, can be varied. Initially, these alloy deposits were relatively brittle, with a tendency to crack-formation. More recently, ductile coatings have been developed. Now, as in the past, the emphasis has been on the cathodic corrosion protection which these coatings provide. Their properties can be further enhanced by post-treatment where additional developments have taken place. (orig.)

  13. Influences of magnetic field on the fractal morphology in copper electrodeposition

    Science.gov (United States)

    Sudibyo; How, M. B.; Aziz, N.

    2018-01-01

    Copper magneto-electrodeposition (MED) is used decrease roughening in the copper electrodeposition process. This technology plays a vital role in electrodeposition process to synthesize metal alloy, thin film, multilayer, nanowires, multilayer nanowires, dot array and nano contacts. The effects of magnetic fields on copper electrodeposition are investigated in terms of variations in the magnetic field strength and the electrolyte concentration. Based on the experimental results, the mere presence of magnetic field would result in a compact deposit. As the magnetic field strength is increased, the deposit grows denser. The increment in concentration also leads to the increase the deposited size. The SEM image analysis showed that the magnetic field has a significant effect on the surface morphology of electrodeposits.

  14. Contribution to the study of the electrodeposition of iron-nickel alloys; Contribution a l'etude du depot electrolytique des alliages fer-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Valignat, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [French] En employant une methode coulometrique par dissolution anodique intensipstatique, nous avons etudie le depot potentiostatique du nickel, du fer et des alliages fer-nickel. Nous avons pu montrer que le minimum de la courbe I = f (t) enregistree au cours du depot est du probablement au blocage momentane de la surface par l'hydrogene et que la syncristallisation du fer et du nickel est responsable de l'anomalie du depot simultane de ces deux elements. (auteur)

  15. Optical properties of zinc oxide-based ternary compounds synthesized by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cembrero, J. [Departament d' Enginyeria Mecanica i Materials, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mollar, M.; Tortosa, M. [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mari, B.

    2008-07-01

    Structure, morphology and optical properties of ZnO thin films grown by electrodeposition under different conditions changing both solvent (water or dimethylsulfoxide) and substrate (polycrystalline FTO or monocrystalline GaN) are reported. The results point out the advantage of using dimethylsulfoxide when uniform, oriented and highly transparent films are required. On the other hand electrodeposition in aqueous bath produces perfectly defined hexagonal ZnO columns which can be fully oriented by chosing a suitable substrate. Photoluminescence has only been observed for ZnO films grown in aqueous bath. Ternary compounds as ZnMO (M=Cd,Co,Mn) with a controlled ratio between both cations, and morphology and structure like binary ZnO can be easily obtained from dimethylsulfoxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film

    Science.gov (United States)

    Huang, Ruomeng; Kissling, Gabriela P.; Jolleys, Andrew; Bartlett, Philip N.; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. `Kees'

    2015-11-01

    We report the properties of a series of electrodeposited Ge-Sb-Te alloys with various compositions. It is shown that the Sb/Ge ratio can be varied in a controlled way by changing the electrodeposition potential. This method opens up the prospect of depositing Ge-Sb-Te super-lattice structures by electrodeposition. Material and electrical characteristics of various compositions have been investigated in detail, showing up to three orders of magnitude resistance ratio between the amorphous and crystalline states and endurance up to 1000 cycles.

  17. The properties of electrodeposited Zn-Co coatings

    Science.gov (United States)

    Mahieu, J.; de Wit, K.; de Cooman, B. C.; de Boeck, A.

    1999-10-01

    The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.

  18. Optical, structural and morphological properties of CdS-CdCO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez P, M.; Sosa S, A. [Benemerita Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigaciones en Dispositivos Semiconductores, Apdo. Postal 1067, 72001 Puebla, Puebla (Mexico); Juarez D, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Computacion, Apdo. Postal 1067, 72570 Puebla, Puebla (Mexico); Chaltel L, L. A.; Gutierrez P, R.; Hernandez T, G.; Portillo M, O. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Ciencia de Materiales, Apdo. Postal 1067, 72001 Puebla, Puebla (Mexico); Cruz C, S., E-mail: j.gabriel@rocketmail.com [Universidad Politecnica de Tlaxcala, Departamento de Ingenieria Quimica, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala (Mexico)

    2015-07-01

    CdS-CdCO{sub 3} thin films were grown by chemical bath deposition. Different constant deposition temperatures were employed in the range of 20-80 grades C. From X-ray diffraction results can be observed that intensity of CdS peak is abruptly reduced when deposition temperature is decreased. By Sem images the formation and change in shape and size of crystallites can be observed as temperature is decreased. The forbidden energy band gap was 2.4-4.1 eV, determined from optical absorption. The formation of products was further confirmed with Ftir studies. (Author)

  19. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  20. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  1. Microstructure and thermal stability of nickel layers electrodeposited from an additive-free sulphamate-based electrolyte

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2006-01-01

    and scanning electron microscopy and X-ray diffraction; the Vickers hardness was measured in cross sections. The present is meant as a reference for forthcoming articles on the investigation of various strengthening mechanisms on the microstructure, hardness and thermal stability of Ni (alloys) electrodeposits.......The influences of the current density and the temperature on the microstructure and hardness of Ni layers electrodeposited from an additive-free sulphamate bath were investigated. The microstructure and thermal stability of the electrodeposits was investigated with a combination of transmission...

  2. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition.

    Science.gov (United States)

    Zeeshan, Muhammad A; Grisch, Roman; Pellicer, Eva; Sivaraman, Kartik M; Peyer, Kathrin E; Sort, Jordi; Özkale, Berna; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2014-04-09

    Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  4. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  5. Moessbauer study of amorphous Fe-P alloys

    International Nuclear Information System (INIS)

    Takacs, L.; Toth-Kadar, E.

    1981-01-01

    Preliminary Moessbauer results are represented on electrodeposited Fe-P amorphous alloys. Very broad hyperfine field distributions and relatively large isomer shifts have been found. Problems worth of further investigation are discussed in details. (author)

  6. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  7. ELECTRODEPOSITION OF NICKEL ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  8. Influence of citrate ions as complexing agent for electrodeposition of CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, F. [Universite Libre de Bruxelles (Belgium). Service de Sciences des Materiaux et Electrochimie; Universite Mohammed 5, Rabat (Morocco). Dept. de Physique; Fahoume, M.; Ennaoui, A. [Universite Mohammed 5, Rabat (Morocco). Dept. de Physique; Delplancke, J.L. [Universite Libre de Bruxelles (Belgium). Service de Sciences des Materiaux et Electrochimie

    2001-08-16

    The preparation of CuInSe{sub 2} thin films by electrodeposition is studied. The effect of sodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}) as complexing agent on the electrodeposition of pure copper, indium, selenium and of their ternary alloy is emphasized. Cathodic shifts of the copper and selenium electrodeposition potentials with increasing citrate concentration are observed. On the contrary, the presence of citrate in the electrolyte does not change the indium electrodeposition potential but improves its crystallinity. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction. The formation of CuInSe{sub 2} films with a chalcopyrite structure and good stoichiometry is observed. (orig.)

  9. Composition control of tin-zinc electrodeposits through means of experimental strategies

    International Nuclear Information System (INIS)

    Dubent, S.; De Petris-Wery, M.; Saurat, M.; Ayedi, H.F.

    2007-01-01

    Tin-zinc coatings offer excellent corrosion protection and do not suffer the drawback of the voluminous white corrosion product of pure zinc or high zinc alloy coatings. The aim of this study was to determine the suitable electroplating conditions (i.e. electrolyte composition and cathode current density) to produce 70Sn-30Zn electrodeposits. Thus, a fractional factorial design (FFD) was carried out to evaluate the effects of experimental parameters (Zn II concentration, Sn IV concentration, pH and current density) on the Zn content of the electrodeposit. On the other hand, the electrodeposits were characterised by glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). Correlation between operating conditions, composition and morphology was attempted

  10. Electrodeposition: Principles, Applications and Methods

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Ying, K.K.; Khuan, N.I.

    2011-01-01

    Electrodeposition technique has been around for a very long time. It is a process of coating a thin layer of one metal on top of a different metal to modify its surface properties, by donating electrons to the ions in a solution. This bottom-up fabrication technique is versatile and can be applied to a wide range of potential applications. Electrodeposition is gaining popularity in recent years due to its capability in fabricating one-dimensional nano structures such as nano rods, nao wires and nano tubes. In this paper, we present an overview on the fabrication and characterization of high aspect ratio nano structures prepared using the nano electrochemical deposition system set up in our laboratory. (author)

  11. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  12. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  13. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  14. Electrochemical corrosion measurements on noble electrodeposits

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1998-01-01

    Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness.......Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness....

  15. Theory and practice of metal electrodeposition

    CERN Document Server

    Gamburg, Yuliy D

    2011-01-01

    fills the gap between modern developments in electrochemistry and outdated information on metals electrodeposition currently available in competing titles essential information on the theoretical and practical electrochemistry necessary to investigate modern metal deposition is provided part of the growing literature on electrodeposition

  16. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying

    Directory of Open Access Journals (Sweden)

    Satoshi Tominaka

    2011-01-01

    Full Text Available PdCo alloy is a promising catalyst for oxygen reduction reaction of direct methanol fuel cells because of its high activity and the tolerance to methanol. We have applied this catalyst in order to realize on-chip fuel cell which is a membraneless design. The novel design made the fuel cells to be flexible and integratable with other microdevices. Here, we summarize our recent research on the synthesis of nanostructured PdCo catalyst by electrochemical methods, which enable us to deposit the alloy onto microelectrodes of the on-chip fuel cells. First, the electrodeposition of PdCo is discussed in detail, and then, dealloying for introducing nanopores into the electrodeposits is described. Finally, electrochemical response and activities are fully discussed.

  17. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  18. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  19. Structure investigations of electrodeposited nickel

    International Nuclear Information System (INIS)

    Vertes, A.; Czako-Nagy, I.; Lakatos-Varsanyi, M.; Brauer, G.; Leidheiser, H. Jr

    1981-01-01

    Electrodeposited nickel samples were investigated by positron annihilation (lifetime and Doppler-broadening), Moessbauer effect and X-ray diffraction measurements. Two-component positron lifetime spectra were obtained. The first component is thought to result from bulk annihilation and trapping at single trapping centres (TC), their concentrations are obtained from the trapping model. The second one possibly denotes annihilation at voids, the number of which is dependent on the stress in the deposit. The Moessbauer results show differences in the magnetic orientation in the three samples examined. (author)

  20. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  1. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Holm, Peter E.; Fantke, Peter

    2015-01-01

    H or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about...... the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions....

  2. Electrodeposition of rhenium-tin nanowires

    International Nuclear Information System (INIS)

    Naor-Pomerantz, Adi; Eliaz, Noam; Gileadi, Eliezer

    2011-01-01

    Highlights: → Rhenium-tin nanowires were formed electrochemically, without using a template. → The nanowires consisted of a crystalline-Sn-core/amorphous-Re-shell structure. → The effects of bath composition and operating conditions were investigated. → A mechanism is suggested for the formation of the core/shell structure. → The nanowires may be attractive for a variety of applications. - Abstract: Rhenium (Re) is a refractory metal which exhibits an extraordinary combination of properties. Thus, nanowires and other nanostructures of Re-alloys may possess unique properties resulting from both Re chemistry and the nanometer scale, and become attractive for a variety of applications, such as in catalysis, photovoltaic cells, and microelectronics. Rhenium-tin coatings, consisting of nanowires with a core/shell structure, were electrodeposited on copper substrates under galvanostatic or potentiostatic conditions. The effects of bath composition and operating conditions were investigated, and the chemistry and structure of the coatings were studied by a variety of analytical tools. A Re-content as high as 77 at.% or a Faradaic efficiency as high as 46% were attained. Ranges of Sn-to-Re in the plating bath, applied current density and applied potential, within which the nanowires could be formed, were determined. A mechanism was suggested, according to which Sn nanowires were first grown on top of Sn micro-particles, and then the Sn nanowires reduced the perrhenate chemically, thus forming a core made of crystalline Sn-rich phase, and a shell made of amorphous Re-rich phase. The absence of mutual solubility of Re and Sn may be the driving force for this phase separation.

  3. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    Science.gov (United States)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  4. Preparation of 235U target by electrodeposition

    International Nuclear Information System (INIS)

    Chen Qiping; Zhong Wenbin; Li Yougen

    2004-12-01

    A target for the production of fission 99 Mo in a nuclear reactor is composed of an enclosed, cylindrical vessel. Preferable vessel is comprised of stainless steel, having a thin, continuous, uniform layer of 235 U integrally bonded to its inner walls. Two processes are introduced for electrodepositing uranium on to the inner walls of the vessel. One processes is electrodepositing UO 2 from UO 2 (NO 3 ) 2 -(NH 4 ) 2 CO 4 ·H 2 O solution; the other is electrodepositing pure uranium metal from molten salt. Its plating efficiency and plating quantity from a molten bath is higher than UO 2 from the aqueous system. (authors)

  5. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  6. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  7. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  8. The electrodeposition of niobium on tungsten

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1977-03-01

    The electrodeposition of niobium on a tungsten substrate has been demonstrated by electrolysis of an alkali metal fluoride melt. The deposit produced was non-porous, coherent and formed a good bond to the substrate. (author)

  9. Electrodeposited nanoparticles: properties and photocatalytic applications

    OpenAIRE

    Sheridan, Eoin E.

    2009-01-01

    The work presented in this thesis reports on fundamental studies into electrodeposition of gold and silver nanoparticulate spheroids on a conducting substrate, Fluorine-doped tin-oxide, and the manipulation of the electrodeposition conditions in order to influence and control the size and surface concentration of spheroids. Methods to control the deposition included chemical modification of the surface with an adsorbed monolayer of 3-aminopropyldimethylmethoxysilane, and manipulation of...

  10. Apparatus for eliminating electrodeposition of radioactive nuclide

    International Nuclear Information System (INIS)

    Inomata, Ichiro; Ishibe, Tadao; Matsunaga, Masaaki; Konuki, Ryoichi; Suzuki, Kazunori; Watanabe, Minoru; Tomoshige, Shozo; Kondo, Kozo.

    1990-01-01

    In a conventional device for eliminating by radioactive nuclides electrodeposition, a liquid containing radioactive nuclides is electrolyzed under a presence of non-radioactive heavy metals and removing radioactive nuclides by electrodepositing them together with the heavy metals. Two anode plates are opposed in an electrolysis vessel of this device. A plurality (4 to 6) of cathode plates are arranged between the anodes in parallel with them and the cathode surfaces opposed to the anodes are insulated. Further, such a plurality of cathode plates are grouped into respective units. Alternatively, the anode plate is made of platinum-plated titanium material and the cathode plate is made of stainless steel. In the thus constituted electrodeposition eliminating device, since the cathode surface directed to the anodes on both ends are insulated, all of electric current from the anode reach the core cathode after flowing around the cathodes at both ends. As a result, there is no substantial difference in the flowing length of the electrolyzing current to each of the cathodes and these is neither difference in the electrodeposition amount. The electrodeposited products are adhered uniformly and densely to the electrodes and, simultaneously, Co-60 and Mn-54, etc. are also electrodeposited. (I.S.)

  11. Diffusion and segregation of substrate copper in electrodeposited Ni-Fe thin films

    International Nuclear Information System (INIS)

    Ahadian, M.M.; Iraji zad, A.; Nouri, E.; Ranjbar, M.; Dolati, A.

    2007-01-01

    The Cu surface segregation is investigated in the electrodeposited Ni-Fe layers using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and atomic force microscopy (AFM). The results indicate that Cu segregation and accumulation take place in areated and deareated baths and the amount of segregated copper increases after air exposure. This phenomenon is explained by lower interfacial tension of the Cu in comparison with Ni and Fe. Our results reveal more surface segregation in the electrodeposit than vacuum reported results. This should be due to interface charging and higher surface diffusion in applied potential. The effect of interface charging on the interfacial tension is discussed based on Lippmann equation. Increasing of the Cu accumulation after air exposure is related to selective oxidation in alloys and higher tendency of Cu to surface oxidation

  12. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  13. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  14. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x......-ray diffraction for both the substrate layer and the electrodeposits yielded experimental evidence for epitaxy between Cu and Au. An orientation relation between film and substrate was discussed with respect to various concepts of epitaxy. While the conventional mode of epitaxy fails for the Cu...

  15. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  16. Magnetic properties and microstructure investigation of electrodeposited FeNi/ITO films with different thickness

    International Nuclear Information System (INIS)

    Cao, Derang; Wang, Zhenkun; Feng, Erxi; Wei, Jinwu; Wang, Jianbo; Liu, Qingfang

    2013-01-01

    Highlights: •FeNi alloy thin films with different thickness deposited on Indium Tin Oxides (ITOs) conductive glass substrates by electrodeposition method. •A columnar crystalline microstructure and domain structure were obtained in FeNi thin films. •Particular FMR spectra of FeNi alloy with different thickness were studied. -- Abstract: FeNi alloy thin films with different thickness deposited on Indium Tin Oxides (ITOs) conductive glass substrates from the electrolytes by electrodeposition method have been studied by magnetic force microscopy (MFM), scanning electron microscopy (SEM) and ferromagnetic resonance (FMR) technique. For these films possessing an in-plane isotropy, the remanence decreases with the increasing of film thickness and the critical thickness that a stripe domain structure emerges is about 116 nm. Characteristic differences of the FMR spectra of different thickness are also observed. The results show that the resonance field at high measured angle increases firstly then decreases with increasing thickness, which may be related to the striped domain structure

  17. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    International Nuclear Information System (INIS)

    Owsianiak, Mikołaj; Holm, Peter E.; Fantke, Peter; Christiansen, Karen S.; Borggaard, Ole K.; Hauschild, Michael Z.

    2015-01-01

    Metal exposure to terrestrial organisms is influenced by the reactivity of the solid-phase metal pool. This reactivity is thought to depend on the type of emission source, on aging mechanisms that are active in the soil, and on ambient conditions. Our work shows, that when controlling for soil pH or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions. - Highlights: • We found an effect of source on reactivity of anthropogenic metals in soils. • The influence of aging on reactivity of anthropogenic metals was not consistent. • We recommend including source and disregarding aging in calculation of CTPs values. - Improving current life cycle inventory (LCI) and life cycle impact assessment (LCIA) practice in terrestrial ecotoxicity assessment of metals.

  18. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  19. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  20. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  1. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  2. Textural and morphological studies on zinc–iron alloy electrodeposits

    Indian Academy of Sciences (India)

    ness of the coating was measured in Vicker's hard- ness number (VHN) by static indentation method, using. Leco microhardness tester (Model M 400) at a given load for 15 seconds time duration. X-ray diffraction pat- terns were taken by using JEOL PANalytical, X' per. PRO model. Samples were scanned between 20. ◦ and.

  3. Electrodeposited nanocrystalline bronze alloys as replacement for Ni

    NARCIS (Netherlands)

    Hovestad, A.; Tacken, R.A.; Mannetje, H.H.'t

    2008-01-01

    Nanocrystalline white-bronze, CuSn, electroplating was investigated as alternative to Ni plating as undercoat for noble metals in jewellery applications. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. Polarization

  4. The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited

    Directory of Open Access Journals (Sweden)

    VESNA B. MISKOVIC-STANKOVIC

    2002-05-01

    Full Text Available The model of organic film growth on a cathode during electrodeposition process proposes the current density-time and film thickness-time relationships and enables the evaluation of the rate contants for the electrochemical reaction of OH– ion evolution and for the chemical reaction of organic film deposition. The dependences of film thickness and rate constants on the applied voltage, bath temperature and resin concentration in the electrodeposition bath have also been obtained. The deposition parameters have a great effect on the cathodic electrodeposition process and on the protective properties of the obtained electrodeposited coatings. From the time dependences of the pore resistance, coating capacitance and relative permittivity, obtained from impedance measurements, the effect of applied voltage, bath temperature and resin concentration on the protective properties of electrodeposited coatings has been shown. Using electrochemical impedance spectroscopy, thermogravimetric analysis, gravimetric liquid sorption experiments, differential scanning calorimetry and optical miscroscopy, the corrosion stability of epoxy coatings was investigated. A mechanism for the penetration of electrolyte through an organic coating has been suggested and the shape and dimensions of the conducting macropores have been determined. It was shown that conduction through a coating depends only on the conduction through the macropores, although the quantity of electrolyte in the micropores of the polymer net is about one order of magnitude greater than that inside the conducting macropores.

  5. Electrodeposition of Actinide and Lanthanide Elements

    International Nuclear Information System (INIS)

    Baerring, N.E.

    1966-02-01

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given

  6. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  7. Electrodeposition of Actinide and Lanthanide Elements

    Energy Technology Data Exchange (ETDEWEB)

    Baerring, N E

    1966-02-15

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given.

  8. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  9. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    International Nuclear Information System (INIS)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M.

    2013-01-01

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  10. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  11. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  12. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  13. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  14. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Oliveira, E.T.; Garcia, R.H.L.; Durazzo, M.

    2013-01-01

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235 U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99 Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H 2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO 2 2+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO 2 (NO 3 ) 2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  15. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  16. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    OpenAIRE

    Mohamadreza Etminanfar; Jafar Khalil-Allafi; Kiyumars Jalili

    2017-01-01

    In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone)–poly(ethylene glycol) bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized fl...

  17. Novel technique for determination of alloy composition with the help of chronopotentiometry

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.

    2006-01-01

    Single phase gamma (Ni/sub 5/Zn/sub 21/) nanocrystalline zinc-nickel alloy coatings were prepared by electrodeposition in chloride bath. Cyclic voltammetry as well as reverse Chronopotentiometry was performed on platinum substrate. Both of these techniques are well known for determination of phases present in alloy in electrochemistry. A new model is introduced for determining composition of the electrodeposited alloy (Zn-Ni) with the help of Chronopotentiometry. EDX of deposits was also performed. Relative percentages of zinc and nickel determined from Chronopotentiometry were almost same to the results obtained from EDX. So by use of this model, Chronopotentiometry can be used as useful characterization technique for in-situ determination of composition during electrodeposition. X -ray diffraction was performed and it confirms the presence of single phase deposits. Current efficiency of the deposits remain above 90%. Surface compactness of deposits is verified with the help of SEM. (author)

  18. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    NARCIS (Netherlands)

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the

  19. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    Electrodeposition route to synthesize cigs films – an economical way to harness solar energy. ... for solar cells, how the charge separation in this nano scale photovoltaic (PV) materials occurs which help in absorption of radiation, and the electro-deposition route, a low cost one, produces thin film solar cells are analyzed.

  20. Conductance quantization in magnetic nanowires electrodeposited in nanopores

    DEFF Research Database (Denmark)

    Elhoussine, F.; Mátéfi-Tempfli, Stefan; Encinas, A.

    2002-01-01

    Magnetic nanocontacts have been prepared by a templating method that involves the electrodeposition of Ni within the pores of track-etched polymer membranes. The nanocontacts are made at the extremity of a single Ni nanowire either inside or outside the pores. The method is simple, flexible...... degeneracy. Our fabrication method enables future investigation of ballistic spin transport phenomena in electrodeposited magnetic nanocontacts....

  1. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  2. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  3. Certification of trace element contents (As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn) in a fly ash obtained from the combustion of pulverised coal

    International Nuclear Information System (INIS)

    Griepink, B.; Colinet, E.; Guzzi, G.; Haemers, L.; Muntau, H.

    1983-01-01

    The element contents of As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn of a fly ash from pulverised coal are certified. The procedures and their results for the homogenisation, the contamination and homogeneity checks and the analytical campaign are reported. The certified mass fractions and indicative values for Cr, Ni, Th, V and water soluble sulphate are given. The work was carried out within the framework of the activities of the Community Bureau of Reference (BCR) of the Commission of the European Communities. (orig.) [de

  4. Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition

    International Nuclear Information System (INIS)

    Esteves, Marcos C.; Sumodjo, Paulo T.A.; Podlaha, Elizabeth J.

    2011-01-01

    Highlights: → Mixed/induced codeposition of CoNiMo from a glycine containing bath. → Deposition in a rotating cylinder Hull cell. → The mechanism is explained in term of the complex species that can be formed. - Abstract: The present study focuses on the behavior of the CoNiMo mixed anomalous/induced codeposition process, using glycine as a probe to influence the coverage of adsorbed intermediates. In order to facilitate the investigation of a wide variation of parameters the electrodeposition of the alloy films was performed using a rotating cylinder Hull cell. Alloy composition, current efficiency and partial currents of each metal were analyzed. The partial current densities and hence alloy composition was affected by the amount of glycine in the electrolyte: increasing glycine enhanced both cobalt and molybdenum deposition rates and hindered nickel deposition. It is suggested that the glycine facilitates the adsorption of M(I) adsorbed intermediates that control the anomalous and induced codeposition behavior. The current efficiency ranged from 30 up to 75% and was only slightly affected by glycine at high applied current densities. Films with a tridimensional porous structure were obtained applying current densities higher than 200 mA cm -2 , formed as a consequence of the large hydrogen evolution side reaction, presenting conditions for a novel Mo-alloy electrode structure.

  5. Architectural Growth of Cu Nanoparticles Through Electrodeposition

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Yuan

    2009-01-01

    Full Text Available Abstract Cu particles with different architectures such as pyramid, cube, and multipod have been successfully fabricated on the surface of Au films, which is the polycrystalline Au substrate with (111 domains, using the electrodeposition technique in the presence of the surface-capping reagents of dodecylbenzene sulfonic acid and poly(vinylpyrrolidone. Further, the growth evolution of pyramidal Cu nanoparticles was observed for the first time. We believe that our method might open new possibilities for fabricating nanomaterials of non-noble transition metals with various novel architectures, which can then potentially be utilized in applications such as biosensors, catalysis, photovoltaic cells, and electronic nanodevices.

  6. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  7. Residual stress in Ni-W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2006-01-01

    In the present work, the residual stress in Ni–W layers electrodeposited from electrolytes based on NiSO4 and Na2WO4, is investigated. Citrate, glycine and triethanolamine were used as complexing agents, enabling complex formation between the nickel ion and tungstate. The results show that the type...... of complexing agent and the current efficiency have an influence on the residual stress. In all cases, an increase in tensile stress in the deposit with time after deposition was observed. Pulse plating could improve the stress level for the electrolyte containing equal amounts of citrate...

  8. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Fan; Wang, Chao; Zhu, Jianshu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Wang, Yi

    2018-06-01

    TpRNAMP5 is mainly expressed in the plasma membrane of roots and basal stems. It functions as a metal transporter for Cd, Mn and Co accumulation. Numerous natural resistance-associated macrophage proteins (NRAMPs) have been functionally identified in various plant species, including Arabidopsis, rice, soybean and tobacco, but no information is available on NRAMP genes in wheat. In this study, we isolated a TpNRAMP5 from dwarf Polish wheat (DPW, Triticum polonicum L.), a species with high tolerance to Cd and Zn. Expression pattern analysis revealed that TpNRAMP5 is mainly expressed in roots and basal stems of DPW. TpNRAMP5 was localized at the plasma membrane of Arabidopsis leaf protoplast. Expression of TpNRAMP5 in yeast significantly increased yeast sensitivity to Cd and Co, but not Zn, and enhanced Cd and Co concentrations. Expression of TpNRAMP5 in Arabidopsis significantly increased Cd, Co and Mn concentrations in roots, shoots and whole plants, but had no effect on Fe and Zn concentrations. These results indicate that TpNRAMP5 is a metal transporter enhancing the accumulation of Cd, Co and Mn, but not Zn and Fe. Genetic manipulation of TpNRAMP5 can be applied in the future to limit the transfer of Cd from soil to wheat grains, thereby protecting human health.

  9. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India

    Science.gov (United States)

    Devi, Upama; Bhattacharyya, Krishna G.

    2018-03-01

    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  10. Electrodeposition of germanium from supercritical fluids.

    Science.gov (United States)

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  11. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  12. In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate

    International Nuclear Information System (INIS)

    Dumelie, N.; Benhayoune, H.; Richard, D.; Laurent-Maquin, D.; Balossier, G.

    2008-01-01

    In this study, electrodeposited calcium phosphate coatings were characterized by X-ray diffraction, using a scanning electron microscope equipped with an EDAX detector, before and after immersion in DMEM (Dulbecco's Modified Eagle Medium). After 1, 7, 14, and 21 days of immersion, the calcium and phosphate contents in solution were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results indicated that precipitation of the coating occurred. Before immersion in DMEM, the electrodeposited coating was a mixed crystalline and amorphous calcium-deficient hydroxyapatite with a Ca/P atomic ratio of about 1.5, but during the immersion period these phases rapidly disappeared and were followed by the precipitation of a crystalline apatite with a Ca/P atomic ratio near 1.65. On the basis of these results, we conclude that an electrodeposited calcium phosphate coating on roughened titanium alloy substrate may act as a precursor for newly precipitated calcium phosphate in in vitro experiments independent of cellular activities

  13. Preparation of uranium electrodeposited target in aqueous system

    International Nuclear Information System (INIS)

    Chen Qiping; Li Yougen; Zhong Wenbin

    2006-03-01

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO 2 (NO 3 ) 2 and (NH 4 ) 2 C 2 O 4 , which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm 2 , the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  14. Preliminary results about Electrodeposition of Cobalt at laboratory level

    International Nuclear Information System (INIS)

    Cornejo, N.

    1992-01-01

    As of an organic compound, an extraction and Cobalt electrodeposition method had been developed as a part of fabrication aim of a sealed radioactive source with objective to the construction of density meter prototype. It was performed preliminary test of electrodeposition in the laboratory level in a simple cell. The used electrolyte had been a sulphate solution obtained by extraction of an organic solution. It is obtained a Co film by electrodeposition at 55 o C temperature and with an approximately Co concentration in 70 g/lt. (Author) 3 refs., 1 fig., 1 tab

  15. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Rajib, E-mail: rajibju4@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Sengupta, Srijan [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Das, Karabi; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. - Highlights: • Composite coatings of CaHPO{sub 4} and hydroxyapatite for biomedical application through pulsed electro-deposition. • Achieved optimum phase composition in view of crystallinity of both the phases. • Overall coating crystallinity of around 70% in view better bio compatibility. • In cyclic voltammetry it is observed that the deposition reaction is completely irreversible. • The deposited coating consists of nano-crystalline hydroxyapatite similar to human bone; which exhibits better bio-compatibility.

  16. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    Science.gov (United States)

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.

  17. Electrodeposition and properties of Zn, Cu, and Cu{sub 1−x} Zn{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Rasim [Kilis Vocational High School, Kilis 7 Aralık University, 79000 Kilis (Turkey); Karahan, İsmail Hakkı, E-mail: ihkarahan@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, 31040 Hatay (Turkey)

    2014-11-01

    Highlights: • Cu, Zn and Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The effect of alloying element was investigated on the electrical resistivity and the structure of Cu–Zn alloy. • The average crystallite size of the samples varied from 66 to 161 nm and decreased when the Zn and Cu combined in Cu–Zn. • Microstrain has been decreased with increasing crystallite size. • Electrical resistivity of alloy was obtained between the Zn and Cu films. - Abstract: The electrodeposition of Cu, Zn and Cu–Zn deposits from the non-cyanide Zn sulphate and Cu sulphate reduced by citrate at constant stirring speed has been investigated. The composition of the Cu–Zn bath was shown to influence the morphology, electrical resistivity, phase composition, and Cu and Zn content of the Cu–Zn deposits. Their structural and electrical properties have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), cyclic voltammeter (CV) and current–voltage measurements against the temperature for electrical resistivity, respectively. XRD shows that Cu–Zn samples are polycrystalline phase. Resistivity results show that the copper film exhibits bigger residual resistivity than both the zinc and the Cu–Zn alloy. Theoretical calculations of the XRD peaks demonstrate that the average crystallite size of the Cu–Zn alloy decreased and microstrain increased when the Cu alloyed with zinc.

  18. Compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires produced by alternating current electrodeposition into alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Fardi-Ilkhchy, Ali [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Nasirpouri, Farzad, E-mail: Nasirpouri@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Bran, Cristina; Vázquez, Manuel [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2016-12-15

    Fe{sub (1−x)}-Pt{sub (x)} (0electrodeposition into nanoporous aluminum oxide templates through a systematic approach. The effect of AC electrodeposition parameters such as frequency, voltage and electrolyte concentration on morphology and chemical composition of Fe-Pt alloy nanowires was studied. Based on experimental data, AC sine wave deposition at an intermediate voltage of 12 V{sub rms} and a frequency of 50 Hz, produces nanowires with nearly stoichiometric composition (Fe{sub 42}Pt{sub 58}) and a reasonably good uniformity of pore filling. However, there is a gradual change of composition in Fe-Pt alloy nanowires along the length under certain AC parameters. The observed dependency of alloy composition on the deposition voltage and frequency of AC electrodeposition is explained by an interplay between reduction potentials and diffusion coefficients of Fe and Pt ions which makes FePt system able to access compositionally graded nanowires. Magnetic measurements of nanowires of as-deposited nanowires confirm that maximum coercivity of 1.55 kOe is observed for nearly stoichiometric composition which increases up to 1.81 kOe after thermal annealing at 550 °C. - Graphical abstract: Evaluation of synthesizing extrinsic parameters (such as deposition voltages and frequency) and intrinsic parameters (diffusion coefficient and reduction potential of ion species) in compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires prepared by alternating current electrodeposition into alumina templates.

  19. Study of the formation process and the characteristics of tantalum layers electrodeposited on Nitinol plates in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid

    International Nuclear Information System (INIS)

    Maho, A.; Delhalle, J.; Mekhalif, Z.

    2013-01-01

    Highlights: ► Tantalum electrodeposition on Nitinol plates in the [BMP]Tf 2 N ionic liquid at room temperature. ► Generation of intrinsically nanostructured porous tantalum layers in “soft” cathodic current conditions. ► Important impact of substrate nature, working solution composition and electrodeposition duration. ► Primary assessment of surface corrosion resistance and bioactivity. -- Abstract: Thanks to excellent mechanical and biochemical properties, the nickel–titanium shape memory alloy (Nitinol) constitutes an increasingly praised platform material in dental, cardiovascular and orthopedic biomedical devices. In order to strengthen their protective abilities toward corrosion, to reinforce their biocompatibility and to confer them specific osseointegrative capacities, Nitinol plates are covered with a thin tantalum layer by electrodeposition in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. XPS and SEM/EDX analyses highlight the chemical and morphological characteristics of the deposits: notably, these present an intrinsic dimpled nanometric structuration which is particularly remarkable considering the “soft” experimental conditions and very interesting for fundamental and applied bioactive perspectives. The present study investigates the specific and synergic effects of the Ni occurrence on the surface of the Nitinol substrates, the presence of fluorine species in the working bath, and the electrodeposition duration on the resulting formation process, morphology and chemical composition of the tantalum coating. Finally, samples are submitted to electrochemical characterizations and in vitro hydroxyapatite growth tests for a primary assessment of their corrosion resistance and osseoinductive features

  20. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

    Science.gov (United States)

    Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha

    2018-03-01

    In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.

  1. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  2. Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits

    International Nuclear Information System (INIS)

    Jankowski, Alan F.; Saw, Cheng K.; Harper, Jennifer F.; Vallier, Bobby F.; Ferreira, James L.; Hayes, Jeffrey P.

    2006-01-01

    The processing-structure-property relationship is investigated for electrodeposited foils of the gold-copper alloy system. A model is presented that relates the deposition process parameters to the nanocrystalline grain size. An activation energy of 1.52 eV atom -1 for growth is determined for a long-pulse (> 10 msec) mode, and is 0.16 eV atom -1 for short pulses ( 6 nm) is observed for Au-Cu samples with 1-12 wt.% Cu as tested in cross-section. The hardness increases three-fold from a rule-of-mixtures value < 1 GPa to a maximum of 2.9 GPa

  3. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    user

    Unlike binary conductors CIGS film preparation needs highly ... This argument also holds well in forming a hetero-junction partner CdS ..... successfully electrodeposited onto indium tin oxide substrate and it is recently reported (Li et al., 2010).

  4. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  5. Effect of condensation product on electrodeposition of zinc on mild ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Electrodeposition of zinc on steel was obtained from acid chloride bath containing condensation products (CP) of 3,4 ..... nucleation number and hence smaller grain size. The ... thesis, Bangalore University, Bangalore. Venkatesha ...

  6. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    OpenAIRE

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the formation of different types of nanostructures. Throughout this thesis, three different nanostructures were made: nanowires (Chapters 2 to 6), nanotubes (Chapters 2 and 5) and nanocubes (Chapters 7 and ...

  7. Structural defects in electrodeposited Ni studied by positron annihilation

    International Nuclear Information System (INIS)

    Vertes, A.; Szeles, C.; Czako-Nagy, I.; Lakatos-Varsanyi, M.

    1982-01-01

    Structural investigation of electrodeposited Ni was carried out by positron annihilation (PA) technique. Additional Moessbauer effect and X-ray diffraction measurements were also performed. The samples were produced under different plating conditions resulting in stress in the range -100 to +600 N/mm 2 . From the positron lifetime measurements it seems that the defect pattern of electrodeposited Ni samples might be substantially different from sample to sample with different deposition and plating conditions. (Auth.)

  8. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  9. Separation and electrodeposited of 210 Po

    International Nuclear Information System (INIS)

    Ordonez R, E.; Iturbe G, J.L.

    1991-12-01

    Presently work it was determined the selective separation of the 210 Po that is in an uraniferous mineral, by means of acid leaching of the mineral and the purification was carried out by means of partition chromatography whose stationary phase is 2-ethylhexyl phosphoric acid (D 2 EHPA), it has been possible to isolate the 210 Po of the rest of the radioactive elements that conform the family 4 N +2 , the optimal elutriation conditions of this element were settled down of manner of not dragging other radioelements. Another of the achievements presented in this communication has been the electrodeposition of this element has more than enough stainless steel discs with a superior yield to 95%. (Author)

  10. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Wodarz, Siggi [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hasegawa, Takashi; Ishio, Shunji [Department of Materials Science, Akita University, Akita City 010-8502 (Japan); Homma, Takayuki, E-mail: t.homma@waseda.jp [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2017-05-15

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated. - Highlights: • Ultra-fine CoPt nanodot arrays were fabricated by electrodeposition. • Crystallinity of hcp (002) was improved with uniform composition formation. • Uniform formation of hcp lattices leads to an increase in the coercivity.

  11. Kinetics of Ni–Mo electrodeposition from Ni-rich citrate baths

    International Nuclear Information System (INIS)

    Beltowska-Lehman, E.; Indyka, P.

    2012-01-01

    The kinetics of Ni–Mo alloy electrodeposition on steel substrates from an aqueous citrate–ammonia complex baths has been investigated by means of steady-state polarisation measurements in a system with a rotating disc electrode (RDE). Partial current densities for discharge of Ni(II) and Mo(VI) ions and hydrogen evolution as a function of molybdate concentration in the bath, cathode potentials and the rate of mass transport were determined. It has been shown that – under all investigated conditions – Ni–Mo alloy deposition is more favourable than pure nickel and the cathodic process is strongly influenced by the Mo(VI) content in the solution. The Ni(II) electroreduction rate initially increases, as the cathode potential shifts towards more negative values and the concentration of molybdate grows in the solution. However, for the highest examined MoO 4 2− content, a considerable decrease in the rate of the process is subsequently observed at certain limit potentials, the values of which depend on molybdate concentration and hydrodynamic conditions. This effect, related to the formation of intermediate molybdenum oxides (characterised by very low overvoltage for hydrogen evolution), becomes less pronounced when the RDE rotation speed is increased. Hydrogen evolution is strongly associated with molybdenum deposition. An increase of the molybdate ions concentration in the bath, as well as an increase in the rate of mass transport, leads to an increase in Mo content in deposits and to the reduction of current efficiency. The Ni–Mo coatings electrodeposited from the designed bath (with the current efficiency of about 70%) containing about 30 wt.% Mo, are characterised by a shiny-grey appearance and good adhesion to the steel substrate. They are characterised by column growth and amorphous microstructure with randomly distributed nanocrystallites of the MoNi 4 intermetallic phase.

  12. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  13. A Nose for Hydrogen Gas: Fast, Sensitive H2 Sensors Using Electrodeposited Nanomaterials.

    Science.gov (United States)

    Penner, Reginald M

    2017-08-15

    Hydrogen gas (H 2 ) is odorless and flammable at concentrations above 4% (v/v) in air. Sensors capable of detecting it rapidly at lower concentrations are needed to "sniff" for leaked H 2 wherever it is used. Electrical H 2 sensors are attractive because of their simplicity and low cost: Such sensors consist of a metal (usually palladium, Pd) resistor. Exposure to H 2 causes a resistance increase, as Pd metal is converted into more resistive palladium hydride (PdH x ). Sensors based upon Pd alloy films, developed in the early 1990s, were both too slow and too insensitive to meet the requirements of H 2 safety sensing. In this Account, we describe the development of H 2 sensors that are based upon electrodeposited nanomaterials. This story begins with the rise to prominence of nanowire-based sensors in 2001 and our demonstration that year of the first nanowire-based H 2 sensor. The Pd nanowires used in these experiments were prepared by electrodepositing Pd at linear step-edge defects on a graphite electrode surface. In 2005, lithographically patterned nanowire electrodeposition (LPNE) provided the capability to pattern single Pd nanowires on dielectrics using electrodeposition. LPNE also provided control over the nanowire thickness (±1 nm) and width (±10-15%). Using single Pd nanowires, it was demonstrated in 2010 that smaller nanowires responded more rapidly to H 2 exposure. Heating the nanowire using Joule self-heating (2010) also dramatically accelerated sensor response and recovery, leading to the conclusion that thermally activated H 2 chemisorption and desorption of H 2 were rate-limiting steps in sensor response to and recovery from H 2 exposure. Platinum (Pt) nanowires, studied in 2012, showed an inverted resistance response to H 2 exposure, that is, the resistance of Pt nanowires decreased instead of increased upon H 2 exposure. H 2 dissociatively chemisorbs at a Pt surface to form Pt-H, but in contrast to Pd, it stays on the Pt surface. Pt nanowires

  14. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  15. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  16. Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath

    International Nuclear Information System (INIS)

    Dubent, S.; Mertens, M.L.A.D.; Saurat, M.

    2010-01-01

    Tin-zinc alloy electroplated coatings are recognized as a potential alternative to toxic cadmium as corrosion resistant deposits because they combine the barrier protection of tin with the cathodic protection afforded by zinc. The coatings containing 20 wt.% zinc, balance tin, offer excellent corrosion protection for steel and do not form gross voluminous white corrosion products like pure zinc or high zinc alloy deposits. In this study, the effects of variables of the process (i.e. cathodic current density, pH and temperature) on deposit composition have been evaluated using a Hull cell to obtain 20 wt.% zinc alloy coatings. The tin-20 wt.% zinc deposits, produced with electroplating optimized conditions, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray fluorescence spectrometry (XRF) and glow discharge optical emission spectrometry (GDOES). On the other hand, the corrosion behaviour of tin-zinc alloy electroplated coatings on steel has been investigated using electrochemical methods in a 3 wt.% NaCl solution and the salt spray test. The performance of the deposits was compared with cadmium and zinc-nickel electrodeposited coatings. The results show that the corrosion resistance of tin-20 wt.% zinc alloy coating is superior to that of cadmium and zinc-12 wt.% nickel coatings. Finally, sliding friction tests were conducted.

  17. Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode

    NARCIS (Netherlands)

    Jayasayee, K.; Veen, van J.A.R.; Hensen, E.J.M.; Bruijn, de F.A.

    2011-01-01

    The dependence of the rate of Ni dissolution from PtNi alloys on the chloride concentration was studied electrochemically in 0.5 M HClO4 at room temperature. Electrodeposited PtNi catalysts were subjected to extensive potential cycling between 20 mV and 1.3 V at various Cl- concentrations and the

  18. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  19. Preparation of CuGaSe2 absorber layers for thin film solar cells by annealing of efficiently electrodeposited Cu-Ga precursor layers from ionic liquids

    International Nuclear Information System (INIS)

    Steichen, M.; Larsen, J.; Guetay, L.; Siebentritt, S.; Dale, P.J.

    2011-01-01

    CuGaSe 2 absorber layers were prepared on molybdenum substrates by electrochemical codeposition of copper and gallium and subsequential annealing in selenium vapour. The electrodeposition was made from a deep eutectic based ionic liquid consisting of choline chloride/urea (Reline) with a plating efficiency of over 85%. The precursor film composition is controlled by the ratio of the copper to gallium fluxes under hydrodynamic conditions and by the applied deposition potential. X-ray diffraction reveals CuGa 2 alloying during the electrodeposition and CuGaSe 2 formation after annealing. Photoluminescence (PL) and photocurrent spectroscopy revealed the good opto-electronic properties of the CuGaSe 2 absorber films. The absorber layers have been converted to full devices with the best device achieving 4.0 % solar conversion efficiency.

  20. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction

    DEFF Research Database (Denmark)

    Zhao, Jian; Sun, Libo; Canepa, Silvia

    2017-01-01

    Fabrication of catalytically active electrodes by electrodeposition is attractive due to its in situ nature, easy controllability, and large-scale operation capability. Most recently, modifying the electrodes with phosphate ligands through electrodepositing electrode materials has shown promising...

  1. Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents

    Energy Technology Data Exchange (ETDEWEB)

    Moravej, Maryam [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgy and Materials Engineering and University Hospital Research Center, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Amira, Sofiene [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Prima, Frederic [Laboratory for Physical Metallurgy, Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, Paris 6 (France); Rahem, Ahmed [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Fiset, Michel [Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); and others

    2011-12-15

    Pure iron has become one of the most interesting candidate materials for degradable metallic stents due to its high mechanical properties and moderate degradation. In this work we studied the effect of electrodeposition current density on microstructure and degradation of pure iron films electrodeposited on Ti alloy substrate for degradable metallic stent application. Iron sheets were produced by electrodeposition using four different current densities 1, 2, 5 and 10 A dm{sup -2}. The films were then studied by SEM (scanning electron microscope) and EBSD (electron backscatter diffraction) to observe the surface morphology, grain size and orientation. Potentiodynamic polarization and static immersion tests were used to determine the corrosion rate and to study the degradation behavior of iron films, respectively. The current density was found to significantly influence the texture, the grain size and the grain shape of the electrodeposited iron. At current densities of 1, 5 and 10 A dm{sup -2}, weak textures corresponding to Left-Pointing-Angle-Bracket 1 0 1 Right-Pointing-Angle-Bracket , Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 1 1 2 Right-Pointing-Angle-Bracket in the normal (electrodeposition) direction were obtained, respectively. At these current densities, average grain sizes smaller than 3 {mu}m were also obtained. However, at 2 A dm{sup -2}, a strong Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket //ND texture with density of 7.4 MUD was obtained with larger average grain size of 4.4 {mu}m. The microstructure of iron samples changed after annealing at 550 Degree-Sign C because of the induced recrystallization. Different corrosion rates were obtained from potentiodynamic polarization curves of iron films deposited at different current densities because of their microstructures. Fe-2 showed the lowest corrosion rate due to its larger grains size and its texture. The corrosion rates of all

  2. Preparation and characterization of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  3. Preparation and characterization of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Irshad, M. I.; Mohamed, N. M.; Ahmad, F.; Abdullah, M. Z.

    2014-01-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl 2 Ðœ‡6H2O salt solution was used, which was buffered with H 3 BO 3 and acidified by dilute H 2 SO 4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications

  4. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  5. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  6. Preparation of uranium electrodeposited target in aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Qiping, Chen; Yougen, Li; Wenbin, Zhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2006-03-15

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO{sub 2}(NO{sub 3}){sub 2} and (NH{sub 4}){sub 2}C{sub 2}O{sub 4}, which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm{sup 2}, the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  7. Use of carriers for to electrodeposited radium 226

    International Nuclear Information System (INIS)

    Iturbe, J.L.

    1991-10-01

    The form of the energy distribution of a monoenergetic alpha particle starting from some emitting source of these particles, it depends on the quantity of material that its cross before being detected. Some authors deposit to the radium-226 by means of direct evaporation of the solution on metallic supports, on millipore paper and by electrodeposition. Some other ones place the radium solution in scintillation liquid, to quantify it by this technique. The objective of the present work is using carriers with the same oxidation state of the radium, that is to say of 2 + , for treating to be electrodeposited to the radium-226 with the biggest possible percentage for later use the alpha spectroscopy technique to quantify it. The carriers that have been used until its they are barium and zinc in form of barium chloride, zinc nitrate and zinc sulfate. The first results indicate that with the zinc solution a yield of 40% of electrodeposited radium has been reached. (Author)

  8. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  9. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  10. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  11. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  12. Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles

    International Nuclear Information System (INIS)

    Boshkov, N.; Tsvetkova, N.; Petrov, P.; Koleva, D.; Petrov, K.; Avdeev, G.; Tsvetanov, Ch.; Raichevsky, G.; Raicheff, R.

    2008-01-01

    The anodic behavior, corrosion resistance and protective ability of Zn and alloyed Zn-Co (∼3 wt.%) nanocomposite coatings were investigated in a model corrosion medium of 5% NaCl solution. The metallic matrix of the layers incorporates core-shell nano-sized stabilized polymeric micelles (SPMs) obtained from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block co-polymers. The protective properties of the composite coatings were evaluated using potentiodynamic polarization technique, polarization resistance measurements and powder X-ray diffraction. The sizes and distribution of the stabilized polymeric micelles in the starting electrolytes used as well as in the metal matrices of the layers were investigated using scanning and transmission electron microscopy. The results obtained are compared to those of electrodeposited Zn and Zn-Co (∼3 wt.%) alloy coatings at identical conditions and demonstrate the enhanced protective characteristics of the Zn nanocomposites during the investigating period. The influence of the SPMs on the corrosion resistance of the nanocomposite layers is commented and discussed

  13. In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, Dhanaraj, E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Karthika, Arumugam; Nithiya, Subramani [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Kavitha, Louis [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India)

    2014-03-01

    The present study deals with the optimization of minerals (Sr, Mg and Zn) substituted hydroxyapatite coatings (M-HAP) at different pulse on and off time (1 s, 2 s, 3 s and 4 s) by pulsed electrodeposition method. The formation of M-HAP coating was investigated using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction studies (XRD). The morphological features and the content of Sr, Mg and Zn ions in M-HAP coated Ti–6Al–4V were investigated by high resolution scanning electron microscopy (HRSEM) and energy dispersive X-ray analysis (EDAX). The electrochemical studies were performed for M-HAP coated Ti–6Al–4V in simulated body fluid which exhibited better corrosion resistance at the prolonged pulse off time. The in vitro cell adhesion test revealed that the M-HAP coating is found appropriate for the formation of new cell growth which proves the enhanced biocompatible nature of the coating. Thus the M-HAP coating will serve as a potential candidate in orthopedic applications. - Highlights: • We successfully achieved minerals substituted HAP coatings on Ti alloy by PED method. • The M-HAP coated Ti alloy exhibited better bioresistivity in SBF. • The as-coated sample showed antimicrobial activity and better cell viability. • The in vitro test displayed the formation of new cell growth. • The M-HAP coating can serve as a better candidate in orthopedic applications.

  14. HER Catalytic Activity of Electrodeposited Ni-P Nanowires under the Influence of Magnetic Field

    Directory of Open Access Journals (Sweden)

    Hung-Bin Lee

    2013-01-01

    Full Text Available Nickel alloy electrodes both in plane and nanowire morphologies were fabricated by electrodeposition in sulfamate bath. With the increasing concentration of phosphorous acid in the electrolyte, the P content in the deposition increased accordingly. In the meantime, the grain refined and even became amorphous in microstructure as the P content was raised. For the nanowire electrode, vibrating sample magnetometer (VSM measurement showed that its coercivity was anisotropic and decreased with P-content. In addition, the easy axis for magnetization of the electrode was parallel to the axial direction of nanowire. The electrocatalytic activity measurement of the electrode in 0.5 M H2SO4 electrolyte showed that the nanowire electrode had higher activity than the plane one, and the alloying of P in Ni electrode raised its hydrogen evolution reaction (HER performance. The enhanced performance of nanowire electrode was attributed to the smaller and more uniform hydrogen bubbles generated in HER reaction. Finally, the applied magnetic field (3.2 T improved significantly the HER activity of Ni but not Ni-P electrode. By using nanowire morphology and applying magnetic field, the current density at −0.75 V HER stability test of the Ni electrode increased fourfold more than its plane counterpart.

  15. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    International Nuclear Information System (INIS)

    Jiang Qianlei; Xue Ruisheng; Jia Mengqiu

    2012-01-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu 2 Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  16. Electrodeposition of polyfluorene on a carbon nanotube electrode

    International Nuclear Information System (INIS)

    Valentini, L; Mengoni, F; Mattiello, L; Kenny, J M

    2007-01-01

    Electrophoretically deposited single-walled carbon nanotube (SWCNT) films on a transparent conducting surface are used as electrodes for the electrodeposition of a π-conjugated polymer formed by the oxidative coupling of fluorene units. This method provides a uniform coverage of the conducting surface with respect to SWCNTs chemically assembled on a gold substrate. Electron microscopy reveals the formation of a polymer-SWCNT nanostructure which imparts distinct electrical properties from those of the polymer electrodeposited on the neat electrode. By combining the attractive properties of SWCNTs and polyfluorene, these nanocomposites open up new opportunities to achieve electrical contacts in nano- to micro-devices

  17. Morphology selection for cupric oxide thin films by electrodeposition.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  18. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries

    Directory of Open Access Journals (Sweden)

    Sironmani Palraj

    2016-02-01

    Full Text Available Waterborne epoxy coatings were prepared on aluminium (Al surfaces by cathodic electro-deposition on the pretreated surface of pickling, phosphating, chromating and anodizing. The electro-deposition experiments were done at two different voltages, 15 V and 25 V at room temperature in 10% epoxy coating formulations. Corrosion and thermal behavior of these coatings were investigated using electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The coating exhibits better corrosion resistance in anodized Al surface than the other. But, TGA studies show that the thermal stability is higher in anodized and chromated Al surfaces. The surface morphology of these coatings were analyzed by SEM and AFM studies.

  19. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  20. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  1. Co{sub 100−x}Fe{sub x} magnetic thick films prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, M. del C., E-mail: carmenaguirre@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola-Conicet-Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Farías, E. [Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Abraham, J.; Urreta, S.E. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2015-04-05

    Highlights: • Low iron containing films are compact, with rounded, relatively uniform surfaces. • Larger Fe contents exhibit nanowall networks covering the surface. • Coercivity in the out of plane configuration is larger than in the easy axis direction. • Co-rich films nucleate and grow by a 3DP diffusion controlled mechanism. • For equiatomic Fe{sub 50}Co{sub 50} films, nucleation tends to become instantaneous. - Abstract: Co–Fe films are grown onto plane pre-treated Cu foils; the effects of the alloy composition on the morphology and the crystal texture of the electrodeposited films and their anisotropic magnetic hysteresis properties are explored. Nucleation and crystallization mechanisms in these Co-rich layers are also investigated with pulse-reverse plating techniques, using the first cathodic pulse current–time transients. In the diffusion controlled regime the deposition mechanism is found to involve progressive nucleation with three-dimensional (3D) growth, except for the equiatomic Fe{sub 50}Co{sub 50} solution where nucleation tends to become instantaneous. The different morphologies and size scales observed are described and correlated with coercivity. The films are electrodeposited onto electrochemically pre-treated Cu substrates from feeds of nominal Fe/Co mol ratios between 0/100 and 50/50. The composition of the deposited layers, as determined by energy dispersive X-ray spectroscopy, are quite close to the nominal values. Cyclic voltammetry determinations exhibit only a single reduction process on the cathode, indicating that a unique (Co{sub 100−x}Fe{sub x}) phase grows. Depending on composition and on the substrate pre-treatment, these layers exhibit textures with features of different sizes. X ray diffraction patterns indicate that the nanostructures with Fe contents above 20 at.% crystallize in a body-centered cubic cell, while samples with Fe contents below this value are fcc. Regarding the effect of composition on the

  2. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    Science.gov (United States)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  3. Flotation separation of Cd, Co, Cr, Cu, Ni and Tl from calcium minerals and their determination by inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zajkova-Paneva, Vesna; Stafilov, Trajche; Boev, Blazho

    2003-01-01

    The method of inductively coupled plasma-atomic spectrometry (ICP-AES), is developed for determination of Cd, Co, Cr, Cu, Ni and Tl in traces in calcite and gypsum. The interferences of Ca as matrix element on Co, Cr, Cu, Ni and Tl intensities during their ICP-AES determination are investigated. The results reveal that Ca does not interfere on intensities of Cr, but tends to decrease the intensity of the other elements. To eliminate those matrix interferences of Ca on trace elements intensities a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC) 2 , is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The most suitable concentrations of calcite and gypsum solutions for flotation are ascertained. The detection limits of ICP-AES method following flotation of elements present in calcite and gypsum as impurities are determined: 0.022 and 0.061 μg·g -1 for Cd, 0.071 and 0.042 μg·g -1 for Co, 0.026 and 0.132 μg·g -1 for Cr, 0.164 and 0.149 μg·g -1 for Cu, 0.289 and 0.095 μg·g -1 for Ni and 0.645 and 0.7666 μg·g -1 for Tl, respectively. (Original)

  4. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  5. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  6. Electrodeposition of a Au-Dy2O3 Composite Solid Oxide Fuel Cell Catalyst from Eutectic Urea/Choline Chloride Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Claudio Mele

    2012-12-01

    Full Text Available  In this research we have fabricated and tested Au/Dy2O3 composites for applications as Solid Oxide Fuel Cell (SOFC electrocatalysts. The material was obtained by a process involving electrodeposition of a Au-Dy alloy from a urea/choline chloride ionic liquid electrolyte, followed by selective oxidation of Dy to Dy2O3 in air at high temperature. The electrochemical kinetics of the electrodeposition bath were studied by cyclic voltammetry, whence optimal electrodeposition conditions were identified. The heat-treated material was characterised from the morphological (scanning electron microscopy, compositional (X-ray fluorescence spectroscopy and structural (X-ray diffractometry points of view. The electrocatalytic activity towards H2 oxidation and O2 reduction was tested at 650 °C by electrochemical impedance spectrometry. Our composite electrodes exhibit an anodic activity that compares favourably with the only literature result available at the time of this writing for Dy2O3 and an even better cathodic performance.

  7. Morphological instability during steady electrodeposition at overlimiting currents

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2015-01-01

    We present a linear stability analysis of a planar metal electrode during steady electrodeposition. We extend the previous work of Sundstrom and Bark by accounting for the extended space-charge density, which develops at the cathode once the applied voltage exceeds a few thermal voltages...

  8. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    Science.gov (United States)

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  9. Identification of an anomalous phase in Ni–W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Somers, Marcel A. J.

    2008-01-01

    In the present work Ni–W layers electrodeposited from electrolytes based on NiSO4, Na2WO4, citrate, glycine and triethanolamine are characterized with glow discharge optical emission spectroscopy (GD-OES) and X-ray diffraction analysis (XRD). XRD showed the occurrence of an anomalous phase...

  10. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  11. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Shu, Jonathan; Archer, Lynden A.

    2015-01-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide

  12. The fabrication of short metallic nanotubes by templated electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chienwen, Huang; Hao Yaowu, E-mail: yhao@uta.ed [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX 76051 (United States)

    2009-11-04

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  13. The fabrication of short metallic nanotubes by templated electrodeposition

    International Nuclear Information System (INIS)

    Huang Chienwen; Hao Yaowu

    2009-01-01

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  14. Effect of electrodeposition potential on composition and morphology ...

    Indian Academy of Sciences (India)

    The underpotential deposition mechanism of Cu–Se and In–Se phases was observed in ... Thin films; cyclic voltammetry; CuInGaSe (CIGS); solar cell; electrodeposition. 1. ... trode was a Pt spiral wire and the working electrode was. 735 ...

  15. Metal-organic framework templated electrodeposition of functional gold nanostructures

    International Nuclear Information System (INIS)

    Worrall, Stephen D.; Bissett, Mark A.; Hill, Patrick I.; Rooney, Aidan P.; Haigh, Sarah J.; Attfield, Martin P.; Dryfe, Robert A.W.

    2016-01-01

    Highlights: • Electrodeposition of anisotropic Au nanostructures templated by HKUST-1. • Au nanostructures replicate ∼1.4 nm pore spaces of HKUST-1. • Encapsulated Au nanostructures active as SERS substrate for 4-fluorothiophenol. - Abstract: Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals.

  16. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  17. Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying.

    Science.gov (United States)

    Cherevko, Serhiy; Kulyk, Nadiia; Chung, Chan-Hwa

    2012-01-21

    Hydrogen evolution assisted electrodeposition is a new bottom-up technique allowing the fast and simple synthesis of nanometals. Electrochemical dealloying is a top-down approach with the same purpose. In this work, we show that a combination of these two methods in sequence by pulse-reverse electrodeposition can be used to prepare high-surface-area nanostructured metals. Highly porous adherent platinum is obtained by the deposition of CuPt alloy during the cathodic cycles and the selective dissolution of copper during the anodic cycles. The convection created by the movement of the hydrogen bubbles increases the deposition rate and removes the dissolved copper ions from the diffusion layer, which ensures the deposition of a film with the same stoichiometry throughout the whole process. Due to the relatively high ratio of copper atoms on the surface in the as-deposited layer, it is proposed that the dealloying kinetics is significantly higher than that usually observed during the dealloying process in a model system. The proposed approach has several advantages over other methods, such as a very high growth rate and needlessness of any post-treatment processes. A detailed analysis of the effect of pulse-reverse waveform parameters on the properties of the films is presented. Mesoporous platinum with pores and ligaments having characteristic sizes of less than 10 nm, an equivalent surface area of up to ca. 220 m(2) cm(-3), and a roughness factor of more than 1000 is fabricated.

  18. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China); Chang, W.T. [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2009-07-01

    Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency.

  19. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  20. Mechanical behaviour of Zn-Fe alloy coated mild steel

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Agathocleous, P.E.; Giannakopoulos, K.I.

    2009-01-01

    Zinc alloy coatings containing various amounts of Fe were deposited by electrodeposition technique on a mild steel substrate. The concentration of Fe in the produced alloy coatings ranged from 0 to 14 wt.%, whereas the thickness of the coatings was about 50 μm. Structural and metallurgical characterization of the produced coatings was performed with the aid of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. This study aims in investigating the mechanical behaviour of Zn-Fe coated mild steel specimens, as no research investigation concerning the tensile behaviour of Zn alloy coated ferrous alloys has been reported in the past. The experimental results indicated that the ultimate tensile strength of the Zn-Fe coated mild steel was lower than the bare mild steel. In addition, the ductility of the Zn-Fe coated mild steel was found to decrease significantly with increasing Fe content in the coating.

  1. Preparation and Characterization of Nicke-iron Alloy Film as Freestanding Electrode for Oxygen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    Yao Mengqi

    2018-01-01

    Full Text Available This work reports the porous nicke-iron alloy film supported on stainless steel mesh as freestanding electrode for enhanced oxygen evolution reaction (OER catalyst prepared from an one step electrodeposition method. Results indicated that the porous nickle-iron alloy film exhibits a low overpotential of 270 mV at 10 mA cm-2 and excellent electroconductibility. The superior OER properties can be attributed to its novel synthetic process, conductive substrate and porous structure. This work will provide a new strategy to fabricate alloy film for OER electrocatalyst.

  2. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.K. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Jeong, G.H. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Park, I.S. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Na, S.M. [Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)]. E-mail: nsmv2k@skku.edu; Suh, S.J. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2007-03-15

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-{mu}m-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  3. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Science.gov (United States)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  4. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    International Nuclear Information System (INIS)

    Lim, S.K.; Jeong, G.H.; Park, I.S.; Na, S.M.; Suh, S.J.

    2007-01-01

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM

  5. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Seok-Soon; Nah, Yoon-Chae; Noh, Yong-Young; Jo, Jang; Kim, Dong-Yu

    2006-01-01

    Pt electrodes were prepared by direct and pulse current electrodeposition for use as counter electrodes in dye-sensitized solar cells. Scanning electron microscope and transmission electron microscope images confirmed the formation of uniform Pt nanoclusters of ∼40 nm composed of 3 nm nanoparticles, when the pulse current electrodeposition method was used, as opposed to the dendritic growth of Pt by the results from direct current electrodeposition. By applying pulse electrodeposited Pt which has a 1.86 times higher surface area compared to direct current electrodeposited Pt, short-circuit current and conversion efficiency were increased from 10.34 to 14.11 mA/cm 2 and from 3.68 to 5.03%, respectively. In addition, a flexible solar cell with a pulse current electrodeposited Pt counter electrode with a conversion efficiency of 0.86% was demonstrated

  6. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  7. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    International Nuclear Information System (INIS)

    Lehr, I.L.; Saidman, S.B.

    2012-01-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  8. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    Science.gov (United States)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  9. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ivana Škugor Rončević

    2016-12-01

    Full Text Available The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetallic compound. To improve the corrosion resistance, it is necessary to find an effective protection method for the alloy surface. Knowing and predicting electrochemical processes is an essential for the design and optimization of protective coatings on magnesium and its alloys. In this work, the formations of nickel protective coatings on the magnesium AZ91D alloy surface by electrodeposition and chemical deposition, are presented. For this purpose, environmentally friendly electrolytes were used. The corrosion resistance of the protected alloy was determined in chloride medium using appropriate electrochemical techniques. Characterization of the surface was performed with highly sophisticated surface-analytical methods.

  10. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  11. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  12. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  13. Silver electrodeposition on nanostructured gold: from nanodots to nanoripples

    International Nuclear Information System (INIS)

    Claro, P C dos Santos; Fonticelli, M; BenItez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C

    2006-01-01

    Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of ∼50 nm average size and ∼4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order

  14. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  15. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  16. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing a la...... geometry is almost always analogous to bending, and fracture resistance is provided through deviation of the channel crack by weak interfaces, resulting in 'terrace cracking'....

  17. Electrodeposition of uranium in stirred liquid cadmium cathode

    International Nuclear Information System (INIS)

    Koyama, T.; Tanaka, H.

    1997-01-01

    The electrodeposition of U in a liquid Cd cathode was known to be hampered by the formation of dendritic U on the Cd surface. Electrotransports of uranium to the stirred liquid Cd cathode were carried out at 773 K for different cathode current densities and different Reynolds number of stirring. The maximum amount of U taken in the liquid Cd cathode without forming dendrites was found to increase with an increasing Reynolds number of stirring and decrease with increasing cathode current density. (orig.)

  18. Quantum conductance in electrodeposited nanocontacts and magnetoresistance measurements

    DEFF Research Database (Denmark)

    Elhoussine, F.; Encinas, A.; Mátéfi-Tempfli, Stefan

    2003-01-01

    The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus of conduct...... of conductance during their dissolution in units of e/h, as expected for ferromagnetic ballistic nanocontacts. The measurement of the positive and negative magnetoresistance in Co-Ni nanocontacts was also elaborated....

  19. Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni

    International Nuclear Information System (INIS)

    Roy, I.; Yang, H.W.; Dinh, L.; Lund, I.; Earthman, J.C.; Mohamed, F.A.

    2008-01-01

    We present here for the first time observations that grain boundaries in electrodeposited (ED) nanocrystalline (nc) Ni are predominantly of Σ3 character. The results presented are based on orientation imaging microscopy (OIM) performed to produce electron backscatter diffraction (EBSD) maps. This large volume fraction of coherent low sigma coincidence site lattice (CSL) boundaries appears to be consistent with the superior corrosion resistance of ED nc-Ni in comparison with its coarse-grained counterpart

  20. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  1. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  2. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    Science.gov (United States)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  3. Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Carlos, I.A.

    2009-01-01

    This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 x 10 -1 mol L -1 Zn(NO 3 ) 2 + 2.5 x 10 -2 mol L -1 AgNO 3 . This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (E d ), deposition charge density (q d ) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology

  4. 2010 ELECTRODEPOSITION GORDON RESEARCH CONFERENCE, AUGUST 1-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Peter Searson

    2010-08-06

    The 2010 Gordon Conference on Electrodeposition will present cutting-edge research on electrodeposition with emphasis on (i) advances in basic science, (ii) developments in next-generation technologies, and (iii) new and emerging areas. The Conference will feature a wide range of topics, from atomic scale processes, nucleation and growth, thin film deposition, and electrocrystallization, to applications of electrodeposition in devices including microelectronics, solar energy, and power sources. The Conference will bring together investigators from a wide range of scientific disciplines, including chemical engineering, materials science and engineering, physics, and chemistry. The Conference will feature invited speakers at the forefront of the field, and a late-breaking news session that will provide the opportunity for graduate students, post-docs, and junior faculty to participate. The collegial atmosphere of this Conference, with scientific talks and poster sessions, as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to discuss current issues and promotes cross-disciplinary collaborations in the various research areas represented. The Conference will be held at Colby-Sawyer College, located in the Mt. Kearsarge-Lake Sunapee Region of New Hampshire. The surrounding mountains, forests, and lakes provide a beautiful setting for this conference. The attendance is limited so early application is strongly advised.

  5. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    Science.gov (United States)

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  6. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  7. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  8. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    Science.gov (United States)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  9. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  10. Effect of glycerin and formic acid in the efficiency of deposit on Zn-Ni, obtained by electrodeposition; Efeito da glicerina e do acido formico na eficiencia de deposito da liga Zn-Ni, obtido atraves de eletrodeposicao

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza, G.A.G.; Souza, C.A.C.; Lima, L.R.P.A.; Ferreira, D.M. [Universidade Federal da Bahia - Escola Politecnica, BA (Brazil)

    2010-07-01

    Additives are added to the electrodeposition of metal coatings to improve the characteristics of the deposit. However, the objective was to investigate the effect of adding glycerin and formic acid in the deposition efficiency and deposit structure of zinc-nickel alloy obtained by electrodeposition. The depositions were made at a galvanostatic current density of 10 mA/cm{sup 2} to obtain a deposit of about 5 mm in thickness. The deposition efficiency was determined through measures of mass, chemical composition of the deposit in the presence and absence of additives was examined by X-ray Spectrometer Fluorescence (XRF) and surface characterization of coatings was performed by Scanning Electron Microscopy (SEM). The high levels of glycerin (0,07 M) and formic acid (0,26 M) in bath deposition increased the deposition efficiency of around 10% to 12% by mass, respectively. (author)

  11. Electrodeposited cadmium selenide films for solar cells; Electrodeposition de couches minces de CdSe: Application a la conversion photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Bnamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A. [Universite Mohammed 5, Rabat (Morocco). Faculte des Sciences; Fahoume, M. [Universite Ibn Tofail, Faculte des Sciences, Kenitra (Morocco)

    1998-01-01

    Solar cells based on II-IV semiconductors are among the leading candidates for low-cost photovoltaic conversion of solar energy due to their high absorption coefficients and therefore the low materials consumption for their production. The synthesis of polycrystalline Cd Se thin films by cathodic electrodeposition on conducting substrates is described in this paper. Electrodeposition involves potentiostatic reduction from an acid aqueous bath. The influence of bath temperature and deposition potential on the crystallinity is discussed. For optimized deposition parameters, the XRD patterns reveal cubic and hexagonal Cd Se. Electron probe microanalysis shows an excess of Se in the samples. Photoelectrochemical studies of the films in aqueous polysulfide allowed us to determine the photovoltaic properties e.g.: semiconducting type, short-circuit current, open circuit voltage and fill factor. (authors) 5 refs.

  12. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binyan; Lu, Shixiang, E-mail: shixianglu@bit.edu.cn; Xu, Wenguo, E-mail: wenguoxu60@bit.edu.cn; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH{sub 3}COO){sub 2} concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH{sub 3}COO){sub 2} concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and

  13. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    International Nuclear Information System (INIS)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH_3COO)_2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH_3COO)_2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched

  14. Forming a structure of the CoNiFe alloys by X-ray irradiation

    Science.gov (United States)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  15. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes.

    Science.gov (United States)

    Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng

    2018-01-02

    In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed.

  16. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are

  17. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  18. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  19. Corrosion properties of pulse-plated zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Alfantazi, A.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada)

    1996-11-01

    Corrosion properties of pulse-plated Zn-Ni alloy coating on a steel substrate were investigated using the neutral salt-spray test (ASTM B 117-81) and the potentiodynamic polarization technique (ASTM G 5-82). Performance of these alloy coatings with various Ni contents (up to 62 wt%) was compared to that of laboratory-prepared electrodeposited Zn coatings and commercial galvannealed (GA) steel. Results of the neutral salt-spray test indicated corrosion resistance of pulse-plated Zn-Ni alloy coatings was superior to that of the pure Zn and commercial GA coating. The Zn-20 wt% Ni and Zn-14 wt% Ni alloys gave the best protection of the Zn-Ni coatings tested. Potentiodynamic polarization tests confirmed excellent corrosion performance of the 20 wt% Ni alloy

  20. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  1. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  2. Enhancement of the lithium cycling capability using Li–Zn alloy substrate for lithium metal batteries

    International Nuclear Information System (INIS)

    Chen, Chen; Yang, Yifu; Shao, Huixia

    2014-01-01

    Graphical abstract: - Highlights: • Li-Zn alloy substrate is novelly formed by Li electrodeposition on the Zn substrate precursor. • The coulombic efficiency of Li deposition/stripping on the Li-Zn alloy substrate remains high at 96.7% after 400 cycles. • The SEI film formed during the formation of Li-Zn alloy is stable during Li deposition/stripping cycling on the Li-Zn substrate. • The exchange current density of Li deposition on the Li-Zn substrate is 9.21 × 10 −4 A cm −2 which is nearly eight times larger than that on the Cu substrate. - Abstract: The cycling performance of a Li metal electrode in rechargeable Li batteries is studied using a novelly formed Li–Zn alloy as a substrate. A Zn layer electrodeposited on a Cu disk with ultrasonic assistance is used as a substrate precursor. Li electrodeposition followed to form the Li–Zn alloy. The morphologies of the substrate before and after Li deposition and stripping are investigated by scanning electron microscopy (SEM), and the electrochemical properties of the substrate are investigated by galvanostatic charge-discharge and cyclic voltammetry (CV). The growth states of solid electrolyte interface (SEI) films of Li deposits on the Li–Zn alloy and Cu surfaces are compared by electrochemical impedance spectroscopy (EIS); exchange current densities of Li electrodeposition on Cu, Zn, and Li–Zn alloy substrates are also compared based on tests of constant current pulse deposition. The efficiency of Li deposition/stripping on the Li–Zn alloy substrate remains high at 96.7% after 400 cycles at a current density of 0.1 mA cm −2 and 250 cycles at the current density of 0.2 mA cm −2 . These results can be attributed to the formation of a stable SEI film on the Li–Zn substrate and the high exchange current density of Li deposition and stripping on this substrate. The Li–Zn alloy proposed in this work may be a perfect substrate for enhancing the cycling capability of Li metal electrode

  3. Morphology of uranium electrodeposits on cathode in electrorefining process: A phase-field simulation

    International Nuclear Information System (INIS)

    Shibuta, Yasushi; Sato, Takumi; Suzuki, Toshio; Ohta, Hirokazu; Kurata, Masaki

    2013-01-01

    Morphology of uranium electrodeposits on cathode with respect to applied voltage, zirconium concentration in the molten salt and the size of primary deposit during pyroprocessing is systematically investigated by the phase-field simulation. It is found that there is a threshold zirconium concentration in the molten salt demarcating planar and cellular/needle-like electrodeposits, which agrees with experimental results. In addition, the effect of size of primary deposits on the morphology of electrodeposits is examined. It is then confirmed that cellular/needle-like electrodeposits are formed from large primary deposits at all applied voltages considered, whereas both the planar and cellular/needle-like electrodeposits are formed from the primary deposits of 10 μm and less

  4. Fabrication of Ni-Mn Microprobe Structure with Low Internal Stress and High Hardness by Employing DC Electrodeposition

    Directory of Open Access Journals (Sweden)

    Kuan-Hui Cheng

    2014-01-01

    Full Text Available Due to its widely tunable mechanical property and incompatibility with most solders, Ni-Mn alloy can become a viable candidate in the fabrication of testing probe for microelectronic devices. In this study, the electrodeposition of Ni-Mn alloy in nickel sulphamate electrolyte with the addition of manganese sulphate was investigated under direct current (DC power source. The effects of current density and Mn2+ concentration in the electrolyte on the coating composition, cathodic efficiency, microstructure and mechanical properties were explored. The results showed that the raise of the Mn2+ concentration in the electrolyte alone did not effectively increase the Mn content in the coating but reduce the cathodic efficiency. On the other hand, increasing the current density facilitated the codeposition of the Mn and rendered the crystallite from coarse columnar grain to the refined one. Thus, both hardness and internal stress of the coating increased. The fabrication of testing probes at 1 A/dm2 was shown to satisfy the high hardness, low internal stress, reasonable fatigue life, and nonsticking requirements for this microelectronic application.

  5. Electrocatalytic activity and operational stability of electrodeposited Pd-Co films towards ethanol oxidation in alkaline electrolytes

    Science.gov (United States)

    Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni

    2015-10-01

    Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.

  6. The peculiarities of electrochemical deposition and morphology of ZnMn alloy coatings obtained from pyrophosphate electrolyte

    Directory of Open Access Journals (Sweden)

    Bučko Mihael M.

    2011-01-01

    Full Text Available The first successful attempt to electrodeposit ZnMn alloy coatings from alkaline bath was made only a few years ago. In this kind of solution, potassium pyrophosphate (K4P2O7 serves both as a complexing agent and as the basic electrolyte. The aim of this work was to study the electrodeposition process and properties of ZnMn alloy coatings deposited from pyrophosphate solution, with a new kind of alkaline pyrophosphate bath. Namely, chloride salts were used as the source of metal ions and ascorbic acid was used as reducing agent. The composition of the plating solution was as follows: 1 mol dm-3 K4P2O7 + 0.017 mol dm-3 ascorbic acid + 0.05 mol dm-3 ZnCl2 + 0.05 mol dm-3 MnCl2•4H2O. Cathodic processes during the alloy electrodeposition were investigated using linear voltammetry. The influence of addition of small amounts of ascorbic acid on the cathodic processes was established. It was shown that this substance inhibits hydrogen evolution and increases the current efficiency of alloy deposition. The current efficiency in the plating bath examined was in the range of 25 and 30%, which was quite higher as compared to the results reported in the literature for electrodeposition of ZnMn alloy from pyrophosphate bath. Electrodeposition of ZnMn alloys was performed galvanostatically on steel panels, at current densities of 20120 mA cm-2. The coatings with the best appearance were obtained at current densities between 30 and 80 mA cm-2. The surface morphology studies, based on atomic force microscopy measurements, showed that morphology of the deposits is highly influenced by deposition current density. ZnMn coating deposited at 30 mA cm-2 was more compact and possessed more homogeneous structure (more uniform agglomeration size than the coating deposited at 80 mA cm-2. Such dependence of morphology on the current density could be explained by the high rate of hydrogen evolution reaction during the electrodeposition process.

  7. Electrodeposition of gold templated by patterned thiol monolayers

    Energy Technology Data Exchange (ETDEWEB)

    She, Zhe [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Di Falco, Andrea [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom); Hähner, Georg [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Buck, Manfred, E-mail: mb45@st-andrews.ac.uk [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom)

    2016-06-15

    Graphical abstract: - Highlights: • First demonstration of electrodeposition/lift-off of gold using thiol monolayers. • Microelectrode structures with large length to width ratio were generated. • Performance of two different patterning techniques was investigated. • Conditions for achieving good contrast in the electrodeposition were established. - Abstract: The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4′-methyl-biphenyl-4-yl)-propane thiol (CH{sub 3}-C{sub 6}H{sub 4}-C{sub 6}H{sub 4}-(CH{sub 2}){sub 3}-SH, MBP3) and octadecane thiol (CH{sub 3}(CH{sub 2}){sub 17}SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm{sup 2} results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  8. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  9. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  10. Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2014-10-01

    Full Text Available The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.

  11. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate.

  12. Electrodeposition of Asphaltenes. 2. Effect of Resins and Additives

    DEFF Research Database (Denmark)

    Khvostichenko, Daria S; Andersen, Simon Ivar

    2010-01-01

    Electrodeposition of asphaltenes from oil/heptane, asphaltene/heptane, and asphaltene/heptane/additive mixtures has been investigated. Toluene, native petroleum resins, and a synthetic asphaltene dispersant, p-nonylphenol, were used as additives. The addition of these components led to partial...... dissolution of asphaltenes in heptane. The charge of asphaltenic particles was found to be negative in oil/heptane mixtures and positive in asphaltene/heptane mixtures. In asphaltene/heptane/toluene systems, the charge of the deposit varied from positive to neutral to negative, depending upon the method...

  13. The electrodeposition of thorium in natural materials for alpha spectrometry

    International Nuclear Information System (INIS)

    Roman, D.

    1980-01-01

    A technique has been developed for the electrodeposition of thorium on stainless steel planchettes following standard radiochemical separation and uptake in acetate buffer. The method has been used on over 130 samples including calcrete, clay, granite and shell matrices. To assess the efficiency at ultra low levels, three solutions of carrier free 228 Th ( -7 μg in 5 ml electrolyte) and four solutions of 229 Th (4.4x10 -4 μg in 5 ml) were studied. The efficiencies of the former averaged 66 per cent; those of the 229 Th varied from 41 to 91%. (author)

  14. 2008 Gordon Research Conference on Electrodeposition [Conference summary report

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Thomas P.; Gray, Nancy Ryan

    2009-01-01

    Electrodeposition melds key aspects of electrochemistry and materials science. In the last decade the advent of a variety of remarkable in situ characterization methods combined with the ever expanding application of wet chemical processing in high end technological endeavors has transformed the nature of the field. The 'old black magic' is giving way to the rigors of science as the electrodeposition process plays a central role in the fabrication of state-of-the-art ULSI and MEMS devices as well as being a key tool in the fabrication of novel materials and nanostructures. This year the conference will consider several timely issues such as how electrodeposition can contribute to the effective production of energy conversion devices, ranging from solar collectors to fuel cell electrocatalysts. Likewise, the challenge of building contacts and interconnects for next generation electronics will be examined over length scales ranging from individual atoms or molecules to chip stacking. Electrochemical fabrication of magnetic materials and devices as well as composite materials will also be discussed. Nucleation and growth phenomena underlie all aspect of electrochemical deposition and this year's meeting will consider the effect of both adsorbates and stress state on morphological evolution during thin film growth. A variety of new measurement methods for studying the growing electrode/electrolyte interface will also be detailed. In addition to the scheduled talks a session of short talks on late breaking news will be held Wednesday evening. There will also be at least two lively poster sessions that are essential elements of the conference and to which all attendees are encouraged to contribute. This will be 7th Electrodeposition GRC and based on past experience it is the premier 'mixing bowl' where young investigators and international experts have an extended opportunity to interact in a fun and collegial atmosphere. The afternoons provide

  15. Zinc Electrodeposition from Chloride Solutions onto Glassy Carbon Electrode

    OpenAIRE

    Mendoza-Huízar, Luis Humberto; Rios-Reyes, Clara Hilda; Gómez-Villegas, María Guadalupe

    2009-01-01

    An electrochemical study of zinc deposition was carried out in baths containing 0.5 M ZnCl2 and 0.4 M H3BO3. From the voltammetric study it was found that, in our experimental conditions, zinc electrodeposition is quasi-reversible and occurs under charge transfer control. The average coefficient diffusion calculated was D = 7.14 × 10-6 cm²s-1 while the standard constant at electrode charge was 8.78 × 10-3 cms-1. The nucleation and growth parameters determined from the potentiostatic study sho...

  16. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  17. Characterization of nickel nanocones routed by electrodeposition without any template.

    Science.gov (United States)

    Hang, Tao; Li, Ming; Fei, Qin; Mao, Dali

    2008-01-23

    This work reports the synthesis of Ni nanocones by a one-step electrodeposition method without any template. With the addition of ethylenediamine dihydrochloride (EDA·2HCl) in the nickel plating solution, the novel Ni conical structure can be easily deposited onto different metal surfaces. The as-prepared nickel nanocones grow preferentially along [Formula: see text] directions with very sharp tips. The conical structures are single crystalline without any disruption of the lattice planes. In addition, the Ni nanocone structure is demonstrated to show magnetocrystalline anisotropy and enhance the magnetic properties when compared with other Ni nanostructures.

  18. Electrodeposition and properties of Zn-Ni-CNT composite coatings

    International Nuclear Information System (INIS)

    Praveen, B.M.; Venkatesha, T.V.

    2009-01-01

    Zn-Ni-CNT composite coatings were prepared by electrodeposition from a sulphate bath. The effect of CNTs on the corrosion behavior, wear resistance and hardness of the composite coatings was investigated. Their corrosion properties were evaluated by polarization, impedance, weight loss and salt spray tests. The CNT particles inclusion improved the corrosion resistance, hardness and wear resistance of the coating. The grain size of the composite coating was smaller than that of a pure Zn-Ni coating with the same Zn/Ni ratio. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature.

  19. Comparative study on structure, corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, M. [Department of Metallurgy and Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahkaram, S.R., E-mail: akaram@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Zn and Zn-Ni alloy coatings were electrodeposited from sulfate based electrolytes. The effect of alloys Ni content on morphology, microstructure, corrosion properties, microhardness and tribological behavior of these coatings were investigated and the results were compared with Zn film. According to X-ray diffraction patterns, different intermediate phases (η-Ni{sub 3}Zn{sub 22}, γ-Ni{sub 5}Zn{sub 21}, β-Zn-Ni) were formed by increasing the coatings Ni content from 11 to 17 wt%. Polarization and EIS results revealed that all the alloy coatings had better corrosion resistance than the Zn film. Zn-14 wt%Ni coating had the least corrosion current density and maximum polarization resistance between all the samples. Microhardness of the coatings was improved by increasing their Ni percentage to 17%. However, Zn-14 wt%Ni coating had the lowest wear loss and friction coefficient, while Zn film had the worst wear resistance between all the coatings. - Highlights: • Effect of Ni alloying element on morphology and structure of Zn electrodeposits. • Comparing corrosion behavior of Zn and Zn-Ni coatings. • Influence of Ni content on hardness of Zn-Ni films. • A comparison of tribological behavior of Zn and different Zn-Ni electrodeposits.

  20. Plating on some difficult-to-plate metals and alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  1. PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media.

    Science.gov (United States)

    Huang, Hsin-Yi; Chen, Po-Yu

    2010-12-15

    Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼ 80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ=3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ=3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ=3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  3. Molybdenum carbide coating electrodeposited from molten fluoride bath

    International Nuclear Information System (INIS)

    Topor, D.C.; Selman, J.R.

    1987-01-01

    Molybdenum carbide has been recently considered as a candidate material for the protection of common steel-based substrates in high-temperature high-sulfur activity applications. Methods to produce coatings of materials such as Mo/sub 2/C are scarce and only the electrodeposition from molten salts can yield dense, pore-free layers on various metallic profiles. Recently Stern reported the deposition of a Mo/sub 2/C coating on nickel substrate form, FLINAK + K/sub 2/MoCl/sub 6/ + Na/sub 2/CO/sub 3/ mixture at 850 0 C. Electrodeposition of Mo/sub 2/C on a cathode surface proceeds according to a rather complicated mechanism which may involve simultaneous reduction of carbonate to C, of molybdate to Mo and a subsequent chemical reaction between both species. The deposit grows further as a coherent coating. Reduction of CO/sub 2/ or carbonate to carbon in a fused salt medium could follow different paths but Li/sup +/ ions or other highly polarizing ions must be present. A similar situation in which a polyatomic anion discharges at the cathode is encountered when molybdates are used as source of molybdenum. In fluoride melts the chemistry of Mo(VI) species is considered to be much simpler due to the hard fluoride ions. These ions form strong complexes with molybdenum and the resulting solution is more stable

  4. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  5. A MEMS lamination technology based on sequential multilayer electrodeposition

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Jooncheol; Herrault, Florian; Schafer, Richard; Allen, Mark G

    2013-01-01

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required. (paper)

  6. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  7. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  8. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Santhi, Kalavathy [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Department of Physics, Women’s Christian College, Chennai 600006 (India); Kumarsan, Dhanapal [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Vengidusamy, Naryanan [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Arumainathan, Stephen, E-mail: stephen_arum@hotmail.com [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)

    2017-07-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  9. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    International Nuclear Information System (INIS)

    Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen

    2017-01-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  10. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  11. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  12. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  13. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  14. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kakooei Saeid

    2014-07-01

    Full Text Available The effects of scan rate, temperature, and number of cycles on the coating thickness of IrOX electrodeposited on a stainless steel substrate by cyclic voltammetry were investigated in a statistical system. The central composite design, combined with response surface methodology, was used to study condition of electrodeposition. All fabricated electrodes were characterized using electrochemical methods. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed for IrOX film characterization. Results showed that scan rate significantly affects the thickness of the electrodeposited layer. Also, the number of cycles has a greater effect than temperature on the IrOX thickness.

  15. Amorphous Al–Mn coating on NdFeB magnets: Electrodeposition from AlCl3–EMIC–MnCl2 ionic liquid and its corrosion behavior

    International Nuclear Information System (INIS)

    Chen Jing; Xu Bajin; Ling Guoping

    2012-01-01

    Amorphous Al–Mn coating was electrodeposited on NdFeB magnets from AlCl 3 –EMIC–MnCl 2 ionic liquid with the pretreatment of anodic electrolytic etching in AlCl 3 –EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl 3 –EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al–Mn alloy coating to the NdFeB substrate. The amorphous Al–Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: ► Amorphous Al–Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. ► To remove the surface oxides of NdFeB, anodic etching pretreatment is used. ► The deposited Al–Mn alloy coating shows high adhesion to the NdFeB substrate. ► Corrosion tests show that amorphous Al–Mn alloy coating is anodic coating for NdFeB magnet.

  16. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Xu Bajin [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling Guoping, E-mail: linggp@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-06-15

    Amorphous Al-Mn coating was electrodeposited on NdFeB magnets from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid with the pretreatment of anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al-Mn alloy coating to the NdFeB substrate. The amorphous Al-Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: Black-Right-Pointing-Pointer Amorphous Al-Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. Black-Right-Pointing-Pointer To remove the surface oxides of NdFeB, anodic etching pretreatment is used. Black-Right-Pointing-Pointer The deposited Al-Mn alloy coating shows high adhesion to the NdFeB substrate. Black-Right-Pointing-Pointer Corrosion tests show that amorphous Al-Mn alloy coating is anodic coating for NdFeB magnet.

  17. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  18. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  19. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  20. The Effect of Hydroxyapatite Coatings on the Passivation Behavior of Oxidized and Unoxidized Superelastic Nitinol Alloys

    Science.gov (United States)

    Etminanfar, M. R.; Khalil-Allafi, J.; Sheykholeslami, S. O. R.

    2018-02-01

    Nitinol alloys have been used in various biological applications due to their superior properties. In this study, a bipolar pulsed current electrodeposition technique was applied to produce a hydroxyapatite (HA) film on the Nitinol alloy. Also, the protection performance of the coating was evaluated on both abraded and thermochemically modified alloy. According to obtained data, reducing the electrocrystallization rate by the pulse deposition technique can promote HA formation on both abraded and modified substrates. Based on scanning electron microscopy and high-resolution transmission electron microscopy data, the HA coatings revealed a flake-like morphology and each flake was composed of nano-crystalline grains. Atomic force microscopy images revealed that flakes on the abraded substrate were smaller in size than that of the modified alloy. Comparing the corrosion resistance of the bare substrates revealed that the modified alloy has a higher corrosion resistance than the abraded alloy and the modified surface is well passivized during anodic polarization in Ringer's solution. However, this condition is reversed after the deposition of HA film. It seems that because of the lower crystallization sites on the abraded alloy, the produced HA film is denser and more protective against the corrosive mediums as compared to the coating on the modified alloy. Although the HA coating can improve the bioactivity of both substrates, the resulted film on the oxidized alloy is porous and deteriorates the implant permanence in the vicinity of body fluids.

  1. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  2. Interfacial electronic structure of electrodeposited Ag nanoparticles on iron oxide nanorice particles

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Ku [Dept. of Chemistry, Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-12-15

    A bimetallic hybrid nanostructure of uni- formly electrodeposited Ag NPs on an Fe oxide nanorice particle template was developed. Figure 6 schematically illustrates uniform electrodeposition of Ag NPs on Fe oxide nanorice supported on a Si substrate. According to Ar + ion depth-probling XPS spectra, the electrodeposited Ag NPs are metallic, and the Fe oxide nanorice particles consist of a metallic shell covered by ultrathin FeOOH or Fe 2 O 3 shells. When the template was functionalized with 1,4-diisocyanobenzene, one terminal NC group was bridge- bonded as in the N C form on the Fe surface. The newly developed selective facial electrodeposition method will be very useful for facial fabrication of bimetallic hybrid systems for diverse application areas.

  3. M(1,6-HEXANEDİTHİOLNi(CN4 BİLEŞİKLERİNİN KIRMIZIALTI SPEKTROSKOPİSİ İLE İNCELENMESİ (M=Ni, Cd, Co, Mn VE Zn

    Directory of Open Access Journals (Sweden)

    Zeki KARTAL

    2009-02-01

    Full Text Available Bu çalışmada, genel formülü M(1,6-HexanedithiolNi(CN4 (M = Ni, Cd, Co, Mn ve Zn olan Hofmann-tipi bileşikler kimyasal yollardan ilk kez elde edildi. Elde edilen bileşiklerin kırmızıaltı spektrumları, 4000 cm-1- 400 cm-1 bölgesinde kaydedildi. Spektrumların incelenmesi, bileşik yapılarının │M-Ni(CN4│∞ polimerik tabakalardan oluştuğunu ve ligand molekülünün, kare düzlemsel yapıdaki metal atomlarına kükürt atomlarından bağlandığını göstermektedir.

  4. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Li, Shuyi; Wang, Yaming; Wang, Huiyuan; Gao, Ke; Han, Zhiwu; Ren, Luquan

    2016-09-15

    Superamphiphobic (both superhydrophobic and superoleophobic) surfaces have attracted great interests in the fundamental research and practical application. This research successfully fabricated the superamphiphobic surfaces by combining the nickel plating process and modification with perfluorocaprylic acid. The cooperation of hierarchical micro-nano structures and perfluorocaprylic acid with low surface energy plays an important role in the formation of superamphiphobic surfaces. The contact angles of water/oil have reached up to 160.2±1°/152.4±1°, respectively. Contrast with bare substrate, the electrochemical measurements of superamphiphobic surfaces, not only the EIS measurement, but also potentiodynamic polarization curves, all revealed that, the surface corrosion inhibition was improved significantly. Moreover, superamphiphobic surfaces exhibited superior stability in the solutions with a large pH range, also could maintain excellent performance after storing for a long time in the air. This method is easy, feasible and effective, and could be used to fabricate large-area mutli-functional surface. Such a technique will develop a new approach to fabricate superamphiphobic surfaces on different engineering materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy

    DEFF Research Database (Denmark)

    Allahyarzadeh, M.H.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    that the diffusive species of the electrolyte encountered a larger interface in multilayer structures. Hence, they spread out along and throughout the active layers; which significantly delays the penetration towards the substrate. Enhanced service life of the noble layers is achieved owing to the galvanic effect...

  6. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, ... 18 May 2017; accepted 1 September 2017; published online 23 March 2018 ..... Figure 7 shows the dependence of DK on the microhardness.

  7. Regulating the electrodeposition of zinc and cadmium coatings with mixtures of o-oxyazomethyne derivatives

    International Nuclear Information System (INIS)

    Grigor'ev, V.P.; Shpan'ko, S.P.; Dymnikova, O.V.; Popov, L.D.

    2000-01-01

    The results of electrodeposition of zinc and cadmium metals from the sulfate electrolyte in presence of the organic compounds of the oxyazomethine reaction series are described. It is shown that the current dependences retardation coefficient and cathode polarization of electrodeposited zinc and cadmium are described by equations, following from the principle of the reaction and activation free energy linearity. The character of these dependence for the negatively charged zinc and positively charged cadmium cathodes is similar [ru

  8. Vapour and electro-deposited metal films on copper: structure and reactivity

    OpenAIRE

    McEvoy, Thomas F.

    2004-01-01

    The systems studied involve deposition of metals of a larger atomic diameter on a Cu{100} single crystal surface under vacuum and determining the structures formed along with the effect on the Cu{100} substrate. Cu microelectrodes were fabricated and characterised with Indium electrodeposited on the electrode surface. The In on Cu{ 100} growth mode is compared with the growth mode of electrodeposited Indium on Cu microelectrodes. The Cu{100}/In system has been studied for the In coverage ...

  9. Influence of lead ions on the macromorphology of electrodeposited zinc

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tetsuaki [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth of initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.

  10. Studies on zinc nodules electrodeposited from acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Rolfe [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1984-12-01

    The development of morphology of electrodeposited zinc was investigated by studying the initial stages of deposition. Zinc was deposited galvanostatically from 1.0 M ZnCl2 electrolyte (0.7 < pH < 4.6) on rotating disc electrodes at current densities from 5 to 130 ma/cm2. Pine glassy carbon, Union Carbide pyrolytic graphite, Gould pyrolytic graphite, Exxon graphite loaded polymer, and platinum substrates were used. The number densities of nodules (diameter greater than 1 μm), typically encountered during incipient morphological development, were measured using scanning electron microscopy and image analysis. Nodule densities up to 7 x 104 nodules/mm2 were measured.

  11. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  12. Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.

    Science.gov (United States)

    López-Sauri, D A; Veleva, L; Pérez-Ángel, G

    2015-09-14

    Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.

  13. Efficient production of ultrapure manganese oxides via electrodeposition.

    Science.gov (United States)

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Tin electrodeposition from sulfate solution containing a benzimidazolone derivative

    Directory of Open Access Journals (Sweden)

    Said BAKKALI

    2016-11-01

    Full Text Available Tin electrodeposition in an acidic medium in the presence of N,N’-1,3-bis-[N-3-(6-deoxy-3-O-methyl-D-glucopyranose-6-yl-2-oxobenzimidazol-1-yl]-2-tetradecyloxypropane as an additive was investigated in this work. The adequate current density and the appropriate additive concentration were determined by gravimetric measurements. Chronopotentiometric curves showed that the presence of the additive caused an increase in the overpotential of tin reduction. The investigations by cyclic voltammetry technique revealed that, in the presence and in absence of the additive, there were two peaks, one in the cathodic side attributed to the reduction of Sn2+ and the other one in the anodic side assigned to the oxidation of tin previously formed during the cathodic scan. The surface morphology of the tin deposits was studied by scanning electron microscopy (SEM and XRD.

  15. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors

    Science.gov (United States)

    Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan

    2012-07-01

    Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.

  16. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  17. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  18. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  19. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  20. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  1. Characterisation of a thiosulphate-sulphite gold electrodeposition process

    International Nuclear Information System (INIS)

    J-Liew, M.; Sobri, S.; Roy, S.

    2005-01-01

    Electrodeposition of soft gold is an important process in the fabrication of micro devices for electronics, optics etc. Traditional gold electroplating is based on a gold cyanide process which is not applicable for the stringent requirements in state of the art micro device manufacture. Newcastle University has been involved in the development of an industrial process based on a mixed ligand electrolyte-the gold thiosulphate-sulphite system. Here we present methods for the formulation of this electrolyte in the laboratory which ensure bath stability and process compatibility. In addition, we have carried out spectrophotometry to elucidate the possible reasons of its chemical stability. Standard rotating disk and cyclic voltammetry has been carried out to determine the electrochemical behaviour of the gold thiosulphate-sulphite system. The changes in electrochemical behaviour as the bath ages are also discussed

  2. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  3. Insights into pulsed electrodeposition of GMR multilayered nanowires

    International Nuclear Information System (INIS)

    Pullini, D.; Busquets, D.; Ruotolo, A.; Innocenti, G.; Amigo, V.

    2007-01-01

    In this work, Co/Cu nanowires are fabricated by pulsed electrodeposition from a single bath solution containing both Co and Cu ions. Alternate Co and Cu layers are deposited into the nanopores of track etched polycarbonate templates. Although the feasibility of this process is generally recognized, some important issues such as process reproducibility and how structural defects affect the nanowires arrays' sensing performances are still open; conditions necessary to turn a this made system into a magnetic field sensor. The present work aims at pushing forward knowledge concerning the nanowires fabrication and defining the best growth parameters; in particular, a tight control of the growth process parameters such as single metal deposition potentials and single cycle deposition durations have been carried out for nanowires of 80 nm diameter and correlated to the system magneto-electric response

  4. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    Institute of Scientific and Technical Information of China (English)

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  5. Mechanical Properties of Electrolyte Jet Electrodeposited Nickel Foam

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2013-07-01

    Full Text Available Principles of the preparation of nickel foam by electrolyte jet electrodeposition were introduced, Nickel foam samples with different porosity were fabricated. Effect of different porosity on microhardness and uniaxial tensile properties of nickel foam was discussed. The results show that the microhardness of nickel foam is 320~400 HV, lower than entitative metal clearly. The lower the porosity of nickel foam, the higher the microhardness is. During the process of uniaxial tensile, nickel foam is characterized by three distinct regions, e.g. elastic deforming region, plastic plateau region and densification region. The higher the porosity of nickel foam, the lower the plastic plateau and the poorer the strength of nickel foam, accordingly

  6. Cathodic processes during ruthenium electrodeposition from a chloride melt

    International Nuclear Information System (INIS)

    Sokol'skij, D.V.

    1985-01-01

    Cathodic processes occurring during the electrolysis of chloride melts in the presence of oxygen-containing impurities were studied. The experiments were carried out at 500, 550 600 and 680 deg C, ruthenium ions concentration in KCl-NaCl-CsCl eutectic melt being 0.4-1.5 mol% and BaO additions 4.8x10 -2 mol%. Temperature dependence of Ru(3) ion diffusion coefficient in the chloride melt (lg D=3.25-1508/T+-0.02) and activation energy of the diffusion process (6.9 k cal/mol) were determined. It is shown that changes of the shape of E, t-curve and the deviation of values determined in the cause of chronopotentiometric investigations from the corresponding values of reversable processes are related in many respects to the participation of oxygen-containing compounds in the cathodic process. Irreversibility of the cathodic process is also connected with metal crystallization during electrodeposition

  7. Indium doped zinc oxide thin films obtained by electrodeposition

    International Nuclear Information System (INIS)

    Machado, G.; Guerra, D.N.; Leinen, D.; Ramos-Barrado, J.R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Indium doped ZnO thin films were obtained by co-electrodeposition (precursor and dopant) from aqueous solution. XRD analysis showed typical patterns of the hexagonal ZnO structure for both doped and undoped films. No diffraction peaks of any other structure such as In 2 O 3 or In(OH) 3 were found. The incorporation of In into the ZnO film was verified by both EDS and XPS measurements. The bandgap energy of the films varied from 3.27 eV to 3.42 eV, increasing with the In concentration in the solution. This dependence was stronger for the less cathodic potentials. The incorporation of In into the film occurs as both, an In donor state in the ZnO grains and as an amorphous In 2 O 3 at the grain boundaries

  8. Growth of uranyl hydroxide nanowires and nanotubes with electrodeposition method

    International Nuclear Information System (INIS)

    Wang Lin; Yuan Liyong; Chai Zhifang; Shi Weiqun

    2013-01-01

    Actinides nanomaterials have great potential applications in fabrication of novel nuclear fuel and spent fuel reprocessing in advanced nuclear energy system. However, the relative research so far still lacks systematic investigation on the synthetic methods for actinides nanomaterials. In this work, we use track-etched membranes as hard templates to synthesize uranium based nanomaterials with novel structures by electrodeposition method. Through electrochemical behavior investigations and subsequent product characterizations such as energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR), the chemical composition of deposition products have been confirmed as the uranyl hydroxide. More importantly, accurate control of morphology and structures (nanowires and nanotubes) could be achieved by carefully adjusting the growth parameters such as deposition time and deposition current density. It was found that the preferred morphology of electrodeposition products is nanowire when a low current density was applied, whereas nanotubes could be formed only under conditions of high current density and the short deposition time. The mechanism for the formation of nanowires in track-etched membranes is based on the precipitation of uranyl hydroxide from uranyl nitrate solution, according to the previous researches about obtaining nanostructures of hydroxides from nitrate salt solutions. And we have concluded that the formation of nanotubes is attributed to the hydrogen bubbles generated by water electrolysis under the condition of over-potential electro-reduction. The conveying of hydrogen bubbles plays the role of dynamic template which can prevent the complete filling of uranyl hydroxide in the channels. Additionally, we transform the chemical composition of deposition products from uranyl hydroxide to triuranium octoxide by calcining them at 500 and 800 degree centigrade, respectively, and SEM results show the morphologies of nanowires and

  9. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  10. Brightness coatings of zinc-cobalt alloys by electrolytic way

    International Nuclear Information System (INIS)

    Julve, E.

    1993-01-01

    Zinc-cobalt alloys provide corrosion resistance for the ferrous based metals. An acidic electrolyte for zinc-cobalt electrodeposition is examined in the present work. The effects of variations in electrolyte composition, in electrolyte temperature, pH and agitation on electrodeposit composition have been studied, as well as the current density influence. It was found that the following electrolyte gave the optimum results: 79 g.1''-1 ZnCl 2 , 15.3 g.1''-1 CoCl 2 .6H 2 O, 160 g.1''-1 KCl, 25 g.1''-1 H 3 BO 3 and 5-10 cm''3.1''-1 of an organic additive (caffeine, coumarin and sodium lauryl-sulphonate). The operating conditions were: pH=5,6 temperature: 30 degree centigree, current density: 0,025-0,035 A. cm''2, anode: pure zinc, agitation: slowly with air and filtration: continuous. The throwing power and cathode current efficiency of the electrolyte were also studied. This electrolyte yielded zinc-cobalt alloys white and lustrous and had a cobalt content of 0,5-0,8% (Author) 3 refs. 5 fig

  11. Preliminary study on auto-electrodeposition of copper, cadmium, nickel, and cobalt in acid and glycerol medium

    Directory of Open Access Journals (Sweden)

    S.G. Viswanath

    2013-12-01

    Full Text Available Electrodeposition can be carried out even without corresponding metal ions in the solution, but the respective metal electrode acts as anode. This process is called auto-electrodeposition. It occurs under similar conditions applied for electrowinning or electrodeposition. The electrochemical mechanism of electrowinning and autoelectrodeposition is suggested. Hydroxyl ions play very important role in this process. In this process, a black loss deposit is formed on the anode metal. The autoelectrodeposition is combination of electrodissolution process and electrowinning process.

  12. Effect of Electrodeposition Potential on Composition of CuIn1−xGaxSe2 Absorber Layer for Solar Cell by One-Step Electrodeposition

    OpenAIRE

    You, Rui-Wei; Lew, Kar-Kit; Fu, Yen-Pei

    2014-01-01

    CIGS polycrystalline thin films were successfully fabricated by one-step cathodic electrodeposition on Mo-coated glass. In this study, we applied a galvanometry mode with three-electrode potentiostatic systems to produce a constant concentration electroplating solution, which were composed of CuCl2, InCl3, GaCl3, and SeO2. Then these as-electrodeposited films were annealed in argon atmosphere and characterized by X-ray diffraction. The results revealed that annealing treatment significantly i...

  13. Superconducting alloys

    International Nuclear Information System (INIS)

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  14. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  15. Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates

    Directory of Open Access Journals (Sweden)

    Sidali Tarik

    2018-01-01

    Full Text Available In this paper, a new way of preparing semi-transparent solar cells using Cu(In1−xGaxSe2 (CIGS chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2 with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm−2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.

  16. Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates

    Science.gov (United States)

    Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel

    2018-03-01

    In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.

  17. Influence of alcohol additives in the preparation of electrodeposited Pt-Ru catalysts on oxidized graphite cloths

    International Nuclear Information System (INIS)

    Sieben, Juan Manuel; Duarte, Marta M.E.; Mayer, Carlos E.

    2011-01-01

    Research highlights: → Pt-Ru catalysts were prepared by potential pulse electrodeposition from solutions containing EtOH or EG at pH 2 and 5. → The catalyst particle size, loading and dispersion were influenced by solution pH and alcohol addition. → The deposits prepared at pH 2 exhibited large irregular agglomerates while those prepared at pH 5 presented smaller globular particles. → Pt-Ru system prepared using EG at pH 5 exhibited the best performance for CH 3 OH oxidation. - Abstract: Carbon supported Pt-Ru catalysts were prepared by multiple cycles of potentiostatic pulses from aqueous diluted chloroplatinic acid and ruthenium chloride solutions in the presence of ethanol or ethylene glycol at pH 2 and 5. SEM images showed that the metallic deposit prepared at pH 2 consisted of large irregular agglomerates, whereas smaller globular particles were obtained at pH 5. In addition, the average particle size was considerably decreased in the presence of the stabilizers. The supported Pt-Ru alloys were tested as catalysts for methanol electro-oxidation in acid media. Electrocatalytic activity measurements indicated that the most active electrode was obtained with ethylene glycol as additive at pH 5.

  18. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    International Nuclear Information System (INIS)

    Arnould, Christelle; Delhalle, Joseph; Mekhalif, Zineb

    2008-01-01

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants

  19. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  20. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  1. Effect of Electrodeposition Potential on Composition of CuIn1−xGaxSe2 Absorber Layer for Solar Cell by One-Step Electrodeposition

    Directory of Open Access Journals (Sweden)

    Rui-Wei You

    2014-01-01

    Full Text Available CIGS polycrystalline thin films were successfully fabricated by one-step cathodic electrodeposition on Mo-coated glass. In this study, we applied a galvanometry mode with three-electrode potentiostatic systems to produce a constant concentration electroplating solution, which were composed of CuCl2, InCl3, GaCl3, and SeO2. Then these as-electrodeposited films were annealed in argon atmosphere and characterized by X-ray diffraction. The results revealed that annealing treatment significantly improved the crystallinity of electrodeposited films and formed CIGS chalcopyrite structure, but at low applied deposition voltage (−950 mV versus SCE there appeared second phase. The cross-section morphology revealed that applied voltage at −1350 mV versus SCE has uniform deposition, and higher applied voltage made grain more unobvious. The deposition rate and current density are proportional to deposition potential, and hydrogen was generated apparently when applying potential beyond −1750 mV versus SCE. It was found that the CIGS compound did not match exact stoichiometry of Cu : In : Ga : Se =1 : x : 1-x : 2. This result suggests the possibility of controlling the property of thin films by varying the applied potential during electrodeposition.

  2. The effect of different component ratios in block polymers and processing conditions on electrodeposition efficiency onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Yusuke; Kyuzo, Megumi [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tsutsumi, Yusuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Nagai, Akiko [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Chen, Peng [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Hanawa, Takao, E-mail: hanawa.met@tmd.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • MPC polymers with an ability of electrodeposition were synthesized. • MPC polymers were immobilized on titanium substrates by electrodeposition. • Immobilization by electrodeposition of MPC polymer decreased water contact angle and protein adsorption. • Length of MPC unit and electrodeposition time did not influence water contact angle and protein adsorption. - Abstract: 2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers for electrodeposition to titanium surfaces were synthesized. The polymers were block-type copolymers composed of a poly(MPC) segment and a poly(2-aminoethylmethacrylate (AEMA)) segment, which could electronically adsorb to a titanium oxide film on the titanium surface. The polymer was synthesized as expected by nuclear magnetic resonance and gel permeation chromatography. In a 0.26 mmol L{sup −1} PMbA solution adjusted to pH 11, −3.0 V (vs. an Ag/AgCl electrode) was applied to a titanium substrate for 300 s. We evaluated the effects of the molecular structure of poly(MPC-block-AEMA) (PMbA) with a different polymerization degree of MPC unit, whereas the polymerization degree of the AEMA units was fixed. The 15-min electrodeposition of PMbA100 was the most efficient condition in this study. On the other hand, the results of the water contact angle and the amount of adsorbed protein did not change, even when altering the MPC unit number and electrodeposition time. This indicates that the immobilization by electrodeposition of PMbA is important for the inhibition of protein adsorption, while the polymerization degree of the MPC unit and the electrodeposition time do not influence them. This study will enhance the understanding of effective polymer structures for electrodeposition and electrodeposition conditions.

  3. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  4. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  5. Electrochemical and surface characterisation of oxide films on nano-grain nickel films electrodeposited on INCOLOY-800

    International Nuclear Information System (INIS)

    Navin Vinayak, S.; Sunitha, Y.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Nano materials have different properties from the corresponding bulk materials because of fine grain size, large fraction of surface atoms, high surface energy and high grain boundary volume fraction. For similar reasons, the nano-alloy coatings show superior high-temperature corrosion resistance and are generally more resistant to stress corrosion cracking. Hence, it is of interest to know the materials performance, if the structural materials used in nuclear reactors are made of nano-grains. In Indian PHWRs, Incoloy-800 is being used as the steam generator tubing material. It's corrosion resistance property is very important as it forms not only the pressure boundary between the radioactive primary water and non-active secondary water but also from the view point of loss of heavy water, in case of any corrosion damage. In this paper, the corrosion resistance of the oxide films formed on nano-grain nickel film electrodeposited on Incoloy-800 (a) in the presence of saccharine (WS) and (b) in the absence of saccharine (WOS) were compared with that formed on Commercial Ni foil, using electrochemical dc polarization and ac impedance techniques. The surface morphology, elemental analysis and grain size were studied with SEM, EDX and XRD techniques respectively. The nano-grain nickel films were prepared on Incoloy-800 by electrodeposition using Watt's Bath with saccharine sodium as a surfactant. The oxide films were developed by exposing them to LiOH solution (pH-10.0) at 245 deg C for 3 days (A-group) and 7 days (B-group). XRD results showed that the grain size of Ni formed in the absence of saccharine (WOS) was ∼ 60 nm and did not change after being autoclaved. But, for Ni formed in the presence of saccharine (WS), the grain size was ∼ 16 nm which increased to 40-50 nm after being autoclaved. With both A and B-group specimens, the PDAP curves showed an active-passive transition, a passive region and a transpassive region in 2N H 2 SO 4 . However, the critical

  6. Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Vijayakumar, J.; Mohan, S.; Yadav, S. Sunil

    2011-01-01

    Highlights: → The electrodeposited Ni-Co alloys are mostly used in magnetic sensors and it has good mechanical and corrosion resistance properties. → The effect of dicarboxylic acid leads to preferred (2 0 0) crystalline orientation, this may improve magnetic properties dicarboxylic acid can alter the elemental composition of Ni-Co alloy. → Dicarboxylic acid acts as a good brightner. - Abstract: Nickel-cobalt alloys were deposited from sulfate electrolyte with oxalic, malonic and succinic acids as additives and their microstructure and mechanical properties were studied. The crystal structure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. The crystal structure and surface morphology analysis showed that the addition of dicarboxylic acid leads to (2 0 0) crystal face and the surface were more compact and uniform due to the grain refining. Ni 60 -Co 40 alloy was achieved when succinic acid is used as additive.

  7. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  8. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    Science.gov (United States)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  9. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  10. Magnetic signature of granular superconductivity in electrodeposited Pb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Riminucci, Alberto, E-mail: a.riminucci@bo.ismn.cnr.it [CNR, Institute for Nanostructured Materials, Via Gobetti 101, 40129 Bologna (Italy); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Schwarzacher, Walther [H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-06-14

    Nanocrystalline freestanding Pb nanowires ∼200 nm in diameter were fabricated by electrodeposition into track etched polycarbonate membranes in order to study their superconducting properties. Their superconducting critical temperature, as determined by measuring the Meissner effect, was the same as for bulk Pb, but their critical field was greatly enhanced up to ∼3000 Oe. By assuming the wires consisted of spherical superconducting grains, an estimated grain size r = 60 ± 25 nm was obtained from the magnetization measured as a function of the applied magnetic field at a fixed temperature. An independent estimate for r = 47 ± 12 nm, in good agreement with the previous one, was obtained from the magnetization measured as a function of temperature at a fixed applied magnetic field. Transmission electron microscopy was used to characterize grain size at the wire edges, where a grain size in agreement with the magnetic studies was observed.

  11. Triboelectric-generator-driven pulse electrodeposition for micropatterning.

    Science.gov (United States)

    Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin

    2012-09-12

    By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.

  12. Electrodeposition of uranium and transuranic metals (Pu) on solid cathode

    International Nuclear Information System (INIS)

    Laplace, A. F.; Lacquement, J.; Willitt, J. L.; Finch, R. A.; Fletcher, G. A.; Williamson, M. A.

    2008-01-01

    The results from a study of U and Pu metal electrodeposition from molten eutectic LiCl-KCl on a solid inert cathode are presented. This study has been conducted using ∼ to 50 g of U-Pu together with rare earths (mostly Nd) and 1.5 kg of salt. The introduction of a three-electrode probe with an Ag/AgCl reference electrode has allowed voltammetric measurement during electrolysis and control of the cathode potential versus the reference. Cyclic and square-wave voltammetric measurements proved to be very useful tools for monitoring the electrolysis as well as selecting the cathode versus reference potential to maximize the separation between actinides and rare earths. The voltammetric data also highlighted the occurrence of back reactions between the cathode deposit and oxidizing equivalents formed at the anode that remained in the molten salt electrolyte. Any further electrolysis test needs to be conducted continuously and followed by immediate removal of the cathode to minimize those back reactions. (authors)

  13. Electrochemical behavior of CIGS electrodeposition for applications to photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunju; Ji, Changwook; Kim, Yangdo; Hwang, Yoonhwae [Pusan National University, Busan (Korea, Republic of); Lee, Jaeho [Hongik University, Seoul (Korea, Republic of); Jo, Ilguk [Colorado School of Mines, Golden, CO (United States); Kim, Hyoungchan [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2014-04-15

    The electrodeposition mechanism of Cu(In,Ga)Se{sub 2} (CIGS) thin films on ITO substrates was examined by using cyclic voltammetry (CV). The CV study was performed in unitary In, binary In-Se, ternary Cu-In-Se, and quaternary Cu-In-Ga-Se systems. CV of the Cu-In-Ga-Se system revealed a reduction peak at -0.6 V with the addition of GaCl{sub 3} and showed that the current density was affected significantly by the concentrations of GaCl{sub 3} and InCl{sub 3}. This is probably due to the adsorption-site competition between In{sup 3+} and Ga{sup 3+} on the electrode surface. Energy dispersive X-ray spectroscopy confirmed the CV results. The composition of Ga in the CIGS films increased with increasing concentration of GaCl{sub 3} in the electrolyte whereas the composition of In decreased sharply. The as-deposited films were annealed at 500 .deg. C in a N{sub 2} atmosphere for crystallization. XRD revealed three major peaks corresponding to the (112), (220) and (312) planes of CIGS chalcopyrite respectively. On the other hand, a secondary phase, such as In{sub 4}Se{sub 3}, was observed in the CIGS films containing a high In composition.

  14. Electrodeposition of hybrid ZnO/organic dye films

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Monica; Mari, Bernabe; Mollar, Miquel [Department de Fisica Aplicada-IDF, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2011-06-15

    The viability of the electrodeposition as a suitable technique for preparing new porous hybrid materials has been tested in this paper. Hybrid ZnO films with two different organic dyes: Eosin-Y and Tetrasulphonated-Cu-phtalocyanine were prepared. Their physical and chemical properties as well as their dependence on the growth conditions were investigated. It is found that the type of dye has a big influence on the morphology and porosity of hybrid films. Open and connected pores are created in hybrid ZnO/Eosin-Y films while both open and closed pores coexist in hybrid ZnO/Tetrasulfonated-Cu-phthalocyanine. As one of the promising applications of hybrid materials is photovoltaic conversion of sunlight, photoelectrochemical characterization of hybrid films is also reported. Photocurrent generation owing to both contributions ZnO and Eosin-Y is observed in ZnO/Eosin-Y films but no photocurrent has been observed in ZnO/Tetrasulfonated-Cu-phthalocyanine films. SEM micrographs of hybrid ZnO films grown in aqueous bath; (Left) ZnO/Eosin-Y films grown at 70 C, -0.9 V (Right) ZnO/Ts-CuPc films grown at 70 C, -0.9 V. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianping; Ye, Jianqing; Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xu, Changwei [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-09-15

    Pd nanoparticles dispersed well on Ti were successfully prepared by the electrodeposition method used in this study. The results show that Pd has no activity for ethanol oxidation in acid media and is a good electrocatalyst for ethanol oxidation in alkaline media when the OH{sup -} concentration is greater than 0.001 M. The pH and ethanol concentration affects the ethanol oxidation. The reaction orders for OH{sup -} and ethanol are 0.2 and 1. The anodic transfer coefficient ({alpha}) is 0.1. The diffusion coefficient (D) of ethanol is calculated as 9.3 x 10{sup -5} cm{sup 2} s{sup -1} (298 K) when the concentration of KOH and ethanol is both 1.0 M. The overall rate equation for ethanol oxidation on Pd/Ti electrode in alkaline media is given as j=1.4 x 10{sup -4}C{sub KOH}{sup 0.2}C{sub ethanol} exp ((0.28F)/(RT){eta}). (author)

  16. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  17. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  18. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  19. Effect of a new condensation product on electrodeposition of zinc ...

    Indian Academy of Sciences (India)

    TECS

    steel in aerospace, electrical, and fastener industries owing to its excellent corrosion ... The most commonly used sacrificial coating is zinc and its alloys. Zinc by ... cause of their non-polluting nature (Arthoba Naik et al. 2002). Organic additives ...

  20. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  1. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    Energy Technology Data Exchange (ETDEWEB)

    Adamic, M.L., E-mail: Mary.Adamic@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Vockenhuber, C. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Watrous, M.G. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States)

    2015-10-15

    This paper presents an evaluation of an alternate method for preparing environmental samples for {sup 129}I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  2. The Technology and Properties of Digital Double Pulse Electrodepositing Ni-HA Composite Coating of Bioceramics

    Institute of Scientific and Technical Information of China (English)

    DONG He-yan; WANG Zhou; SHI Gu-guizhi; FU Chuan-qi; CHEN Wei-rong; JIN Zhong-hong; LI Yan

    2004-01-01

    This article discusses and analyses the technology, the surface image, microstructure and ability of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics made on 1Crl8Ni9Ti substrate by SEM ,XRD and so on. The results shows that ( 1 ) the HA particles exit in substrate uniformly; (2) XRD result shows that there are HA peaks at 78. 023 ° ,43. 246°and 73. 120°differently; (3) The microhardnees of the composite coatings is increased with the rise of content of HA particles, and on the same conditions the microhardnees value is greater than that of common non-pulse electrodepositing Ni-HA composite coatings of bioceramics. (4) The grain size of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics is much thinner than that of common D. C.

  3. Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Redman, Daniel W; Rose, Michael J; Stevenson, Keith J

    2017-09-19

    This work reports on the general electrodeposition mechanism of tetrachalcogenmetallates from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Both tetrathio- and tetraselenomolybdate underwent anodic electrodeposition and cathodic corrosion reactions as determined by UV-vis spectroelectrochemistry. Electrodeposition was carried out by cycling the potential between the anodic and cathodic regimes. This resulted in a film of densely packed nanoparticles of amorphous MoS x or MoSe x as determined by SEM, Raman, and XPS. The films were shown to have high activity for the hydrogen evolution reaction. The onset potential (J = 1 mA/cm 2 ) of the MoS x film was E = -0.208 V vs RHE, and that of MoSe x was E = -0.230 V vs RHE. The Tafel slope of MoS x was 42 mV/decade, and that of MoSe x was 59 mV/decade.

  4. Electrodeposition of milligram amounts of uranium on electropolished stainless steel disks

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Shah, P.M.; Duggal, R.K.; Jain, H.C.

    1991-01-01

    Investigations have been carried out for the electrodeposition of milligram amounts of uranium on electropolished stainless steel disks with an objective of preparing good quality sources for α-spectrometric studies on uranium. The parameters studied include the vatiation of electrodeposition yield as a function of voltage, time, distance between the cathode and anode, and the volume of 0.2M ammonium oxalate solution. The conditions selected for preparing good quality sources with nearly 100% yield were: electrodeposition voltage 25 V, time of deposition 15 min, volume of 0.2M ammonium oxalate solution in the cell 4 ml and a distance of 2 cm between the cathode and anode. The sources prepared using this method have been used successfully for the α-spectrometric determination of 234 U/ 238 U ratios in uranium samples. (author) 6 refs.; 4 figs

  5. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    International Nuclear Information System (INIS)

    Adamic, M.L.; Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E.; Vockenhuber, C.; Watrous, M.G.

    2015-01-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for "1"2"9I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  6. ZnTe Amorphous Semiconductor Nanowires Array Electrodeposited into Polycarbonate Membrane Thin Films

    International Nuclear Information System (INIS)

    Ohgai, T; Ikeda, T; Ohta, J

    2013-01-01

    ZnTe amorphous semiconductor nanowires array was electrodeposited into the nanochannels of ion-track etched polycarbonate membrane thin films from acidic aqueous solution at 313 K. ZnTe electrodeposits with Zn-rich composition was obtained over the wide range of cathode potential from −0.8 V to −1.1 V and the growth rate of ZnTe amorphous nanowires was around 3 nm.sec −1 at the cathode potential of −0.8 V. Cylindrical shape of the nanowires was precisely transferred from the nanochannels and the aspect ratio reached up to ca. 40. ZnTe amorphous phase electrodeposited at 313 K was crystallized by annealing at 683 K and the band gap energy of ZnTe crystalline phase reached up to ca. 2.13 eV.

  7. Liquid Membrane System for Extraction and Electrodeposition of Lead(II During Electrodialysis

    Directory of Open Access Journals (Sweden)

    Sadyrbaeva Tatiana

    2017-05-01

    Full Text Available A novel method for lead(II removal from aqueous acidic solutions is presented. The method involves electrodialysis through bulk liquid membranes accompanied by electrodeposition of metal from the cathodic solution. Solutions of di(2-ethylhexylphosphoric acid with admixtures of tri-n-octylamine in 1,2-dichloroethane were used as the liquid membranes. The effects of the main electrodialysis parameters as well as of the composition of the liquid membranes and aqueous solutions on the lead(II transport rate are studied. The optimal conditions are determined. A possibility of effective single-stage transfer of lead(II through the liquid membrane into dilute solutions of perchloric, nitric and acetic acids is demonstrated. Dense and adherent lead electrodeposits are obtained from perchloric acid solutions. Maximum extraction degree of 93 % and electrodeposition degree of ~60 % are obtained during 5 h of electrodialysis.

  8. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  9. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  10. Use of carriers for to electrodeposited radium 226; Utilizacion de portadores para electrodepositar radio 226

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe, J.L

    1991-10-15

    The form of the energy distribution of a monoenergetic alpha particle starting from some emitting source of these particles, it depends on the quantity of material that its cross before being detected. Some authors deposit to the radium-226 by means of direct evaporation of the solution on metallic supports, on millipore paper and by electrodeposition. Some other ones place the radium solution in scintillation liquid, to quantify it by this technique. The objective of the present work is using carriers with the same oxidation state of the radium, that is to say of 2{sup +}, for treating to be electrodeposited to the radium-226 with the biggest possible percentage for later use the alpha spectroscopy technique to quantify it. The carriers that have been used until its they are barium and zinc in form of barium chloride, zinc nitrate and zinc sulfate. The first results indicate that with the zinc solution a yield of 40% of electrodeposited radium has been reached. (Author)

  11. Stress control in electrodeposited CoFe films—Experimental study and analytical model

    International Nuclear Information System (INIS)

    Brankovic, Stanko R.; Kagajwala, Burhanuddin; George, Jinnie; Majkic, Goran; Stafford, Gery; Ruchhoeft, Paul

    2012-01-01

    Work investigating the effect of saccharin as an additive on growth stress and structure of electrodeposited CoFe films is presented. The saccharin concentrations were in the range between 0 g L −1 and 1.5 g L −1 . The stress measurements are performed in situ during electrodeposition of CoFe films using cantilever-bending method (curvature measurements). The structure of CoFe films was studied by transmission electron microscopy and X-ray diffraction. Results show that growth stress is a decreasing function of saccharin concentration. No appreciable change in composition, grain size, orientation or texture of CoFe films are observed with increasing saccharin content in solution. The growth stress dependence on saccharin concentration is discussed within the framework of analytical model, which directly links the observed stress decrease with the apparent saccharin coverage of the CoFe film surface during the electrodeposition process.

  12. Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication †

    Directory of Open Access Journals (Sweden)

    Enrico Berretti

    2016-08-01

    Full Text Available Since their discovery, ionic liquids (ILs have attracted a wide interest for their potential use as a medium for many chemical processes, in particular electrochemistry. As electrochemical media they allow the electrodeposition of elements that are impossible to reduce in aqueous media. We have investigated the electrodeposition of aluminium from 1-butyl-3-methyl-imidazolium chloride ((BmimCl/AlCl3 (40/60 mol % as concerns the effect of deposition parameters on the quality of the deposits. Thick (20 μm aluminium coatings were electrodeposited on brass substrates at different temperatures and mixing conditions (mechanical stirring and sonication. These coatings were investigated by means of scanning electron microscope, roughness measurements, and X-ray diffraction to assess the morphology and the phase composition. Finally, electrochemical corrosion tests were carried out with the intent to correlate the deposition parameters to the anti-corrosion properties.

  13. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  14. Gas diffusion electrodes for PEM-fuel cells via in situ-electrodeposition; Gasdiffusionselektroden fuer PEM-Brennstoffzellen durch in situ-Elektrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Vivien

    2009-03-16

    Commercial available membrane electrode assemblies are still very expensive, since a high noble metal catalyst loading has to be on the gas diffusion electrodes. The reason is particularly the fact that a high amount of the catalyst particles is not located in the so called three phase zone between ion conducting, electron conducting and reactant phase. In the present work the electrochemical synthesis of catalyst layers with a higher catalyst utilization, i. e. with a higher amount of particles located in the three phase zone has succeeded. Thus gas diffusion electrodes comparable in performance with commercial materials but coated with a lower catalyst loading were obtained. A second objective in this work was the development of an electrocombinatoric setup in which both the combinatoric electrosynthesis as well as the combinatoric analysis of platinum and platinum alloys can be performed. Furthermore different alloys were electrodeposited and electrocombinatorically analyzed with respect to their catalytic activity in the electroreduction of oxygen and the electrooxidation of hydrogen, methanol and ethanol. (orig.)

  15. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  16. Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications

    Science.gov (United States)

    Chandran, Ramkumar; Mallik, Archana

    2018-03-01

    This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.

  17. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  18. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  19. Depth profile analysis of electrodeposited nanoscale multilayers by Secondary Neutral Mass Spectrometry (SNMS)

    International Nuclear Information System (INIS)

    Katona, G.L.; Berenyi, Z.; Vad, K.; Peter, L.

    2006-01-01

    Complete text of publication follows. Nanoscale multilayers have been in the focus of research since the discovery of the giant magnetoresistance (GMR) effect in this family of nanostructures. The first observation of GMR on sputtered magnetic/non-magnetic multilayers was followed by the detection of the same effect in electrodeposited Co-Ni-Cu/Cu multilayers within half a decade. Electrodeposition has long been considered as an inexpensive alternative of the high-vacuum methods to produce multilayers with GMR, although the GMR effect observed for electrodeposited multilayers is usually inferior to multilayers produced by physical methods. Electrochemistry appears to be an exclusive technology to produce multilayered nanowires by using porous templates. In spite of the large number of papers about the multilayers themselves, data on the depth profile of electrodeposited multilayer samples are very scarce. It has long been known that the simultaneous electrodeposition of the iron group metals takes place in the so-called anomalous manner. The diagnostic criterion of the anomalous codeposition is that the metallic component of lower standard potential (the Co in the case of Ni/Co) can be discharged together with the more noble one (Ni) at potentials where the less noble component (Co) alone cannot be deposited onto a substrate composed of the parent metal; moreover, the less noble metal (Co) is deposited preferentially. We have investigated the composition gradient along the growth direction of electrodeposited Co/Cu and CoNiCu/Cu multilayers films using SNMS. Samples were electrodeposited using the single bath method. Commercial Cu sheets and an Cr/Cu layer evaporated onto Si (111) surface were used as substrates with high and low roughness, respectively. The depth profiles of the samples were recorded using SNMS (INA-X, Specs GmbH, Berlin) in the Direct Bombardment Mode. Depth profile analysis of electrodeposited magnetic/nonmagnetic layered structures on

  20. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  1. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  2. Electrodeposition of lead on ITO electrode: influence of copper as an additive

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Napolitano, Marcos A.; Kaibara, Evandro K.; Bulhoes, Luis O.S.

    2005-01-01

    The reversible electrodeposition of metallic lead onto indium-tin oxide coated glass (ITO) was investigated and the influence of Cu(NO 3 ) 2 ·3H 2 O as additive was evaluated. The presence of Cu 2+ in the electrolytic solution produces a higher variation in the optical transmissivity. The optical response of the system changes from 85 to 10% relative to the ITO coated substrate. The kinetics of the electroreduction process of the Pb 2+ and Cu 2+ from the electrolytes has been determined by electrochemical impedance spectroscopy (EIS) at different electrodeposition potentials. This system may be a promising candidate for electrochromic materials

  3. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  4. Microstructure and properties of manganese dioxide films prepared by electrodeposition

    International Nuclear Information System (INIS)

    Jacob, G. Moses; Zhitomirsky, I.

    2008-01-01

    Nanostructured manganese dioxide films were obtained by galvanostatic, pulse and reverse pulse electrodeposition from 0.01 to 0.1 M KMnO 4 solutions. The deposition yield was investigated by in situ monitoring the deposit mass using a quartz crystal microbalance (QCM). Obtained films were studied by electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, thermogravimetric and differential thermal analysis. The QCM and electron microscopy data were utilized for the investigation of deposition kinetics and film formation mechanism. It was shown that the deposition rate and film microstructure could be changed by variation of deposition conditions. The method allowed the fabrication of dense or porous films. The thickness of dense films was limited to ∼0.1 μm due to the insulating properties of manganese dioxide and film cracking, attributed to drying shrinkage. Porous and crack-free 1-2 μm films were obtained using galvanostatic or reverse pulse deposition from 0.02 M KMnO 4 solutions. It was shown that film porosity is beneficial for the charge transfer during deposition and crack prevention in thick films. Moreover, porous nanostructured films showed good capacitive behavior for applications in electrochemical supercapacitors. The porous nanostructured films prepared in the reverse pulse regime showed higher specific capacitance (SC) compared to the SC of the galvanostatic films. The highest SC of 279 F/g in a voltage window of 1 V was obtained in 0.1 M Na 2 SO 4 solutions at a scan rate of 2 mV/s

  5. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  6. Magnetotransport and magnetization reversal of electrodeposited multilayer nanowires

    Science.gov (United States)

    Tang, Xueti

    2007-12-01

    Electrodeposited magnetic multilayer nanowires are ideal materials to study nanoscale magnetism and the giant magnetoresistance (GMR) in the current-perpendicular-to-plane (CPP) geometry. This is because the diameter of each nanowire is uniform, the surface of the nanowire is smooth, and the thickness of both the magnetic and non-magnetic layers can be varied to either larger or smaller than the spin diffusion length which is an important parameter in magnetotransport study. In addition, the aspect ratio (layer-thickness/diameter) that is related to shape anisotropy can be varied for magnetization reversal study. There has been little understanding in the magnetization reversal mechanism of multilayer nanowires, which is complicated due to the dipolar interactions between magnetic layers in each nanowire and between nanowires. The objective of this work is to study the magnetization reversal mechanism of multilayer nanowires using a vibrating sample magnetometer (VSM), where various dipolar interactions are taken into account. Although multilayer nanowires are ideal for the study of the CPP-GMR effect, there remains technical difficulty in making an electrical contact with individual nanowires for the CPP-GMR measurements. In this work, a point-contact method using a conductive plunger tip was developed in-house, that enabled us to measure the CPP-GMR of selected multilayer nanowires in an array of vertically aligned nanowires in each sample. To examine the CPP-GMR and compare the results with theoretical models, the CPP-GMR data were systematically obtained from samples with various magnetic and non-magnetic layer thicknesses. It was found from VSM measurement that the magnetization reversal mode in electrodeposited CoNi/Cu multilayer nanowires depends on the shape and thickness of the CoNi layers where the mode in rod-shaped thick CoNi layers is different from that in disk-shaped thin CoNi layers. The reversal mode in coherent rotation or curling was determined

  7. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  8. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  9. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  10. Electrochemistry of Zn(II)/Zn on Mg alloy from the N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ming-Jay, E-mail: martinez730523@yahoo.com.tw [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China); Lin, Pei-Chiung [Department of Chemistry, National Cheng Kung University, Tainan, Taiwan (China); Chang, Jeng-Kuei, E-mail: jkchang@ncu.edu.tw [Institute of Materials Science and Engineering, National Central University, Taoyuan, Taiwan (China); Chen, Jin-Ming; Lu, Kueih-Tzu [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China)

    2011-07-01

    Highlights: > Electrodeposition of Zn was successfully demonstrnated in the water- and air-stable BMP-DCA ionic liquid. While ZnCl{sub 2} is insoluble in the BMP-TFSI ionic liquid, it dissolves easily in the BMP-DCA. > Amperometric titration experiments indicated that Zn(II) probably complexed as [Zn(DCA){sub 3}]- with DCA- anion. > Chronoamperometric experiments showed that the electrodeposition of Zn on GC and Mg alloy substrates involved 3D-instantaneous nucleation/growth process. > A lower deposition rate would bring out a more uniform and compact Zn coating layer (which is also thicker) and, consequently, this coating revealed a protection capability for the Mg substrate against corrosion. - Abstract: Electrochemical reaction of Zn(II)/Zn on glassy carbon electrode(GC) and Mg alloy substrates was investigated in the room-temperature ionic liquid, N-butyl-N-methyl-pyrrolidinium dicyanamide (BMP-DCA) containing ZnCl{sub 2} at 323 K. Amperometric titration experiments suggest that Zn(II) reacted with DCA anions forming [Zn(DCA){sub 3}]{sup -} complex anion, which also could be reduced to Zn metal via a single-step electron transfer process. By chronoamperometric measurements, the electrodeposition of Zn on GC and Mg alloy substrates involved three-dimensional instantaneous nucleation under diffusion control at 323 K. The Zn deposits are also systematically characterized by the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Zn layer deposited at a lower current density on Mg alloy substrates was more compact and uniform when compared to that deposited at a higher current density; consequently, this coating revealed a protection capability for the Mg substrate against corrosion.

  11. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  12. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

    NARCIS (Netherlands)

    Lai, Stanley; Lazenby, R.A.; Kirkman, P.M.; Unwin, P.R.

    2015-01-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of

  13. Potentiostatic electro-deposition of 241Am using room temperature ionic liquids

    International Nuclear Information System (INIS)

    Sankhe, R.H.; Mirashi, N.N.; Arijit Sengupta; Murali, M.S.

    2015-01-01

    An attempt was made for the potentiostatic electrodeposition of 241 Am using six different room temperature ionic liquids (RTILs). Effect of electrodeposition time on the % of electrodeposition of 241 Am, pH change of the solution and the temperature change of the systems were investigated. It was observed that for water immiscible RTILs, the least viscous RTIL gave the best yield (when mixed with iso-propanol), while for water miscible RTILs, reverse trend was observed (when mixed with water). Out of all water immiscible RTILs under consideration for the present case, the octyl-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C 8 mpyNTf 2 ) in isopropanol was found to yield almost quantitative (99.6 %) electrodeposition of 241 Am within 45 min whereas the most effective system was found to be C 8 mimBr with ∼90 % of 241 Am deposited on the electrode for water miscible RTILs. To the best of our knowledge, this is the first approach ever been reported in the literature. (author)

  14. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...

  15. Effect of weak magnetic field on the grain size of electrodeposited nickel

    International Nuclear Information System (INIS)

    Ansari, M.S.; Gul, N.

    2007-01-01

    Effect of weak magnetic field on the electro-deposition of nickel onto copper electrode has been investigated. The working conditions were optimized through adjustment of cathodic current density (CCD), deposition time, bath temperature and pH of the medium. For electro-deposition in the absence of magnetic field, the optimum conditions comprised of pH = 4.0+- 0.5, average CCD = 22.5 +- 0.5 mA cm/sup -2/ and bath temperature in the range from 25 to 30 degree C. The same conditions were maintained for the electrodeposition while applying magnetic field of 0.75 kG. The morphological features of the Ni-deposits on copper cathode were compared for the two cases. The applied magnetic field not only enhanced the amount of nickel deposition but also improved the quality of the deposit. Surface morphology of the electro-deposited nickel has been monitored using scanning electron microscopy (SEM); the preliminary investigation has shown that the grain size decreased with the applied magnetic field case. One possible explanation to this behavior is the convection flow of cations close to the electrode surface induced by the Lorentz force which also influences the ion-migration. (author)

  16. III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-07-11

    Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.

  17. A novel polymeric leveller for the electrodeposition of copper from acidic sulphate bath: A spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; D'Urzo, Lucia; Mele, Claudio

    2007-01-01

    The electrodeposition of copper has recently become a 'hot topic' due to its extensive application to the fabrication of interconnects in the integrated circuits (IC) manufacturing process. However, the proper composition of the electrochemical deposition (ECD) bath, and in particular the selection of the levelling agent, represents one of the crucial factors for an effective transition of Cu ECD towards the most advanced technology nodes. In this paper we report on the electrodeposition of Cu from acidic sulphate baths containing a potential innovative polymeric leveller: a benzyl-phenyl modified polyethyleneimine (BPPEI). This investigation was carried out by: (i) cyclic voltammetry (CV) at a rotating-disk electrode, (ii) in situ surface-enhanced Raman spectroscopy (SERS) during electrodeposition and (iii) scanning electron microscopy (SEM). CV results show that BPPEI acts as an inhibitor of the electrodeposition process, since it reduces the exchange current density and increases the cathodic Tafel slope. Mass transport limitations to the Cu(II) reduction process are essentially unaffected by the presence of BPPEI. SERS spectra show that BPPEI is adsorbed at the growing Cu cathode at all potentials of interest for electroplating. SEM micrographs prove that BPPEI acts as an efficient grain-refiner and suppressor of unstable 3D growth. Cathodic reactivity of BPPEI was proved by the analysis of CV features and potential-dependent SERS spectral changes

  18. A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide

    Science.gov (United States)

    Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.

    2009-01-01

    A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…

  19. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; Rao, Govind R.

    2016-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  20. Thermal stability of electrodeposited Ni and Ni-Co layers; an EBSD-study

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Gholinia, A.; Trimby, P.W.

    2004-01-01

    The influence of heat treatment on the microstructure and the microtexture of electrodeposited Ni and Ni-Co layers was investigated with Electron Backscatter Diffraction (EBSD) with high resolution. Samples were annealed for 1 hour at 523 K and 673 K, the temperature region wherein...

  1. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li

    2010-12-14

    High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.

  2. Alternate method of source preparation for alpha spectrometry: no electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Hiromu Kurosaki; Lambert, S.B.; Rao, G.R.; Mueller, R.J.

    2017-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. It provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily. (author)

  3. Electrodeposition in capillaries: Bottom-up micro and nanopatterning of functional materials on conductive substrates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to

  4. Microstructure and micromechanical properties of electrodeposited Zn–Mo coatings on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierczak, Honorata, E-mail: h.kazimierczak@imim.pl [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Ozga, Piotr [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Berent, Katarzyna [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland); Kot, Marcin [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland)

    2015-07-05

    Highlights: • The conditions for electrodeposition of uniform and compact Zn–Mo coatings have been studied. • Zn–Mo coatings microstructure can be controlled by the molybdenum content. • Surface roughness can be controlled by the content of Mo in coatings. • The value of microhardness grows gradually with the increase of Mo content up to 3 wt.%. - Abstract: The aim of the work was to characterise the new coating material based on zinc with the addition of molybdenum, electrodeposited on steel substrate from nontoxic, citrate based electrolytes. The surface composition of deposits was ascertained by chemical analysis (WDXRF). The morphology of coatings was studied by SEM. The surface morphology and roughness of Zn–Mo coatings on steel was investigated by AFM. The microhardness and Young modulus were determined by indentation technique, whereas the coating adhesion to the substrate was examined by means of scratch test. The optimal ranges of electrodeposition parameters, enabling the preparation of good quality coatings (i.e. uniform, compact, with good adhesion to the substrate), was specified. The morphology of deposits depends significantly on the content of molybdenum and on the thickness of electrodeposited layer. The microhardness of Zn–Mo coating increases with the increase of molybdenum content up to 3 wt.% and then reaches about 3.5 GPa, which is almost five times that of the value of the microhardness of the Zn coating studied.

  5. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  6. Reuse of Expired Cefort Drug in Nickel Electrodeposition From Watts Bath

    Directory of Open Access Journals (Sweden)

    Delia-Andrada Duca

    2017-06-01

    Full Text Available This paper demonstrates the possibility to use ceftriaxone (CEFTR active compound from expired Cefort as additive in nickel electrodeposition from Watts baths. Electrochemical behaviour and the influence of CEFTR on nickel electroplating were studied by electrochemical methods. Experimental data recommends CEFTR as additive in nickel electroplating from Watts baths.

  7. Anticorrosion protection of carbon steel by electrodeposition of niobium in melted fluorides

    International Nuclear Information System (INIS)

    Almeida, M.E. de; Robin, A.

    1990-01-01

    The results about niobium electrodeposition over carbon steel from K sub(2) Nb F sub(7) solutions, on LiF-Na F-KF eutetic at 750 sup(0)C and over the corrosion resistance of obtainment deposit from acid media are presented. (author)

  8. Preparation of /sup 237/Np samples by electrodeposition and its determination by alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mertzig, W; Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    An analytical method followed by alpha spectrometry was developed for the determination of trace amounts of actinides. A technique for quantitative electrodeposition of /sup 237/Np, under optimal conditions, using a carrier, is presented. This method will be applied for the control of trace amounts of /sup 237/Np in the solutions from the reprocessing (Purex process) of irradiated uranium.

  9. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  10. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  11. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  12. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.; Ohsaka, Takeo

    2002-01-01

    The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H 2 SO 4 . Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O 2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of -350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H 2 O 2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles

  13. Development of silver-gas diffusion electrodes for the oxygen reduction reaction by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, Sónia; Rego, Rosa; Oliveira, M. Cristina, E-mail: mcris@utad.pt

    2013-12-16

    Silver-gas diffusion electrodes (Ag-GDE) were prepared by direct deposition of the catalyst onto a carbon paper support by electrodeposition. This deposition technique, under potentiostatic and galvanostatic mode, allows the production of well dispersed ultra-low Ag loading levels. The catalytic activity of the prepared materials towards the oxygen reduction reaction (ORR) was investigated in the alkaline solution and its tolerance to methanol was evaluated. Based on an Ag-ink prepared from the electrodeposit material and RDE experiments, it was concluded that the ORR occurs via a four-electron pathway on the Ag electrodeposit. The combination of reasonably high catalytic activity, efficiency, low price, facile and green synthesis makes the electrodeposited Ag-GDE attractive for the ORR in alkaline fuel cells. - Highlights: • A facile and simple way to successfully prepare catalyzed gas diffusion electrodes. • Ultra-low loadings of Ag-GDEs can be achieved. • Good tolerance to methanol and a high mass activity (3.14 mA{sub Ag} mg{sup −1}). • ORR occurs via a four-electron pathway.

  14. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    Science.gov (United States)

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts.

  15. Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth

    DEFF Research Database (Denmark)

    Mamme, Mesfin Haile; Kohn, Christoph; Deconinck, Johan

    2018-01-01

    Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a nov...

  16. Electrodeposition of BaCO3 coatings on stainless steel substrates ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Electrodeposition of BaCO3 coatings on stainless steel substrates: Oriented growth ... orientation by an interfacial molecular recognition mechanism. BaCO3 has important applications in paint, ceramic, and paper industries. Also it is used ...

  17. Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Fangwei; Zhang, Hui, E-mail: meszhanghui@zju.edu.cn; Qi, Yue; Wang, Jiazheng; Du, Ning; Yang, Deren

    2013-09-05

    Highlights: •Nanostructured SnCo/Cu electrodes have been successfully fabricated. •A simple electrodeposition approach was employed. •The Cu arrays offer large surface area and improve electronic/ionic conductivity. •The electrodes show improved performance as anode for Li-ion batteries. •The improved performance was attributed to the nanostructured current collectors. -- Abstract: In this article, we report a two-step electrodeposition method for the synthesis of Cu/SnCo core–shell rod-shaped arrays as anodes of lithium-ion batteries. Firstly, the arrayed Cu nanorods with diameters of 200 nm were fabricated on a Cu foil through an electrodeposition method with alumina oxide membrane (AAO) as the template. Secondly, the SnCo alloy shells were subsequently electrodeposited on the surface of the rod-shaped Cu arrays to form the hybrid nanostructures. These hybrid electrodes delivered the enhanced cyclic performance and high rate capability serving as the anode materials for lithium-ion batteries. The improved electrochemical performance might be attributed to the large surface-to-volume area, sufficient buffering space, and high electronic conductivity associated with these 3-dimensional (3D) nanostructures.

  18. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    International Nuclear Information System (INIS)

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  19. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    Science.gov (United States)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  20. Determination of trace impurities in uranium-transition metal alloy fuels by ICP-MS using extended common analyte internal standardization (ECAIS) technique

    International Nuclear Information System (INIS)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K.

    2015-01-01

    An analytical methodology was developed for the determination of eight trace impurities viz, Al, B, Cd, Co, Cu, Mg, Mn and Ni in three different uranium-transition metal alloy fuels (U-Me; Me = Ti, Zr and Mo) employing inductively coupled plasma mass spectrometry (ICP-MS). The well known common analyte internal standardization (CAIS) chemometric technique was modified and then employed to minimize and account for the matrix effect on analyte intensity. Standard addition of analytes to the pure synthetic U-Me sample solutions and subsequently their ≥ 94% recovery by the ICP-MS measurement validates the proposed methodology. One real sample of each of these alloys was analyzed by the developed analytical methodology and the %RSD observed was in the range of 5-8%. The method detection limits were found to be within 4-10 μg L -1 . (author)

  1. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  2. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Steffani, C.; Meltzer, M.

    1995-04-01

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  3. Adhesion of electrodeposited coatings on U--Ti and Mulberry

    International Nuclear Information System (INIS)

    Johnson, H.R.; Dini, J.W.

    1976-05-01

    Quantitative test data are presented for two etched and plated uranium alloys, U-0.75 Ti and mulberry (U-7.5 Nb, 2.5 Zr). Conical head tensile tests showed that the bond between nickel plating and U--Ti was stronger than that between nickel plating and mulberry. Ring shear tests showed that electroplated nickel coatings are more adherent than other coatings applied to U--Ti. Utilizing a newly developed etchant for mulberry, large cylinders of this material were joined to aluminum and then tensile tested. Results showed that the strength of the joint was directly influenced by the taper angle on the mulberry

  4. Evolution of the dicalcium phosphate-dihydrate (DCPD coating created by large amplitude sinusoidal voltammetry (LASV on corrosion resistance of the ZW3 magnesium alloy in chloride containing environment

    Directory of Open Access Journals (Sweden)

    Kajánek D.

    2018-02-01

    Full Text Available The contribution is focused on the preparation of coating based on the dicalcium phosphate-dihydrate (DCPD on the surface of ZW3 magnesium alloy. For the preparation of the coating a cathodic electrodeposition technique called Large Amplitude Sinusoidal Voltammetry (LASV was used. The DCPD layer was prepared at the temperature of 22 ± 2 °C in electrolyte composed of 0.1M Ca(NO3.4H2O, 0.06 M NH4H2PO4 and H2O2. Electrochemical characteristics were evaluated by electrochemical impedance spectroscopy (EIS in 0.1M NaCl solution. The obtained data in form of Nyquist plots were analysed by the equivalent circuit method. It is clear from the measured values of polarization resistance Rp that dicalcium phosphate-dihydrate (DCPD layer prepared by LASV electro-deposition technique improved corrosion resistance of ZW3 alloy in the chosen environment.

  5. SURFACE MODIFICATION OF SEMICONDUCTOR THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY Cu-ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Fitria Rahmawati

    2010-06-01

    Full Text Available Surface modification of graphite/TiO2 has been done by mean of Cu electrodeposition. This research aims to study the effect of Cu electrodeposition on photocatalytic enhancing of TiO2. Electrodeposition has been done using CuSO4 0,4 M as the electrolyte at controlled current. The XRD pattern of modified TiO2 thin film on graphite substrate exhibited new peaks at 2θ= 43-44o and 2θ= 50-51o that have been identified as Cu with crystal cubic system, face-centered crystal lattice and crystallite size of 26-30 nm. CTABr still remains in the material as impurities. Meanwhile, based on morphological analysis, Cu particles are dissipated in the pore of thin film. Graphite/TiO2/Cu has higher photoconversion efficiency than graphite/TiO2.   Keywords: semiconductor, graphite/TiO2, Cu electrodeposition

  6. Tuning the electrodeposition parameters of silver to yield micro/nano structures from room temperature protic ionic liquids

    International Nuclear Information System (INIS)

    Suryanto, Bryan H.R.; Gunawan, Christian A.; Lu Xunyu; Zhao Chuan

    2012-01-01

    Controlled electrodeposition of silver onto glassy carbon, gold and indium tin oxide-coated glass substrates has been achieved from three room temperature protic ionic liquids (PILs), ethylammonium nitrate, triethylammonium methylsulfonate, and bis(2-methoxyethyl)ammonium acetate. Cyclic voltammetric, chronoamperometric, together with microscopic and X-ray techniques reveal that micro/nanostructured Ag thin films of controlled morphology, size, density, and uniformity can be achieved by tuning the electrodeposition parameters such as potential, time, types of PILs, substrate materials, and ionic liquid viscosity by altering the water content. Chronoamperometric results provide direct evidence that electrodeposition of Ag in protic ionic liquids takes place through a progressive nucleation and diffusion-controlled 3D growth mechanism. The as prepared Ag micro/nanoparticles have been employed as electrocatalysts for oxygen reduction reaction and exhibit excellent catalytic activity. The study provides promise for using protic ionic liquids as alternative electrolytes to conventional aprotic ionic liquids for electrodeposition of metals and nanostructured electrocatalysts.

  7. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  8. High Discharge Rate Electrodeposited Zinc Electrode for Use in Alkaline Microbattery

    Directory of Open Access Journals (Sweden)

    A. L. Nor Hairin

    2012-01-01

    Full Text Available High discharge rate zinc electrode is prepared from electrodeposition process. The electrolytic bath consists of zinc chloride as the metal source and ammonium chloride as the supporting electrolyte. The concentration of the supporting electrolyte is varied from zero until 4 M, while the concentration of zinc chloride is fixed at 2 M. The aim is to produce a porous zinc coating with an enhanced and intimate interfacial area per unit volume. These characteristics shall contribute towards reduced ohmic losses, improved active material utilization, and subsequently producing high rate capacity electrochemical cell. Nitrogen physisorption at 77 K is used to measure the BET surface area and pore volume density of the zinc electrodeposits. The electrodeposited zinc electrodes are then fabricated into alkaline zinc-air microbattery measuring 1 cm2 area x ca. 305 µm thick. The use of inorganic MCM-41 membrane separator enables the fabrication of a compact cell design. The quality of the electrodeposited zinc electrodes is gauged directly from the electrochemical performance of zinc-air cell. Zinc electrodeposits prepared from electrolytic bath of 2 M NH4Cl produces the highest discharge capacity.ABSTRAK: Elektrod zink dengan kadar discas tinggi telah dihasilkan dengan proses saduran elektrokimia. Takungan elektrolit terdiri daripada zink klorida sebagai sumber logam dan ammonium klorida sebagai elektrolit sokongan. Kepekatan elektrolit sokongan diubah daripada sifar hingga 4 M, sementara kepekatan zink klorida ditetapkan pada 2 M. Ini bertujuan untuk mendapatkan saduran zink yang poros dengan luas permukaan per unit isipadu dan sentuhan antaramuka yang dipertingkatkan. Ciri-ciri ini akan menyumbang terhadap pengurangan kehilangan disebabkan kerintangan, pertambahan dalam gunapakai bahan aktif dan akhirnya menghasilkan sel elektrokimia berprestasi tinggi. Physisorpsi nitrogen pada 77 K telah digunakan untuk mengukur luas permukaan BET dan isipadu liang

  9. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  10. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  11. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  12. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  13. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm

    OpenAIRE

    Vanrenterghem, B.; Bele, M.; Zepeda, F.R.; Sala, M.; Hodnik, N.; Breugelmans, Tom

    2018-01-01

    Abstract: In the past decades, there has been an ongoing search for tailor-made active metal nanoparticles for the use as electrocatalysts. An upcoming versatile and green method for the synthesis of nanoparticles is electrodeposition. However, the state-of-the-art electrodeposited metal particle sizes are in the range of 50200 nm. Production of high surface area metallic electrocatalysts with small particle sizes is a serious limitation of electrodeposition, i.e., the Gordian Knot. In this a...

  15. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  16. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Javed, K. [Department of Physics, Forman Christian College, Lahore 5400 (Pakistan); Liu, P. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Ban, S.L. [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-06-15

    Highlights: • Highly ordered CoNiGa alloy nanowires with different compositions were fabricated by DC electrodeposition. • The magnetic properties of CoNiGa nanowires can be easily tailored by varying its components. • Magnetostatic interactions plays an important role in the magnetization reversal process. • A linear dependence of coercivity on temperature was found for Co{sub 55}Ni{sub 28}Ga{sub 17} samples. - Abstract: CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co{sub 55}Ni{sub 28}Ga{sub 17} nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  17. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  18. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    International Nuclear Information System (INIS)

    Wu, Fengxia; Liang, Jun; Peng, Zhenjun; Liu, Baixing

    2014-01-01

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion

  19. Investigation into cathode polarization during deposition of rhodium-nickel and rhodium-indium alloys

    International Nuclear Information System (INIS)

    Evdokimova, N.V.; Byacheslavov, P.M.; Lokshtanova, O.G.

    1979-01-01

    The results of kinetic regularities experimental investigations during electrodeposition of rhodium-nickel and rhonium-indium alloys are presented. Methods of general and partial polarization curves have been used to show the nature of polarization during the rhonium-nickel and rhodium-indium alloys deposition. It is shown that indium into the rhodium-indium alloy and nickel into the rhodium-nickel alloy deposit with great depolarization ( PHIsub(In)sup(0)=-0.33B, PHIsub(Ni)sup(0)=-0.23B). Indium and nickel in pure form do not deposit from the electrolytes of the given composition (H 2 SO 4 - 50 g/l, HNH 2 SO 3 -10 g/l). The recalculation of partial polarization curve of indium precipitation into the rhodium-indium alloy in the mixed kinetics coordinates gives a straight line with 40 mV inclination angle. This corresponds to the delayed stage of the second electron addition with the imposition of diffusion limitations

  20. Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Directory of Open Access Journals (Sweden)

    Raymond Sieh

    2016-07-01

    Full Text Available The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM, energy dispersive X-ray (EDS, optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF between 0.06 and 0.12.